TDA3616 [NXP]

Multiple voltage regulator with battery detection; 带电池检测多个稳压器
TDA3616
型号: TDA3616
厂家: NXP    NXP
描述:

Multiple voltage regulator with battery detection
带电池检测多个稳压器

稳压器 电池
文件: 总20页 (文件大小:98K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA3616  
Multiple voltage regulator with  
battery detection  
Objective specification  
2000 Jan 14  
Supersedes data of 1998 Jul 22  
File under Integrated Circuits, IC01  
Philips Semiconductors  
Objective specification  
Multiple voltage regulator with battery  
detection  
TDA3616  
FEATURES  
General  
GENERAL DESCRIPTION  
The TDA3616 is a low power voltage regulator. It contains  
the following:  
One VP-state controlled regulator  
Battery detection circuit  
One fixed voltage regulator with a foldback current  
protection, intended to supply a microprocessor, that  
also operates during load dump  
Regulator, reset and battery outputs operate during load  
dump  
A provision for use of a reserve supply capacitor that will  
hold enough energy for the regulator to allow a  
microcontroller to prepare for loss of supply voltage  
Supply voltage range from 18 to +50 V  
Low quiescent current (battery detection switched off)  
High ripple rejection  
Reset signals which can be used to interface with the  
microprocessor  
Dual reset output  
A supply pin that can withstand load dump pulses and  
negative supply voltages  
Backup circuit  
Adjustable reset delay timer.  
Defined start-up behaviour; regulator will be switched on  
at a supply voltage higher than 7.5 V and off when the  
output voltage of the regulator drops below 2.4 V.  
Protections  
Reverse polarity safe (down to 18 V without high  
reverse current)  
Able to withstand voltages up to 18 V at the output  
(supply line may be short-circuited)  
ESD protected on all pins  
Load dump protection  
Foldback current limit protection for regulator  
The regulator output is DC short-circuited safe to ground  
and VP.  
QUICK REFERENCE DATA  
SYMBOL  
Supply  
VP  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
supply voltage  
operating  
regulator on  
5.6  
14.4  
25  
V
jump start  
t 10 minutes  
30  
V
load dump protection  
quiescent supply current  
t 50 ms; tr 2.5 ms  
standby mode  
standby mode; Tamb = 25 °C  
50  
V
Iq  
95  
95  
125  
120  
µA  
µA  
Regulator  
Vo  
output voltage  
0.5 mA IREG 150 mA;  
4.8  
4.75  
4.75  
5.0  
5.0  
5.0  
0.6  
5.2  
V
V
V
V
7 V VP 18 V; Tamb = 25 °C  
0.5 mA IREG 150 mA;  
7 V VP 18 V  
5.25  
5.25  
1.0  
IREG = 30 mA;  
18 V VP 50 V; load dump  
Vdrop  
drop-out voltage  
IREG = 150 mA; VP = 5 V;  
Tamb = 25 °C  
2000 Jan 14  
2
Philips Semiconductors  
Objective specification  
Multiple voltage regulator with battery  
detection  
TDA3616  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TDA3616T  
SO20  
plastic small outline package; 20 leads; body width 7.5 mm  
plastic single in-line medium power package with fin; 9 leads  
SOT163-1  
SOT110-1  
TDA3616SF  
SIL9MP  
BLOCK DIAGRAM  
(14.4 V) 17 (4)  
(5) 18  
(3) 16  
BACKUP SWITCH  
V
P
BU  
LOAD DUMP  
PROTECTION  
REG  
REGULATOR  
REFERENCE  
3.1  
kΩ  
2, 3, 8, 9,  
12, 13, 19  
(1) 14  
(2) 15  
7
4
RES2  
RES1  
n.c.  
i.c.  
1, 10,  
11, 20  
&
47 kΩ  
6 (8)  
3.1  
kΩ  
V
C
TDA3616T  
REG  
4 (6)  
(7) 5  
BATTERY  
BUFFER  
V
V
O(bat)  
I(bat)  
7 (9)  
GND  
MGL933  
The pin numbers given in parenthesis refer to the TDA3616SF version.  
Fig.1 Block diagram.  
3
2000 Jan 14  
Philips Semiconductors  
Objective specification  
Multiple voltage regulator with battery  
detection  
TDA3616  
PINNING  
PIN  
SYMBOL  
DESCRIPTION  
SOT163-1  
SOT110-1  
i.c.  
1, 10, 11, and 20  
interconnected; heat spreader; note 1  
not connected; heat spreader  
n.c.  
2, 3, 8, 9, 12, 13  
and 19  
VI(bat)  
VO(bat)  
VC  
4
5
6
7
8
9
1
2
3
4
5
battery input voltage  
battery detection output voltage  
reset delay capacitor  
ground (0 V)  
6
GND  
RES2  
RES1  
REG  
VP  
7
14  
15  
16  
17  
18  
reset 2 output  
reset 1 output  
regulator output  
supply voltage  
BU  
backup  
Note  
1. The i.c. pins are connected to each other by the leadframe and can be kept floating or can be connected to ground.  
handbook, halfpage  
i.c.  
n.c.  
n.c.  
20 i.c.  
19  
1
2
handbook, halfpage  
RES2  
RES1  
REG  
1
2
3
4
5
6
7
8
9
n.c.  
18 BU  
3
V
V
P
17  
4
I(bat)  
V
P
V
16 REG  
5
O(bat)  
TDA3616T  
BU  
TDA3616SF  
V
C
6
15 RES1  
V
I(bat)  
RES2  
GND  
n.c.  
n.c.  
i.c.  
7
14  
V
O(bat)  
8
13 n.c.  
V
C
n.c.  
i.c.  
9
12  
11  
GND  
10  
MGL930  
MGR093  
The i.c. and n.c. pins can be connected to a heat spreader.  
Fig.2 Pin configuration (SOT163-1).  
Fig.3 Pin configuration (SOT110-1).  
2000 Jan 14  
4
Philips Semiconductors  
Objective specification  
Multiple voltage regulator with battery  
detection  
TDA3616  
FUNCTIONAL DESCRIPTION  
The charge of the backup capacitor can be used to supply  
the regulator and logic circuits for a short period of time  
when the supply falls to 0 V (the time depends on the value  
of the storage capacitor). The regulator is switched off at a  
backup voltage of approximately 2.7 V. From this time  
onwards, the backup charge will only be used for  
maintaining reset functions. Due to this, the reset outputs  
will remain LOW until the output of the regulator is dropped  
to 0 V.  
The TDA3616 (see Fig.1) is a voltage regulator intended  
to supply a microprocessor (e.g. in car radio applications).  
Because of low-voltage operation of the application, a  
low-voltage drop regulator is used.  
This regulator will switch-on when the backup voltage  
(see Section “Backup circuit”) exceeds 7.5 V for the first  
time and will switch-off again when the output voltage of  
the regulator drops below 2.4 V. When the regulator is  
switched on, the RES1 and RES2 outputs (RES2 can only  
be HIGH when RES1 is HIGH) will go HIGH after a fixed  
delay time (fixed by an external delay capacitor) to  
generate a reset to the microprocessor.  
All output pins are fully protected. The regulator is  
protected against load dump and short-circuit (foldback  
current protection). At load dump, the battery detection  
circuit will remain operating.  
Interfacing with the microprocessor can be accomplished  
by means of a battery Schmitt trigger and output buffer  
(simple full/semi on/off logic applications). The battery  
output will go HIGH when the battery input voltage  
exceeds the high threshold level.  
Pin RES1 will go HIGH via an internal pull-up resistor of  
3.1 k, and is used to initialize the microprocessor.  
Pin RES2 is used to indicate that the regulator output  
voltage is within its voltage range. This start-up feature is  
built-in to secure a smooth start-up of the microprocessor  
at first connection, without uncontrolled switching of the  
regulator during the start-up sequence.  
The timing diagrams are shown in Fig.4.  
V
P
18 V  
V
BU  
4.75 V  
regulator  
2.4 V  
reset 2  
reset 1  
reset delay  
capacitor  
2 V  
2 V  
2.05 V  
1.95 V  
battery input  
battery output  
MGR095  
Fig.4 Timing diagrams.  
5
2000 Jan 14  
Philips Semiconductors  
Objective specification  
Multiple voltage regulator with battery  
detection  
TDA3616  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
VP  
PARAMETER  
CONDITIONS  
MIN.  
MAX.  
UNIT  
supply voltage  
operating  
regulator on  
25  
V
V
V
V
V
V
jump start  
t 10 minutes  
30  
load dump protection  
t 50 ms; tr 2.5 ms  
non-operating  
50  
Vrp  
reverse polarity voltage  
18  
50  
VI(bat)p  
VI(bat)n  
positive pulse voltage at battery input  
negative pulse voltage at battery input  
VP = 14.4 V; RI = 5 kΩ  
VP = 14.4 V; RI = 10 k;  
100  
Cl = 1 nF  
Ptot  
Tstg  
Tamb  
Tj  
total power dissipation  
storage temperature  
ambient temperature  
junction temperature  
VP = 12.4 V  
non-operating  
operating  
2.5  
W
55  
40  
40  
+150  
+105  
+150  
°C  
°C  
°C  
operating  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
VALUE  
UNIT  
Rth(j-p)  
thermal resistance from junction to pin/tab  
TDA3616T  
20  
12  
K/W  
K/W  
TDA3616SF  
Rth(j-a)  
thermal resistance from junction to ambient  
TDA3616T  
10 cm2 2-sided copper  
area connected to pins  
50  
50  
K/W  
K/W  
TDA3616SF  
in free air  
QUALITY SPECIFICATION  
Quality specification in accordance with “SNW-FQ-611E”.  
2000 Jan 14  
6
Philips Semiconductors  
Objective specification  
Multiple voltage regulator with battery  
detection  
TDA3616  
CHARACTERISTICS  
VP = 14.4 V; IREG = 0.5 mA; 40 °C < Tamb < +105 °C; measurements taken in test circuit of Fig.7; unless otherwise  
specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
Supply  
VP  
supply voltage  
operating  
regulator on; note 1  
5.6  
14.4  
25  
30  
50  
120  
125  
V
jump start  
t 10 minutes  
V
load dump protection  
quiescent supply current  
t 50 ms; tr 2.5 ms  
VP = 12.4 V; Tamb = 25 °C; note 2  
VP = 12.4 V; note 2  
V
Iq  
95  
95  
100  
5
µA  
µA  
µA  
mA  
VP = 14.4 V; note 2  
VP = 50 V; load dump  
20  
Schmitt trigger for regulator and reset 1  
Vth(r)  
Vth(f)  
rising threshold voltage  
falling threshold voltage  
RL(REG) = 1 kΩ  
IREG = 5 mA  
6.2  
2.1  
7.5  
2.4  
2.25  
5.1  
8.1  
2.7  
V
V
V
V
IREG = 30 mA  
Vhys  
hysteresis voltage  
Schmitt trigger for battery detection  
Vth(r)  
Vth(f)  
Vhys  
rising threshold voltage  
falling threshold voltage  
hysteresis voltage  
Tamb = 25 °C  
Tamb = 25 °C  
2.0  
2.0  
1.9  
1.9  
2.1  
2.1  
2.0  
2.0  
0.1  
2.2  
2.25  
2.1  
2.15  
V
V
V
V
V
Schmitt trigger for reset 2  
Vth(r)  
Vth(f)  
Vhys  
rising threshold voltage  
note 3  
note 3  
4.55  
4.5  
4.8  
4.75  
0.05  
0
5.05  
5.0  
V
falling threshold voltage  
hysteresis voltage  
V
V
Vtrack  
voltage tracking with VREG  
Isink = 0 mA; note 4  
65  
+65  
mV  
Reset 1 and reset 2 buffers  
Isink(L)  
LOW-level sink current  
V
RES 0.5 V; note 3  
2
15  
mA  
kΩ  
kΩ  
Rpu(int)  
internal pull-up resistance  
Tamb = 25 °C  
2.2  
1.9  
3.1  
3.1  
4.0  
4.6  
Reset delay  
Rpu(int)  
Vth(r)  
td  
internal pull-up resistance  
rising threshold voltage  
delay time  
Tamb = 25 °C; note 5  
47  
kΩ  
V
1.4  
2.0  
2.6  
2.8  
Cd = 100 nF; note 6; see Fig.9  
ms  
Battery buffer  
VOL  
VOH  
IOL  
LOW-level output voltage  
II = 0 mA  
0
0.05  
5.0  
0.5  
12  
0.5  
5.2  
V
HIGH-level output voltage  
LOW-level output current  
HIGH-level output current  
Io = 5 µA; note 7  
V
VOL 0.5 V  
0.2  
1
mA  
mA  
IOH  
VOH 4 V; see Fig.6  
2000 Jan 14  
7
Philips Semiconductors  
Objective specification  
Multiple voltage regulator with battery  
detection  
TDA3616  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
Regulator (IREG = 5 mA; unless otherwise specified)  
Vo  
output voltage  
0.5 mA IREG 150 mA;  
7 V VP 18 V; Tamb = 25 °C  
4.8  
5.0  
5.0  
5.0  
5.2  
V
V
V
0.5 mA IREG 150 mA;  
7 V VP 18 V  
4.75  
4.75  
5.25  
5.25  
I
REG = 30 mA; 18 V VP 50 V;  
load dump  
Io  
output current  
VP > 25 V; load dump  
7 V VP 18 V  
3
100  
50  
mA  
mV  
mV  
VLN  
VL  
line voltage regulation  
load voltage regulation  
0.5 mA IREG 150 mA;  
Tamb = 25 °C  
70  
0.5 mA IREG 150 mA  
85  
mV  
dB  
V
SVRR  
Vdrop  
supply voltage ripple rejection  
drop-out voltage  
fi = 200 Hz; Vi = 2 V (p-p); Io = 5 mA 55  
60  
0.6  
IREG = 150 mA; VP = 5 V;  
1.0  
Tamb = 25 °C; note 8  
IREG = 150 mA; VP = 5.5 V; note 8  
VREG > 4.5 V; VP > 10 V; note 9  
0.9  
0.6  
80  
1.2  
1
V
Il  
current limit  
0.25  
40  
A
Isc  
short-circuit current  
RL(REG) 0.5 ; Tamb = 25 °C;  
mA  
note 10  
Backup switch  
IDC DC continuous current  
Ir reverse current  
VBU > 5 V; note 11  
0.1  
0.2  
A
VP = 0 V; VBU = 12.4 V  
200  
µA  
Notes  
1. Minimum operating voltage, only if VP has exceeded 7.5 V.  
2. The quiescent current is measured in standby mode. Therefore, the battery input is connected to a low voltage  
source and RL(REG) = .  
3. The voltage of the regulator sinks as a result of a supply voltage drop.  
4. Only one band gap circuit is used as a reference for both regulator and Schmitt trigger for reset. Due to this a tracking  
exists between the reset Schmitt trigger levels and the output voltage of the regulator.  
5. The temperature coefficient of the internal resistor is 0.2%/K.  
VREG  
6. The delay time can be calculated with the following formula: td = Rpu(int) × Cd × ln  
-----------------------------------  
(VREG Vthr  
)
7. The battery output voltage will be equal or less than the output voltage of the regulator.  
8. The drop-out voltage of the regulator is measured between VP and VREG  
.
9. At current limit, Il is held constant (behaviour according to dashed line in Fig.5).  
10. The foldback current protection limits the dissipated power at short-circuit (see Fig.5).  
11. The backup switch can deliver an additional current of 100 mA, guaranteed when the regulator is loaded with nominal  
loads (IREG 150 mA).  
2000 Jan 14  
8
Philips Semiconductors  
Objective specification  
Multiple voltage regulator with battery  
detection  
TDA3616  
handbook, halfpage  
5.0 V  
MGL434  
V
REG  
1 V  
I
I
50 mA  
sc  
l
I
REG  
Fig.5 Foldback current protection.  
MGL932  
16  
handbook, halfpage  
I
O(bat)  
(mA)  
12  
8
4
0
3.25  
3.75  
4.25  
4.75  
5.25  
(V)  
V
O(bat)  
Tamb = 27° C.  
Fig.6 Battery buffer HIGH-level output current as a function of VO(bat)  
.
2000 Jan 14  
9
Philips Semiconductors  
Objective specification  
Multiple voltage regulator with battery  
detection  
TDA3616  
TEST AND APPLICATION INFORMATION  
Test information  
V
P
regulator output  
reset 1 output  
reset 2 output  
16  
15  
14  
17  
C
C
L
P
R
V
L(REG)  
(2)  
P
(1)  
10 µF  
10 µF  
10 kΩ  
V
C
6
4
R
L(RES1)  
1 kΩ  
TDA3616T  
R
battery input voltage  
I
10 kΩ  
C
I
1 nF  
V
I(bat)  
back-up capacitor  
battery output voltage  
18  
5
C
BU  
7
150 nF  
GND  
MGR097  
(1) Capacitor not required for stability.  
(2) RL(REG) = 0.5 at short-circuit.  
Fig.7 Test circuit for TDA3616T.  
2000 Jan 14  
10  
Philips Semiconductors  
Objective specification  
Multiple voltage regulator with battery  
detection  
TDA3616  
Application information  
STABILITY  
NOISE  
The regulator is stabilized by the output capacitor CL.  
The value of the output capacitor can be selected using  
the diagram shown in Fig.8. The following two examples  
show the effects of the stabilization circuit using different  
values for the output capacitor.  
The noise at the output of the regulator depends on the  
bandwidth of the regulator, which can be adjusted by the  
output capacitor CL. Table 1 shows the noise figures.  
The noise on the supply line depends on the value of the  
supply capacitor CP and is caused by a current noise (the  
output noise of the regulator is translated into a current  
noise by the output capacitor). When a high frequency  
capacitor of 220 nF (with an electrolytic capacitor of  
100 µF connected in parallel) is connected directly  
between pins VP and GND the noise is minimized.  
Remark: The behaviour of ESR as a function of the  
temperature must be known.  
Example 1  
The regulator is stabilized using an electrolytic output  
capacitor of 68 µF (ESR = 0.5 ). At Tamb = 40 °C the  
capacitor value is decreased to 22 µF and the ESR is  
increased to 3.5 . The regulator will remain stable at a  
temperature of Tamb = 40 °C.  
Table 1 Noise figures  
NOISE FIGURE (µV)(1)  
IO (mA)  
Example 2  
CL = 10 µF CL = 47 µF CL = 100 µF  
0.5  
50  
58  
50  
45  
The regulator is stabilized using an electrolytic output  
capacitor of 10 µF (ESR = 3.3 ). At Tamb = 40 °C the  
capacitor value is decreased to 3 µF and the ESR is  
increased to 23.1 . The regulator will be unstable at a  
temperature of Tamb = 40 °C. This can be solved by using  
a tantalum capacitor of 10 µF.  
250  
200  
180  
Note  
1. Measured at a bandwidth of 10 Hz to 100 kHz.  
8
MBK118  
ESR  
(1)  
()  
6
4
2
0
stable region  
(2)  
0.68  
1
10  
100  
output capacitor (µF)  
1000  
(1) Maximum Equivalent Series Resistance (ESR).  
(2) Minimum ESR.  
Fig.8 Curve for selecting the value of the output capacitor.  
2000 Jan 14  
11  
Philips Semiconductors  
Objective specification  
Multiple voltage regulator with battery  
detection  
TDA3616  
APPLICATION CIRCUIT  
It is possible to reduce the total thermal resistance from  
120 K/W to 50 K/W).  
In Fig.9 the total quiescent current equals Iq + IRdivider  
.
The specified quiescent current equals Iq. When the  
Backup circuit  
supply voltage is connected, the regulator will switch-on  
when the supply voltage exceeds 7.5 V. With a timing  
capacitor connected to pin VC the reset can be delayed  
(the timer starts at the same moment as the regulator is  
switched on).  
The backup function is used for supplying the regulator  
and logic circuits (reset 1 and 2) when the supply voltage  
is disconnected. For stability a minimum capacitor value  
of 150 nF is needed.  
Forced reset can be accomplished by short-circuiting the  
timer capacitor by using the push-button switch. When the  
push-button is released again, the timer restarts (only  
when the regulator is on) causing a second reset on both  
RES1 and RES2.  
With a supply voltage of 14.4 V the backup capacitor will  
be fully charged until approximately 14.2 V. At the moment  
the supply voltage is lower than the voltage on pin BU the  
backup switch will be opened (this backup switch acts like  
an ideal diode) and the charge of the backup capacitor is  
used for supplying the regulator and the logic circuits.  
The backup capacitor is mainly discharged by the load of  
the regulator. After a certain period of time the regulator  
output will be disabled and the backup capacitor will only  
be discharged by the quiescent current of the IC itself.  
The maximum output current of the regulator equals:  
150 Tamb  
------------------------------------------------------  
th(j-a) × (VP VREG  
150 Tamb  
IO(max)  
=
=
[mA]  
---------------------------------  
R
)
50 × (VP 5)  
When Tamb = 85 °C and VP = 16 V, the maximum output  
current equals 118 mA. At lower ambient temperature  
(Tamb < 0) the maximum output current equals 250 mA.  
In combination with the battery detection Schmitt trigger,  
an early warning can be given to the microprocessor to  
indicate that the battery voltage has dropped down to an  
unacceptable low value, causing the microcontroller to run  
on backup charge. The early warning level can be  
programmed with resistors R1 and R2; see Fig.9.  
For successful operation of the IC (maximum output  
current capability), special attention has to be paid to the  
copper area required as heatsink (connected to  
pins 1, 10, 11 and 20), the thermal capacity of the  
heatsink and its ability to transfer heat to the external  
environment.  
choke  
coil  
C
on/off  
(closed = on)  
2200  
µF  
BU  
V
BU  
18  
1000 µF  
(minimum value of 150 nF  
needed for stability)  
P
17  
(4)  
8 V detector  
R1  
(5)  
REG  
(3) 16  
360 kΩ  
C
L
V
I(bat)  
4 (6)  
6 (8)  
10 µF  
TDA3616T  
R2  
100 kΩ  
RES1  
(2) 15  
V
d
C
RES2  
V
(1) 14  
(7) 5  
forced reset  
C
O(bat)  
used for  
8 V detector  
7 (9)  
MGL931  
The pin numbers given in parenthesis refer to the TDA3616SF version.  
Fig.9 Typical application.  
12  
2000 Jan 14  
Philips Semiconductors  
Objective specification  
Multiple voltage regulator with battery  
detection  
TDA3616  
PACKAGE OUTLINES  
SO20: plastic small outline package; 20 leads; body width 7.5 mm  
SOT163-1  
D
E
A
X
c
y
H
E
v
M
A
Z
20  
11  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
10  
w
detail X  
e
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.30  
0.10  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
13.0  
12.6  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
mm  
2.65  
0.25  
0.01  
1.27  
0.050  
1.4  
0.25 0.25  
0.1  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.51  
0.014 0.009 0.49  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches 0.10  
0.055  
0.01 0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
97-05-22  
99-12-27  
SOT163-1  
075E04  
MS-013  
2000 Jan 14  
13  
Philips Semiconductors  
Objective specification  
Multiple voltage regulator with battery  
detection  
TDA3616  
SIL9MPF: plastic single in-line medium power package with fin; 9 leads  
SOT110-1  
D
D
1
q
A
2
P
P
1
A
3
q
2
q
1
A
A
4
E
pin 1 index  
c
L
1
9
b
Q
e
Z
b
w
M
2
b
1
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
Z
max.  
A
max.  
2
(1)  
(1)  
E
UNIT  
A
A
b
b
b
c
D
D
e
L
P
P
Q
q
q
q
2
w
A
3
4
1
2
1
1
1
18.5  
17.8  
8.7 15.8 1.40 0.67 1.40 0.48 21.8 21.4 6.48  
8.0 15.4 1.14 0.50 1.14 0.38 21.4 20.7 6.20  
3.9 2.75 3.4 1.75 15.1  
3.4 2.50 3.2 1.55 14.9  
4.4  
4.2  
5.9  
5.7  
2.54  
mm  
3.7  
0.25 1.0  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-11-17  
95-02-25  
SOT110-1  
2000 Jan 14  
14  
Philips Semiconductors  
Objective specification  
Multiple voltage regulator with battery  
detection  
TDA3616  
SOLDERING  
Introduction  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
WAVE SOLDERING  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mount components are mixed on  
one printed-circuit board. However, wave soldering is not  
always suitable for surface mount ICs, or for printed-circuit  
boards with high population densities. In these situations  
reflow soldering is often used.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
Through-hole mount packages  
SOLDERING BY DIPPING OR BY SOLDER WAVE  
For packages with leads on two sides and a pitch (e):  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joints for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg(max)). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
MANUAL SOLDERING  
Apply the soldering iron (24 V or less) to the lead(s) of the  
package, either below the seating plane or not more than  
2 mm above it. If the temperature of the soldering iron bit  
is less than 300 °C it may remain in contact for up to  
10 seconds. If the bit temperature is between  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
300 and 400 °C, contact may be up to 5 seconds.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Surface mount packages  
REFLOW SOLDERING  
MANUAL SOLDERING  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
2000 Jan 14  
15  
Philips Semiconductors  
Objective specification  
Multiple voltage regulator with battery  
detection  
TDA3616  
Suitability of IC packages for wave, reflow and dipping soldering methods  
SOLDERING METHOD  
WAVE  
REFLOW(1) DIPPING  
suitable(2)  
MOUNTING  
PACKAGE  
Through-hole mount DBS, DIP, HDIP, SDIP, SIL  
suitable  
Surface mount  
BGA, LFBGA, SQFP, TFBGA  
not suitable  
not suitable(3)  
suitable  
suitable  
HBCC, HLQFP, HSQFP, HSOP, HTQFP,  
HTSSOP, SMS  
PLCC(4), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
suitable  
not recommended(4)(5) suitable  
not recommended(6)  
suitable  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.  
3. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
4. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
5. Wave soldering is only suitable for LQFP, QFP and TQFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
6. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
2000 Jan 14  
16  
Philips Semiconductors  
Objective specification  
Multiple voltage regulator with battery  
detection  
TDA3616  
NOTES  
2000 Jan 14  
17  
Philips Semiconductors  
Objective specification  
Multiple voltage regulator with battery  
detection  
TDA3616  
NOTES  
2000 Jan 14  
18  
Philips Semiconductors  
Objective specification  
Multiple voltage regulator with battery  
detection  
TDA3616  
NOTES  
2000 Jan 14  
19  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
69  
SCA  
© Philips Electronics N.V. 2000  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
545002/25/02/pp20  
Date of release: 2000 Jan 14  
Document order number: 9397 750 06579  

相关型号:

TDA3616SF

Multiple voltage regulator with battery detection
NXP

TDA3616T

Multiple voltage regulator with battery detection
NXP

TDA3616T/N1,118

IC 2-CHANNEL POWER SUPPLY SUPPORT CKT, PDSO20, PLASTIC, SO-20, Power Management Circuit
NXP

TDA3617

Multiple voltage regulator
NXP

TDA3617J

Multiple voltage regulator
NXP

TDA3617J/N1C,112

TDA3617 - Multiple voltage regulator ZIP 9-Pin
NXP

TDA3618

Multiple voltage regulator with switch and ignition buffers
NXP

TDA3618AJR

Multiple voltage regulator with switch and ignition buffers
NXP

TDA3618JR

Multiple voltage regulator with switch and ignition buffers
NXP

TDA3618JR/N1C,112

TDA3618JR - Multiple voltage regulator with switch and ignition buffers ZIP 17-Pin
NXP

TDA3629

Light position controller
NXP

TDA3629T

Light position controller
NXP