TDA3672 [NXP]

Very low dropout voltage/quiescent current 3.0 V voltage regulator with enable; 以实现非常低的压差电压/静态电流为3.0 V稳压器
TDA3672
型号: TDA3672
厂家: NXP    NXP
描述:

Very low dropout voltage/quiescent current 3.0 V voltage regulator with enable
以实现非常低的压差电压/静态电流为3.0 V稳压器

稳压器
文件: 总16页 (文件大小:87K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA3672  
Very low dropout voltage/quiescent  
current 3.0 V voltage regulator with  
enable  
Preliminary specification  
2000 Apr 26  
File under Integrated Circuits, IC01  
Philips Semiconductors  
Preliminary specification  
Very low dropout voltage/quiescent current  
3.0 V voltage regulator with enable  
TDA3672  
FEATURES  
– Able to withstand voltages up to 18 V at the output  
(supply line may be short-circuited)  
Fixed 3.0 V, 100 mA regulator with enable function  
Supply voltage range up to 33 V (45 V)  
Very low quiescent current of 15 µA (typical value)  
Very low dropout voltage  
– ESD protection on all pins  
– DC short-circuit safe to ground and VP of the  
regulator output  
– Temperature protection (at Tj > 150 °C).  
High ripple rejection  
Very high stability:  
GENERAL DESCRIPTION  
– Electrolytic capacitors: Equivalent Series Resistance  
The TDA3672 is a fixed 3.0 V voltage regulator with very  
low dropout voltage and quiescent current, which operates  
over a wide supply voltage range.  
(ESR) < 30 at IREG 25 mA (see Fig.6)  
– Other capacitors: 100 nF at 200 µA IREG 100 mA.  
Pin compatible family TDA3672 to TDA3676  
Protections:  
The IC is available as:  
TDA3672AT: VP 45 V; 40 °C Tamb +125 °C and  
SO8 package (automotive).  
– Reverse polarity safe (down to 25 V without high  
reverse current)  
– Negative transient of 50 V (RS = 10 and  
t < 100 ms)  
QUICK REFERENCE DATA  
SYMBOL  
Supply  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
VP  
Iq  
supply voltage  
quiescent supply current  
regulator on  
VP = 14.4 V; IREG = 0 mA;  
I(EN) = 5 V  
3
14.4  
15  
45  
30  
V
µA  
V
Voltage regulator  
VREG  
output voltage  
7.5 VP 22 V; IREG = 0.5 mA  
5.5 V VP 45 V; IREG = 0.5 mA  
2.84  
2.81  
3.0  
3.0  
3.16  
3.19  
3.19  
0.3  
V
V
V
V
VP = 14.4 V; 0.5 mA IREG 100 mA 2.81  
VP = 2.8 V; IREG = 50 mA;  
amb 85 °C  
3.0  
VREG(drop)  
dropout voltage  
0.18  
T
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TDA3672AT  
SO8  
plastic small outline package; 8 leads; body width 3.9 mm  
SOT96-1  
2000 Apr 26  
2
Philips Semiconductors  
Preliminary specification  
Very low dropout voltage/quiescent current  
3.0 V voltage regulator with enable  
TDA3672  
BLOCK DIAGRAM  
handbook, halfpage  
8
V
P
1
REGULATOR  
REG  
5
EN  
BAND GAP  
THERMAL  
PROTECTION  
TDA3672  
2, 3, 6, 7  
MBL122  
GND  
Fig.1 Block diagram.  
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
regulator output  
REG  
GND  
n.c.  
EN  
1
2, 3, 6 and 7 ground; note 1  
4
5
8
not connected  
enable input  
VP  
supply voltage  
handbook, halfpage  
Note  
REG  
1
2
3
4
8
7
6
5
V
P
1. All pins GND are connected to the lead frame and can  
also be used to reduce the total thermal resistance  
GND  
GND  
n.c.  
GND  
GND  
EN  
TDA3672  
R
th(j-a) by soldering these pins to a ground plane.  
The ground plane on the top side of the PCB acts like  
a heat spreader.  
MBL123  
Fig.2 Pin configuration.  
2000 Apr 26  
3
Philips Semiconductors  
Preliminary specification  
Very low dropout voltage/quiescent current  
3.0 V voltage regulator with enable  
TDA3672  
FUNCTIONAL DESCRIPTION  
A temperature protection circuit is included, which  
switches off the regulator output at a junction temperature  
above 150 °C.  
The TDA3672 is a fixed 3.0 V regulator which can deliver  
output currents up to 100 mA. The regulator is available in  
an SO8 package with fused centre pins connected to the  
lead frame. The regulator is intended for portable, mains,  
telephone and automotive applications. To increase the  
lifetime of batteries, a specially built-in clamp circuit keeps  
the quiescent current of this regulator very low, also in  
dropout and full load conditions.  
A new output circuit guarantees the stability of the  
regulator for a capacitor output circuit with an ESR up  
to 20 (see Fig.5). If only a 100 nF capacitor is used, the  
regulator is fully stable when IREG > 200 µA. This is very  
attractive as the ESR of an electrolytic capacitor increases  
strongly at low temperatures (no expensive tantalum  
capacitor is required).  
The regulator remains operating down to very low supply  
voltages and below this voltage it switches off.  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL PARAMETER CONDITIONS  
supply voltage  
MIN.  
MAX.  
45  
UNIT  
VP  
V
VP(rp)  
Ptot  
reverse polarity supply voltage  
total power dissipation  
non-operating  
25  
V
temperature of copper area  
4.1  
W
is 25 °C  
Tstg  
Tamb  
Tj  
storage temperature  
ambient temperature  
junction temperature  
non-operating  
operating  
55  
40  
40  
+150  
+125  
+150  
°C  
°C  
°C  
operating  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
VALUE  
125  
UNIT  
K/W  
K/W  
Rth(j-a)  
Rth(j-c)  
thermal resistance from junction to ambient  
thermal resistance from junction to case  
in free air; soldered in  
to centre pins; soldered in  
30  
QUALITY SPECIFICATION  
In accordance with “SNW-FQ-611E”.  
2000 Apr 26  
4
Philips Semiconductors  
Preliminary specification  
Very low dropout voltage/quiescent current  
3.0 V voltage regulator with enable  
TDA3672  
CHARACTERISTICS  
VP = 14.4 V; Tamb = 25 °C; measured in test circuit (see Fig.3); unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN. TYP. MAX.  
UNIT  
Supply voltage: pin VP  
VP  
Iq  
supply voltage  
regulator operating; note 1  
3
14.4  
4
45  
15  
V
quiescent current  
VP = 14.4 V; IREG = 0 mA;  
VI(EN) = 0 V  
µA  
VP = 14.4 V; IREG = 0 mA;  
VI(EN) = 5 V  
15  
30  
µA  
5.5 V VP 22 V; IREG = 10 mA  
5.5 V VP 22 V; IREG = 50 mA  
0.2  
1.4  
0.5  
2.5  
mA  
mA  
Enable input: pin EN  
VI(EN) enable input voltage  
enable off; VREG 0.8 V  
enable on; VREG 2.7 V  
VI(EN) = 5 V  
1  
3.0  
+1.0  
18  
V
V
II(EN)  
Regulator output: pin REG; note 2  
VREG output voltage  
enable input current  
0.3  
µA  
7.5 V VP 22 V; IREG = 0.5 mA 2.84  
0.5 mA IREG 100 mA; 2.81  
amb 125 °C  
5.5 V VP 45 V; IREG = 0.5 mA; 2.81  
amb 125 °C  
VP = 2.8 V; IREG = 50 mA;  
amb 85 °C  
3.0  
3.0  
3.16  
3.19  
V
V
T
3.0  
0.18  
20  
3.19  
0.3  
V
V
T
VREG(drop) dropout voltage  
T
VREG(stab)  
long-term output voltage  
stability  
VREG(line) line regulation voltage  
mV/1000 h  
6.5 V VP 22 V; IREG = 0.5 mA  
6.5 V VP 45 V; IREG = 0.5 mA  
1
30  
50  
50  
mV  
mV  
mV  
dB  
1
VREG(load) load output regulation voltage 0.5 mA IREG 50 mA  
10  
60  
SVRR  
supply voltage ripple rejection fi = 120 Hz; Vi(ripple) = 1 V (RMS); 50  
REG = 0.5 mA  
I
IREG(crl)  
ILO(rp)  
current limit  
VREG > 2.5 V  
0.17  
0.25  
1
A
output leakage current at  
reverse polarity input  
VP = 15 V; VREG 0.3 V  
500  
µA  
Notes  
1. The regulator output will follow VP if VP < VREG + VREG(drop)  
.
2. Limiting values as applicable for device type TDA3672AT: VP 45 V and 40 °C Tamb +125 °C.  
2000 Apr 26  
5
Philips Semiconductors  
Preliminary specification  
Very low dropout voltage/quiescent current  
3.0 V voltage regulator with enable  
TDA3672  
TEST AND APPLICATION INFORMATION  
MDA961  
2
10  
handbook, halfpage  
ESR  
()  
(1)  
10  
ndbook, halfpage  
V
C2  
10 µF  
= 3.0 V  
V
8
1
REG  
P
C1  
1 µF  
stable region  
TDA3672  
1
V
5
I(EN)  
2, 3, 6, 7  
MBL125  
(2)  
1  
10  
1  
2
10  
1
10  
10  
C2 (µF)  
(1) Maximum ESR at 200 µA IREG 100 mA.  
(2) Minimum ESR only when IREG 200 µA.  
VI(EN) = 5 V.  
C1 is optional (to minimize supply noise only).  
Fig.4 Graph for selecting the value of the output  
capacitor.  
Fig.3 Test circuit.  
Noise  
The output noise is determined by the value of the output  
capacitor. The noise figure is measured at a bandwidth of  
10 Hz to 100 kHz (see Table 1).  
MDA962  
3
10  
handbook, halfpage  
ESR  
()  
Table 1 Noise figures  
2
10  
OUTPUT  
CURRENT  
IREG (mA)  
NOISE FIGURE (µV)  
22  
C2 = 10 µF C2 = 47 µF C2 = 100 µF  
10  
0.5  
50  
550  
650  
320  
400  
300  
400  
stable region  
1
Stability  
The regulator is stabilized with an external capacitor  
connected to the output. The value of this capacitor can be  
selected using the diagrams shown in Figs 4 and 5.  
The following four examples show the effects of the  
stabilization circuit using different values for the output  
capacitor.  
1  
10  
2
3
1
10  
10  
10  
I
(mA)  
REG  
Fig.5 ESR as a function of IREG for selecting the  
value of the output capacitor.  
2000 Apr 26  
6
Philips Semiconductors  
Preliminary specification  
Very low dropout voltage/quiescent current  
3.0 V voltage regulator with enable  
TDA3672  
EXAMPLE 1  
For successful operation of the IC (maximum output  
current capability) special attention has to be given to the  
copper area required as heatsink (connected to all  
GND pins), the thermal capacity of the heatsink and its  
ability to transfer heat to the external environment.  
It is possible to reduce the total thermal resistance from  
120 to 50 K/W.  
The regulator is stabilized with an electrolytic capacitor of  
68 µF (ESR = 0.5 ). At Tamb = 40 °C, the capacitor  
value is decreased to 22 µF and the ESR is increased  
to 3.5 . The regulator will remain stable at a temperature  
of Tamb = 40 °C.  
EXAMPLE 2  
Application circuit with backup function  
The regulator is stabilized with an electrolytic capacitor of  
10 µF (ESR = 3.3 ). At Tamb = 40 °C, the capacitor  
value is decreased to 3 µF and the ESR is increased  
to 20 . The regulator will remain stable at a temperature  
of Tamb = 40 °C.  
Sometimes a backup function is needed to supply, for  
example, a microcontroller for a short period of time when  
the supply voltage spikes to 0 V (or even 1 V).  
This function can be easily built with the TDA3672 by using  
a large output capacitor. When the supply voltage is 0 V  
(or 1 V), only a small current will flow into pin REG from  
this output capacitor (a few µA).  
EXAMPLE 3  
The regulator is stabilized with a 100 nF MKT capacitor  
connected to the output. Full stability is guaranteed when  
the output current is larger then 200 µA.  
The application circuit is given in Fig.6.  
Because the thermal influence on this capacitor value is  
almost zero, the regulator will remain stable at a  
temperature of Tamb = 40 °C.  
EXAMPLE 4  
The regulator is stabilized with a 100 nF capacitor in  
parallel with a electrolytic capacitor of 10 µF connected to  
the output.  
ndbook, halfpage  
V
= 3.0 V  
V
8
1
REG  
P
C1  
1 µF  
The regulator is now stable under all conditions and  
independent of:  
C2  
TDA3672  
The ESR of the electrolytic capacitor  
The value of the electrolytic capacitor  
The output current.  
V
5
I(EN)  
2, 3, 6, 7  
MBL124  
Application circuits  
The maximum output current of the regulator equals:  
150 Tamb  
IREG(max)  
=
=
-----------------------------------------------------------  
Rth(j a) × (VP VREG  
)
VI(EN) = 5 V.  
C1 is optional (to minimize supply noise only).  
C2 4700 µF.  
150 Tamb  
------------------------------------------  
100 × (VP 3.0)  
(mA)  
Fig.6 Application circuit with backup function.  
When Tamb = 21 °C and VP = 14 V the maximum output  
current equals 117 mA.  
2000 Apr 26  
7
Philips Semiconductors  
Preliminary specification  
Very low dropout voltage/quiescent current  
3.0 V voltage regulator with enable  
TDA3672  
Additional application information  
This section gives typical curves for various parameters measured on the TDA3672AT. Standard test conditions are:  
VP = 14.4 V; Tamb = 25 °C.  
MDA949  
MDA947  
4
25  
handbook, halfpage  
handbook, halfpage  
I
q
I
q
(µA)  
(mA)  
20  
3
15  
10  
5
2
1
0
0
0
0
10  
20  
30  
40  
50  
10  
20  
30  
V
(V)  
V
(V)  
P
P
IREG = 0 mA.  
Fig.7 Quiescent current as a function of the  
supply voltage.  
Fig.8 Quiescent current as a function of high  
supply voltage.  
MDA948  
MDA951  
0.48  
2
handbook, halfpage  
handbook, halfpage  
I
(1)  
q
I
q
(mA)  
(mA)  
1.5  
0.44  
1
0.5  
0
0.40  
0.36  
(2)  
5
10  
15  
20  
25  
40  
0
40  
80  
120  
160  
T (°C)  
V
(V)  
P
j
(1) Iq at 50 mA load.  
(2) Iq at 10 mA load.  
IREG = 10 mA.  
Fig.9 Quiescent current as a function of the  
junction temperature.  
Fig.10 Quiescent current as a function of the  
supply voltage.  
2000 Apr 26  
8
Philips Semiconductors  
Preliminary specification  
Very low dropout voltage/quiescent current  
3.0 V voltage regulator with enable  
TDA3672  
MDA952  
MDA950  
4
2
handbook, halfpage  
handbook, halfpage  
I
q
I
(mA)  
q
(mA)  
3
1.8  
2
1
1.6  
0
0
1.4  
5
20  
40  
60  
80  
I
100  
(mA)  
10  
15  
20  
25  
V
(V)  
P
REG  
IREG = 50 mA.  
Fig.11 Quiescent current as a function of the  
supply voltage.  
Fig.12 Quiescent current as a function of the  
output current.  
MGU155  
MGU156  
3.10  
4
handbook, halfpage  
handbook, halfpage  
V
REG  
(V)  
V
REG  
(V)  
3
3.05  
2
1
0
3.00  
2.95  
50  
0
50  
100  
150  
200  
50  
0
50  
100  
150  
200  
T (°C)  
T (°C)  
j
j
IREG = 0 mA.  
IREG = 0 mA.  
Fig.13 Output voltage as a function of the junction  
temperature.  
Fig.14 Output voltage thermal protection as a  
function of the junction temperature.  
2000 Apr 26  
9
Philips Semiconductors  
Preliminary specification  
Very low dropout voltage/quiescent current  
3.0 V voltage regulator with enable  
TDA3672  
MGU157  
MDA957  
500  
4
handbook, halfpage  
handbook, halfpage  
V
V
REG(drop)  
(mV)  
REG  
(V)  
400  
300  
200  
100  
3
2
1
0
0
0
40  
80  
120  
100  
200  
300  
I
(mA)  
I
(mA)  
REG  
REG  
VP = 8 V with pulsed load.  
Fig.15 Dropout voltage as a function of the output  
current.  
Fig.16 Foldback protection mode.  
MDA956  
30  
handbook, halfpage  
(1)  
SVRR  
(dB)  
(2)  
(3)  
40  
50  
60  
70  
(1)  
(2)  
(3)  
2
3
4
5
10  
10  
10  
10  
10  
f (Hz)  
C2 = 10 µF.  
(1) SVRR at RL = 10 k.  
(2) SVRR at RL = 500 Ω.  
(3) SVRR at RL = 100 Ω.  
Fig.17 SVRR as a function of the ripple frequency.  
2000 Apr 26  
10  
Philips Semiconductors  
Preliminary specification  
Very low dropout voltage/quiescent current  
3.0 V voltage regulator with enable  
TDA3672  
PACKAGE OUTLINE  
SO8: plastic small outline package; 8 leads; body width 3.9 mm  
SOT96-1  
D
E
A
X
c
y
H
v
M
A
E
Z
5
8
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
4
e
w
M
detail X  
b
p
0
2.5  
5 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(2)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
5.0  
4.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.27  
0.050  
1.05  
0.041  
1.75  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.20  
0.014 0.0075 0.19  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.024  
0.028  
0.012  
inches 0.069  
0.01 0.004  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
97-05-22  
99-12-27  
SOT96-1  
076E03  
MS-012  
2000 Apr 26  
11  
Philips Semiconductors  
Preliminary specification  
Very low dropout voltage/quiescent current  
3.0 V voltage regulator with enable  
TDA3672  
SOLDERING  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Introduction to soldering surface mount packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
Reflow soldering  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Wave soldering  
Manual soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
2000 Apr 26  
12  
Philips Semiconductors  
Preliminary specification  
Very low dropout voltage/quiescent current  
3.0 V voltage regulator with enable  
TDA3672  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
WAVE  
REFLOW(1)  
BGA, SQFP  
not suitable  
suitable  
suitable  
suitable  
suitable  
suitable  
HLQFP, HSQFP, HSOP, HTSSOP, SMS not suitable(2)  
PLCC(3), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
not recommended(3)(4)  
not recommended(5)  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
2000 Apr 26  
13  
Philips Semiconductors  
Preliminary specification  
Very low dropout voltage/quiescent current  
3.0 V voltage regulator with enable  
TDA3672  
DATA SHEET STATUS  
PRODUCT  
DATA SHEET STATUS  
STATUS  
DEFINITIONS (1)  
Objective specification  
Development This data sheet contains the design target or goal specifications for  
product development. Specification may change in any manner without  
notice.  
Preliminary specification Qualification  
This data sheet contains preliminary data, and supplementary data will be  
published at a later date. Philips Semiconductors reserves the right to  
make changes at any time without notice in order to improve design and  
supply the best possible product.  
Product specification  
Production  
This data sheet contains final specifications. Philips Semiconductors  
reserves the right to make changes at any time without notice in order to  
improve design and supply the best possible product.  
Note  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes, without notice, in the  
products, including circuits, standard cells, and/or  
software, described or contained herein in order to  
improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for  
the use of any of these products, conveys no licence or title  
under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that  
these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified.  
Application information  
Applications that are  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2000 Apr 26  
14  
Philips Semiconductors  
Preliminary specification  
Very low dropout voltage/quiescent current  
3.0 V voltage regulator with enable  
TDA3672  
NOTES  
2000 Apr 26  
15  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
69  
SCA  
© Philips Electronics N.V. 2000  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
753503/25/01/pp16  
Date of release: 2000 Apr 26  
Document order number: 9397 750 06704  

相关型号:

TDA3672AT

Very low dropout voltage/quiescent current 3.0 V voltage regulator with enable
NXP

TDA3673

Very low dropout voltage/quiescent current 3.3 V voltage regulator with enable
NXP

TDA3673AT

Very low dropout voltage/quiescent current 3.3 V voltage regulator with enable
NXP

TDA3673AT-T

IC VREG 3.3 V FIXED POSITIVE LDO REGULATOR, 0.3 V DROPOUT, PDSO8, 3.9 MM, PLASTIC, SOT-96, 8 PIN, Fixed Positive Single Output LDO Regulator
NXP

TDA3673T

Very low dropout voltage/quiescent current 3.3 V voltage regulator with enable
NXP

TDA3674

Low dropout voltage/quiescent current 5 V voltage regulator with enable
NXP

TDA3674AT

Low dropout voltage/quiescent current 5 V voltage regulator with enable
NXP

TDA3674AT-T

IC VREG 5 V FIXED POSITIVE LDO REGULATOR, 0.3 V DROPOUT, PDSO8, PLASTIC, SOT-96, 8 PIN, Fixed Positive Single Output LDO Regulator
NXP

TDA3674T

Low dropout voltage/quiescent current 5 V voltage regulator with enable
NXP

TDA3675

Low dropout voltage/quiescent current 8.5 V voltage regulator with enable
NXP

TDA3675AT

Low dropout voltage/quiescent current 8.5 V voltage regulator with enable
NXP

TDA3675T

Low dropout voltage/quiescent current 8.5 V voltage regulator with enable
NXP