TDA8559T [NXP]

Low-voltage stereo headphone amplifier; 低电压立体声耳机放大器器
TDA8559T
型号: TDA8559T
厂家: NXP    NXP
描述:

Low-voltage stereo headphone amplifier
低电压立体声耳机放大器器

放大器
文件: 总32页 (文件大小:268K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA8559  
Low-voltage stereo headphone  
amplifier  
1997 Jun 27  
Product specification  
Supersedes data of 1996 Jan 02  
File under Integrated Circuits, IC01  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
FEATURES  
APPLICATIONS  
Operating voltage from 1.9 to 30 V  
Very low quiescent current  
Low distortion  
Portable telephones  
Walk-mans  
Portable audio  
Few external components  
Differential inputs  
Mains fed equipment.  
GENERAL DESCRIPTION  
Usable as a mono amplifier in Bridge-Tied Load (BTL) or  
stereo Single-Ended (SE)  
The TDA8559 is a stereo amplifier that operates over a  
wide supply voltage range from 1.9 to 30 V and consumes  
a very low quiescent current. This makes it suitable for  
battery fed applications (2 × 1.5 V cells). Because of an  
internal voltage buffer, this device can be used with or  
without a capacitor connected in series with the load. It can  
be applied as a headphone amplifier, but also as a mono  
amplifier with a small speaker (25 ), or as a line driver in  
mains applications.  
Single-ended mode without loudspeaker capacitor  
Mute and standby mode  
Short-circuit proof to ground, to supply voltage (<10 V)  
and across load  
No switch on or switch off clicks  
ESD protected on all pins.  
QUICK REFERENCE DATA  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supplies  
VP  
operating supply voltage  
total quiescent current  
standby supply current  
1.9  
3
30  
V
Iq(tot)  
Istb  
2.75  
4
mA  
10  
µA  
Stereo application  
Po  
output power  
THD = 10%  
30  
35  
mW  
%
THD  
total harmonic distortion  
Po = 20 mW; fi = 1 kHz  
Po = 20 mW; fi = 10 kHz  
0.075  
0.1  
0.15  
%
Gv  
fss  
voltage gain  
25  
26  
27  
dB  
kHz  
small signal roll-off frequency  
1 dB  
750  
BTL application  
Po  
output power  
THD = 10%  
125  
140  
0.05  
0.2  
mW  
%
THD  
total harmonic distortion  
Po = 70 mW; fi = 1 kHz  
Po = 70 mW; fi = 10 kHz  
0.1  
%
Gv  
voltage gain  
31  
32  
33  
dB  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
SOT38-1  
SOT109-1  
TDA8559  
DIP16  
SO16  
plastic dual in-line package; 16 leads (300 mil); long body  
plastic small outline package; 16 leads; body width 3.9 mm  
TDA8559T  
1997 Jun 27  
2
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
BLOCK DIAGRAM  
V
V
P1  
P2  
15  
16  
1
REFERENCE  
STANDBY  
V
P
2
3
50 k  
+
+IN1  
IN1  
V/I  
14  
OA  
OUT1  
+
50 kΩ  
50 kΩ  
7
8
DQC  
MUTE  
MODE  
INPUT  
LOGIC  
+
5
6
11  
+
+IN2  
IN2  
OUT2  
OA  
V/I  
50 kΩ  
50  
kΩ  
50  
kΩ  
V
P
100 kΩ  
12  
4
BUFFER  
BUFFER  
SVRR  
100  
kΩ  
TDA8559  
9,10  
13  
MGD115  
n.c.  
GND  
Fig.1 Block diagram.  
3
1997 Jun 27  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
standby select  
STANDBY  
+IN1  
1
2
non-inverting input 1  
inverting input 1  
supply voltage ripple rejection  
non-inverting input 2  
inverting input 2  
mute select  
handbook, halfpage  
STANDBY  
1
2
3
4
5
6
7
8
16  
15  
V
IN1  
3
P1  
SVRR  
+IN2  
4
+IN1  
IN1  
V
P2  
5
14 OUT1  
13 GND  
IN2  
6
SVRR  
+IN2  
TDA8559  
MUTE  
MODE  
n.c.  
7
12 BUFFER  
11 OUT2  
10 n.c.  
8
input mode select  
not connected  
IN2  
9
MUTE  
MODE  
n.c.  
10  
11  
12  
13  
14  
15  
16  
not connected  
9
n.c.  
OUT2  
BUFFER  
GND  
output 2  
MGD114  
buffer output (0.5VP)  
ground  
OUT1  
VP2  
output 1  
high supply voltage  
low supply voltage  
Fig.2 Pin configuration.  
VP1  
FUNCTIONAL DESCRIPTION  
V/I converters  
The TDA8559 contains two amplifiers with differential  
inputs, a 0.5VP output buffer and a high supply voltage  
stabilizer. Each amplifier consists of a voltage-to-current  
converter (V/I), an output amplifier and a common dynamic  
quiescent current controller. The gain of each amplifier is  
internally fixed at 26 dB (= 20 ×). The 0.5VP output can be  
used as a replacement for the single-ended capacitors.  
The two amplifiers can also be used as a mono amplifier in  
a BTL configuration thereby resulting in more output  
power.  
The V/I converters have a transconductance of 400 µS.  
The inputs are completely symmetrical and the two  
amplifiers can be used in opposite phase. The mute mode  
causes the V/I converters to block the input signal.  
The input mode pin selects two applications in which the  
V/I converters can be used.  
The first application (input mode pin floating) is used with  
a supply voltage below 6 V. The input DC level is at ground  
level (the unused input pin connected to ground) and no  
input coupling capacitors are necessary. The maximum  
converter output current is sufficient to obtain an output  
swing of 3 V (peak).  
With three mode select pins, the device can be switched  
into the following modes:  
1. Standby mode (IP < 10 µA)  
In the second application with a supply voltage greater  
than 6 V (input mode pin HIGH), the input mode pin is  
connected to VP. In this configuration (input DC  
level = 0.5VP + 0.6 V) the input source must be coupled  
with a capacitor and the two unused input pins must be  
connected via a capacitor to ground, to improve noise  
performance. This application has a higher quiescent  
current, because the maximum output current of the V/I  
converter is higher to obtain an output voltage swing of  
9 V (peak).  
2. Mute mode  
3. Operation mode, with two input selections (the input  
source is directly connected or connected via coupling  
capacitors at the input).  
The ripple rejection in the stereo application with a  
single-ended capacitor can be improved by connecting a  
capacitor between the 0.5VP capacitor pin and ground.  
The device is fully protected against short-circuiting of the  
output pins to ground, to the low supply voltage pin and  
across the load.  
1997 Jun 27  
4
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
Output amplifiers  
Stabilizer  
The TDA8559 has a voltage supply range from  
The output amplifiers have a transresistance of 50 k, a  
bandwidth of approximately 750 kHz and a maximum  
output current of 100 mA. The mid-tap output voltage  
equals the voltage applied at the non-inverting pin of the  
output amplifier. This pin is connected to the output of the  
0.5VP buffer. This reduces the distortion when the load is  
connected between an output amplifier and the buffer  
(because feedback is applied over the load).  
1.9 to 30 V. This range is divided over two supply voltage  
pins. Pin 16 is 1.9 to 18 V (breakdown voltage of the  
process); this pin is preferred for supply voltages less than  
18 V. Pin 15 is used for applications where VP is  
approximately 6 to 30 V. The stabilizer output is internally  
connected to the supply voltage pin 16. In the range from  
6 to 18 V, the voltage drop to pin 16 is 1 V. In the range  
from 18 to 30 V the stabilizer output voltage (to pin 16) is  
approximately 17 V.  
Buffer  
The buffer delivers 0.5VP to the output with a maximum  
output (sink and source) current of 200 mA (peak).  
Input logic  
The MUTE pin (pin 7) selects the mute mode of the V/I  
converters. LOW (TTL/CMOS) level is mute. A voltage  
between 0.5 V (low level) and 1.5 V (high level) causes a  
soft mute to operate (no plops). When pin 7 is floating or  
greater than 1.5 V it is in the operating condition.  
Dynamic quiescent controller  
The Dynamic Quiescent Current controller (DQC) gives  
the advantage of low quiescent current and low distortion.  
When there are high frequencies in the output signal, the  
DQC will increase the quiescent current of the two output  
amplifiers and the buffer. This will reduce the cross-over  
distortion that normally occurs at high frequencies and low  
quiescent current. The DQC gives output currents that are  
linear with the amplitude and the frequency of the output  
signals. These currents control the quiescent current.  
The input mode pin must be connected to VP when the  
supply voltage is greater than 6 V. The input mode logic  
raises the tail current of the V/I converters and enables the  
two buffers to bias the inputs of the V/I converters.  
Reference  
This circuit supplies all currents needed in this device. With  
the standby mode pin 1 (TTL/CMOS), it is possible to  
switch to the standby mode and reduce the total quiescent  
current to below 10 µA.  
1997 Jun 27  
5
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
PARAMETER  
maximum supply voltage (pin 15)  
maximum supply voltage (pin 16)  
maximum input voltage  
CONDITIONS  
MIN.  
MAX.  
UNIT  
VP2(max)  
VP1(max)  
Vi(max)  
IORM  
30  
18  
18  
V
V
V
peak output current  
repetitive  
150  
1.19  
2.4  
mA  
W
Ptot  
total power dissipation  
SO16  
DIP16  
W
Tamb  
Tstg  
Tvj  
operating ambient temperature  
storage temperature  
40  
55  
+85  
+150  
150  
1
°C  
°C  
virtual junction temperature  
short-circuiting time  
°C  
tsc  
VP < 10 V  
hour  
QUALITY SPECIFICATION  
Quality in accordance with “SNW-FQ-611E”, if this type is used as an audio amplifier. The number of the quality  
specification can be found in the “Quality Reference handbook”. The handbook can be ordered using the code  
9397 750 00192.  
THERMAL CHARACTERISTICS  
SYMBOL  
DESCRIPTION  
VALUE  
UNIT  
Rth j-a  
thermal resistance from junction to ambient in free air  
DIP16  
SO16  
52  
K/W  
K/W  
105  
CHARACTERISTICS  
VP = 3 V; Tamb = 25 °C; fi = 1 kHz; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
DC characteristics  
VP  
operating supply voltage  
total quiescent current  
standby supply current  
standby mode voltage  
note 1  
1.9  
3
30  
4
V
Iq(tot)  
Istb  
V1  
open load  
open load  
standby  
operating  
mute  
2.75  
mA  
µA  
V
10  
0.5  
18  
0.5  
18  
300  
0
1.5  
0
V
V7  
mute mode voltage  
input bias current  
V
operating  
1.5  
V
Ibias  
100  
nA  
1997 Jun 27  
6
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Single-ended stereo application (RL = 32 )  
Po  
output power  
THD = 10%  
30  
35  
mW  
THD  
total harmonic distortion  
Po = 20 mW; fi = 1 kHz; note 2  
Po = 20 mW; fi = 10 kHz; note 2  
0.075  
0.1  
26  
750  
0.15  
%
%
Gv  
voltage gain  
25  
27  
dB  
kHz  
dB  
dB  
µV  
µV  
µV  
V
fss  
small signal roll-off frequency  
channel separation  
1 dB  
αcs  
Rs = 5 kΩ  
40  
Gv  
Vno  
channel unbalance  
1
noise output voltage  
noise output voltage in mute  
output voltage in mute  
mid-tap voltage  
note 3  
note 3  
note 4  
70  
20  
85  
30  
30  
1.6  
125  
100  
Vno(mute)  
Vo(mute)  
Vmt  
1.4  
75  
1.5  
100  
Zi  
input impedance  
kΩ  
mV  
dB  
Vos  
DC output offset voltage  
supply voltage ripple rejection  
note 5  
note 6  
SVRR  
45  
55  
BTL application (RL = 25 )  
Po  
output power  
THD = 10%  
125  
140  
0.05  
0.1  
32  
mW  
%
THD  
total harmonic distortion  
Po = 70 mW; fi = 1 kHz; note  
Po = 70 mW; fi = 10 kHz; note 2  
0.1  
%
Gv  
voltage gain  
31  
33  
dB  
kHz  
µV  
µV  
µV  
mv  
dB  
kΩ  
fss  
small signal roll-off frequency  
noise output voltage  
1 dB  
note 3  
note 3  
note 4  
note 7  
note 6  
750  
100  
25  
Vno  
120  
40  
40  
150  
Vno(mute)  
Vo(mute)  
Vos  
noise output voltage in mute  
output voltage in mute  
DC output offset voltage  
supply voltage ripple rejection  
input impedance  
SVRR  
Zi  
39  
39  
49  
50  
61  
Line driver application (RL 1 k)  
Vo  
line output voltage  
0.1  
2.9  
V
Notes  
1. The supply voltage range at pin VP1 is from 1.9 to 18 V. Pin VP2 is used for the voltage range from 6 to 30 V.  
2. Measured with low-pass filter 30 kHz.  
3. Noise output voltage measured with a bandwidth of 20 Hz to 20 kHz, unweighted. Rs = 5 k.  
4. RMS output voltage in mute is measured with Vi = 200 mV (RMS); f = 1 kHz.  
5. DC output offset voltage is measured between the signal output and the 0.5VP output.  
6. The ripple rejection is measured with a ripple voltage of 200 mV (RMS) applied to the positive supply rail (Rs = 0 k).  
7. DC output offset voltage is measured between the two signal outputs.  
1997 Jun 27  
7
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
APPLICATION INFORMATION  
General  
Test conditions  
Tamb = 25 °C; unless otherwise specified: VP = 3 V,  
f = 1 kHz, RL = 32 , Gain = 26 dB, low input mode,  
band-pass filter: 22 Hz to 30 kHz. The total harmonic  
distortion as a function of frequency was measured with  
low-pass filter of 80 kHz. The quiescent current has been  
measured without any load impedance.  
For applications with a maximum supply voltage of 6 V  
(input mode LOW) the input pins need a DC path to ground  
(see Figs 3 and 4). For applications with supply voltages in  
the range from 6 to 18 V (input mode HIGH) the input DC  
level is 0.5VP + 0.6 V. In this situation the input  
In applications with coupling capacitors towards the load,  
an electrolytic capacitor has to be connected to pin 4  
(SVRR).  
configurations illustrated in Figs 5 and 6 have to be used.  
The capacitor Cb is recommended for stability  
improvement. The value may vary between  
10 and 100 nF. This capacitor should be placed close to  
the IC between pin 12 and pin 13.  
The graphs for the single-ended application have been  
measured with the application illustrated in Fig.9; input  
configuration for input mode low (Fig.4) and input  
configuration for input mode high (Fig.6).  
Heatsink design  
The graphs for the BTL application ‘input mode low’  
have been measured with the application circuit  
illustrated in Fig.11 and the input configuration  
illustrated in Fig.4.  
The standard application is stereo headphone  
single-ended with a 32 load impedance to buffer  
(see Fig.9). The headphone amplifier can deliver a peak  
output current of 150 mA into the load.  
The graphs for the line-driver application have been  
measured with the application circuit illustrated in Fig.13  
and the input configuration illustrated in Fig.6; input  
mode high.  
For the DIP16 envelope Rth j-amb = 52 K/W; the maximum  
sine wave power dissipation for Tamb = 25 °C is:  
150 25  
2.4 W =  
----------------------  
52  
Input configurations  
For Tamb = 60 °C the maximum total power dissipation is:  
150 60  
The IC can be applied in two ways, ‘input mode low’ and  
‘input mode high’. This can be selected by the input mode  
at pin 8:  
1.7 W =  
----------------------  
52  
For the SO16 envelope Rth j-amb = 105 K/W; the maximum  
sinewave power dissipation for Tamb = 25 °C is:  
1. Input mode low: pin 8 floating:  
The DC level of the input pins has to be between 0 V  
and (VP 1.8 V). A DC path to ground is needed.  
The maximum output voltage is approximately  
2.1 V (RMS). Input configurations illustrated in  
Figs 3 and 4 should be used.  
150 25  
105  
1.2 W =  
----------------------  
For Tamb = 60 °C the maximum total power dissipation is:  
150 60  
0.85 W =  
----------------------  
105  
2. Input mode high: pin 8 is connected to VP:  
This mode is intended for supply voltages >6 V. It can  
deliver a maximum output voltage of approximately  
6 V (RMS) at THD = 0.5%. The DC voltage level of the  
input pins is (0.5VP + 0.6 V). Coupling capacitors are  
necessary. Input configurations illustrated in  
Figs 5 and 6 should be used.  
1997 Jun 27  
8
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
2.2 µF  
pins 2 and 5  
INPUT  
pins 2 and 5  
INPUT  
handbook, halfpage  
V
IN  
5 kΩ  
V
IN  
pins 3 and 6  
pins 3 and 6  
MGD124  
MGD123  
Fig.3 Input configuration; with input capacitor  
Fig.4 Input configuration; without input capacitor  
(VP < 6 V).  
(VP < 6 V).  
pin 2  
100 nF  
V
IN  
220 nF  
pin 3  
pins 2 and 5  
INPUT  
V
IN  
220 nF  
220  
pins 3 and 6  
nF  
pin 6  
MGD125  
V
IN  
100 nF  
pin 5  
MGD126  
Fig.6 Input configuration (at VP > 6 V, combined  
Fig.5 Input configuration (VP > 6 V).  
negative inputs).  
Standby/mute  
The standby mode (V1 < 0.5 V) is intended for power  
saving purpose. Then the total quiescent current is  
<10 µA.  
V
P
To avoid ‘pop-noise’ during switch-on or switch-off the  
IC can be muted (V7 < 0.5 V). This can be achieved by  
a ‘soft-mute’ circuit or by direct control from a  
microcontroller.  
620 kΩ  
7
47 kΩ  
220 nF  
mute  
MGL135  
Fig.7 Soft mute.  
1997 Jun 27  
9
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
Application 1: SE with loudspeaker capacitor  
Application 6: Line driver application 6 V < VP < 18 V  
(see Fig.8)  
(see Fig.13)  
The value of capacitor Cr influences the behaviour of the  
Supply Voltage Ripple Rejection (SVRR) at low  
frequencies; increasing the value of Cr increases the  
performance of the SVRR.  
The TDA8559T delivers a virtual rail-to-rail output voltage.  
Because the input mode has to be high, the input  
configurations illustrated in Figs 5 and 6 should be used.  
This application can also be used for headphone  
application, however, due to the limited output current and  
the limited output power at the headphone, series resistors  
have to be used between the output pins and the load.  
Application 2: SE to buffer (without loudspeaker  
capacitor) (see Fig.9)  
The value of capacitor Cr influences the behaviour of the  
SVRR at low frequencies; increasing the value of Cr  
increases the performance of the SVRR.  
This is the basic headphone application. The advantage of  
this application with respect to application 1, is that it  
needs only one external component (Cb) in the event of  
stability problems.  
Application 7: Line driver application 6V < VP < 30 V  
Application 3: Improved SE to buffer (without  
(see Fig.14)  
loudspeaker capacitor) (see Fig.10)  
With the supply voltage connected to pin 15 it is possible  
to use the head amplifier above the maximum of 18 V to  
pin 16. The internal supply voltage will be reduced to a  
maximum of approximately 17 V.  
This application is an improved configuration of  
application 2. The distinction between the two is  
connecting the loads in opposite phase. This lowers the  
average current through the SE buffer.  
It should be noted that a headphone cannot be used  
because the load requires floating terminals.  
This will be convenient in applications where the supply  
voltage is higher than 18 V, however an output voltage  
swing that reaches the higher supply voltage is not  
required. the input configurations illustrated in  
Figs 5 and 6 should be used. This application can also be  
used for headphone applications. However, due to the  
limited output current, series resistors have to be used  
between the output pins and the load.  
Application 4: Bridge tied load mono amplifier  
(see Fig.11)  
This configuration delivers four times the output power of  
the SE application with the same supply and load  
conditions. The capacitor Cr is not required.  
Application 5: Line driver application 1.9 V < VP < 6 V  
(see Fig.12)  
The TDA8559 delivers a virtual rail-to-rail output voltage  
and is also usable in a low voltage environment, as a line  
driver. In this application the input needs a DC path to  
ground, input configurations illustrated in Figs 3 and 4  
should be used. The value of capacitor Cr influences the  
behaviour of the SVRR at low frequencies; increasing the  
value of Cr increases the performance of the SVRR.  
1997 Jun 27  
10  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
+V  
P
V
V
P2  
15  
P1  
100  
nF  
100 µF  
16  
STANDBY  
1
REFERENCE  
V
P
2
50 kΩ  
+
+
IN1  
V/I  
+
OUT1  
3
14  
OA  
220 µF  
32 Ω  
50 kΩ  
50 kΩ  
MUTE  
7
8
DQC  
INPUT  
LOGIC  
MODE  
32 Ω  
+
OUT2  
11  
5
6
+
OA  
+
IN2  
V/I  
220 µF  
50 kΩ  
50  
kΩ  
50  
kΩ  
V
P
100 kΩ  
BUFFER  
12  
SVRR  
4
BUFFER  
100  
kΩ  
22 µF  
Cr  
TDA8559  
Cb  
13  
MGD116  
GND  
Fig.8 Application 1: single-ended with loudspeaker capacitor.  
1997 Jun 27  
11  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
+V  
P
V
V
P2  
15  
P1  
100  
nF  
100 µF  
16  
STANDBY  
1
REFERENCE  
V
P
2
50 kΩ  
+
+
IN1  
V/I  
+
OUT1  
3
14  
OA  
32 Ω  
50 kΩ  
50 kΩ  
MUTE  
7
8
DQC  
INPUT  
LOGIC  
MODE  
32 Ω  
+
OUT2  
11  
5
6
+
OA  
+
IN2  
V/I  
50 kΩ  
50  
kΩ  
50  
kΩ  
V
P
100 kΩ  
BUFFER  
12  
4
BUFFER  
SVRR  
100  
kΩ  
TDA8559  
Cb  
13  
MGD117  
GND  
Fig.9 Application 2: single-ended to buffer (without loudspeaker capacitor).  
1997 Jun 27  
12  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
+V  
P
V
V
P2  
15  
P1  
100  
nF  
100 µF  
16  
STANDBY  
1
REFERENCE  
V
P
2
50 kΩ  
+
+
IN1  
V/I  
OUT1  
3
14  
OA  
+
32 Ω  
50 kΩ  
50 kΩ  
MUTE  
7
8
DQC  
INPUT  
LOGIC  
MODE  
32 Ω  
+
OUT2  
11  
5
6
+
OA  
+
IN2  
V/I  
50 kΩ  
50  
kΩ  
50  
kΩ  
V
P
100 kΩ  
BUFFER  
12  
4
BUFFER  
SVRR  
100  
kΩ  
TDA8559  
Cb  
13  
MGD118  
GND  
Fig.10 Application 3: Improved single-ended to buffer (without loudspeaker capacitor).  
1997 Jun 27  
13  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
+V  
P
V
V
P2  
P1  
100  
nF  
100 µF  
15  
16  
STANDBY  
1
REFERENCE  
V
P
2
50 kΩ  
+
+
IN1  
V/I  
OUT1  
3
14  
OA  
50 kΩ  
50 kΩ  
MUTE  
7
8
25 Ω  
DQC  
INPUT  
LOGIC  
MODE  
+
OUT2  
11  
5
6
+
OA  
IN2  
V/I  
50 kΩ  
50  
kΩ  
50  
kΩ  
V
P
100 kΩ  
BUFFER  
12  
4
BUFFER  
SVRR  
100  
kΩ  
TDA8559  
Cb  
13  
MGD119  
GND  
Fig.11 Application 4: BTL mono amplifier.  
1997 Jun 27  
14  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
+V  
P
V
V
P2  
15  
P1  
100  
nF  
100 µF  
16  
STANDBY  
1
REFERENCE  
V
P
2
50 kΩ  
+
1 kΩ  
+
IN1  
V/I  
OUT1  
3
14  
OA  
10 µF  
50 kΩ  
50 kΩ  
MUTE  
7
8
DQC  
INPUT  
LOGIC  
MODE  
+
OUT2  
11  
5
6
+
OA  
IN2  
V/I  
10 µF  
1 kΩ  
50 kΩ  
50  
kΩ  
50  
kΩ  
V
P
100 kΩ  
BUFFER  
12  
SVRR  
4
BUFFER  
100  
kΩ  
22 µF  
Cr  
TDA8559  
Cb  
13  
MGD120  
GND  
Fig.12 Application 5: Line driver application (VP = 1.9 to 6 V).  
1997 Jun 27  
15  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
+V  
P
V
V
P2  
15  
P1  
100  
nF  
100 µF  
16  
STANDBY  
1
REFERENCE  
V
P
100 nF  
2
50 kΩ  
+
1 kΩ  
IN1  
V/I  
3
+
OUT1  
14  
OA  
10 µF  
50 kΩ  
50 kΩ  
7
8
DQC  
220  
nF  
INPUT  
LOGIC  
MUTE  
MODE  
+
OUT2  
11  
5
6
+
OA  
IN2  
100 nF  
V/I  
10 µF  
1 kΩ  
50 kΩ  
50  
kΩ  
50  
kΩ  
V
P
100 kΩ  
BUFFER  
12  
SVRR  
4
BUFFER  
100  
kΩ  
22 µF  
Cr  
TDA8559  
Cb  
13  
MGD121  
GND  
Fig.13 Application 6: Line driver application (VP = 6 to 18 V).  
1997 Jun 27  
16  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
+V  
P
V
V
P2  
P1  
100  
nF  
100 µF  
15  
16  
STANDBY  
1
REFERENCE  
V
P
100 nF  
2
50 kΩ  
+
IN1  
V/I  
3
+
OUT1  
14  
+
OA  
10 µF  
50 kΩ  
50 kΩ  
7
8
DQC  
220  
nF  
POWER  
AMPLIFIER  
INPUT  
LOGIC  
MUTE  
MODE  
+
OUT2  
11  
5
6
+
+
OA  
IN2  
100 nF  
V/I  
10 µF  
50 kΩ  
50  
kΩ  
50  
kΩ  
V
P
100 kΩ  
BUFFER  
12  
4
SVRR  
BUFFER  
100  
kΩ  
TDA8559  
Cb  
13  
MGD122  
GND  
Fig.14 Application 7: Line driver application (VP = 6 to 30 V).  
1997 Jun 27  
17  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
Response curves for low input mode  
MDA089  
MDA090  
10  
20  
handbook, halfpage  
handbook, halfpage  
I
V
q
(mA)  
P1  
(V)  
16  
8
6
4
12  
(1)  
(2)  
8
4
2
0
0
0
0
4
8
12  
16  
20  
10  
20  
30  
V
(V)  
V
(V)  
P2  
P
(1) High mode.  
(2) Low mode.  
Fig.15 Iq as a function of VP (stereo headphone).  
Fig.16 VP1 as a function of VP2 (stereo headphone).  
MDA091  
MDA092  
2
10  
1
handbook, halfpage  
handbook, halfpage  
THD  
(%)  
THD  
(%)  
10  
1
(1)  
(2)  
(1)  
1  
10  
(2)  
1  
10  
2  
10  
2  
10  
3  
2  
1  
2
3
4
5
10  
10  
10  
1
10  
10  
10  
10  
10  
P
(W)  
f (Hz)  
o
RL = 32 .  
(1) VP = 5 V, THD = 50 mW.  
(2) VP = 3 V, THD = 20 mW.  
f = 1 kHz.  
(1) P = 3 V, RL = 32 .  
(2) VP = 5 V, RL = 32 .  
V
Fig.18 THD as a function of frequency (stereo  
headphone).  
Fig.17 THD as a function of Po (stereo headphone).  
1997 Jun 27  
18  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
MDA093  
2  
MDA094  
10  
1
handbook, halfpage  
handbook, halfpage  
I
V
q
(A)  
o
(V)  
3  
10  
1  
10  
(1)  
(2) (3)  
(1) (2)  
4  
5  
6  
7  
10  
10  
10  
10  
2  
10  
3  
10  
4  
10  
5  
10  
0
1
2
3
0
0.5  
1
1.5  
2
V
2.5  
(V)  
V
(V)  
stb  
mute  
(1) VP = 3 V.  
(2) VP = 12 V.  
(1) VP = 12 V.  
(2) P = 3 and 6 V.  
(3) VP = 3, 6 and 12 V.  
V
Fig.20 Vo as a function of Vmute (stereo  
headphone).  
Fig.19 Iq as a function of Vstb (stereo headphone).  
MDA095  
MDA096  
0
1
handbook, halfpage  
handbook, halfpage  
α
cs  
Gr  
(dB)  
(dB)  
20  
0.5  
40  
0
60  
80  
0.5  
1  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
VP = 3 V, Vi = 20 mV.  
VP = 3 V, Vi = 20 mV.  
Fig.21 Channel separation as a function of  
frequency (stereo headphone).  
Fig.22 Channel unbalance as a function of  
frequency (stereo headphone).  
1997 Jun 27  
19  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
MDA097  
MDA098  
0
0.4  
handbook, halfpage  
handbook, halfpage  
P
SVRR  
(dB)  
o
(W)  
0.3  
20  
40  
0.2  
0.1  
(1)  
(2)  
60  
80  
0
0
2
3
4
5
10  
10  
10  
10  
10  
4
8
12  
f (Hz)  
V
(V)  
P
(1) RL = 32 , THD = 10%.  
(2) RL = 32 , THD = 0.5%.  
VP = 3 V, Rs = 0 , Vr = 0.2 V (RMS).  
Fig.23 SVRR as a function of frequency (stereo  
headphone).  
Fig.24 Po as a function of VP (stereo headphone).  
MDA099  
MDA130  
2
1.5  
10  
handbook, halfpage  
handbook, halfpage  
THD  
(%)  
P
(W)  
10  
1
(1)  
(2)  
1
1  
2  
(1)  
(2)  
0.5  
10  
10  
0
3  
2  
1  
10  
10  
10  
1
0
4
8
12  
P
(W)  
V
(V)  
o
P
(1) RL = 25 .  
(2) RL = 32 .  
f = 1 kHz.  
(1) VP = 3 V, RL = 25 .  
(2) VP = 5 V, RL = 25 .  
Fig.25 Total worst case power dissipation as a  
function of supply voltage (SE) (stereo  
headphone).  
Fig.26 THD as a function of Po (BTL mono).  
1997 Jun 27  
20  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
MDA132  
MDA131  
1
0
handbook, halfpage  
handbook, halfpage  
SVRR  
(dB)  
THD  
(%)  
20  
40  
60  
1  
10  
(1)  
(2)  
2  
80  
10  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
VP = 3 V, Rs = 0 , Vr = 0.2 V (RMS).  
(1) VP = 3 V, RL = 25 , THD = 70 mW.  
(2) VP = 5 V, RL = 25 , THD = 150 mW.  
Fig.28 SVRR as a function of frequency (BTL  
mono).  
Fig.27 THD as a function of frequency (BTL mono).  
MDA133  
MDA134  
1.6  
1
handbook, halfpage  
handbook, halfpage  
P
P
o
(W)  
(W)  
1.2  
0.8  
0.75  
(1)  
(2)  
0.5  
0.25  
0
(1)  
(2)  
0.4  
0
0
4
8
12  
0
4
8
12  
V
(V)  
V (V)  
P
P
(1) THD = 10%; RL = 25 .  
(2) THD = 0.5%, RL = 25 .  
(1) RL = 25 .  
(2) RL = 32 .  
Fig.29 Po as a function of supply voltage (BTL  
mono).  
Fig.30 Total worst case power dissipation as a  
function of supply voltage (BTL mono).  
1997 Jun 27  
21  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
Response curves for high input mode  
MDA120  
MDA119  
2
0.8  
handbook, halfpage  
handbook, halfpage  
P
P
o
(W)  
(W)  
0.6  
1.6  
(1)  
(2)  
1.2  
0.8  
0.4  
0.2  
(1)  
(2)  
0.4  
0
0
0
0
4
8
12  
16  
4
8
12  
16  
V
(V)  
P
V
(V)  
P
(1) RL = 25 .  
(2) RL = 32 .  
(1) RL = 32 , THD = 10%.  
(2) RL = 32 , THD = 0.5%.  
Fig.32 Total worst case power dissipation as a  
function of supply voltage (SE) (stereo  
headphone).  
Fig.31 Po as a function of VP (SE) (stereo  
headphone).  
MDA121  
MDA122  
2
10  
1
handbook, halfpage  
handbook, halfpage  
THD  
(%)  
THD  
(%)  
10  
1
(1)  
1  
10  
(2)  
1  
10  
2  
10  
2  
10  
3  
2  
1  
2
3
4
5
10  
10  
10  
1
10  
10  
10  
10  
10  
P
(W)  
f (Hz)  
o
VP = 10 V, RL = 32.  
(1) Po = 100 mW.  
(2) Po = 50 mW.  
VP = 10 V, RL = 32 , f = 1 kHz  
Fig.34 THD as a function of frequency (stereo  
headphone).  
Fig.33 THD as a function of Po (stereo headphone).  
1997 Jun 27  
22  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
MDA123  
MDA124  
0
0
handbook, halfpage  
handbook, halfpage  
α
cs  
SVRR  
(dB)  
(dB)  
20  
20  
40  
60  
40  
60  
80  
80  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
VP = 10 V, Rs = 0 , Vr = 0.2 V (RMS).  
VP = 10 V, Vi = 20 mV.  
Fig.35 Channel separation as a function of  
frequency (stereo headphone).  
Fig.36 SVRR as a function of frequency (stereo  
headphone).  
MDA125  
MDA126  
2
10  
1
handbook, halfpage  
handbook, halfpage  
THD  
(%)  
THD  
(%)  
10  
1
(1)  
(2)  
1  
10  
1  
10  
2  
10  
2  
10  
2  
1  
2
3
4
5
10  
10  
1
10  
10  
10  
10  
10  
10  
V
(V)  
f (Hz)  
o
VP = 12 V; Vo = 1 V.  
(1) VP = 12 V, RL = 1 k.  
(2) VP = 18 V, RL = 1 k.  
Fig.38 THD as a function of frequency (stereo line  
driver).  
Fig.37 THD as a function of Vo (stereo line driver).  
1997 Jun 27  
23  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
MDA127  
MDA128  
0
0
handbook, halfpage  
handbook, halfpage  
α
(dB)  
SVRR  
(dB)  
20  
40  
60  
20  
40  
60  
80  
80  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
VP = 12 V; Vi = 20 mV.  
VP = 12 V; Rs = 0 ; Vr = 0.2 V (RMS).  
Fig.39 Channel separation as a function of  
frequency (stereo line driver).  
Fig.40 SVRR as a function of frequency (stereo  
line driver).  
MDA129  
10  
handbook, halfpage  
V
o
(V)  
8
6
4
(1)  
(2)  
2
0
0
4
8
12  
16  
20  
V
(V)  
P
(1) THD = 10%, RL = 1 k.  
(2) THD = 0.5%, RL = 1 k.  
Fig.41 Vo as a function of VP (stereo line driver).  
1997 Jun 27  
24  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
INTERNAL PIN CONFIGURATION  
SYMBOL  
STANDBY  
PIN  
EQUIVALENT CIRCUIT  
1
V
P1  
10 kΩ  
12  
kΩ  
MGD110  
+IN1, IN1, +IN2  
and IN2  
2, 3, 5 and 6  
V
P1  
MGD106  
SVRR  
4
V
P1  
50  
kΩ  
50  
kΩ  
50  
kΩ  
50  
kΩ  
MGD107  
1997 Jun 27  
25  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
SYMBOL  
MUTE  
PIN  
EQUIVALENT CIRCUIT  
7
V
P1  
MGD112  
INPUT MODE  
8
V
P1  
250  
kΩ  
1 kΩ  
5 kΩ  
MGD113  
OUT2 and OUT1  
11 and 14  
V
P1  
100 Ω  
50 Ω  
MGD108  
buffer output  
1997 Jun 27  
26  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
SYMBOL  
BUFFER  
PIN  
EQUIVALENT CIRCUIT  
12  
V
P1  
buffer output  
MGD109  
VP2 and VP1  
15 and 16  
V
V
P1  
P2  
2 kΩ  
MGD111  
1997 Jun 27  
27  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
PACKAGE OUTLINES  
DIP16: plastic dual in-line package; 16 leads (300 mil); long body  
SOT38-1  
D
M
E
A
2
A
A
1
L
c
e
w M  
Z
b
1
(e )  
1
b
16  
9
M
H
pin 1 index  
E
1
8
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
Z
A
A
A
2
(1)  
(1)  
1
w
UNIT  
mm  
b
b
c
D
E
e
e
L
M
M
H
1
1
E
max.  
max.  
min.  
max.  
1.40  
1.14  
0.53  
0.38  
0.32  
0.23  
21.8  
21.4  
6.48  
6.20  
3.9  
3.4  
8.25  
7.80  
9.5  
8.3  
4.7  
0.51  
3.7  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
2.2  
0.021  
0.015  
0.013  
0.009  
0.86  
0.84  
0.32  
0.31  
0.055  
0.045  
0.26  
0.24  
0.15  
0.13  
0.37  
0.33  
inches  
0.19  
0.020  
0.15  
0.087  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
92-10-02  
95-01-19  
SOT38-1  
050G09  
MO-001AE  
1997 Jun 27  
28  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
SO16: plastic small outline package; 16 leads; body width 3.9 mm  
SOT109-1  
D
E
A
X
c
y
H
v
M
A
E
Z
16  
9
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
8
e
w
M
detail X  
b
p
0
2.5  
scale  
5 mm  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
10.0  
9.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.27  
0.050  
1.05  
0.041  
1.75  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.39  
0.014 0.0075 0.38  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.020  
0.028  
0.012  
inches  
0.069  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-01-23  
97-05-22  
SOT109-1  
076E07S  
MS-012AC  
1997 Jun 27  
29  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
Several techniques exist for reflowing; for example,  
SOLDERING  
Introduction  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
WAVE SOLDERING  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
Wave soldering techniques can be used for all SO  
packages if the following conditions are observed:  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
DIP  
SOLDERING BY DIPPING OR BY WAVE  
The longitudinal axis of the package footprint must be  
parallel to the solder flow.  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joint for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
The package footprint must incorporate solder thieves at  
the downstream end.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg max). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
REPAIRING SOLDERED JOINTS  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Apply a low voltage soldering iron (less than 24 V) to the  
lead(s) of the package, below the seating plane or not  
more than 2 mm above it. If the temperature of the  
soldering iron bit is less than 300 °C it may remain in  
contact for up to 10 seconds. If the bit temperature is  
between 300 and 400 °C, contact may be up to 5 seconds.  
REPAIRING SOLDERED JOINTS  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
SO  
REFLOW SOLDERING  
Reflow soldering techniques are suitable for all SO  
packages.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
1997 Jun 27  
30  
Philips Semiconductors  
Product specification  
Low-voltage stereo headphone amplifier  
TDA8559  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1997 Jun 27  
31  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Belgium: see The Netherlands  
Brazil: see South America  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. +65 350 2538, Fax. +65 251 6500  
Colombia: see South America  
Czech Republic: see Austria  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 0044  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580920  
South America: Rua do Rocio 220, 5th floor, Suite 51,  
04552-903 São Paulo, SÃO PAULO - SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 829 1849  
France: 4 Rue du Port-aux-Vins, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 3 301 6312, Fax. +34 3 301 4107  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 632 2000, Fax. +46 8 632 2745  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2686, Fax. +41 1 481 7730  
Hungary: see Austria  
India: Philips INDIA Ltd, Shivsagar Estate, A Block, Dr. Annie Besant Rd.  
Worli, MUMBAI 400 018, Tel. +91 22 4938 541, Fax. +91 22 4938 722  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Indonesia: see Singapore  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku, TOKYO 108,  
Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors, Marketing & Sales Communications,  
Internet: http://www.semiconductors.philips.com  
Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1997  
SCA54  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
547027/1200/02/pp32  
Date of release: 1997 Jun 27  
Document order number: 9397 750 02066  

相关型号:

TDA8559T-T

暂无描述
NXP

TDA8559T/N1,512

IC 0.035 W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO16, Audio/Video Amplifier
NXP

TDA8559T/N1,518

IC 0.035 W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO16, Audio/Video Amplifier
NXP

TDA8559TD

IC 0.035 W, 2 CHANNEL, AUDIO AMPLIFIER, PDSO16, Audio/Video Amplifier
NXP

TDA8559TD-T

Dual Audio Amplifier
ETC

TDA8560

2 x 40 W/2 ohm stereo BTL car radio power amplifier with diagnostic facility
NXP

TDA8560Q

2 x 40 W/2 ohm stereo BTL car radio power amplifier with diagnostic facility
NXP

TDA8560Q/N1

IC 55 W, 2 CHANNEL, AUDIO AMPLIFIER, PZIP13, POWER, PLASTIC, SOT-141-6, DIL-BENT-SIL, 13 PIN, Audio/Video Amplifier
NXP

TDA8560Q/N1,112

TDA8560Q - 2 x 40 W/2 Ohm stereo BTL car radio power amplifier with diagnostic facility ZIP 13-Pin
NXP

TDA8560Q/N1/S1

IC 55 W, 2 CHANNEL, AUDIO AMPLIFIER, PZIP13, POWER, PLASTIC, SOT-141-6, DIL-BENT-SIL, 13 PIN, Audio/Video Amplifier
NXP

TDA8560Q/N1C,112

TDA8560Q - 2 x 40 W/2 Ohm stereo BTL car radio power amplifier with diagnostic facility ZIP 13-Pin
NXP

TDA8560Q/N2

IC 55 W, 2 CHANNEL, AUDIO AMPLIFIER, PZIP13, POWER, PLASTIC, SOT-141-6, DIL-BENT-SIL, 13 PIN, Audio/Video Amplifier
NXP