TDA8035HN/C1 [NXP]

IC SPECIALTY ANALOG CIRCUIT, PQCC32, 5 X 5 MM, 0.85 MM HEIGHT, PLASTIC, SOT617-7, HVQFN-32, Analog IC:Other;
TDA8035HN/C1
型号: TDA8035HN/C1
厂家: NXP    NXP
描述:

IC SPECIALTY ANALOG CIRCUIT, PQCC32, 5 X 5 MM, 0.85 MM HEIGHT, PLASTIC, SOT617-7, HVQFN-32, Analog IC:Other

文件: 总32页 (文件大小:837K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA8035  
High integrated and low power smart card interface  
Rev. 3.1 — 30 June 2016  
Product data sheet  
1. General description  
The TDA8035 is the cost efficient successor of the established integrated contact smart  
card reader IC TDA8024. It offers a high level of security for the card by performing  
current limitation, short-circuit detection, ESD protection as well as supply supervision.  
The current consumption during the standby mode of the contact reader is very low as it  
operates in the 3 V supply domain. The TDA8035 is therefore the ideal component for a  
power efficient contact reader.  
2. Features and benefits  
2.1 Protection of the contact smart card  
Thermal and short-circuit protection on all card contacts  
VCC regulation:  
5 V, 3 V, 1.8 V 5 % on 2 220 nF multilayer ceramic capacitors with low ESR  
Current spikes of 40 nA/s (VCC = 5 V and 3 V) or 15 nA/s (VCC = 1.8 V) up to  
20 MHz, with controlled rise and fall times. Filtered overload detection is  
approximately 120 mA.  
Automatic activation and deactivation sequences initiated by software or by hardware  
in the event of a short-circuit, card take-off, overheating, falling VREG VDD(INTF),VDDP  
Enhanced card-side ElectroStatic Discharge (ESD) protection of (> 8 kV)  
Supply supervisor for killing spikes during power on and off:  
threshold internally fixed  
externally by a resistor bridge  
2.2 Easy integration into your contact reader  
SW compatible to TDA8024 and TDA8034  
5 V, 3 V, 1.8 V smart card supply  
DC-to-DC converter for VCC generation separately powered from 2.7 V to 5.5 V supply  
(VDDP and GNDP)  
Very low power consumption in Deep Shutdown mode  
Three protected half-duplex bidirectional buffered I/O lines (C4, C7 and C8)  
External clock input up to 26 MHz  
Card clock generation up to 20 MHz using pins CLKDIV1 and CLKDIV2 with  
synchronous frequency changes of fXTAL, fXTAL/2, fXTAL/4 or fXTAL/8  
Non-inverted control of pin RST using pin RSTIN  
Built-in debouncing on card presence contact  
Multiplexed status signal using pin OFFN  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
Chip Select digital input for parallel operation of several TDA8035 ICs.  
2.2.1 Other  
HVQFN32 package  
Compliant with ISO 7816, NDS and EMV 4.3 (*) payment systems  
(*) for C2 version  
3. Applications  
Pay TV  
Electronic payment  
Identification  
IC card readers for banking  
4. Quick reference data  
Table 1.  
Quick reference data  
VDDP = 3.3 V; VDD(INTF) = 3.3 V; fXtal = 10 MHz; GND = 0 V; Tamb = 25 C; unless otherwise specified  
Symbol  
Supply  
VDDP  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
power supply voltage  
interface supply voltage  
power supply current  
2.7  
1.6  
-
3.3  
3.3  
0.1  
5.5  
3.6  
3
V
VDD(INTF)  
IDDP  
V
deep shutdown mode;  
fXTAL = stopped;  
A  
shutdown mode;  
fXTAL = stopped;  
-
300  
500  
A  
active mode; VCC = +5 V  
CLK = fXTAL/2; no load  
-
-
-
-
-
-
-
-
-
-
5
mA  
mA  
mA  
mA  
A  
active mode; CLK = fXTAL/2;  
VCC = +5 V; ICC = 65 mA  
220  
160  
120  
1
active mode; CLK = fXTAL/2;  
VCC = +3 V; ICC = 65 mA  
active mode; CLK = fXTAL/2;  
VCC = +1.8 V; ICC = 35 mA  
IDD(INTF)  
interface supply current  
deep shutdown mode;  
fXTAL = stopped;  
present card  
shutdown mode;  
-
-
1
A  
f
XTAL = stopped;  
present card  
Internal supply voltage  
VDD  
supply voltage  
1.62  
1.8  
1.98  
V
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
2 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
Table 1.  
Quick reference data …continued  
VDDP = 3.3 V; VDD(INTF) = 3.3 V; fXtal = 10 MHz; GND = 0 V; Tamb = 25 C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Card supply voltage: pin VCC  
VCC  
supply voltage  
5 V card; DC ICC < 65 mA  
4.75  
4.65  
5.0  
5.0  
5.25  
5.25  
V
V
5 V card; AC current spikes  
of 40 nA/s  
3 V card; DC ICC < 65 mA  
2.85  
2.76  
-
-
3.15  
3.24  
V
V
3 V card; AC current spikes  
of 40 nA/s  
1.8 V card; DC ICC < 35 mA  
1.71  
1.66  
-
-
1.89  
1.94  
V
V
1.8 V card; AC current  
spikes of 15 nA/s  
Vripple(p-p)  
ICC  
peak-to-peak ripple voltage  
supply current  
from 20 kHz to 200 MHz  
VCC = 5 V or 3 V  
-
-
-
-
-
-
300  
65  
mV  
mA  
mA  
VCC = 1.8 V  
35  
General  
tdeact  
deactivation time  
total sequence  
35  
-
90  
-
250  
0.45  
+85  
s  
W
Ptot  
total power dissipation  
ambient temperature  
Tamb  
25  
-
C  
5. Ordering information  
The TDA8035 is available in 2 versions, which have the same functionalities. The C2  
version is compliant with the EMVC0 4.3 standard.  
Table 2.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
TDA8035HN/C1  
HVQFN32  
plastic thermal enhanced very thin quad flat package; no leads;  
SOT617-7  
32 terminals; body 5 5 0.85 mm  
TDA8035HN/C1/S1 HVQFN32  
TDA8035HN/C2/S1 HVQFN32  
plastic thermal enhanced very thin quad flat package; no leads;  
SOT617-7  
SOT617-7  
32 terminals; body 5 5 0.85 mm; [1]  
plastic thermal enhanced very thin quad flat package; no leads;  
32 terminals; body 5 5 0.85 mm; [1]  
[1] copper wiring  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
3 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
6. Block diagram  
V
V
DDP  
DD(INTF)  
330 nF  
330 nF  
100 nF  
10 μF  
100 nF  
100 nF  
V
DD(INTF)  
V
REG  
V
DDP  
PORADJ  
GND  
GNDP  
SAP SAM SBP SBM  
CS  
VUP  
1 μF  
INTERNAL  
deep  
shutdown  
CMDVCCN  
EN_5V/3VN  
EN_1.8VN  
RSTIN  
DCDC  
REGULATOR  
DEEP  
CONVERTER  
SHUTDOWN  
V
CC  
LATCH  
CLKDIV1  
CLKDIV2  
ISO7816  
READER  
INTERFACE  
reset and  
supalarm  
2 ×  
INPUT SENSE  
GNDC  
220 nF  
SUPERVISOR  
HOST  
INTERFACE  
DEEP SHUTDOWN  
RST  
CLK  
AUX1  
AUX2  
I/O  
I/OUC  
AUX1UC  
AUX2UC  
BANDGAP  
C5  
C1  
C2  
C3  
C4  
H
Z
UC  
TDA8035  
C6  
C7  
C8  
INTERNAL  
OSCILLATOR  
V
DD(INTF)  
THERMAL  
configurations  
bus for smartcard  
reader interface  
PROTECTION  
XTAL1  
OFFN  
H
Z
CRYSTAL  
OSCILLATOR  
DIGITAL  
SEQUENCER  
XTAL2  
interuption  
PRESN  
001aan745  
Fig 1. Block diagram  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
4 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
7. Pinning information  
7.1 Pinning  
terminal 1  
index area  
I/OUC  
PORADJ  
1
2
3
4
5
6
7
8
24 CLK  
23 RST  
CMDVCCN  
22 V  
CC  
V
21 VUP  
20 SAP  
19 SBP  
DD(INTF)  
TDA8035  
CLKDIV1  
CLKDIV2  
EN_5V/3VN  
EN_1.8VN  
18  
V
DDP  
17 SBM  
001aan746  
Transparent top view  
Fig 2. Pin configuration HVQFN32  
7.2 Pin description  
Table 3.  
Symbol  
I/OUC  
Pin description  
Pin  
1
Supply  
Type  
I/O  
I
Description  
host data I/O line (internal 10 kpull-up resistor to VDD(INTF)  
VDD(INTF)  
VDD(INTF)  
)
PORADJ  
2
Input for VDD(INTF) supervisor. PORADJ threshold can be changed with an  
external R bridge  
CMDVCCN  
VDD(INTF)  
3
4
5
6
7
VDD(INTF)  
VDD(INTF)  
VDD(INTF)  
VDD(INTF)  
VDD(INTF)  
I
start activation sequence input from the host (active LOW)  
supply interface supply voltage  
CLKDIV1  
CLKDIV2  
EN_5V/3VN  
I
I
I
control with CLKDIV2 for choosing CLK frequency (see Table 4)  
control with CLKDIV1 for choosing CLK frequency (see Table 4)  
control signal for selecting VCC = 5 V (HIGH) or VCC = 3 V (LOW) if  
EN_1.8 VN = High  
EN_1.8 VN  
RSTIN  
8
VDD(INTF)  
VDD(INTF)  
VDD(INTF)  
I
control signal for selecting VCC = 1.8 V (low)  
card reset input from the host (active HIGH)  
9
I
OFFN  
10  
O
NMOS interrupt to the host (active LOW) with 10 kinternal pull-up resistor to  
VDD(INTF) (See fault detection)  
GND  
11  
12  
13  
14  
15  
-
supply ground  
XTAL1  
XTAL2  
VREG  
VDD(INTF)  
VDD(INTF)  
VDDP  
I
crystal connection 1  
crystal connection 2  
O
supply Internal supply voltage  
I/O DC-to-DC converter capacitor; connected between SAM and SAP; C = 330 nF  
or 100 nF (see Figure 13) with ESR < 100 mat Freq=100kHz  
SAM  
VDDP  
GNDP  
16  
-
supply DC-to-DC converter power supply ground  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
5 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
Table 3.  
Symbol  
SBM  
Pin description …continued  
Pin  
Supply  
Type  
Description  
17  
VDDP  
I/O  
DC-to-DC converter capacitor; connected between SBM and SBP; C = 330 nF  
or 100nF (see Figure 13) with ESR < 100 mat Freq=100kHz  
VDDP  
SBP  
18  
19  
VDDP  
VDDP  
supply Power supply voltage  
I/O  
I/O  
I/O  
O
DC-to-DC converter capacitor; connected between SBM and SBP; C = 330 nF  
or 100nF (see Figure 13) with ESR < 100 mat Freq=100kHz  
SAP  
VUP  
VCC  
20  
21  
22  
VDDP  
VDDP  
VCC  
DC-to-DC converter capacitor; connected between SAM and SAP; C = 330 nF  
or 100nF (see Figure 13) with ESR < 100 mat Freq=100kHz  
DC-to-DC converter output decoupling capacitor connected between VUP and  
GNDP; C = 1 F with ESR < 100 mat Freq=100kHz  
supply for the card (C1), decouple to GND with 2 220 nF capacitors with  
ESR < 100 m  
RST  
23  
24  
25  
26  
VCC  
VCC  
-
O
O
card reset (C2)  
CLK  
clock to the card (C3)  
GNDC  
AUX1  
supply card signal ground  
VCC  
I/O  
auxiliary data line to and from the card (C4), internal 10 kpull-up resistor to  
VCC  
AUX2  
27  
VCC  
I/O  
auxiliary data line to and from the card (C8), internal 10 kpull-up resistor to  
VCC  
I/O  
28  
29  
30  
VCC  
I/O  
data line to and from the card (C7), internal 10 kpull-up resistor to VCC  
CS  
VDD(INTF)  
VDD(INTF)  
I
I
Chip Select input from the host (active High)  
PRESN  
Card presence contact input (active LOW); if PRESN is true, then the card is  
considered as present. A debouncing feature of 4.05 ms typical is built in.  
AUX1UC  
AUX2UC  
31  
32  
VDD(INTF)  
VDD(INTF)  
I/O  
I/O  
auxiliary data line to and from the host, internal 10 kpull-up resistor to  
VDD(INTF)  
auxiliary data line to and from the host, internal 10 kpull-up resistor to  
VDD(INTF)  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
6 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
8. Functional description  
Remark: The ISO 7816 terminology convention has been adhered to throughout this  
document, and it is assumed that the reader is familiar with this convention.  
8.1 Power supply  
Power supply voltage VDDP is from 2.7 V to 5.5 V  
All interface signals with the system controller are referenced to VDD(INTF). All card  
contacts remain inactive during powering up or powering down.  
Internal regulator VREG is 1.8 V  
After powering the device, OFFN remains low until CMDVCCN is set high and PRESN is  
low.  
During power off, OFFN falls low when VDDP is below the threshold voltage falling.  
While the card is not activated, CMDVCCN is kept at high level. To save power  
consumption, the frequency of the internal oscillator (fosc(int)) used for the activation  
sequences is put in low frequency mode.  
This device includes a DC-to-DC converter to generate the 5 V, 3 V or 1.8 V card supply  
voltage (VCC). The DC-to-DC converter is separately supplied by VDDP and GNDP. The  
DC-to-DC converter operates as a voltage tripler, doubler or follower according to the  
respective values of VCC and VDDP  
.
Special care has to me made in the selection of the capacitors of the DC/DC converter  
specially with respect to capacitor value versus voltage and ESR (see Table 7)  
The operating mode is as follows (see Figure 3):  
VCC = 5 V and VDDP > 3.8 V; voltage doubler  
VCC = 5 V and VDDP < 3.6 V; voltage tripler  
VCC = 3 V and VDDP > 3.8 V; voltage follower  
VCC = 3 V and VDDP < 3.6 V; voltage doubler  
VCC = 1.8 V and VDDP > 3.8 V; voltage doubler  
VCC = 1.8 V and VDDP < 3.6 V; voltage tripler  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
7 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
8.2 Voltage supervisor  
V
REG  
vbg  
V
REG  
V
DDP  
Deep_shutdown  
V
DD(INTF)  
vbg  
vbg  
Poradj  
001aan747  
Fig 3. Block voltage supervisor  
The voltage supervisor is used as a power-on reset, and also as supply drop detection  
during a card session. The threshold of the voltage supervisor is set internally in the IC for  
VDDP and VREG. The threshold can be adjusted externally for VDD(INTF) using the  
PORADJ pin. As long as VREG is less than Vth(VREG) + Vhys(VREG), the IC remains inactive  
whatever the levels on the command lines are. The inactivity lasts for the duration of tw  
after VREG has reached a level higher than Vth(VREG) + Vhys(VREG). The outputs of the  
VDDP, VREG and VDD(INTF) supervisors are combined and sent to a digital controller in  
order to reset the TDA8035. The reset pulse of approximately 5.7 ms (tw = 2048   
1/(fosc(int)_Low) is used internally for maintaining the IC in an inactive mode during the  
supply voltage power-on (see Figure 4 and Figure 5). A deactivation sequence is  
performed when:  
VREG falls below Vth(VREG)  
VDD(INTF) falls below Vth(PORADJ)  
VDDP falls below Vth(VDDP)  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
8 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
V
DDP  
Vth_vddp_Ih  
V
REG  
Vt  
Supervisor outputs  
vsup  
X
Tw  
Tw  
reset  
X
X
2 Tw  
supalarm  
Supervisor inputs  
Deep_shutdown  
X
X
X
Oscint  
180 kHz  
1.2 V  
Vbg  
IC pins  
OFFN  
X
debouncing  
001aan748  
Fig 4. Voltage supervisor  
V
DDP  
Vth_Vddp_Ih  
2.65 V  
2.5 V  
Vth_vddp_hI  
V
REG  
1
1.8 V  
1
Vsup  
2
2
3
Supalarm  
Reset  
Tw  
Tw  
Tw  
3
100 μs analog delay  
Start debouncing if a card  
has been inserted during  
shutdown mode  
001aan749  
Fig 5. Voltage supervisor  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
9 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
8.3 Clock circuitry  
DIGITAL  
Enclkin  
clkxtal  
MUX  
XTAL  
001aan750  
Fig 6. Switch external clock  
To generate the card clock CLK, the TDA8035 can either use an external clock provided  
on XTAL1 pin or a crystal oscillator connected on both XTAL1 and XTAL2 pins. The  
TDA8035 automatically detects when an external clock is provided on XTAL1.  
Consequently, there is no need for an extra pin to configure the clock source (external  
clock or crystal).  
The automatic clock source detection is performed on each activation command  
(CMDVCCN pin falling edge). During a time window defined by the internal oscillator, the  
presence of an external clock on XTAL1 pin is checked. If a clock is detected, the crystal  
oscillator is kept stopped, else, the crystal oscillator is started. It is mandatory when an  
external clock is used, that the clock is applied on XTAL1 before CMDVCCN falling edge  
signal.  
The frequency is chosen as fXTAL, fXTAL/2, fXTAL/4 or fXTAL/8 via the pins CLKDIV1 and  
CLKDIV2. Both selection inputs are not changed simultaneously. A minimum of 10 ns is  
required between changes on CLKDIV1 and CLKDIV2.  
The frequency change is synchronous, which means that during transition, no pulse is  
shorter than 45 % of the smallest period. This ensures that the first and last clock pulse  
around the change has the correct width. When changing the frequency dynamically, the  
change is effective for only 10 periods of XTAL1 after the command.  
The duty cycle on pin CLK is between 45 % and 55 %:  
When an external clock is used on XTAL1 pin and fXTAL is used, the duty cycle is  
between 48 % and 52 %. The subsequent rise and fall times (tr(i) and tf(i)) conform to  
values listed in Table 7. It has to connect a 56 pF serial capacitor (see Figure 13).  
CLK frequency is fXTAL, fXTAL/2, fXTAL/4 or fXTAL/8  
:
It is guaranteed between 45 % and 55 % of the period by the frequency dividers.  
Table 4.  
Clock configuration  
CLKDIV1  
CLKDIV2  
CLK  
0
0
1
1
0
1
1
0
fXTAL/8  
fXTAL/4  
fXTAL/2  
fXTAL  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
10 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
8.4 I/O circuitry  
The three data lines I/O, AUX1 and AUX2 are identical.  
To enter the idle state, both lines (I/O and I/OUC) are pulled HIGH via a 10 kresistor (I/O  
to VCC and I/OUC to VDD(INTF)).  
I/O is referenced to VCC, and I/OUC to VDD(INTF) which allows operation with  
VCC VDD(INTF)  
.
The first side on which a falling edge occurs becomes the master. An anti-latch circuit  
disables the detection of falling edges on the other line, which becomes the slave.  
After a time delay td(edge), the logic 0 present on the master side is transmitted to the slave  
side.  
When the master side returns to logic 1, the slave side transmits the logic 1 during the  
time delay tpu and both sides return to their idle states.  
The active pull-up feature ensures fast Low to High transitions. It is able to deliver more  
than 1 mA to an output voltage of 0.9 VCC on an 80 pF load. At the end of the active  
pull-up pulse, the output voltage depends on the internal pull-up resistor and on the load  
current.  
The current to and from the cards I/O lines is internally limited to 15 mA.  
The maximum frequency on these lines is 1.5 MHz.  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
11 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
8.5 CS control  
The CS (Chip Select) input allows multiple devices to operate in parallel. When CS is  
high, the system interface signals operate as described. When CS is low, the signals  
CMDVCCN, RSTIN, CLKDIV1, CLKDIV2, EN_5V/3VN and EN_1.8VN are latched.  
I/OUC, AUX1UC and AUX2UC are set to high impedance pull-up mode and data is no  
longer passed to or from the smart card. The OFFN output is a 3-state output.  
8.6 Shutdown mode and Deep Shutdown mode  
After power-on reset, the circuit enters the Shutdown mode if CMDVCCN input pin is set  
to a logic high. A minimum number of circuits are active while waiting for the  
microcontroller to start a session.  
1. All card contacts are inactive (approximately 200 to GND).  
2. I/OUC, AUX1UC and AUX2UC are high impedance (10 kW pull-up resistor connected  
to VDD(INTF)).  
3. Voltage generators are stopped.  
4. Voltage supervisor is active.  
5. The internal oscillator runs at its low frequency.  
A Deep Shutdown mode can be entered by forcing CMDVCCN input pin to a logic-High  
state and EN_5V/3VN, EN_1.8VN input pins to a logic-Low state. Deep Shutdown mode  
can only be entered when the smart card reader is inactive. In Deep Shutdown mode, all  
circuits are disabled. The OFFN pin follows the status of PRESN pin. To exit Deep  
Shutdown mode, change the state of one or more of the three control pins. Figure 8  
shows the control sequence for entering and exiting.  
DEACTIVATION  
SEQUENCE  
CMDVCCN  
EN_1.8VN  
EN_5V/3VN  
Shutdown  
Shutdown  
Shutdown  
debounce  
Mode  
(internal pin)  
Activation  
Deep Shutdown  
Activation  
OFFN  
PRESN  
V
CC  
001aan751  
Fig 7. Shutdown mode and Deep Shutdown mode  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
12 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
8.7 Activation sequence  
The following sequence then occurs with crystal oscillator (see Figure 8):  
T = 64 Toscint (freq high)  
1. CMDVCCN is pulled low (t0)  
2. Crystal oscillator start-up time (t0).  
3. The internal oscillator changes to its high frequency and DC-to-DC starts  
t1 = t0 + 768 Tosc (freq low)  
4. VCC rises from 0 to selected VCC value (5 V, 3 V, 1.8 V) with a controlled slope  
(t2 = t1 + 3T/2)  
5. I/O, AUX1 and AUX2 are enabled (t3 = t1 + 10T), until now, they were pulled LOW  
6. CLK is applied to the C3 contact (t4 = t3 + ×) with 200 ns < × < 10 × 1/fXtal  
7. RST is enabled (t5 = t1 + 13T).  
Oscint  
CMDVCCN  
Xtal1  
low frequency  
high frequency  
VUP  
V
CC  
I/O  
CLK  
RST  
T / 2  
≈ 3 ms  
t0  
t1  
t2  
t3 t4  
t5  
001aan752  
Fig 8. Activation sequence at t3  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
13 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
8.8 Deactivation sequence  
When a session is completed, the microcontroller sets the CMDVCCN line to the HIGH  
state. The circuit then executes an automatic deactivation sequence by counting the  
sequencer back and ends in the inactive state (see Figure 9):  
1. RST goes LOW (t11 = t10 + 3T/64)  
2. CLK is stopped LOW (t12 = t11 +T/2)  
3. I/O, AUX1 and AUX2 are pulled LOW (t13 = t11 + T)  
4. VCC falls to zero (t14 = t11 + 3T/2). The deactivation sequence is completed when VCC  
reaches its inactive state  
5. VUP falls to zero (t15 = t11 + 7T/2)  
6. VCC < 0.4 V (tde = t11 + 3T/2 + VCC fall time)  
7. All card contacts become low-impedance to GND. I/OUC, AUX1UC and AUX2UC  
remain pulled up to VDD(INTF) via a 10 kresistor.  
8. The internal oscillator reverts to its lower frequency.  
CMDVCCN  
RST  
CLK  
I/O  
V
CC  
VUP  
Xtal1  
Oscint  
high frequency  
low frequency  
T / 2  
t10  
t11  
t12 t13 t14  
t15  
001aan753  
Fig 9. Deactivation sequence  
8.9 VCC regulator  
VCC buffer is able to deliver up to 65 mA continuously at VCC = 5 V and VCC = 3 V, and  
35 mA at VCC = 1.8 V.  
VCC buffer has an internal overload detection at approximately 125 mA.  
This detection is internally filtered, allowing the card to draw spurious current pulses of up  
to 200 mA for some milliseconds, without causing a deactivation. The average current  
value must remain below the maximum.  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
14 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
8.10 Fault detection  
The circuit monitors the following fault conditions:  
short-circuit or high current on VCC  
Card removal during transaction  
VDDP or VDD(INTF) or Vreg dropping  
overheating.  
There are two different cases (see Figure 10 on page 16):  
1. CMDVCCN High (outside a card session): OFFN is Low when the card is not in the  
reader, and High when the card is in the reader. The supply supervisor detects a  
supply voltage drop on VDDP and generates an internal power-on reset pulse, but it  
does not act upon OFFN. The card is not powered-up, so no short-circuit or  
overheating is detected.  
2. CMDVCCN Low (within a card session): OFFN falls Low in any of the previously  
mentioned cases. As soon as the fault is detected, an emergency deactivation is  
automatically performed. When the system controller sets CMDVCCN back to High, it  
senses OFFN again. After a complete deactivation sequence, the system controller  
sets CMDVCCN back to High and it senses OFFN again. This is to distinguish  
between a hardware problem or a card extraction. OFFN reverts to High when the  
card is still present.  
A bounce can occur on the PRESN signal during card insertion or withdrawal. The bounce  
depends on the type of card presence switch within the connector (normally closed or  
normally open), and on the mechanical characteristics of the switch. To prevent this  
bounce, a debounce function of approximately 4.05 ms (tdeb = 1280 1/(fosc(int)_Low) is  
integrated in the device.  
When the card is inserted, OFFN goes High only at the end of the debounce time (see  
Figure 11 on page 16).  
When the card is extracted, an automatic deactivation sequence of the card is performed  
on the first true/false transition on PRESN. OFFN goes Low.  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
15 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
OFFN  
PRESN  
RST  
CLK  
I/O  
V
CC  
VUP  
Xtal1  
Oscint  
high frequency  
low frequency  
T / 2  
t10 = t11 t12 t13 t14  
t15  
001aan754  
Fig 10. Emergency deactivation sequence (card extraction)  
PRESN  
OFFN  
CMDVCCN  
tdeb  
tdeb  
V
CC  
Deactivation caused by  
cards withdrawal  
Deactivation caused by  
short circuit  
001aan757  
Fig 11. Behavior of OFFN, CMDVCCN, PRESN and VCC  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
16 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
9. Limiting values  
All card contacts are protected against a short-circuit with any other card contact.  
Stress beyond the limiting values can damage the device permanently. The values are  
stress ratings only and functional operation of the device under these conditions is not  
implied.  
Table 5.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
0.3  
0.3  
0.3  
Max  
6
Unit  
V
VDDP  
power supply voltage  
VDD(INTF) interface supply voltage  
4.1  
4.1  
V
VIH  
HIGH-level input  
voltage  
CS, PRESN,  
V
CMDVCCN, CLKDIV2,  
CLKDIV1, EN_1.8VN,  
EN_5V/3VN, RSTIN,  
OFFN, PORADJ, XTAL1,  
I/OUC, AUX1UC, AUX2UC,  
VDDP, VDD(INTF)  
I/O, RST, AUX1, AUX2 and  
CLK  
0.3  
5.75  
V
Tamb  
Tstg  
Tj  
ambient temperature  
storage temperature  
junction temperature  
total power dissipation  
25  
55  
+85  
C  
C  
C  
W
+150  
+125  
0.45  
+10  
Ptot  
VESD  
electrostatic discharge Human Body Model (HBM)  
voltage on card pins I/O, RST, VCC  
10  
kV  
,
AUX1, CLK, AUX2, PRESN  
within typical application  
Human Body Model (HBM)  
on all other pins  
2  
+2  
kV  
V
Machine Model (MM) on all  
pins  
200  
500  
+200  
+500  
Field Charged Device  
V
Model (FCDM) on all pins  
10. Thermal characteristics  
Table 6.  
Symbol  
Rth(j-a)  
Thermal characteristics  
Package name Parameter  
Conditions  
Typ  
Unit  
HVQFN32  
thermal resistance from junction in free air with 4 thermal vias  
55  
K/W  
to ambient  
on PCB  
in free air without thermal  
vias on PCB  
63  
K/W  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
17 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
11. Characteristics  
Table 7.  
Characteristics of IC  
VDDP = 3.3 V; VDD(INTF) = 3.3 V; fXTAL = 10 MHz; GND = 0 V; Tamb=25 C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supply voltage  
VDDP  
power supply voltage  
interface supply voltage  
power supply current  
2.7  
1.6  
-
3.3  
3.3  
0.1  
5.5  
3.6  
3
V
VDD(INTF)  
IDDP  
V
deep Shutdown mode;  
fXTAL = stopped  
A  
Shutdown mode;  
-
300  
500  
A  
f
XTAL = stopped  
active mode; CLK = fXTAL/2;  
CC = +5 V; no load  
-
-
-
-
-
-
-
-
-
-
5
mA  
mA  
mA  
mA  
A  
V
active mode; CLK = fXTAL/2;  
VCC = +5 V; ICC = 65 mA  
220  
160  
120  
1
active mode; CLK = fXTAL/2;  
VCC = +3 V; ICC = 65 mA  
active mode; CLK = fXTAL/2;  
VCC = +1.8 V; ICC = 35 mA  
IDD(INTF)  
interface supply current  
deep Shutdown mode  
fXTAL = stopped;  
present card  
Shutdown mode  
-
-
1
A  
fXTAL = stopped;  
present card  
Vth(VREG)  
Vhys(VREG)  
Vth(VDDP)  
Vhys(VDDP)  
threshold voltage on pin  
VREG  
internal voltage regulator  
falling  
1.38  
90  
1.45  
100  
2.25  
100  
1.52  
110  
V
hysteresis voltage on pin  
VREG  
mV  
V
threshold voltage on pin  
VDDP  
pin VDDP falling  
2.15  
90  
2.35  
110  
hysteresis voltage on pin  
VDDP  
mV  
tw  
pulse width  
3.0  
6.5  
8.9  
ms  
V
Vth(L)(PORADJ)  
LOW-level threshold  
external resistors on PORADJ 0.81  
0.85  
0.89  
voltage on pin PORADJ  
Vhys(PORADJ)  
hysteresis voltage on pin  
PORADJ  
30  
60  
-
90  
+1  
mV  
IL  
leakage current  
pin PORADJ  
-1  
A  
VREG  
Vo  
tr  
output voltage  
rise time  
1.62  
-
1.80  
-
1.98  
200  
V
exit of deep Shutdown mode  
s  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
18 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
Table 7.  
Characteristics of IC …continued  
VDDP = 3.3 V; VDD(INTF) = 3.3 V; fXTAL = 10 MHz; GND = 0 V; Tamb=25 C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VUP (DC-to-DC converter)  
VOH  
HIGH-level output voltage VDDP=3.3V, VCC = 5 V,  
ICC < 65 mA DC  
5.10  
3.50  
5.10  
5.10  
-
5.60  
3.95  
5.60  
5.80  
5.00  
5.80  
7.00  
5.00  
7.00  
7.00  
-
V
V
V
V
V
V
VDDP=3.3V, VCC = 3 V,  
ICC < 65 mA DC  
VDDP=3.3V, VCC = 1.8 V,  
ICC < 35 mA DC  
VDDP=5V, VCC = 5 V,  
ICC < 65 mA DC  
VDDP=5V, VCC = 3 V,  
ICC < 65 mA DC  
VDDP=5V, VCC = 1.8 V,  
ICC < 35 mA DC  
5.10  
7.00  
SAP (DC-to-DC converter)  
VOH  
HIGH-level output voltage VDDP=3.3V, VCC = 5 V,  
-
-
-
-
-
-
-
8.20  
6.00  
8.20  
8.20  
-
V
V
V
V
V
V
ICC < 65 mA DC  
VDDP=3.3V, VCC = 3 V,  
ICC < 65 mA DC  
-
VDDP=3.3V, VCC = 1.8 V,  
ICC < 35 mA DC  
-
VDDP=5V, VCC = 5 V,  
ICC < 65 mA DC  
-
VDDP=5V, VCC = 3 V,  
ICC < 65 mA DC  
5.00  
-
VDDP=5V, VCC = 1.8 V,  
ICC < 35 mA DC  
8.20  
DC-to-DC converter capacitors  
CSAPSAM  
CSBPSBM  
CVUP  
DC/DC converter  
capacitance  
connected between SAP and  
SAM (330 nF [4]) with  
VDDP=3.3v  
231  
70  
-
-
-
-
-
429  
130  
429  
130  
1300  
nF  
nF  
nF  
nF  
nF  
connected between SAP and  
SAM (100 nF [4]) with  
VDDP=5v  
DC/DC converter  
capacitance  
connected between SBP and  
SBM (330 nF [4]) with  
VDDP=3.3v  
231  
70  
connected between SBP and  
SBM (100 nF [4]) with  
VDDP=5v  
DC/DC converter  
capacitance  
connected on VUP(1uF [4]  
)
700  
[1]  
Card supply voltage (VCC  
)
Cdec  
decoupling capacitance  
connected on VCC (220 nF +  
220 nF 10 %)  
396  
-
484  
nF  
Vo  
output voltage  
inactive mode; no load  
-0.1  
-0.1  
-
-
+0.1  
+0.3  
V
V
inactive mode; Io = 1 mA  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
19 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
Table 7.  
Characteristics of IC …continued  
VDDP = 3.3 V; VDD(INTF) = 3.3 V; fXTAL = 10 MHz; GND = 0 V; Tamb=25 C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Io  
output current  
inactive mode  
-
-
1  
mA  
at grounded pin VCC  
VCC  
supply voltage  
active mode; 5 V card;  
ICC < 65 mA DC  
4.75  
2.85  
1.71  
5.0  
5.25  
3.15  
1.89  
5.25  
V
V
V
V
active mode; 3 V card;  
ICC < 65 mA DC  
3.05  
1.83  
5.0  
active mode; 1.8 V card;  
ICC < 35 mA DC  
active mode; current pulses of 4.65  
40 nA/s with ICC < 200 mA,  
t < 400 ns; 5 V card  
active mode; current pulses of 2.76  
40 nA/s with ICC < 200 mA,  
t < 400 ns; 3 V card  
-
-
-
3.20  
1.94  
350  
V
active mode; current pulses of 1.66  
15 nA/s with ICC < 200 mA,  
t < 400 ns; 1.8 V card  
V
Vripple(p-p)  
ICC  
peak-to-peak ripple  
voltage  
from 20 kHz to 200 MHz  
-
mV  
supply current  
VCC = 0 V to 5 V, 3 V  
VCC = 0 V to 1.8 V  
5 V card  
-
-
65  
mA  
-
-
35  
mA  
SR  
slew rate  
0.055  
0.040  
0.025  
0.18  
0.18  
0.18  
0.8  
0.8  
0.8  
V/s  
V/s  
V/s  
3 V card  
1.8 V card  
Crystal oscillator (XTAL1 and XTAL2)  
Cext  
external capacitance  
connected on pins  
-
-
33  
pF  
XTAL1/XTAL2 (depending on  
specification of crystal or  
resonator used)  
fxtal  
crystal frequency  
2
0
-
-
27  
27  
MHz  
MHz  
fxtal(XTAL1)  
crystal frequency on pin  
XTAL1  
with 56 pF serial capacitor  
VIL  
VIH  
tr(i)  
LOW-level input voltage  
HIGH-level input voltage  
input rise time  
-0.3  
-
-
-
+0.3 VDD(INTF)  
VDD(INTF)+ 0.3  
4
V
0.7 VDD(INTF)  
-
V
fCLK = fXTAL1 = 20 MHz on  
external clock  
ns  
fCLK = fXTAL1 = 10 MHz on  
external clock  
-
-
-
-
8
ns  
ns  
fCLK = fXTAL1 = 5 MHz on  
16  
external clock  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
20 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
Table 7.  
Characteristics of IC …continued  
VDDP = 3.3 V; VDD(INTF) = 3.3 V; fXTAL = 10 MHz; GND = 0 V; Tamb=25 C; unless otherwise specified  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tf(i)  
input fall time  
fCLK = fXTAL1 = 20 MHz on  
external clock  
-
-
4
ns  
fCLK = fXTAL1 = 10 MHz on  
external clock  
-
-
-
-
8
ns  
ns  
fCLK = fXTAL1 = 5 MHz on  
external clock  
16  
Data lines (pins I/O, I/OUC, AUX1, AUX2, AUXIUC, AUX2UC)  
td  
delay time  
falling edge on pins I/O and  
I/OUC or I/OUC and I/O  
-
-
200  
ns  
tw(pu)  
fmax  
Ci  
pull-up pulse width  
maximum frequency  
input capacitance  
200  
400  
1
ns  
on data lines  
on data lines  
-
-
-
-
MHz  
pF  
10  
Data lines to the card (pins I/O, AUX1, AUX2); (Integrated 10 kpull-up resistor connected to VCC  
)
Vo  
Io  
output voltage  
inactive mode; no load  
inactive mode; Io= 1 mA  
inactive mode  
0
0
-
-
-
-
0.1  
0.3  
1  
V
V
output current  
mA  
at grounded pin I/O  
VOL  
LOW-level output voltage IOL = 1 mA - C1 version  
IOL = 1 mA - C2 version  
IOL 15 mA  
0
-
-
-
-
-
0.3  
V
V
V
V
V
0
0.15 VCC  
VCC  
VCC - 0.4  
0.9 VCC  
0
VOH  
HIGH-level output voltage No DC load  
IOH -15 mA  
VCC + 0.1  
0.4  
C1 version  
IOH < -40 A 5 V or 3 V  
IOH < -20 A 1.8 V  
0.75 VCC  
0.75 VCC  
VCC + 0.1  
VCC + 0.1  
V
V
C2 version  
IOH < -40 A 5 V or 3 V  
IOH < -20 A 1.8 V  
0.8 VCC  
1.28  
VCC + 0.1  
VCC + 0.1  
+0.8  
V
V
V
VIL  
VIH  
LOW-level input voltage  
C1 version  
C2 version  
0.3  
-
-0.3  
0.2 VCC  
HIGH-level input voltage C1 Version  
VCC = +5 V  
0.6 VCC  
0.7 VCC  
-
-
VCC + 0.3  
VCC + 0.3  
V
V
VCC = +3 V or 1.8 V  
C2 Version  
VCC = +5 V or 3V  
VCC =1.8 V  
on I/O  
0.6 VCC  
-
VCC + 0.3  
VCC + 0.3  
120  
V
1.4  
30  
-
-
V
Vhys  
IIL  
hysteresis voltage  
75  
-
mV  
A  
A  
LOW-level input current  
on I/O; VIL = 0  
on I/O; VIH = VCC  
600  
ILH  
HIGH-level leakage  
current  
-
-
10  
tr(i)  
input rise time  
from VIL max to VIH min  
-
-
1.2  
s  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
21 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
Table 7.  
Characteristics of IC …continued  
VDDP = 3.3 V; VDD(INTF) = 3.3 V; fXTAL = 10 MHz; GND = 0 V; Tamb=25 C; unless otherwise specified  
Symbol  
tf(i)  
Parameter  
Conditions  
Min  
Typ  
Max  
1.2  
Unit  
s  
input fall time  
output rise time  
from VIL max to VIH min  
-
-
-
-
tr(o)  
CL < = 80 pF; 10 % to 90 %  
from 0 to VCC  
0.1  
s  
tf(o)  
output fall time  
CL < = 80 pF; 10 % to 90 %  
from 0 to VCC  
-
-
0.1  
s  
Rpu  
Ipu  
pull-up resistance  
pull-up current  
connected to VCC  
8
10  
-6  
12  
-4  
k  
VOH = 0.9 VCC, C = 80 pF  
-8  
mA  
Data lines to the system; pins I/OC, AUX1C, AUX2C (Integrated kpull-up resistor to VDD(INTF)  
)
VOL  
VOH  
LOW-level output voltage IOL = 1 mA  
HIGH-level output voltage No DC load  
0
-
-
-
-
-
0.3  
V
0.9 VDD(INTF)  
0.75 VDD(INTF)  
0.75 VDD(INTF)  
0.3  
VDD(INTF) + 0.1 V  
IOH 40 A; VDD(INTF) >2 V  
VDD(INTF)+ 0.1  
VDD(INTF)+ 0.1  
0.3 VDD(INTF)  
V
V
V
IOH 20 A; VDD(INTF) <2 V  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
hysteresis voltage  
VIH  
Vhys  
ILH  
0.7 VDD(INTF)  
0.05 VDD(INTF)  
VDD(INTF) + 0.3 V  
on I/Ouc  
-
0.25 VDD(INTF)  
10  
V
HIGH-level leakage  
current  
VIH = VDD(INTF)  
A  
IIL  
LOW-level input current  
pull-up resistance  
input rise time  
VIL = 0  
600  
12  
A  
k  
s  
s  
s  
Rpu  
tr(i)  
tf(i)  
tr(o)  
connected to VDD(INTF)  
from VIL max to VIH min  
from VIL max to VIH min  
8
-
10  
-
1.2  
1.2  
0.1  
input fall time  
-
-
output rise time  
CL 30 pF; 10 % to 90 %  
-
-
from 0 to VDD(INTF)  
tf(o)  
output fall time  
pull-up current  
CL 30 pF; 10 % to 90 %  
from 0 to VDD(INTF)  
-
-
-
0.1  
-
s  
Ipu  
Internal oscillator  
fosc(int) internal oscillator  
frequency  
Reset output to the card (RST)  
VOH = 0.9 VDD, C = 30 pF  
-1  
mA  
inactive state: osc(int)_Low  
active state: osc(int)_High  
230  
2.0  
315  
2.5  
430  
3.0  
kHz  
MHz  
Vo  
output voltage  
output current  
delay time  
inactive mode; no load  
inactive mode; Io= 1 mA  
inactive mode  
0
0
-
-
-
-
0.1  
0.3  
1  
V
V
Io  
mA  
at grounded pin RST  
between RSTIN and RST,  
RST enabled  
td  
-
-
200  
ns  
VOL  
LOW-level output voltage IOL= 200 A, VCC = +5 V  
0
0
-
-
0.3  
0.2  
V
V
IOL= 200 A, VCC = +3 V or  
1.8 V  
IOL = 20 mA (current limit)  
VCC - 0.4  
-
VCC  
V
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
22 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
Table 7.  
Characteristics of IC …continued  
VDDP = 3.3 V; VDD(INTF) = 3.3 V; fXTAL = 10 MHz; GND = 0 V; Tamb=25 C; unless otherwise specified  
Symbol  
Parameter  
HIGH-level output voltage IOH = -200 A  
IOH = -20 mA (current limit)  
CL = 100 pF  
Conditions  
Min  
Typ  
Max  
VCC  
0.4  
Unit  
V
VOH  
0.9 VCC  
-
-
-
0
-
V
tr  
rise time  
0.1  
s  
VCC = +5 V and +3 V  
CL = 100 pF  
-
-
-
-
-
-
0.2  
0.1  
0.2  
s  
s  
s  
VCC = +18 V  
tf  
fall time  
CL = 100 pF  
VCC = +5 V and +3 V  
CL = 100 pF  
VCC = +18 V  
Clock output to the card (CLK)  
Vo  
output voltage  
inactive mode; no load  
inactive mode; Io = 1 mA  
inactive mode  
0
0
-
-
-
-
0.1  
0.3  
1  
V
V
Io  
output current  
mA  
at grounded pin CLK  
VOL  
LOW-level output voltage IOL = 70 mA (current limit)  
VCC - 0.4  
-
-
VCC  
0.3  
V
V
C1 version  
IOL = 200 A  
C2 Version  
0
I
OL = 200 A  
HIGH-level output voltage IOH = -200 A  
IOH = -70 mA (current limit)  
CL = 30 pF [2]  
0
-
-
-
-
-
-
-
-
0.15 VCC  
V
VOH  
0.9 VCC  
VCC  
0.4  
16  
16  
20  
55  
-
V
0
V
tr  
rise time  
-
ns  
ns  
MHz  
%
tf  
fall time  
CL = 30 pF [2]  
-
fCLK  
frequency on pin CLK  
duty cycle  
operational  
CL = 30 pF [2]  
0
45  
0.2  
SR  
slew rate  
rise and fall; CL = 30 pF;  
VCC = +5 V  
V/ns  
rise and fall; CL = 30 pF;  
VCC = +3 V  
0.12  
-
-
-
-
V/ns  
V/ns  
rise and fall; CL = 30 pF;  
VCC = +1.8 V  
0.072  
Control inputs (pins CS, CMDVCCN, CLKDIV1, CLKDIV2, RSTIN, EN_5V/ 3VN, EN_1.8VN)[3]  
VIL  
VIH  
Vhys  
ILL  
LOW-level input voltage  
HIGH-level input voltage  
hysteresis voltage  
0.3  
-
-
-
-
+0.3 VDD(INTF)  
V
0.7 VDD(INTF)  
VDD(INTF) + 0.3 V  
on control input  
VIL = 0  
0.05 VDD(INTF)  
-
0.25 VDD(INTF)  
1
V
LOW-level leakage  
current  
A  
ILH  
HIGH-level leakage  
current  
VIH = VDD(INTF)  
-
-
1
A  
Card presence input (PRESN); PRESN has an integrated pull down resistor[3]  
VIL  
VIH  
LOW-level input voltage  
HIGH-level input voltage  
0.3  
-
-
+0.3 VDD(INTF)  
VDD(INTF)+ 0.3  
V
V
0.7 VDD(INTF)  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
23 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
Table 7.  
Characteristics of IC …continued  
VDDP = 3.3 V; VDD(INTF) = 3.3 V; fXTAL = 10 MHz; GND = 0 V; Tamb=25 C; unless otherwise specified  
Symbol  
Vhys  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
V
hysteresis voltage  
0.05 VDD(INTF)  
-
-
-
0.10 VDD(INTF)  
1
ILL  
LOW-level leakage  
current  
VIL = 0  
A  
ILH  
HIGH-level leakage  
current  
VIH = VDD(INTF)  
-
-
5
A  
OFFN output (pin OFFN is an NMOS drain with a kpull-up resistor to VDD(INTF)  
)
VOL  
VOH  
Rpu  
LOW-level output voltage IOL = 2 mA  
HIGH-level output voltage IOH = -15 A  
pull-up resistance  
0
-
0.3  
12  
V
0.75 VDD(INTF)  
8
-
V
10  
k  
Protections and limitations  
Tsd  
shutdown temperature  
at die  
-
150  
-
-
C  
IOlim  
output current limit  
on pin I/O  
-15  
-70  
-20  
90  
90  
80  
80  
+15  
+70  
+20  
160  
260  
150  
250  
mA  
mA  
mA  
mA  
mA  
mA  
mA  
on pin CLK  
-
on pin RST  
-
on pin VCC = 5 V or 1.8 V  
on pin VCC = 3 V  
on pin VCC = 5 V or 1.8 V  
on pin VCC = 3 V  
125  
160  
115  
150  
Isd  
shutdown current  
Timing  
tact  
activation time  
deactivation time  
activation time  
see Figure 8 on page 13  
see Figure 9 on page 14  
1847  
35  
-
3390  
250  
s  
s  
s  
tdeact  
tact  
90  
time of the window for sending 1992  
CLK to the card with XTAL1  
2690 3653  
tact(start) = t3; see Figure 8 on 2055  
page 13  
2766 3749  
s  
tact(end) = t5; see Figure 8 on  
page 13  
tdeb  
debounce time  
on pin PRESN  
2.96  
4.05  
5.55  
ms  
[1] To meet these specifications, VCC is decoupled to CGND using two ceramic multilayer capacitors of low ESR with both capacitors  
having a value of 220 nF.  
[2] The transition time and the duty factor definitions are shown in Figure 12 on page 25; d = t1/(t1+ t2)  
[3] PRESN and CMDVCCN are active LOW; RSTIN is active HIGH; for CLKDIV1 and CLKDIV2 see Table 4.  
[4] Capacitance should not vary more than +- 30% compared to nominal value, taking all parameters into account (temperature, process  
variation, biasing voltage, etc. Non exhaustive list)  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
24 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
t
f
t
r
V
OH  
90%  
90%  
(V  
+ V ) /2  
OL  
OH  
10%  
10%  
V
OL  
t
t
2
1
fce666  
Fig 12. Definition of output and input transition times  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
25 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
12. Application information  
(1) Place close to the protected pin with good (low resistive) and straight connection to the main ground  
(2) Place close to the supply pin with good (low resistive) and straight connection to GNDP  
(3) Place close to TDA8035´s VCC pin with good connection to GNDC  
(4) Place close to card connector´s C1 (VCC) pin with good connection to GNDC  
(5) Optional bridge. If not used, R1 must be O and R2 absent (direct connection to VDD(INTF)  
)
(6) GNDP and GNDC are connected to the main ground with a straight and low resistive connection  
(7) The card connector represented here has a normally closed presence switch  
(8) DC/DC converter capacitance value:  
If VDDP=3.3v, C3=C4= 330nF & C5=1uF  
If VDDP=5.0v, C3=C4= 100nF & C5=1uF  
Fig 13. Application diagram  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
26 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
13. Package outline  
HVQFN32: plastic thermal enhanced very thin quad flat package; no leads;  
32 terminals; body 5 x 5 x 0.85 mm  
SOT617-7  
D
B
A
terminal 1  
index area  
E
A
A
1
c
detail X  
e
1
1/2 e  
C
v
C A  
B
e
b
y
C
1
y
w
C
9
16  
L
8
17  
e
E
e
2
h
1/2 e  
1
24  
X
terminal 1  
index area  
32  
25  
D
h
0
2.5  
scale  
5 mm  
w
Dimensions  
Unit  
(1)  
(1)  
A
A
b
c
D
D
h
E
E
e
e
1
e
2
L
v
y
y
1
1
h
max 1.00 0.05 0.30  
5.1 2.2 5.1 2.2  
0.5  
mm nom 0.85 0.02 0.21 0.2 5.0 2.1 5.0 2.1 0.5 3.5 3.5 0.4 0.1 0.05 0.05 0.1  
min 0.80 0.00 0.18 4.9 2.0 4.9 2.0 0.3  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
sot617-7_po  
References  
Outline  
version  
European  
projection  
Issue date  
IEC  
JEDEC  
- - -  
JEITA  
- - -  
10-02-08  
10-02-09  
SOT617-7  
Fig 14. Package outline SOT617-7  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
27 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
14. Soldering  
For all "Surface mount reflow soldering" information for the SOT617 packaging, utilize the  
following NXP Semiconductors documentation link:  
http://www.nxp.com/documents/application_note/AN10365.pdf  
15. Abbreviations  
Table 8.  
Abbreviations  
Description  
Acronym  
ESD  
ElectroStatic Discharge  
16. Revision history  
Table 9.  
Revision history  
Document ID  
TDA8035HN v. 3.1  
Modifications  
Release date Data sheet status  
Change notice  
Supersedes  
20160630  
Product data sheet  
-
TDA8035HN v. 3.0  
Addition of C2 Version - EMVCo 4.3 compliant  
Table 7 “Characteristics of IC”; updated  
TDA8035HN v. 3.0  
Modifications:  
20140625  
Product data sheet  
-
TDA8035HN v. 2.1  
TDA8035HN v. 2.0  
Section 5 “Ordering information”: type TDA8035HN/C1/S1 added  
Descriptive title changed  
TDA8035HN v. 2.1  
Modifications:  
20121203  
Product data sheet  
-
Table 3 “Pin description”: updated  
Section 8.1 “Power supply”: updated  
Table 7 “Characteristics of IC”: updated  
Figure 13 “Application diagram”: Table note (7) added  
TDA8035HN v. 2.0  
Modifications:  
20111220  
All text updated to NXP standards  
20110706 Product data sheet  
Product data sheet  
-
TDA8035HN v. 1.1  
TDA8035HN v. 1.1  
Modifications:  
-
TDA8035HN v. 1.0  
-
Table 7 “Characteristics of IC”: Vth(L)(PORADJ) values updated  
20110419 Product data sheet  
TDA8035HN v. 1.0  
-
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — June 30, 2016  
28 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
17.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
17.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — 30 June 2016  
29 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
non-automotive qualified products in automotive equipment or applications.  
17.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
18. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — 30 June 2016  
30 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
19. Tables  
Table 1. Quick reference data . . . . . . . . . . . . . . . . . . . . .2  
Table 2. Ordering information . . . . . . . . . . . . . . . . . . . . .3  
Table 3. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Table 4. Clock configuration. . . . . . . . . . . . . . . . . . . . . .10  
Table 5. Limiting values . . . . . . . . . . . . . . . . . . . . . . . . .17  
Table 6. Thermal characteristics . . . . . . . . . . . . . . . . . . 17  
Table 7. Characteristics of IC . . . . . . . . . . . . . . . . . . . . 18  
Table 8. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 9. Revision history . . . . . . . . . . . . . . . . . . . . . . . . 28  
20. Figures  
Fig 1. Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . .4  
Fig 2. Pin configuration HVQFN32 . . . . . . . . . . . . . . . . .5  
Fig 3. Block voltage supervisor . . . . . . . . . . . . . . . . . . . .8  
Fig 4. Voltage supervisor . . . . . . . . . . . . . . . . . . . . . . . . .9  
Fig 5. Voltage supervisor . . . . . . . . . . . . . . . . . . . . . . . . .9  
Fig 6. Switch external clock . . . . . . . . . . . . . . . . . . . . . .10  
Fig 7. Shutdown mode and Deep Shutdown mode . . . .12  
Fig 8. Activation sequence at t3 . . . . . . . . . . . . . . . . . .13  
Fig 9. Deactivation sequence . . . . . . . . . . . . . . . . . . . .14  
Fig 10. Emergency deactivation sequence  
(card extraction). . . . . . . . . . . . . . . . . . . . . . . . . .16  
Fig 11. Behavior of OFFN, CMDVCCN, PRESN  
and VCC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Fig 12. Definition of output and input transition times . . .25  
Fig 13. Application diagram . . . . . . . . . . . . . . . . . . . . . . .26  
Fig 14. Package outline SOT617-7 . . . . . . . . . . . . . . . . .27  
TDA8035  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 3 — 30 June 2016  
31 of 32  
TDA8035  
NXP Semiconductors  
High integrated and low power smart card interface  
21. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Protection of the contact smart card. . . . . . . . . 1  
Easy integration into your contact reader . . . . . 1  
Other. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.1  
2.2  
2.2.1  
3
4
5
6
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
8
Functional description . . . . . . . . . . . . . . . . . . . 7  
Power supply . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Voltage supervisor . . . . . . . . . . . . . . . . . . . . . . 8  
Clock circuitry . . . . . . . . . . . . . . . . . . . . . . . . . 10  
I/O circuitry . . . . . . . . . . . . . . . . . . . . . . . . . . . 11  
CS control. . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Shutdown mode and Deep Shutdown mode . 12  
Activation sequence . . . . . . . . . . . . . . . . . . . . 13  
Deactivation sequence . . . . . . . . . . . . . . . . . . 14  
VCC regulator . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Fault detection . . . . . . . . . . . . . . . . . . . . . . . . 15  
8.1  
8.2  
8.3  
8.4  
8.5  
8.6  
8.7  
8.8  
8.9  
8.10  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 17  
Thermal characteristics . . . . . . . . . . . . . . . . . 17  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 18  
Application information. . . . . . . . . . . . . . . . . . 26  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 27  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 28  
10  
11  
12  
13  
14  
15  
16  
17  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 29  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 29  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 29  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 30  
17.1  
17.2  
17.3  
17.4  
18  
19  
20  
21  
Contact information. . . . . . . . . . . . . . . . . . . . . 30  
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP Semiconductors N.V. 2016.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 30 June 2016  
Document identifier: TDA8035  

相关型号:

TDA8035HN/C1,151

TDA8035HN - High integrated and low power smart card interface QFN 32-Pin
NXP

TDA8035HN/C1/S1

SPECIALTY ANALOG CIRCUIT
NXP

TDA8035HN/C2/S1

SPECIALTY ANALOG CIRCUIT
NXP

TDA8035HN/C2/S1J

TDA8035HN - High integrated and low power smart card interface QFN 32-Pin
NXP

TDA8035HN/C2/S1QL

TDA8035HN - High integrated and low power smart card interface QFN 32-Pin
NXP

TDA8037T/C1Y

TDA8037 - Low power 3V smart card interface SOP 28-Pin
NXP

TDA8040T

Quadrature demodulator
NXP

TDA8040T-T

RF/Microwave Modulator/Demodulator, 21.4 MHz - 300 MHz RF/MICROWAVE I/Q DEMODULATOR
NXP

TDA8040TD

IC SPECIALTY TELECOM CIRCUIT, PDSO16, Telecom IC:Other
NXP

TDA8040TD-T

IC SPECIALTY TELECOM CIRCUIT, PDSO16, Telecom IC:Other
NXP

TDA8041H

Quadrature demodulator controller
NXP

TDA8041HB-S

ASK/FSK Demodulator
ETC