TDA3681J/N2C,112 [NXP]

TDA3681 - Multiple voltage regulator with switch and ignition buffer ZIP 17-Pin;
TDA3681J/N2C,112
型号: TDA3681J/N2C,112
厂家: NXP    NXP
描述:

TDA3681 - Multiple voltage regulator with switch and ignition buffer ZIP 17-Pin

输出元件 调节器
文件: 总29页 (文件大小:178K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA3681  
Multiple voltage regulator with  
switch and ignition buffer  
Product specification  
2004 Mar 31  
Supersedes data of 2002 Apr 10  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
FEATURES  
General  
ESD protection on all pins  
Thermal protections  
Load dump protection  
Extremely low noise behaviour and good stability with  
Foldback current limit protection for regulators 1, 2, 3  
very small output capacitors  
and 4  
Second supply pin for regulators 3 and 4 to reduce  
Delayed second current limit protection for the power  
power dissipation (e.g. via a DC-to-DC converter)  
switch (at short-circuit)  
Three VP-state controlled regulators (regulators 1, 3  
The regulator outputs and the power switch are  
and 4) and a power switch  
DC short-circuit safe to ground and supply (VP).  
Regulator 2, reset and ignition buffer operational during  
load dump and thermal shutdown  
GENERAL DESCRIPTION  
Combined control pin for switching regulators 1 and 3  
Separate control pins for switching regulator 4 and the  
power switch  
The TDA3681 is a multiple output voltage regulator with a  
power switch and an ignition buffer. It is intended for use in  
car radios with or without a microcontroller. The TDA3681  
contains the following:  
Supply voltage range from 18 to +50 V  
Low quiescent current in standby mode (when  
regulators 1, 3 and 4 and power switch are switched off  
and ignition input is low)  
Four fixed voltage regulators with a foldback current  
protection (regulators 1, 2, 3 and 4). Regulator 2, which  
is intended to supply a microcontroller, also operates  
during load dump and thermal shutdown  
Hold output (open-collector output stage) for low VP  
(regulators 1, 3 and 4 and power switch off)  
Regulators 3 and 4 have a second supply pin that can  
be connected to a lower supply voltage (>6.5 V) to  
reduce the power dissipation  
Hold output when one of regulators 1 and 3 and/or 4 is  
out of regulation  
Hold output for foldback mode of power switch and  
regulators 1, 3 and 4  
A power switch with protection, operated by a control  
input  
Hold output for load dump and temperature protection  
Reset (push-pull output stage) for regulator 2  
Adjustable reset delay time  
Reset and hold outputs that can be used to interface  
with the microcontroller; the reset signal can be used to  
call up the microcontroller  
Both supply pins can withstand load dump pulses and  
negative supply voltages  
High supply voltage ripple rejection  
Backup capacitor for regulator 2  
Regulator 2, which is in regulation at a backup voltage  
above 6.5 V  
One independent ignition buffer (active HIGH).  
A provision for the use of a reserve supply capacitor that  
will hold enough energy for regulator 2 (5 V continuous)  
to allow a microcontroller to prepare for loss of voltage  
Protections  
Reverse polarity safe (down to 18 V without high  
reverse current)  
An ignition input Schmitt trigger with push-pull output  
stage.  
Able to withstand voltages up to 18 V at the outputs  
(supply line may be short-circuited)  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
SOT243-3  
SOT475-1  
TDA3681J  
DBS17P  
DBS17P  
plastic DIL-bent-SIL power package; 17 leads (lead length 7.7 mm)  
TDA3681JR  
plastic DIL-bent-SIL (special bent) power package; 17 leads  
(lead length 12 mm)  
TDA3681TH  
2004 Mar 31  
HSOP20  
plastic, heatsink small outline package; 20 leads; low stand-off height  
SOT418-3  
2
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
Supplies  
VP1  
supply voltage 1  
operating  
9.5  
14.4  
18  
18  
50  
30  
50  
V
V
V
V
V
reverse polarity  
regulator 2 on  
jump start  
non-operating  
4
14.4  
t 10 minutes  
load dump protection  
supply voltage 2  
operating  
t 50 ms; tr 2.5 ms  
VP2  
6.5  
14.4  
18  
V
reverse polarity  
regulator 2 on  
jump start  
non-operating  
18  
V
0
50  
V
t 10 minutes  
30  
V
load dump protection  
t 50 ms; tr 2.5 ms  
50  
V
Iq(tot)  
Tj  
total quiescent supply current standby mode  
junction temperature  
110  
150  
150  
µA  
°C  
Voltage regulators  
Vo(REG1)  
Vo(REG2)  
Vo(REG3)  
Vo(REG4)  
output voltage of regulator 1  
1 mA IREG1 600 mA; VP = 14.4 V  
1 mA IREG2 300 mA; VP = 14.4 V  
8.0  
8.5  
5.0  
5.0  
3.3  
9.0  
V
V
V
V
output voltage of regulator 2  
output voltage of regulator 3  
output voltage of regulator 4  
4.75  
5.25  
5.25  
3.46  
1 mA IREG3 1400 mA; VP = 14.4 V 4.75  
1 mA IREG4 1 A; VP = 14.4 V  
3.14  
Power switch  
Vdrop(SW) drop-out voltage  
ISW = 1 A; VP1 = 13.5 V  
ISW = 1.8 A; VP1 = 13.5 V  
3
0.45  
1.0  
0.65  
1.8  
V
V
A
IM(SW)  
peak current  
2004 Mar 31  
3
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
BLOCK DIAGRAMS  
(14 V/  
3 A)  
POWER SWITCH  
(14.4 V)  
17  
11  
16  
V
SW  
P1  
TEMPERATURE  
LOAD DUMP  
PROTECTION  
ENSW  
&
(14 V/  
BACKUP SWITCH  
100 mA)  
14  
BU  
BACKUP CONTROL  
(5 V/  
300 mA)  
15  
REGULATOR 2  
REGULATOR 4  
REG2  
REG4  
3
9
V
P2  
(3.3 V/  
1 A)  
4
&
&
&
EN4  
(5 V/  
1400 mA)  
2
REG3  
REGULATOR 3  
TDA3681J  
TDA3681JR  
(8.5 V/  
600 mA)  
1
REGULATOR 1  
REG1  
HOLD  
10  
EN1/3  
12  
+
OR  
&
7
RES  
8
5
C
RES  
6
IGN  
IN  
IGNITION BUFFER  
IGN  
OUT  
13  
mgl902  
GND  
Fig.1 Block diagram of TDA3681J and TDA3681JR.  
4
2004 Mar 31  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
(14 V/  
3 A)  
POWER SWITCH  
(14.4 V)  
14  
16  
V
SW  
P1  
TEMPERATURE  
LOAD DUMP  
PROTECTION  
8
ENSW  
&
(14 V/  
100 mA)  
BACKUP SWITCH  
13  
BU  
BACKUP CONTROL  
(5 V/  
300 mA)  
12  
REGULATOR 2  
REGULATOR 4  
REG2  
REG4  
20  
6
V
P2  
(3.3 V/  
1 A)  
1
&
&
&
EN4  
11  
15  
18  
HEATTAB  
n.c.  
(5 V/  
1400 mA)  
19  
REG3  
REGULATOR 3  
TDA3681TH  
REGULATOR 1  
n.c.  
(8.5 V/  
600 mA)  
17  
9
REG1  
HOLD  
7
EN1/3  
+
OR  
&
4
RES  
5
2
C
RES  
3
IGN  
IN  
IGNITION BUFFER  
IGN  
OUT  
10  
mgu353  
GND  
Fig.2 Block diagram of TDA3681TH.  
5
2004 Mar 31  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
PINNING  
Pin description of TDA3681J and TDA3681JR  
handbook, halfpage  
SYMBOL  
PIN  
DESCRIPTION  
regulator 1 output  
1
2
REG1  
REG3  
REG1  
REG3  
VP2  
1
2
3
4
5
6
7
8
9
regulator 3 output  
V
3
P2  
second supply voltage  
regulator 4 output  
4
REG4  
REG4  
IGNIN  
IGNOUT  
RES  
5
IGN  
IN  
ignition input  
6
IGN  
ignition output (active HIGH)  
reset output (active LOW)  
reset delay capacitor  
enable input for regulator 4  
OUT  
RES  
7
CRES  
EN4  
8
C
RES  
TDA3681J  
TDA3681JR  
9
EN4  
EN1/3  
ENSW  
HOLD  
GND  
BU  
10 enable input for regulators 1 and 3  
11 enable input for power switch  
12 hold output (active LOW)  
13 ground; note 1  
10  
11  
12  
13  
14  
15  
16  
17  
EN1/3  
ENSW  
HOLD  
GND  
BU  
14 backup switch output  
15 regulator 2 output  
REG2  
SW  
16 power switch output  
17 supply voltage  
REG2  
SW  
VP1  
Note  
V
P1  
1. The heat tab is internally connected to pin GND.  
MGL903  
Fig.3 Pin configuration for TDA3681J and  
TDA3681JR.  
2004 Mar 31  
6
 
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
Pin description of TDA3681TH  
SYMBOL PIN  
DESCRIPTION  
regulator 4 output  
REG4  
IGNIN  
IGNOUT  
RES  
1
2
3
4
5
6
7
8
9
ignition input  
handbook, halfpage  
ignition output (active HIGH)  
reset output (active LOW)  
reset delay capacitor  
V
20  
1
2
3
4
5
6
7
8
9
REG4  
P2  
REG3 19  
n.c. 18  
IGN  
IN  
CRES  
IGN  
OUT  
EN4  
enable input for regulator 4  
enable input for regulators 1 and 3  
enable input for power switch  
hold output (active LOW)  
REG1 17  
SW 16  
RES  
C
EN1/3  
ENSW  
HOLD  
GND  
RES  
TDA3681TH  
n.c. 15  
EN4  
V
14  
EN1/3  
ENSW  
HOLD  
10 ground  
P1  
HEATTAB 11 heat tab connection; note 1  
BU 13  
REG2  
BU  
12 regulator 2 output  
13 backup switch output  
14 supply voltage  
REG2 12  
HEATTAB 11  
10 GND  
VP1  
MGU329  
n.c.  
15 not connected  
SW  
16 power switch output  
17 regulator 1 output  
18 not connected  
REG1  
n.c.  
REG3  
VP2  
19 regulator 3 output  
20 second supply voltage  
Fig.4 Pin configuration for TDA3681TH.  
Note  
1. The pin is used for final test purposes. In the  
application it should be connected directly to ground.  
2004 Mar 31  
7
 
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
FUNCTIONAL DESCRIPTION  
Therefore, regulator 1 is the most critical regulator with  
respect to an out of regulation condition caused by a low  
battery voltage.  
The TDA3681 is a multiple output voltage regulator with a  
power switch, intended for use in car radios with or without  
a microcontroller. Because of the low voltage operation of  
the car radio, low voltage drop regulators are used.  
The hold function includes hysteresis to avoid oscillations  
when the regulator voltage crosses the hold threshold  
level. The hold output also becomes active when the  
power switch is in foldback protection mode; see Fig.8.  
The block diagram of the hold function is illustrated in  
Fig.5.  
Regulator 2 is in regulation when the backup voltage  
exceeds 6.5 V for the first time. When regulator 2 is  
switched on and its output voltage is within its voltage  
range, the reset output is disabled to release the  
microcontroller. The reset delay time before release can  
be extended by an external capacitor (CRES). This start-up  
feature is included to secure a smooth start-up of the  
microcontroller at first connection, without uncontrolled  
switching of regulator 2 during the start-up sequence.  
All output pins are fully protected. The regulators are  
protected against load dump (regulators 1, 3 and 4 switch  
off at supply voltages >18 V) and short-circuit (foldback  
current protection).  
The power switch contains a current protection. However,  
this protection is delayed at short-circuit by the reset delay  
capacitor (it should be noted that this is the second  
function of the reset delay capacitor CRES). During this  
time, the output current is limited to a peak value of at least  
3 A (after a delay, the power switch can deliver 1.8 A  
continuous if VP 18 V).  
The charge on the backup capacitor can be used to supply  
regulator 2 for a short period when the external supply  
voltage drops to 0 V (the time depends on the value of the  
backup capacitor).  
The output stages of all switchable regulators have an  
extremely low noise behaviour and good stability, even for  
small values of the output capacitors.  
In a normal situation, the voltage on the reset delay  
capacitor is approximately 3.5 V (depending on the  
temperature). The power switch output is approximately  
VP 0.4 V. At operating temperature, the power switch  
can deliver at least 3 A. At high temperature, the switch  
can deliver approximately 2 A.  
When both regulator 2 and the supply voltages (VP1 and  
VP2 > 4.5 V) are available, regulators 1 and 3 can be  
operated by means of one enable input.  
Regulator 4 and the power switch have a separate enable  
input.  
During an overload condition or a short circuit  
Pin HOLD is normally HIGH but is active LOW. Pin HOLD  
is connected to an open-collector NPN transistor and must  
have an external pull-up resistor to operate. The hold  
output is controlled by a low voltage detection circuit  
which, when activated, pulls the hold output LOW  
(enabled). The hold outputs of the regulators are  
connected to an OR gate inside the IC so that the hold  
circuit is activated when one or more regulators (1, 3 or 4)  
are out of regulation for any reason. Each regulator enable  
input controls its own hold triggering circuit, so that if a  
regulator is disabled or switched off, the hold circuit for that  
regulator is disabled.  
(VSW < VP 3.7 V), the voltage on the reset delay  
capacitor rises 0.6 V above the voltage of regulator 2. This  
rise time depends on the capacitor connected to pin CRES  
.
During this time, the power switch can deliver more than  
3 A. When regulator 2 is out of regulation and generates a  
reset, the power switch can only deliver 2 A and will  
immediately go into foldback protection.  
At supply voltages >17 V, the power switch is clamped at  
16 V maximum (to avoid externally connected circuits  
being damaged by an overvoltage) and the power switch  
will switch off at load dump.  
Interfacing with the microcontroller (simple full or semi  
on/off logic applications) can be realized with an  
independent ignition Schmitt trigger and ignition output  
buffer (push-pull output).  
The hold circuit is also controlled by the temperature and  
load dump protection. Activating the temperature or load  
dump protection causes a hold (LOW) during the time that  
the protection is activated. When all regulators are  
switched off, the hold output is controlled by the battery  
line VP1, temperature protection and load dump protection.  
The timing diagrams are illustrated in Figs 6 and 7.  
The second supply voltage VP2 is used for the switchable  
regulators 3 and 4. This input can be connected to a lower  
supply voltage of 6 V to reduce the power dissipation of  
the TDA3681. A DC-to-DC converter could be used for this  
purpose.  
The hold circuit is enabled at low battery voltages. This  
indicates that it is not possible to get regulator 1 into  
regulation when switching it on: regulator 1 has the highest  
output voltage (8.5 V) of all switchable regulators.  
2004 Mar 31  
8
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
low battery  
detector  
V
P1  
internal  
TDA3681  
voltage reference 1  
internal  
voltage  
reference 2  
output stage  
REG1  
output of  
regulation  
detector  
enable  
EN1/3  
REGULATOR 1  
output stage  
REG3  
output of  
regulation  
detector  
enable  
OR  
&
REGULATOR 3  
output stage  
REG4  
OR  
HOLD  
buffer  
output of  
regulation  
detector  
enable  
POWER SWITCH  
FOLDBACK  
MODE  
TEMPERATURE  
PROTECTION  
LOAD DUMP  
EN4  
REGULATOR 4  
MGL904  
Fig.5 Block diagram of the hold circuit.  
9
2004 Mar 31  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
load dump  
V
V
P1  
6.5 V  
5.4 V  
BU  
5.0 V  
0 V  
regulator 2  
reset  
delay  
capacitor  
5.0 V  
3.0 V  
0 V  
5.0 V  
reset  
Back-up Schmitt trigger and reset behaviour  
load dump  
V
= V  
P2  
P1  
50 V  
0 V  
ignition  
input  
100 V  
5.0 V  
ignition  
output  
0 V  
Enable Schmitt trigger ignition  
>22 V  
V
= V  
P2  
P1  
>1.8 V  
<1.3 V  
enable  
regulator 1/3  
>1.8 V  
<1.3 V  
enable  
regulator 4  
regulator 1  
and 3  
regulator 4  
temperature  
protection  
150 °C  
active  
passive  
HIGH  
LOW  
HOLD  
mgl905  
Hold behaviour  
Fig.6 Timing diagram of ignition Schmitt triggers and hold circuit.  
10  
2004 Mar 31  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
load dump  
18 V  
8.9 V  
7.0 V  
4.0 V  
V
= V  
P2  
P1  
1.8 V  
enable  
regulator 1/3  
regulator 1  
regulator 3  
1.3 V  
8.5 V  
0 V  
5.0 V  
0 V  
>1.8 V  
enable  
regulator 4  
<1.3 V  
3.3 V  
regulator 4  
0 V  
V
and enable Schmitt trigger  
P
load dump  
16.9 V  
V
P
7.0 V  
4.0 V  
enable  
power  
switch  
>1.8 V  
<1.3 V  
16 V  
power  
switch  
output  
0 V  
MGL906  
Power switch behaviour  
Fig.7 Timing diagram of regulators and power switch.  
11  
2004 Mar 31  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
MAX.  
UNIT  
VP1  
supply voltage 1  
operating  
18  
V
V
V
V
reverse polarity  
jump start  
non-operating  
18  
30  
50  
t 10 minutes  
load dump protection  
supply voltage 2  
operating  
t 50 ms; tr 2.5 ms  
VP2  
18  
V
V
V
V
W
reverse polarity  
non-operating  
18  
jump start  
t 10 minutes  
30  
load dump protection  
total power dissipation  
storage temperature  
ambient temperature  
junction temperature  
t 50 ms; tr 2.5 ms  
50  
Ptot  
Tstg  
Tamb  
Tj  
62  
non-operating  
operating  
55  
40  
40  
+150  
+85  
+150  
°C  
°C  
°C  
operating  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth(j-c)  
PARAMETER  
CONDITIONS  
VALUE  
1.3  
UNIT  
K/W  
K/W  
thermal resistance from junction to case  
thermal resistance from junction to ambient  
Rth(j-a)  
in free air  
50  
QUALITY SPECIFICATION  
In accordance with “General Quality Specification For Integrated Circuits (SNW-FQ-611D)”.  
2004 Mar 31  
12  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
CHARACTERISTICS  
VP = VP1 = VP2 = 14.4 V; Tamb = 25 °C; measured in test circuits of Figs 10 and 11; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supplies  
VP1  
supply voltage 1  
operating  
9.5  
14.4  
18  
18  
50  
30  
50  
V
V
V
V
V
reverse polarity  
regulator 2 on  
jump start  
non-operating  
note 1  
4
14.4  
t 10 minutes  
t 50 ms; tr 2.5 ms  
load dump protection  
supply voltage 2  
operating  
VP2  
6.5  
14.4  
18  
18  
50  
30  
50  
22  
V
V
V
V
V
V
reverse polarity  
regulator 2 on  
jump start  
non-operating  
0
t 10 minutes  
load dump protection  
t 50 ms; tr 2.5 ms  
VP1 and/or VP2  
Vbat(loaddump) battery overvoltage  
shutdown  
18  
20  
Iq(tot)  
total quiescent supply  
current  
VP = 12.4 V; note 2  
VP = 14.4 V; note 2  
105  
110  
145  
150  
µA  
µA  
Schmitt trigger for power supply (regulators 1, 3 and 4)  
Vth(r)  
Vth(f)  
Vhys  
rising threshold voltage  
VP1 rising  
6.5  
4.0  
7.0  
4.5  
2.5  
7.5  
5.0  
V
V
V
falling threshold voltage VP1 falling  
hysteresis voltage  
Schmitt trigger for enable input (regulators 1, 3, 4 and power switch)  
Vth(r)  
Vth(f)  
Vhys  
ILI  
rising threshold voltage  
falling threshold voltage  
hysteresis voltage  
1.4  
0.9  
1.8  
1.3  
0.5  
5
2.4  
1.9  
V
V
IREG = ISW = 1 mA  
VEN = 5 V  
V
input leakage current  
1
20  
µA  
Reset trigger level of regulator 2  
Vth(r) rising threshold voltage  
VP1 rising; IREG2 = 50 mA;  
note 3  
4.43  
4.4  
V
REG2 0.15 VREG2 0.1  
REG2 0.25 VREG2 0.13  
V
V
Vth(f)  
falling threshold voltage VP1 falling; IREG2 = 50 mA;  
note 3  
V
Schmitt triggers for hold circuit output  
Vth(r)(REG1)  
Vth(f)(REG1)  
Vhys(REG1)  
rising threshold voltage  
of regulator 1  
VP1 rising; note 3  
V
REG1 0.15 VREG1 0.075 V  
falling threshold voltage VP1 falling; note 3  
of regulator 1  
7.67  
VREG1 0.35 −  
V
V
hysteresis voltage due to  
regulator 1  
0.2  
2004 Mar 31  
13  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
SYMBOL  
PARAMETER  
CONDITIONS  
VP2 rising; note 3  
MIN.  
TYP.  
MAX.  
UNIT  
Vth(r)(REG3)  
rising threshold voltage  
of regulator 3  
V
V
REG3 0.15 VREG3 0.075 V  
Vth(f)(REG3)  
Vhys(REG3)  
Vth(r)(REG4)  
Vth(f)(REG4)  
Vhys(REG4)  
Vth(r)(VP)  
falling threshold voltage VP2 falling; note 3  
of regulator 3  
4.3  
REG3 0.35 −  
V
V
hysteresis voltage due to  
regulator 3  
0.2  
rising threshold voltage  
of regulator 4  
VP2 rising; note 3  
V
REG4 0.15 VREG4 0.075 V  
falling threshold voltage VP2 falling; note 3  
of regulator 4  
2.7  
V
REG4 0.3  
V
V
V
V
V
hysteresis voltage due to  
regulator 4  
0.15  
9.7  
rising threshold voltage  
of supply voltage  
VEN = 0 V  
9.1  
9.0  
10.3  
9.8  
Vth(f)(VP)  
falling threshold voltage VEN = 0 V  
of supply voltage  
9.4  
Vhys(VP)  
hysteresis voltage of  
supply voltage  
VEN = 0 V  
0.3  
Reset and hold buffer  
Isink(L) LOW-level sink current  
ILO  
V
RES 0.8 V; VHOLD 0.8 V  
2
mA  
µA  
µA  
output leakage current  
VP2 = 14.4 V; VHOLD = 5 V  
0.1  
400  
5
Isource(H)  
HIGH-level source  
current  
VP2 = 14.4 V; VRES 4.5 V  
240  
900  
tr  
tf  
rise time  
fall time  
note 4  
note 4  
7
1
50  
50  
µs  
µs  
Reset delay  
Ich  
reset delay capacitor  
charge current  
VCRES = 0 V  
VCRES = 3 V;  
2
4
8
µA  
mA  
V
Idch  
reset delay capacitor  
discharge current  
1.0  
2.5  
1.0  
1.6  
3.0  
1.2  
VP1 = VP2 = 4.3 V  
Vth(r)(RES)  
Vth(f)(RES)  
rising voltage threshold  
reset signal  
3.5  
1.4  
falling voltage threshold  
reset signal  
V
td(RES)  
td(SW)  
delay reset signal  
CRES = 47 nF; note 5  
CRES = 47 nF; note 6  
20  
8
35  
70  
40  
ms  
ms  
delay power switch  
foldback protection  
17.6  
Regulator 1 (IREG1 = 5 mA; unless otherwise specified)  
Vo(off)  
output voltage off  
output voltage  
1
400  
9.0  
9.0  
75  
mV  
V
Vo(REG1)  
1 mA IREG1 600 mA  
9.5 V VP1 18 V  
8.0  
8.0  
8.5  
8.5  
2
V
Vline  
line regulation  
load regulation  
9.5 V VP1 18 V  
mV  
mV  
Vload  
1 mA IREG1 600 mA  
20  
85  
2004 Mar 31  
14  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
SYMBOL  
Iq  
PARAMETER  
CONDITIONS  
IREG1 = 600 mA  
MIN.  
TYP.  
MAX.  
UNIT  
quiescent current  
25  
70  
60  
mA  
dB  
SVRR  
supply voltage ripple  
rejection  
fi = 3 kHz; Vi = 2 V (p-p)  
60  
Vdrop(REG1)  
drop-out voltage  
IREG1 = 550 mA; VP1 = 8.55 V;  
note 7  
0.4  
0.7  
V
Im(REG1)  
Isc(REG1)  
current limit  
VREG1 > 7 V; note 8  
0.65 1.2  
250 800  
A
short-circuit current  
RL 0.5 ; note 9  
mA  
Regulator 2 (IREG2 = 5 mA; unless otherwise specified)  
Vo(REG2)  
output voltage  
0.5 mA IREG2 300 mA  
7 V VP1 18 V  
4.75 5.0  
4.75 5.0  
4.75 5.0  
5.25  
5.25  
5.25  
V
V
V
18 V VP1 50 V;  
IREG2 150 mA  
Vline  
line regulation  
load regulation  
6 V VP1 18 V  
2
50  
75  
50  
100  
mV  
mV  
mV  
mV  
dB  
6 V VP1 50 V  
15  
20  
Vload  
1 mA IREG2 150 mA  
1 mA IREG2 300 mA  
fi = 3 kHz; Vi = 2 V (p-p)  
SVRR  
supply voltage ripple  
rejection  
50  
55  
Vdrop(REG2)  
drop-out voltage  
IREG2 = 100 mA; VP1 = 4.75 V;  
note 7  
0.4  
0.8  
0.2  
0.8  
0.6  
1.2  
0.5  
1.0  
V
V
V
V
IREG2 = 200 mA; VP1 = 5.75 V;  
note 7  
IREG2 = 100 mA;VBU = 4.75 V;  
note 10  
IREG2 = 200 mA;VBU = 5.75 V;  
note 10  
Im(REG2)  
Isc(REG2)  
current limit  
VREG2 > 4.5 V; note 8  
0.32 0.37  
A
short-circuit current  
RL 0.5 ; note 9  
95  
120  
mA  
Regulator 3 (IREG3 = 5 mA; unless otherwise specified)  
Vo(off)  
output voltage off  
output voltage  
1
400  
5.25  
5.25  
50  
mV  
V
Vo(REG3)  
1 mA IREG3 1400 mA  
7 V VP1 and/or VP2 18 V  
7 V VP1 and/or VP2 18 V  
1 mA IREG3 1400 mA  
IREG3 = 1400 mA  
4.75 5.0  
4.75 5.0  
V
Vline  
Vload  
Iq  
line regulation  
load regulation  
quiescent current  
2
mV  
mV  
mA  
dB  
20  
19  
70  
150  
45  
SVRR  
supply voltage ripple  
rejection  
fi = 3 kHz; Vi = 2 V (p-p)  
60  
Vdrop(REG3)  
drop-out voltage  
IREG3 = 1400 mA ; VP2 = 6 V;  
note 7  
1
1.5  
V
Im(REG3)  
Isc(REG3)  
current limit  
VREG3 > 4.5 V; note 8  
1.5  
1.7  
A
short-circuit current  
RL 0.5 ; note 9  
430  
750  
mA  
2004 Mar 31  
15  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Regulator 4 (IREG4 = 5 mA; unless otherwise specified)  
Vo(off)  
output voltage off  
output voltage  
1
400  
3.46  
3.46  
50  
mV  
V
Vo(REG4)  
1 mA IREG4 1 A  
3.14 3.3  
6.5 V VP1 and/or VP2 18 V 3.14 3.3  
V
Vline  
Vload  
Iq  
line regulation  
load regulation  
quiescent current  
6.5 V VP1 and/or VP2 18 V  
1 mA IREG4 1 A  
2
mV  
mV  
mA  
dB  
20  
15  
70  
50  
IREG4 = 1 A  
40  
SVRR  
supply voltage ripple  
rejection  
fi = 3 kHz; Vi = 2 V (p-p)  
60  
Vdrop(REG4)  
Im(REG4)  
drop-out voltage  
current limit  
IREG4 = 1 A; VP2 = 5 V; note 7  
VREG4 > 3.0 V; note 8  
RL 0.5 ; note 9  
1.7  
1.5  
750  
2.4  
V
1.1  
470  
A
Isc(REG4)  
short-circuit current  
mA  
Power switch  
Vdrop(SW)  
drop-out voltage  
ISW = 1 A; VP1 = 13.5 V;  
note 11  
0.45  
1.0  
0.65  
1.8  
V
V
ISW = 1.8 A; VP1 = 13.5 V;  
note 11  
IDC(SW)  
continuous current  
clamping voltage  
VP1 = 16 V; VSW = 13.5 V  
1.8  
2.0  
A
V
Vclamp(SW)  
VP1 17 V;  
13.5 15.0  
16.0  
1 mA < ISW < 1.8 A  
IM(SW)  
Vfb(SW)  
Isc(SW)  
peak current  
VP1 < 17 V;  
notes 6, 12 and 13  
3
A
V
A
flyback voltage  
behaviour  
ISW = 100 mA  
VP1 + 3  
1.7  
22  
short-circuit current  
VP1 = 14.4 V; VSW < 1.2 V;  
note 13  
0.5  
Backup switch  
IDC(BU)  
Vclamp(BU)  
Ir(BU)  
continuous current  
VBU > 5 V  
0.3  
0.35  
A
clamping voltage  
reverse current  
VP1 16.7 V; IREG2 = 100 mA  
16  
900  
V
VP1 = 0 V; VBU = 12.4 V  
µA  
Schmitt trigger for enable ignition input  
Vth(r)(IGNIN)  
rising threshold voltage  
of ignition input  
VP1 > 3.5 V  
1.9  
1.7  
2.2  
2.0  
2.5  
2.3  
V
V
Vth(f)(IGNIN)  
falling threshold voltage VP1 > 3.5 V  
of ignition input  
Vhys(IGNIN)  
ILI  
Ii(clamp)  
VIH(clamp)  
hysteresis voltage  
input leakage current  
input clamp current  
VP > 3.5 V  
0.1  
0.2  
0.5  
1.0  
50  
V
VIGNIN = 5 V  
µA  
mA  
V
VIGNIN 50 V  
HIGH-level input  
clamping voltage  
VP1  
50  
VIL(clamp)  
LOW-level input  
clamping voltage  
VIGNIN ≥ −100 V  
0.6  
0
V
2004 Mar 31  
16  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Ignition buffer  
VOL  
VOH  
LOW-level output voltage IIGNOUT = 0 mA  
0
0.2  
5.0  
0.8  
V
V
HIGH-level output  
voltage  
IIGNOUT = 0 mA  
4.5  
5.25  
IOL  
IOH  
LOW-level sink current  
V
IGNOUT 0.8 V  
IGNOUT 4.5 V  
0.45 0.8  
0.45 2.0  
mA  
mA  
HIGH-level source  
current  
V
tPLH  
tPHL  
LOW-to-HIGH  
propagation time  
VIGNIN rising from 1.7 to 2.5 V  
VIGNIN falling from 2.5 to 1.7 V  
500  
500  
µs  
µs  
HIGH-to-LOW  
propagation time  
Temperature protection  
Tj(sd)  
junction temperature for  
shutdown  
150  
150  
160  
160  
170  
170  
°C  
°C  
Tj(hold)  
junction temperature for  
hold trigger  
Notes  
1. Minimum operating voltage, only if VP1 has exceeded 6.5 V.  
2. The total quiescent current is measured in the standby mode. Therefore, the enable inputs of regulators 1, 3, 4 and  
the power switch are grounded and RL(REG2) = ; see Figs 10 and 11.  
3. The voltage of the regulator drops as a result of a VP1 drop for regulators 1 and 2. Regulators 3 and 4 drop as a result  
of VP2 drop.  
4. The rise and fall times are measured with a 10 kpull-up resistor and a 50 pF load capacitor.  
C
5. The delay time depends on the value of the reset delay capacitor: td(RES)  
6. The delay time depends on the value of the reset delay capacitor: td(SW)  
=
× V  
= C × (750 × 103)[s]  
------  
Ich  
C(th)  
C
=
× V  
= C × (375 × 103)[s]  
------  
C(th)  
Ich  
7. The drop-out voltage of regulators 1 and 2 is measured between pins VP1 and REGn. The drop-out voltage of  
regulators 3 and 4 is measured between pins VP2 and REGn.  
8. At current limit, Im(REGn) is held constant (see Fig.8).  
9. The foldback current protection limits the dissipated power at short-circuit (see Fig.8).  
10. The drop-out voltage is measured between pins BU and REG2.  
11. The drop-out voltage of the power switch is measured between pins VP1 and SW.  
12. The maximum output current of the power switch is limited to 1.8 A when the supply voltage exceeds 18 V.  
13. At short-circuit, Isc(SW) of the power switch is held constant to a lower value than the continuous current after a delay  
of at least 10 ms.  
2004 Mar 31  
17  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
handbook, halfpage  
8.5 V  
handbook, halfpage  
MGL907  
V
o(REG2)  
5.0 V  
MGL908  
V
o(REG1)  
I
I
m(REG2)  
sc(REG2)  
I
REG2  
I
I
sc(REG1)  
m(REG1)  
I
REG1  
a. Regulator 1.  
b. Regulator 2.  
handbook, halfpage  
handbook, halfpage  
V
V
o(REG4)  
o(REG3)  
MGL909  
MGL910  
5.0 V  
3.3 V  
I
I
m(REG3)  
I
I
sc(REG3)  
m(REG4)  
sc(REG4)  
I
I
REG3  
REG4  
c. Regulator 3.  
d. Regulator 4.  
Fig.8 Foldback current protection of the regulators.  
MGR931  
V
SW  
V
3.3 V  
P
not  
delayed  
delayed  
generates  
hold  
2V  
BE  
1 A  
>1.8 A  
>3 A  
I
SW  
Fig.9 Current protection of the power switch.  
18  
2004 Mar 31  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
TEST AND APPLICATION INFORMATION  
Test information  
power switch output  
supply voltage 1  
16  
15  
1
17  
11  
10  
9
C15  
100 nF  
C2  
10 µF  
C13  
1000 µF  
C1  
220 nF  
V
P1  
R
(1)  
L(SW)  
12 kΩ  
regulator 2  
output  
enable input power switch  
enable input regulator 1/3  
enable input regulator 4  
5 V  
8.5 V  
5 V  
C16  
100 nF  
C3  
10 µF  
R
V
L(REG2)  
ENSW  
5 kΩ  
regulator 1  
output  
C17  
100 nF  
C4  
10 µF  
R
V
L(REG1)  
EN1/3  
10 kΩ  
regulator 3  
output  
2
C18  
C5  
10 µF  
R
V
L(REG3)  
EN4  
100 nF  
5 kΩ  
regulator 4  
output  
TDA3681J  
TDA3681JR  
3.3 V  
4
supply voltage 2  
C19  
C6  
3
8
R
L(REG4)  
100 nF  
10 µF  
C14  
1000 µF  
C7  
220 nF  
V
5 kΩ  
(1)  
P2  
reset delay  
capacitor  
reset  
output  
C8  
47 nF  
7
C9  
50 pF  
(3)  
R3  
10 kΩ  
backup  
hold output  
14  
5
12  
6
C12  
50 pF  
C10  
(2)  
(3)  
V
BU  
100 µF  
R6  
ignition input  
ignition output  
10 kΩ  
mgl911  
C11  
1 nF  
13  
V
IGNIN  
ground  
(1) A minimum capacitor of 220 nF on the supply lines VP1 and VP2 is required for stability.  
(2) A minimum capacitor of 1 µF for backup supply is required for stability.  
(3) Capacitor represents the typical input capacitance of CMOS logic connected to the reset and hold outputs.  
Fig.10 Test circuit of TDA3681J and TDA3681JR.  
2004 Mar 31  
19  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
power switch output  
supply voltage 1  
16  
12  
17  
19  
14  
8
C2  
10 µF  
C15  
100 nF  
C1  
220 nF  
C13  
1000 µF  
V
P1  
R
(1)  
L(SW)  
12 kΩ  
regulator 2  
output  
enable input power switch  
enable input regulator 1/3  
enable input regulator 4  
5 V  
8.5 V  
5 V  
C16  
100 nF  
C3  
10 µF  
R
V
L(REG2)  
ENSW  
5 kΩ  
regulator 1  
output  
7
C17  
100 nF  
C4  
10 µF  
R
V
L(REG1)  
EN1/3  
10 kΩ  
regulator 3  
output  
6
C18  
100 nF  
C5  
10 µF  
R
V
L(REG3)  
EN4  
5 kΩ  
regulator 4  
output  
TDA3681TH  
3.3 V  
1
supply voltage 2  
C19  
100 nF  
C6  
10 µF  
20  
R
L(REG4)  
C7  
220 nF  
C14  
(1)  
V
5 kΩ  
P2  
1000 µF  
reset delay  
capacitor  
reset  
output  
5
C8  
47 nF  
4
C9  
(3)  
50 pF  
R3  
10 kΩ  
backup  
hold output  
13  
2
9
3
C12  
50 pF  
C10  
(2)  
(3)  
V
BU  
100 µF  
R6  
ignition input  
ignition output  
10 kΩ  
mgu355  
C11  
1 nF  
11  
10  
V
IGNIN  
heat tab  
ground  
(1) A minimum capacitor of 220 nF on the supply lines VP1 and VP2 is required for stability.  
(2) A minimum capacitor of 1 µF for backup supply is required for stability.  
(3) Capacitor represents the typical input capacitance of CMOS logic connected to the reset and hold outputs.  
Fig.11 Test circuit of TDA3681TH.  
2004 Mar 31  
20  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
Application information  
NOISE  
The output capacitors can be selected by using the graphs  
given in Figs 12 and 13. When an electrolytic capacitor is  
used, its temperature behaviour can cause oscillations at  
a low temperature. The two examples below show how an  
output capacitor value is selected.  
Table 1 Noise figures  
NOISE FIGURE (µV)(1)  
Co = 10 µF Co = 47 µF Co = 100 µF  
REGULATOR  
Example 1  
1
2
3
4
170  
440  
120  
85  
110  
240  
100  
70  
110  
190  
80  
Regulators 1, 3 and 4 are stabilized with an electrolytic  
output capacitor of 220 µF (ESR = 0.15 ).  
At Tamb = −30 °C, the capacitor value is decreased to  
73 µF and the ESR is increased to 1.1 . The regulator  
remains stable at Tamb = 30 °C; see Fig.12.  
55  
Note  
1. Measured at a bandwidth of 30 kHz.  
Example 2  
Regulator 2 is stabilized with a 10 µF electrolytic capacitor  
(ESR = 3 ). At Tamb = 30 °C, the capacitor value is  
decreased to 3 µF and the ESR is increased to 23.1 .  
As can be seen from Fig.13, the regulator will be unstable  
at Tamb = 30 °C.  
The noise on the supply line depends on the value of the  
supply capacitor and is caused by a current noise (the  
output noise of the regulators is translated to a current  
noise by the output capacitors). The noise is minimal when  
a high frequency capacitor of 220 nF in parallel with an  
electrolytic capacitor of 100 µF is connected directly to the  
supply pins VP1, VP2 and GND.  
Solution  
To avoid problems with stability at low temperatures, the  
use of tantalum capacitors is recommended. Use a  
tantalum capacitor of 10 µF or a larger electrolytic  
capacitor.  
STABILITY  
The regulators are stabilized by the externally connected  
output capacitors.  
handbook, halfpage  
MGL913  
MGL912  
handbook, halfpage  
14  
20  
ESR  
()  
maximum ESR  
ESR  
()  
12  
10  
8
15  
maximum ESR  
10  
stable region  
6
4
5
0
stable region  
2
minimum ESR  
10  
0
2  
10  
0.1  
1
100  
0.22  
1
100  
C (µF)  
C (µF)  
Fig.12 Curve for selecting the value of the output  
capacitor for regulators 1, 3 and 4.  
Fig.13 Curve for selecting the value of the output  
capacitor for regulator 2.  
2004 Mar 31  
21  
 
 
 
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
PACKAGE OUTLINES  
DBS17P: plastic DIL-bent-SIL power package; 17 leads (lead length 7.7 mm)  
SOT243-3  
non-concave  
x
D
h
D
E
h
view B: mounting base side  
A
2
d
B
j
E
A
L
3
L
c
2
v
M
Q
1
17  
e
e
m
w
M
1
Z
b
p
e
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
(1)  
(1)  
UNIT  
A
A
b
c
D
d
D
E
e
e
e
E
j
L
L
3
m
Q
v
w
x
Z
2
p
h
1
2
h
17.0 4.6 0.75 0.48 24.0 20.0  
15.5 4.4 0.60 0.38 23.6 19.6  
12.2  
11.8  
3.4  
3.1  
8.4  
7.0  
2.4  
1.6  
2.00  
1.45  
2.1  
1.8  
6
mm  
10  
2.54 1.27 5.08  
0.6  
4.3  
0.25 0.03  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-17  
03-03-12  
SOT243-3  
2004 Mar 31  
22  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
DBS17P: plastic DIL-bent-SIL (special bent) power package; 17 leads (lead length 12 mm)  
SOT475-1  
non-concave  
D
h
x
D
E
h
view B: mounting base side  
A
2
d
B
j
E
A
L
3
L
Q
1
17  
c
v
M
e
w
M
1
Z
b
p
e
m
2
e
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
(1)  
(1)  
(1)  
UNIT  
A
A
b
c
D
d
D
E
e
e
e
E
j
L
L
3
m
Q
v
w
x
Z
2
p
h
1
2
h
17.0 4.6 0.75 0.48 24.0 20.0  
15.5 4.4 0.60 0.38 23.6 19.6  
12.2  
11.8  
3.4 12.4 2.4  
3.1 11.0 1.6  
2.00  
1.45  
2.1  
1.8  
6
mm  
10  
2.54 1.27 5.08  
0.8  
4.3  
0.4 0.03  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-17  
03-03-12  
SOT475-1  
2004 Mar 31  
23  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
HSOP20: plastic, heatsink small outline package; 20 leads; low stand-off height  
SOT418-3  
E
A
D
x
X
c
y
E
H
2
v
M
A
E
D
1
D
2
10  
1
pin 1 index  
Q
A
A
2
(A )  
3
E
1
A
4
θ
L
p
detail X  
20  
11  
w
M
Z
b
p
e
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
max.  
(1)  
(2)  
(2)  
A
A
A
b
c
D
D
D
E
E
1
E
e
H
E
L
p
Q
v
w
x
y
Z
θ
UNIT  
2
3
4
p
1
2
2
8°  
0°  
+0.08 0.53 0.32  
0.04 0.40 0.23  
16.0 13.0 1.1 11.1 6.2  
15.8 12.6 0.9 10.9 5.8  
2.9  
2.5  
14.5 1.1  
13.9 0.8  
1.7  
1.5  
2.5  
2.0  
3.5  
3.2  
mm  
1.27  
3.5  
0.35  
0.25 0.25 0.03 0.07  
Notes  
1. Limits per individual lead.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
02-02-12  
03-07-23  
SOT418-3  
2004 Mar 31  
24  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
SOLDERING  
Introduction  
Surface mount packages  
REFLOW SOLDERING  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mount components are mixed on  
one printed-circuit board. Wave soldering can still be used  
for certain surface mount ICs, but it is not suitable for fine  
pitch SMDs. In these situations reflow soldering is  
recommended. Driven by legislation and environmental  
forces the worldwide use of lead-free solder pastes is  
increasing.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
Typical reflow peak temperatures range from  
215 to 270 °C depending on solder paste material. The  
top-surface temperature of the packages should  
preferably be kept:  
Through-hole mount packages  
below 225 °C (SnPb process) or below 245 °C (Pb-free  
process)  
SOLDERING BY DIPPING OR BY SOLDER WAVE  
Typical dwell time of the leads in the wave ranges from  
3 to 4 seconds at 250 °C or 265 °C, depending on solder  
material applied, SnPb or Pb-free respectively.  
– for all the BGA, HTSSON..T and SSOP-T packages  
– for packages with a thickness 2.5 mm  
– for packages with a thickness < 2.5 mm and a  
The total contact time of successive solder waves must not  
exceed 5 seconds.  
volume 350 mm3 so called thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free  
process) for packages with a thickness < 2.5 mm and a  
volume < 350 mm3 so called small/thin packages.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg(max)). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
Moisture sensitivity precautions, as indicated on packing,  
must be respected at all times.  
WAVE SOLDERING  
MANUAL SOLDERING  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
Apply the soldering iron (24 V or less) to the lead(s) of the  
package, either below the seating plane or not more than  
2 mm above it. If the temperature of the soldering iron bit  
is less than 300 °C it may remain in contact for up to  
10 seconds. If the bit temperature is between  
To overcome these problems the double-wave soldering  
method was specifically developed.  
300 and 400 °C, contact may be up to 5 seconds.  
2004 Mar 31  
25  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
If wave soldering is used the following conditions must be  
observed for optimal results:  
The adhesive can be applied by screen printing, pin  
transfer or syringe dispensing. The package can be  
soldered after the adhesive is cured.  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
Typical dwell time of the leads in the wave ranges from  
3 to 4 seconds at 250 °C or 265 °C, depending on solder  
material applied, SnPb or Pb-free respectively.  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
MANUAL SOLDERING  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C. When using a dedicated tool, all other leads can  
be soldered in one operation within 2 to 5 seconds  
between 270 and 320 °C.  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive.  
2004 Mar 31  
26  
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
Suitability of IC packages for wave, reflow and dipping soldering methods  
SOLDERING METHOD  
WAVE  
REFLOW(2) DIPPING  
MOUNTING  
PACKAGE(1)  
Through-hole mount CPGA, HCPGA  
suitable  
suitable  
DBS, DIP, HDIP, RDBS, SDIP, SIL  
PMFP(4)  
suitable(3)  
Through-hole-  
surface mount  
not suitable  
not suitable  
Surface mount  
BGA, HTSSON..T(5), LBGA, LFBGA, SQFP,  
SSOP-T(5), TFBGA, USON, VFBGA  
not suitable  
suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO,  
HSOP, HSQFP, HSSON, HTQFP, HTSSOP,  
HVQFN, HVSON, SMS  
not suitable(6)  
PLCC(7), SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended(7)(8) suitable  
not recommended(9)  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L(11), PMFP(10), WQCCN32L(11)  
suitable  
not suitable  
not suitable  
Notes  
1. For more detailed information on the BGA packages refer to the “(LF)BGA Application Note” (AN01026); order a copy  
from your Philips Semiconductors sales office.  
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
3. For SDIP packages, the longitudinal axis must be parallel to the transport direction of the printed-circuit board.  
4. Hot bar soldering or manual soldering is suitable for PMFP packages.  
5. These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account  
be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature  
exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package body peak temperature  
must be kept as low as possible.  
6. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder  
cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side,  
the solder might be deposited on the heatsink surface.  
7. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
8. Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is definitely not  
suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
9. Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than  
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
10. Hot bar or manual soldering is suitable for PMFP packages.  
11. Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted  
on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar  
soldering process. The appropriate soldering profile can be provided on request.  
2004 Mar 31  
27  
 
 
 
 
 
 
 
 
 
 
Philips Semiconductors  
Product specification  
Multiple voltage regulator with switch and  
ignition buffer  
TDA3681  
DATA SHEET STATUS  
DATA SHEET  
STATUS(1)  
PRODUCT  
STATUS(2)(3)  
LEVEL  
DEFINITION  
I
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
II  
Preliminary data Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Relevant changes will  
be communicated via a Customer Product/Process Change Notification  
(CPCN).  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes in the products -  
including circuits, standard cells, and/or software -  
described or contained herein in order to improve design  
and/or performance. When the product is in full production  
(status ‘Production’), relevant changes will be  
Application information  
Applications that are  
communicated via a Customer Product/Process Change  
Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these  
products, conveys no licence or title under any patent,  
copyright, or mask work right to these products, and  
makes no representations or warranties that these  
products are free from patent, copyright, or mask work  
right infringement, unless otherwise specified.  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2004 Mar 31  
28  
 
 
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2004  
SCA76  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
R32/06/pp29  
Date of release: 2004 Mar 31  
Document order number: 9397 750 12427  

相关型号:

TDA3681JR

Multiple voltage regulator with switch and ignition buffer
NXP

TDA3681JR

Regulator, 4 Output, BIPolar, PZIP17,
PHILIPS

TDA3681JR/N2C

TDA3681 - Multiple voltage regulator with switch and ignition buffer ZIP 17-Pin
NXP

TDA3681TH

Multiple voltage regulator with switch and ignition buffer
NXP

TDA3682

Multiple voltage regulator with power switches
NXP

TDA3682ST

Multiple voltage regulator with power switches
NXP

TDA3683

Multiple voltage regulator with switch and ignition buffer
NXP

TDA3683J

Power Management Circuit, CMOS, PZIP23,
PHILIPS

TDA3683J/N2S,112

TDA3683 - Multiple voltage regulator with switch and ignition buffer ZIP 23-Pin
NXP

TDA3683SD

SEVEN OUTPUT, FIXED/ADJUSTABLE POSITIVE REGULATOR, PZFM23, PLASTIC, SOT889-1, DIL BENT SIL-23
NXP

TDA3717

STEPPER MOTOR DRIVE CIRCUIT
ETC

TDA3717-DPB

Motion Control Electronic, BIPolar, PDIP16
DYNEX