TDA8766G [NXP]

10-bit high-speed 2.7 to 5.25 V analog-to-digital converter; 10位高速2.7至5.25 V的模拟 - 数字转换器
TDA8766G
型号: TDA8766G
厂家: NXP    NXP
描述:

10-bit high-speed 2.7 to 5.25 V analog-to-digital converter
10位高速2.7至5.25 V的模拟 - 数字转换器

转换器 模数转换器 信息通信管理
文件: 总20页 (文件大小:161K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA8766  
10-bit high-speed 2.7 to 5.25 V  
analog-to-digital converter  
1996 Mar 20  
Product specification  
Supersedes data of 1995 Mar 22  
File under Integrated Circuits, IC02  
Philips Semiconductors  
Product specification  
10-bit high-speed 2.7 to 5.25 V  
analog-to-digital converter  
TDA8766  
FEATURES  
APPLICATIONS  
10-bit resolution  
High-speed analog-to-digital conversion for:  
Video data digitizing  
Camera  
2.7 to 5.25 V operation  
Sampling rate up to 20 MHz  
DC sampling allowed  
Camcorder  
High signal-to-noise ratio over a large analog input  
frequency range (9.3 effective bits at 1.0 MHz full-scale  
input at fclk = 20 MHz)  
Radio communication.  
GENERAL DESCRIPTION  
In range (IR) CMOS output  
The TDA8766 is a 10-bit high-speed analog-to-digital  
converter (ADC) for professional video and other  
CMOS/TTL compatible digital inputs and outputs  
External reference voltage regulator  
Power dissipation only 53 mW (typical)  
applications. It converts with 2.7 to 5.25 V operation the  
analog input signal into 10-bit binary-coded digital words at  
a maximum sampling rate of 20 MHz. All digital inputs and  
outputs are CMOS compatible. A standby mode allows  
reduction of the device power consumption down to 4 mW.  
Low analog input capacitance, no buffer amplifier  
required  
Standby mode  
No sample-and-hold circuit required.  
QUICK REFERENCE DATA  
SYMBOL  
VDDA  
PARAMETER  
analog supply voltage  
digital supply voltage 1  
digital supply voltage 2  
output stages supply voltage  
analog supply current  
digital supply current  
CONDITIONS  
MIN.  
2.7  
TYP.  
3.3  
MAX.  
5.25  
5.25  
5.25  
5.25  
10  
UNIT  
V
VDDD1  
VDDD2  
VDDO  
IDDA  
2.7  
2.7  
2.5  
3.3  
3.3  
3.3  
7.5  
7.5  
1
V
V
V
mA  
mA  
mA  
IDDD  
10  
IDDO  
output stages supply current  
fclk = 20 MHz; CL = 20 pF;  
ramp input  
2
INL  
integral non-linearity  
fclk = 20 MHz; ramp input  
±1  
±2  
±0.7  
LSB  
LSB  
MHz  
mW  
DNL  
fclk(max)  
Ptot  
differential non-linearity  
maximum clock frequency  
total power dissipation  
fclk = 20 MHz; ramp input  
±0.25  
20  
VDDA = VDDD = VDDO = 3.3 V  
53  
73  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TDA8766G  
LQFP32  
plastic low profile quad flat package; 32 leads; body 5 × 5 × 1.4 mm  
SOT401-1  
1996 Mar 20  
2
Philips Semiconductors  
Product specification  
10-bit high-speed 2.7 to 5.25 V  
analog-to-digital converter  
TDA8766  
BLOCK DIAGRAM  
V
CLK  
5
V
DDD2  
OE  
16  
DDA  
7
18  
6
1
CLOCK DRIVER  
STDBY  
MSB  
TDA8766  
V
RT 15  
D9  
31 D8  
30 D7  
29 D6  
28 D5  
27 D4  
26 D3  
25 D2  
23 D1  
R
LAD  
V
I
14  
CMOS  
OUTPUTS  
ANALOG -TO - DIGITAL  
CONVERTER  
analog  
voltage input  
LATCHES  
data outputs  
V
RM 11  
22  
20  
D0  
LSB  
V
V
RB 10  
DDO  
2
IR  
output  
CMOS  
OUTPUT  
IN RANGE LATCH  
4
V
DDD1  
9
19  
V
21  
3
V
V
V
MLC853  
SSA  
SSD2  
SSO  
SSD1  
analog  
ground  
digital  
ground 2  
output  
ground ground 1  
digital  
Fig.1 Block diagram.  
1996 Mar 20  
3
Philips Semiconductors  
Product specification  
10-bit high-speed 2.7 to 5.25 V  
analog-to-digital converter  
TDA8766  
PINNING  
SYMBOL PIN  
DESCRIPTION  
SYMBOL PIN  
DESCRIPTION  
D9  
1
2
3
4
5
6
7
8
9
data output; bit 9 (MSB)  
in range data output  
digital ground 1  
VDDD2  
VSSD2  
VDDO  
18 digital supply voltage 2 (2.7 to 5.25 V)  
19 digital ground 2  
IR  
VSSD1  
VDDD1  
CLK  
STDBY  
VDDA  
n.c.  
20 positive supply voltage for output  
stage (2.5 to 5.25 V)  
digital supply voltage 1 (2.7 to 5.25 V)  
clock input  
VSSO  
D0  
21 digital output ground  
22 data output; bit 0 (LSB)  
23 data output; bit 1  
24 not connected  
standby mode input  
analog supply voltage (2.7 to 5.25 V)  
not connected  
D1  
n.c.  
D2  
25 data output; bit 2  
26 data output; bit 3  
27 data output; bit 4  
28 data output; bit 5  
29 data output; bit 6  
30 data output; bit 7  
31 data output; bit 8  
32 not connected  
VSSA  
VRB  
VRM  
n.c.  
analog ground  
D3  
10 reference voltage BOTTOM input  
11 reference voltage MIDDLE  
12 not connected  
D4  
D5  
D6  
n.c.  
13 not connected  
D7  
VI  
14 analog input voltage  
15 reference voltage TOP input  
16 output enable input  
17 not connected  
D8  
VRT  
n.c.  
OE  
n.c.  
index  
corner  
D9  
IR  
1
2
3
4
5
6
7
8
24 n.c.  
23 D1  
V
V
22 D0  
V
SSD1  
21  
20  
19  
18  
SSO  
DDD1  
CLK  
TDA8766  
V
V
V
DDO  
SSD2  
DDD2  
STDBY  
V
DDA  
n.c.  
17 n.c.  
MLC854  
Fig.2 Pin configuration.  
4
1996 Mar 20  
Philips Semiconductors  
Product specification  
10-bit high-speed 2.7 to 5.25 V  
analog-to-digital converter  
TDA8766  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
VDDA  
VDDD1, VDDD2  
VDDO  
PARAMETER  
CONDITIONS  
note 1  
MIN.  
0.3  
MAX.  
+7.0  
UNIT  
analog supply voltage  
V
V
V
digital supply voltages  
note 1  
note 1  
0.3  
0.3  
+7.0  
+7.0  
output stages supply voltage  
supply voltage difference  
VDD  
V
V
V
DDA VDDD  
DDD VDDO  
DDA VDDO  
1.0  
1.0  
1.0  
0.3  
+4.0  
+4.0  
+4.0  
+7.0  
VDDD  
V
V
V
V
V
VI  
input voltage  
referenced to VSSA  
referenced to VSSD  
Vclk(p-p)  
AC input voltage for switching  
(peak-to-peak value)  
IO  
output current  
10  
mA  
°C  
°C  
°C  
Tstg  
Tamb  
Tj  
storage temperature  
operating ambient temperature  
junction temperature  
55  
20  
+150  
+75  
+150  
Note  
1. The supply voltages VDDA, VDDD and VDDO may have any value between 0.3 V and +7.0 V provided that the supply  
voltage differences VDD are respected.  
HANDLING  
Inputs and outputs are protected against electrostatic discharges in normal handling. However, to be totally safe, it is  
desirable to take normal precautions appropriate to handling integrated circuits.  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth j-a  
PARAMETER  
VALUE  
UNIT  
thermal resistance from junction to ambient in free air  
90  
K/W  
1996 Mar 20  
5
Philips Semiconductors  
Product specification  
10-bit high-speed 2.7 to 5.25 V  
analog-to-digital converter  
TDA8766  
CHARACTERISTICS  
VDDA = V7 to V9 = 3.3 V; VDDD = V4 to V3 = V18 to V19 = 3.3 V; VDDO = V20 to V21 = 3.3 V; VSSA, VSSD and VSSO  
short-circuited together; Vi(p-p) = 1.83 V; CL = 20 pF; Tamb = 0 to +70 °C; typical values measured at Tamb = 25 °C;  
unless otherwise specified.  
SYMBOL  
Supply  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
VDDA  
VDDD1  
VDDD2  
VDDO  
VDD  
analog supply voltage  
2.7  
2.7  
2.7  
2.5  
3.3  
5.25  
V
digital supply voltage 1  
digital supply voltage 2  
output stages supply voltage  
voltage difference  
3.3  
3.3  
3.3  
5.25  
5.25  
5.25  
V
V
V
V
V
V
DDA VDDD  
DDA VDDO  
DDD VDDO  
0.2  
0.2  
0.2  
+0.2  
+3.0  
+3.0  
10  
V
V
V
IDDA  
IDDD  
IDDO  
analog supply current  
digital supply current  
7.5  
7.5  
1
mA  
mA  
mA  
10  
output stages supply current  
fclk = 20 MHz;  
ramp input; CL = 20 pF  
2
Inputs  
CLOCK INPUT CLK (REFERENCED TO VSSD); see note 1  
VIL  
VIH  
LOW level input voltage  
HIGH level input voltage  
0
0
4
3
0.3VDDD  
V
0.7VDDD  
VDDD  
VDDD  
+1  
5
V
V
DDD 3.6 V  
0.6VDDD  
V
IIL  
IIH  
ZI  
LOW level input current  
HIGH level input current  
input impedance  
Vclk = 0.3VDDD  
Vclk = 0.7VDDD  
fclk = 20 MHz  
fclk = 20 MHz  
1  
µA  
µA  
kΩ  
pF  
CI  
input capacitance  
INPUTS OE AND STDBY (REFERENCED TO VSSD); see Table 3  
VIL  
VIH  
LOW level input voltage  
HIGH level input voltage  
0
0.3VDDD  
VDDD  
VDDD  
V
0.7VDDD  
0.6VDDD  
1  
V
V
DDD 3.6 V  
V
IIL  
LOW level input current  
HIGH level input current  
VIL = 0.3VDDD  
VIH = 0.7VDDD  
µA  
µA  
IIH  
+1  
VI (ANALOG INPUT VOLTAGE REFERENCED TO VSSA  
)
IIL  
IIH  
ZI  
LOW level input current  
HIGH level input current  
input impedance  
VI = VRB  
VI = VRT  
0
µA  
µA  
kΩ  
pF  
35  
5
fi = 1 MHz  
fi = 1 MHz  
CI  
input capacitance  
8
1996 Mar 20  
6
Philips Semiconductors  
Product specification  
10-bit high-speed 2.7 to 5.25 V  
analog-to-digital converter  
TDA8766  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Reference voltages for the resistor ladder; see Table 1  
VRB  
VRT  
Vdiff  
reference voltage BOTTOM  
reference voltage TOP  
1.1  
2.7  
1.5  
1.2  
V
VTOP VDDA  
3.3  
2.1  
VDDA  
2.7  
V
V
differential reference voltage  
VRT VRB  
Iref  
reference current  
resistor ladder  
7.2  
mA  
RLAD  
TCRLAD  
290  
1860  
539  
135  
135  
1.83  
temperature coefficient of the resistor  
ladder  
ppm  
m/K  
mV  
mV  
V
VosB  
VosT  
Vi(p-p)  
offset voltage BOTTOM  
offset voltage TOP  
note 2  
note 2  
note 3  
analog input voltage  
(peak-to-peak value)  
1.4  
2.4  
Outputs  
DIGITAL OUTPUTS D9 TO D0 AND IR (REFERENCED TO VSSD  
)
VOL  
VOH  
IOZ  
LOW level output voltage  
HIGH level output voltage  
output current in 3-state mode  
IO = 1 mA  
0
0.5  
V
IO = 1 mA  
V
DDO 0.5 −  
VDDO  
+20  
V
0.5 V < VO < VDDO  
20  
µA  
Switching characteristics  
CLOCK INPUT CLK; see Fig.4; note 1  
fclk(max)  
tCPH  
maximum clock frequency  
clock pulse width HIGH  
clock pulse width LOW  
20  
15  
15  
MHz  
ns  
tCPL  
ns  
Analog signal processing  
LINEARITY  
INL  
integral non-linearity  
fclk = 20 MHz;  
ramp input; (see Fig.6)  
±1  
±2  
LSB  
LSB  
DNL  
differential non-linearity  
fclk = 20 MHz;  
±0.25 ±0.7  
ramp input; (see Fig.7)  
INPUT SET RESPONSE (fclk = 20 MHz; see Fig.8; note 4)  
tSTLH  
analog input settling time  
LOW-to-HIGH  
full-scale square wave  
4
4
6
6
ns  
ns  
tSTHL  
analog input settling time  
HIGH-to-LOW  
full-scale square wave  
HARMONICS; (fclk = 20 MHZ; see Fig.9; note 5)  
THD total harmonic distortion  
SIGNAL-TO-NOISE RATIO; see Fig.9; note 5  
fi = 1 MHz  
63  
dB  
dB  
S/N  
signal-to-noise ratio (full scale)  
without harmonics;  
60  
fclk = 20 MHz;  
fi = 1 MHz  
1996 Mar 20  
7
Philips Semiconductors  
Product specification  
10-bit high-speed 2.7 to 5.25 V  
analog-to-digital converter  
TDA8766  
SYMBOL  
EFFECTIVE BITS; see Fig.9; note 5  
EB effective bits  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
fclk = 20 MHz  
fi = 300 kHz  
fi = 1 MHz  
9.5  
bits  
bits  
bits  
9.3  
8.0  
fi = 3.58 MHz  
Timing (fclk = 20 MHz; CL = 20 pF); see Fig.4; note 6  
tds  
th  
sampling delay time  
output hold time  
5
8
8
8
5
ns  
ns  
ns  
ns  
ns  
td  
output delay time  
VDDO = 4.75 V  
VDDO = 3.15 V  
12  
17  
21  
15  
20  
24  
VDDO = 2.7 V  
3-state output delay times; see Fig.5  
tdZH  
tdZL  
tdHZ  
tdLZ  
enable HIGH  
enable LOW  
disable HIGH  
disable LOW  
14  
16  
16  
14  
18  
20  
20  
18  
ns  
ns  
ns  
ns  
Standby mode output delay times  
tdSTBLH standby (LOW-to-HIGH transition)  
tdSTBHL start-up (HIGH-to-LOW transition)  
200  
500  
ns  
ns  
Notes  
1. In addition to a good layout of the digital and analog ground, it is recommended that the rise and fall times of the clock  
must not be less than 1 ns.  
2. Analog input voltages producing code 0 up to and including 1023:  
a) VosB (voltage offset BOTTOM) is the difference between the analog input which produces data equal to 00 and  
the reference voltage BOTTOM (VRB) at Tamb = 25 °C.  
b) VosT (voltage offset TOP) is the difference between VRT (reference voltage TOP) and the analog input which  
produces data outputs equal to 1023 at Tamb = 25 °C.  
3. In order to ensure the optimum linearity performance of such converter architecture the lower and upper extremities  
of the converter reference resistor ladder (corresponding to output codes 0 and 1023 respectively) are connected to  
pins VRB and VRT via offset resistors ROB and ROT as shown in Fig.3.  
V
RT VRB  
a) The current flowing into the resistor ladder is IL =  
and the full-scale input range at the converter,  
-----------------------------------------  
R
OB + RL + ROT  
R L  
to cover code 0 to code 1023, is V I = R L × I L =  
× (V RT VRB) = 0.871 × (VRT VRB)  
-----------------------------------------  
R
OB + RL + ROT  
b) Since RL, ROB and ROT have similar behaviour with respect to process and temperature variation, the ratio  
RL  
will be kept reasonably constant from part to part. Consequently variation of the output codes  
-----------------------------------------  
OB + RL + ROT  
R
at a given input voltage depends mainly on the difference VRT VRB and its variation with temperature and supply  
voltage. When several ADCs are connected in parallel and fed with the same reference source, the matching  
between each of them is then optimized.  
1996 Mar 20  
8
Philips Semiconductors  
Product specification  
10-bit high-speed 2.7 to 5.25 V  
analog-to-digital converter  
TDA8766  
4. The analog input settling time is the minimum time required for the input signal to be stabilized after a sharp full-scale  
input (square-wave signal) in order to sample the signal and obtain correct output data.  
5. Effective bits are obtained via a Fast Fourier Transform (FFT) treatment taking 8K acquisition points per equivalent  
fundamental period. The calculation takes into account all harmonics and noise up to half of the clock frequency  
(NYQUIST frequency). Conversion to signal-to-noise ratio: S/N = EB × 6.02 + 1.76 dB.  
6. Output data acquisition: the output data is available after the maximum delay time of td.  
handbook, halfpage  
V
RT  
R
OT  
code 1023  
R
L
V
I
L
RM  
R
LAD  
code 0  
R
OB  
V
RB  
MGD281  
Fig.3 Explanation of note 3.  
1996 Mar 20  
9
Philips Semiconductors  
Product specification  
10-bit high-speed 2.7 to 5.25 V  
analog-to-digital converter  
TDA8766  
Table 1 Output coding and input voltage (typical values; referenced to VSSA  
)
BINARY OUTPUT BITS  
VI(p-p)  
(V)  
STEP  
IR  
D9  
D8  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Underflow  
<1.335  
0
1
1
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
0
.
0
0
1
.
0
1.335  
1
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
1022  
1023  
Overflow  
.
1
1
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
1
1
3.165  
>3.165  
Table 2 Mode selection  
OE  
D9 TO D0  
IR  
1
0
high impedance  
active; binary  
high impedance  
active  
Table 3 Standby selection  
STDBY  
D9 TO D0  
IDDA + IDDD (typ.)  
1
0
last logic state  
active  
1.2 mA  
15 mA  
t
CPL  
t
CPH  
50%  
CLK  
sample N  
sample N + 1  
sample N + 2  
V
l
t
t
ds  
h
V
DDO  
DATA  
D0 to D9  
DATA  
N - 2  
DATA  
N - 1  
DATA  
N
DATA  
N + 1  
50%  
0 V  
t
d
MGD346  
Fig.4 Timing diagram.  
10  
1996 Mar 20  
Philips Semiconductors  
Product specification  
10-bit high-speed 2.7 to 5.25 V  
analog-to-digital converter  
TDA8766  
V
DDD  
OE  
50 %  
dZH  
t
t
dHZ  
HIGH  
90 %  
output  
data  
50 %  
LOW  
t
t
dZL  
dLZ  
HIGH  
output  
data  
50 %  
LOW  
10 %  
TEST  
S1  
V
DDD  
t
t
t
t
V
DDD  
dLZ  
dZL  
dHZ  
dZH  
3.3 k  
20 pF  
V
DDD  
GND  
GND  
S1  
TDA8766  
OE  
MLC855  
fOE = 100 kHz.  
Fig.5 Timing diagram and test conditions of 3-state output delay time.  
1996 Mar 20  
11  
Philips Semiconductors  
Product specification  
10-bit high-speed 2.7 to 5.25 V  
analog-to-digital converter  
TDA8766  
MLD115  
0.6  
A
(LSB)  
0.4  
0.2  
0
0.2  
0.4  
0.6  
0
200  
400  
600  
800  
1000  
1100  
f (codes)  
1023  
Fig.6 Typical integral non-linearity (INL) performance.  
MLD116  
0.25  
A
(LSB)  
0.15  
0.05  
0.05  
0.15  
0.25  
0
200  
400  
600  
800  
1000  
1100  
f (codes)  
1023  
Fig.7 Typical differential non-linearity (DNL) performance.  
12  
1996 Mar 20  
Philips Semiconductors  
Product specification  
10-bit high-speed 2.7 to 5.25 V  
analog-to-digital converter  
TDA8766  
t
t
STLH  
STHL  
50 %  
code 1023  
V
I
50 %  
code 0  
5 ns  
5 ns  
CLK  
50 %  
50 %  
MBD875  
2 ns  
2 ns  
Fig.8 Analog input settling-time diagram.  
MLD117  
0
A
(dB)  
20  
40  
60  
80  
100  
120  
0
1.25  
2.5  
3.76  
5.01  
6.26  
7.51  
8.76  
10  
f (MHz)  
Effective bits: 9.59; THD = 76.60 dB.  
Harmonic levels (dB): 2nd = 81.85; 3rd = 87.56; 4th = 88.81; 5th = 88.96; 6th = 79.58.  
Fig.9 Typical Fast Fourier Transform (fclk = 20 MHz; fi = 1 MHz).  
13  
1996 Mar 20  
Philips Semiconductors  
Product specification  
10-bit high-speed 2.7 to 5.25 V  
analog-to-digital converter  
TDA8766  
INTERNAL PIN CONFIGURATIONS  
handbook, halfpage  
handbook, halfpage  
V
V
DDO  
DDA  
D9 to D0  
IR  
V
I
V
V
SSO  
SSA  
MLC856  
MLC857  
Fig.10 CMOS data and In Range (IR) outputs.  
Fig.11 Analog inputs.  
handbook, halfpage  
handbook, halfpage  
V
V
DDO  
DDA  
V
V
RT  
R
LAD  
RM  
OE  
(STDBY)  
V
RB  
V
SSA  
V
SSO  
MLC859  
MLC858  
Fig.12 OE (STDBY) input.  
Fig.13 VRB, VRM and VRT.  
1996 Mar 20  
14  
Philips Semiconductors  
Product specification  
10-bit high-speed 2.7 to 5.25 V  
analog-to-digital converter  
TDA8766  
V
DDD  
handbook, halfpage  
1
/ V  
2
CLK  
DDD  
V
SSD  
MLC860  
Fig.14 CLK input.  
1996 Mar 20  
15  
Philips Semiconductors  
Product specification  
10-bit high-speed 2.7 to 5.25 V  
analog-to-digital converter  
TDA8766  
APPLICATION INFORMATION  
Additional application information will be supplied upon request (please quote number “AN96012”).  
(2)  
n.c.  
32  
D8  
31  
D7  
30  
D6  
29  
D5  
28  
D4  
27  
D3  
26  
D2  
25  
(2)  
D9  
IR  
n.c.  
1
2
3
4
5
6
7
8
24  
D1  
23  
22  
21  
20  
19  
18  
17  
V
V
SSD1  
DDD1  
CLK  
D0  
V
SSO  
TDA8766  
V
V
V
DDO  
STDBY  
SSD2  
V
DDA  
DDD2  
(2)  
(2)  
n.c.  
n.c.  
9
10  
11  
12  
13  
14  
15  
16  
MLC861  
(2)  
(2)  
(4)  
V
(1)  
(1)  
(1)  
OE  
V
V
V
V
RT  
SSA  
n.c.  
n.c.  
I
RB  
RM  
(3)  
100  
nF  
100  
nF  
V
V
SSA  
SSA  
100  
nF  
V
SSA  
The analog and digital supplies should be separated and decoupled.  
The external voltage reference generator must be built such that a good supply voltage ripple rejection is achieved with respect to the LSB value.  
Eventually, the reference ladder voltages can be derived from a well regulated VDDA supply through a resistor bridge and a decoupled capacitor.  
(1) VRB, VRM and VRT are decoupled to VSSA  
.
(2) Pins 8, 12, 13, 17, 24 and 32 should be connected to the closest ground pin in order to prevent noise influence.  
(3) When VRM is not used, pin 11 can be left open, avoiding the decoupling capacitor. In any case, pin 11 must not be grounded.  
(4) When analog input signal is AC coupled, an input bias or a clamping level must be applied to VI input (pin 14).  
Fig.15 Application diagram.  
1996 Mar 20  
16  
Philips Semiconductors  
Product specification  
10-bit high-speed 2.7 to 5.25 V  
analog-to-digital converter  
TDA8766  
PACKAGE OUTLINE  
LQFP32: plastic low profile quad flat package; 32 leads; body 5 x 5 x 1.4 mm  
SOT401-1  
c
y
X
A
E
17  
24  
Z
16  
25  
E
e
A
H
2
E
A
(A )  
3
A
1
w M  
p
θ
pin 1 index  
b
L
p
32  
9
L
1
8
detail X  
Z
v M  
D
A
e
w M  
b
p
D
B
H
v M  
B
D
0
2.5  
scale  
5 mm  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.15 1.5  
0.05 1.3  
0.27 0.18 5.1  
0.17 0.12 4.9  
5.1  
4.9  
7.15 7.15  
6.85 6.85  
0.75  
0.45  
0.95 0.95  
0.55 0.55  
mm  
1.60  
0.25  
0.5  
1.0  
0.2 0.12 0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-12-19  
97-08-04  
SOT401-1  
1996 Mar 20  
17  
Philips Semiconductors  
Product specification  
10-bit high-speed 2.7 to 5.25 V  
analog-to-digital converter  
TDA8766  
If wave soldering cannot be avoided, the following  
conditions must be observed:  
SOLDERING  
Introduction  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave)  
soldering technique should be used.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
The footprint must be at an angle of 45° to the board  
direction and must incorporate solder thieves  
downstream and at the side corners.  
Even with these conditions, do not consider wave  
soldering LQFP packages LQFP48 (SOT313-2),  
LQFP64 (SOT314-2) or LQFP80 (SOT315-1).  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011). During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Reflow soldering  
Reflow soldering techniques are suitable for all LQFP  
packages.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Several techniques exist for reflowing; for example,  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
Repairing soldered joints  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
Wave soldering  
Wave soldering is not recommended for LQFP packages.  
This is because of the likelihood of solder bridging due to  
closely-spaced leads and the possibility of incomplete  
solder penetration in multi-lead devices.  
1996 Mar 20  
18  
Philips Semiconductors  
Product specification  
10-bit high-speed 2.7 to 5.25 V  
analog-to-digital converter  
TDA8766  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1996 Mar 20  
19  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. (02) 805 4455, Fax. (02) 805 4466  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. (01) 60 101-1256, Fax. (01) 60 101-1250  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211,  
Volodarski Str. 6, 220050 MINSK,  
Portugal: see Spain  
Romania: see Italy  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. (65) 350 2000, Fax. (65) 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
South Africa: S.A. PHILIPS Pty Ltd.,  
Tel. (172) 200 733, Fax. (172) 200 773  
Belgium: see The Netherlands  
195-215 Main Road Martindale, 2092 JOHANNESBURG,  
P.O. Box 7430 Johannesburg 2000,  
Brazil: see South America  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. (359) 2 689 211, Fax. (359) 2 689 102  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS:  
Tel. (800) 234-7381, Fax. (708) 296-8556  
Chile: see South America  
Tel. (011) 470-5911, Fax. (011) 470-5494  
South America: Rua do Rocio 220 - 5th floor, Suite 51,  
CEP: 04552-903-SÃO PAULO-SP, Brazil,  
P.O. Box 7383 (01064-970),  
Tel. (011) 821-2333, Fax. (011) 829-1849  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. (03) 301 6312, Fax. (03) 301 4107  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. (852) 2319 7888, Fax. (852) 2319 7700  
Colombia: see South America  
Sweden: Kottbygatan 7, Akalla. S-16485 STOCKHOLM,  
Tel. (0) 8-632 2000, Fax. (0) 8-632 2745  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. (01) 488 2211, Fax. (01) 481 77 30  
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,  
Chung Hsiao West Road, Sec. 1, P.O. Box 22978,  
TAIPEI 100, Tel. (886) 2 382 4443, Fax. (886) 2 382 4444  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. (66) 2 745-4090, Fax. (66) 2 398-0793  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. (0212) 279 2770, Fax. (0212) 282 6707  
Ukraine: PHILIPS UKRAINE,  
2A Akademika Koroleva str., Office 165, 252148 KIEV,  
Tel. 380-44-4760297, Fax. 380-44-4766991  
United Kingdom: Philips Semiconductors LTD.,  
276 Bath Road, Hayes, MIDDLESEX UB3 5BX,  
Tel. (0181) 730-5000, Fax. (0181) 754-8421  
United States: 811 East Arques Avenue, SUNNYVALE,  
CA 94088-3409, Tel. (800) 234-7381, Fax. (708) 296-8556  
Uruguay: see South America  
Czech Republic: see Austria  
Denmark: Prags Boulevard 80, PB 1919, DK-2300  
COPENHAGEN S, Tel. (032) 88 2636, Fax. (031) 57 1949  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. (358) 0-615 800, Fax. (358) 0-61580 920  
France: 4 Rue du Port-aux-Vins, BP317,  
92156 SURESNES Cedex,  
Tel. (01) 4099 6161, Fax. (01) 4099 6427  
Germany: P.O. Box 10 51 40, 20035 HAMBURG,  
Tel. (040) 23 53 60, Fax. (040) 23 53 63 00  
Greece: No. 15, 25th March Street, GR 17778 TAVROS,  
Tel. (01) 4894 339/4894 911, Fax. (01) 4814 240  
Hungary: see Austria  
India: Philips INDIA Ltd, Shivsagar Estate, A Block,  
Dr. Annie Besant Rd. Worli, BOMBAY 400 018  
Tel. (022) 4938 541, Fax. (022) 4938 722  
Indonesia: see Singapore  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. (01) 7640 000, Fax. (01) 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,  
Tel. (03) 645 04 44, Fax. (03) 648 10 07  
Vietnam: see Singapore  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. (381) 11 825 344, Fax. (359) 211 635 777  
Italy: PHILIPS SEMICONDUCTORS,  
Piazza IV Novembre 3, 20124 MILANO,  
Tel. (0039) 2 6752 2531, Fax. (0039) 2 6752 2557  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108, Tel. (03) 3740 5130, Fax. (03) 3740 5077  
Korea: Philips House, 260-199 Itaewon-dong,  
Yongsan-ku, SEOUL, Tel. (02) 709-1412, Fax. (02) 709-1415  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,  
SELANGOR, Tel. (03) 750 5214, Fax. (03) 757 4880  
Mexico: 5900 Gateway East, Suite 200, EL PASO,  
TEXAS 79905, Tel. 9-5(800) 234-7831, Fax. (708) 296-8556  
Middle East: see Italy  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. (040) 2783749, Fax. (040) 2788399  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. (09) 849-4160, Fax. (09) 849-7811  
Internet: http://www.semiconductors.philips.com/ps/  
For all other countries apply to: Philips Semiconductors,  
Marketing & Sales Communications, Building BE-p,  
P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands,  
Fax. +31-40-2724825  
SCDS48  
© Philips Electronics N.V. 1996  
All rights are reserved. Reproduction in whole or in part is prohibited without the  
prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation  
or contract, is believed to be accurate and reliable and may be changed without  
notice. No liability will be accepted by the publisher for any consequence of its  
use. Publication thereof does not convey nor imply any license under patent- or  
other industrial or intellectual property rights.  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. (022) 74 8000, Fax. (022) 74 8341  
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC,  
MAKATI, Metro MANILA,  
Printed in The Netherlands  
Tel. (63) 2 816 6380, Fax. (63) 2 817 3474  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. (022) 612 2831, Fax. (022) 612 2327  
537021/1100/02/pp20  
Date of release: 1996 Mar 20  
9397 750 00746  
Document order number:  

相关型号:

TDA8766GB-S

Analog-to-Digital Converter, 10-Bit
ETC

TDA8766GB-T

Analog-to-Digital Converter, 10-Bit
ETC

TDA8767

12-bit high-speed Analog-to-Digital Converter ADC
NXP

TDA8767H

12-bit high-speed Analog-to-Digital Converter ADC
NXP

TDA8767H/1

12-bit high-speed Analog-to-Digital Converter ADC
NXP

TDA8767H/1-T

IC 1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP44, 10 X 10 MM, 1.75 MM HEIGHT, PLASTIC, SOT-307-2, QFP-44, Analog to Digital Converter
NXP

TDA8767H/1B-T

A/D Converter, 12-Bit, 1 Func, Bipolar, PQFP44
PHILIPS

TDA8767H/2

12-bit high-speed Analog-to-Digital Converter ADC
NXP

TDA8767H/2-T

IC 1-CH 12-BIT PROPRIETARY METHOD ADC, PARALLEL ACCESS, PQFP44, 10 X 10 MM, 1.75 MM HEIGHT, PLASTIC, SOT-307-2, QFP-44, Analog to Digital Converter
NXP

TDA8767H/2B-S

A/D Converter, 12-Bit, 1 Func, Bipolar, PQFP44
PHILIPS

TDA8767H/2B-T

A/D Converter, 12-Bit, 1 Func, Bipolar, PQFP44
PHILIPS

TDA8767H/3

12-bit high-speed Analog-to-Digital Converter ADC
NXP