TDA8941 [NXP]

1.5 W mono Bridge Tied Load BTL audio amplifier; 1.5瓦单声道桥接负载BTL音频放大器
TDA8941
型号: TDA8941
厂家: NXP    NXP
描述:

1.5 W mono Bridge Tied Load BTL audio amplifier
1.5瓦单声道桥接负载BTL音频放大器

音频放大器
文件: 总21页 (文件大小:358K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA8941P  
1.5 W mono Bridge Tied Load (BTL) audio amplifier  
Rev. 02 — 7 April 2000  
Product specification  
1. General description  
The TDA8941P is a single-channel audio power amplifier with an output power of  
1.5 W at an 16 load and a 9 V supply. The circuit contains a Bridge Tied Load  
(BTL) amplifier with an all-NPN output stage and standby/mute logic. The TDA8941P  
comes in a 8-pin dual in-line (DIP8) package. The TDA8941P is printed-circuit board  
(PCB) compatible with all other types in the TDA894x family. One PCB footprint  
accommodates both the mono and the stereo products.  
2. Features  
Few external components  
Fixed gain  
Standby and mute mode  
No on/off switching plops  
Low standby current  
High supply voltage ripple rejection  
Outputs short-circuit protected to ground, supply and across the load  
Thermally protected  
c
c
Printed-circuit board compatible.  
3. Applications  
Mains fed applications (e.g. TV sound)  
PC audio  
Portable audio.  
4. Quick reference data  
Table 1: Quick reference data  
Symbol Parameter  
Conditions  
Min  
Typ  
9
Max Unit  
VCC  
Iq  
supply voltage  
6
-
18  
20  
10  
V
quiescent supply current VCC = 9 V; RL =  
14  
-
mA  
µA  
Istb  
standby supply current  
-
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
Table 1: Quick reference data…continued  
Symbol Parameter  
Conditions  
Min  
Typ  
Max Unit  
Po  
output power  
THD = 10%;RL = 16 ;  
1.2  
1.5  
-
W
VCC = 9 V  
THD  
Gv  
total harmonic distortion  
voltage gain  
Po = 0.5 W  
-
0.03 0.3  
%
31  
50  
32  
65  
33  
-
dB  
dB  
SVRR  
supply voltage ripple  
rejection  
5. Ordering information  
Table 2: Ordering information  
Type number Package  
Name  
Description  
Version  
SOT97-1  
TDA8941P  
DIP8  
plastic dual in-line package; 8 leads (300 mil)  
6. Block diagram  
V
d
CC  
1
TDA8941P  
7
OUT  
5
3
IN−  
IN+  
2
OUT+  
V
CC  
4
6
STANDBY/  
MUTE LOGIC 20  
MODE  
SVR  
kΩ  
SHORT CIRCUIT  
AND  
TEMPERATURE  
PROTECTION  
20  
kΩ  
8
MGL579  
GND  
Fig 1. Block diagram.  
9397 750 06864  
© Philips Electronics N.V. 2000. All rights reserved.  
Product specification  
Rev. 02 — 7 April 2000  
2 of 21  
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
7. Pinning information  
7.1 Pinning  
handbook, halfpage  
V
GND  
OUT−  
SVR  
IN−  
1
2
3
4
8
7
6
5
CC  
OUT+  
IN+  
TDA8941P  
MODE  
MGR892  
Fig 2. Pin configuration.  
7.2 Pin description  
Table 3: Pin description  
Symbol  
VCC  
Pin  
1
Description  
supply voltage  
OUT+  
IN+  
2
positive loudspeaker terminal  
positive input  
3
MODE  
IN−  
4
mode selection input (standby, mute, operating)  
negative input  
5
SVR  
6
half supply voltage decoupling (ripple rejection)  
negative loudspeaker terminal  
ground  
OUT−  
GND  
7
8
8. Functional description  
The TDA8941P is a mono BTL audio power amplifier capable of delivering 1.5 W  
output power to an 16 load at THD = 10%, using a 9 V power supply. The voltage  
gain is fixed at 32 dB.  
With the three-level MODE input the device can be switched from ‘standby’ to ‘mute’  
and to ‘operating’ mode.  
The TDA8941P outputs are protected by an internal thermal shutdown protection  
mechanism and a short-circuit protection.  
8.1 Input configuration  
The TDA8941P inputs can be driven symmetrical (floating) as well as asymmetrical.  
In the asymmetrical mode one input pin is connected via a capacitor to the signal  
ground which should be as close as possible to the SVR (electrolytic) capacitor  
ground. Note that the DC level of the input pins is half of the supply voltage VCC, so  
coupling capacitors for both pins are necessary.  
9397 750 06864  
© Philips Electronics N.V. 2000. All rights reserved.  
Product specification  
Rev. 02 — 7 April 2000  
3 of 21  
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
The input cut-off frequency is:  
1
f i(cut off )  
=
(1)  
(2)  
----------------------------  
2π(Ri × Ci)  
For Ri = 45 kand Ci = 220 nF:  
1
f i(cut off )  
=
= 16 Hz  
----------------------------------------------------------------  
2π(45 × 103 × 220 × 109  
)
As shown in Equation 1 and 2, large capacitor values for the inputs are not  
necessary; so the switch-on delay during charging of the input capacitors, can be  
minimized. This results in a good low frequency response and good switch-on  
behaviour.  
Remark: To prevent HF oscillations do not leave the inputs open, connect a capacitor  
of at least 1.5 nF across the input pins close to the device.  
8.2 Power amplifier  
The power amplifier is a Bridge Tied Load (BTL) amplifier with an all-NPN output  
stage, capable of delivering a peak output current of 2 A.  
The BTL principle offers the following advantages:  
Lower peak value of the supply current  
The ripple frequency on the supply voltage is twice the signal frequency  
No expensive DC-blocking capacitor  
Good low frequency performance.  
8.2.1 Output power measurement  
The output power as a function of the supply voltage is measured on the output pins  
at THD = 10%; see Figure 8. The maximum output power is limited by the maximum  
power dissipation in the plastic package.  
8.2.2 Headroom  
Typical CD music requires at least 12 dB (factor 15.85) dynamic headroom –  
compared to the average power output – for transferring the loudest parts without  
distortion. At VCC = 9 V, RL = 16 and Po = 1 W at THD = 1% (see Figure 6), the  
Average Listening Level (ALL) – music power – without any distortion yields:  
Po(ALL) = 1 W/15.85 = 63 mW.  
The power dissipation can be derived from Figure 11 on page 10 for 0 dB  
respectively 12 dB headroom.  
9397 750 06864  
© Philips Electronics N.V. 2000. All rights reserved.  
Product specification  
Rev. 02 — 7 April 2000  
4 of 21  
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
Table 4: Power rating as function of headroom  
Headroom  
Power output (THD = 1%)  
Po = 1 W  
Power dissipation (P)  
1.15 W  
0 dB  
12 dB  
Po(ALL) = 63 mW  
0.6 W  
For the average listening level a power dissipation of 0.6 W can be used for  
calculation of the maximum ambient temperature.  
8.3 Mode selection  
The TDA8941P has three functional modes, which can be selected by applying the  
proper DC voltage to pin MODE. See Figure 4 and 5 for the respective DC levels,  
which depend on the supply voltage level. The MODE pin can be driven by a 3-state  
logic output stage: e.g. a microcontroller with additional components for DC-level  
shifting.  
Standby — In this mode the current consumption is very low and the outputs are  
floating. The device is in standby mode when (VCC 0.5 V) < VMODE < VCC, or when  
the MODE pin is left floating (high impedance). The power consumption of the  
TDA8941P will be reduced to <0.18 mW.  
Mute — In this mode the amplifier is DC-biased but not operational (no audio output);  
the DC level of the input and output pins remain on half the supply voltage. This  
allows the input coupling and Supply Voltage Ripple Rejection (SVRR) capacitors to  
be charged to avoid pop-noise. The device is in mute mode when  
3 V < VMODE < (VCC 1.5 V).  
Operating — In this mode the amplifier is operating normally. The operating mode is  
activated at VMODE < 0.5 V.  
8.3.1 Switch-on and switch-off  
To avoid audible plops during supply voltage switch-on or switch-off, the device is set  
to standby mode before the supply voltage is applied (switch-on) or removed  
(switch-off).  
The switch-on and switch-off time can be influenced by an RC-circuit on the MODE  
pin. Rapid on/off switching of the device or the MODE pin may cause ‘click- and  
pop-noise’. This can be prevented by proper timing of the RC-circuit on the MODE  
pin.  
8.4 Supply Voltage Ripple Rejection (SVRR)  
The SVRR is measured with an electrolytic capacitor of 10 µF on pin SVR at a  
bandwidth of 10 Hz to 80 kHz. Figure 12 on page 11 illustrates the SVRR as function  
of the frequency. A larger capacitor value on the SVR pin improves the ripple rejection  
behaviour at the lower frequencies.  
9397 750 06864  
© Philips Electronics N.V. 2000. All rights reserved.  
Product specification  
Rev. 02 — 7 April 2000  
5 of 21  
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
8.5 Built-in protection circuits  
The TDA8941P contains two types of protection circuits, i.e. short-circuit and thermal  
shutdown.  
8.5.1 Short-circuit protection  
Short-circuit to ground or supply line — This is detected by a so-called ‘missing  
current’ detection circuit which measures the current in the positive supply line and  
the current in the ground line. A difference between both currents larger than 0.4 A,  
switches the power stage to standby mode (high impedance).  
Short-circuit across the load — This is detected by an absolute-current  
measurement. An absolute-current larger than 2 A, switches the power stage to  
standby mode (high impedance).  
8.5.2 Thermal shutdown protection  
The junction temperature is measured by a temperature sensor; at a junction  
temperature of approximately 150 °C this detection circuit switches the power stage  
to standby mode (high impedance).  
9. Limiting values  
Table 5: Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
no signal  
Min  
0.3  
0.3  
0.3  
-
Max  
+25  
+18  
Unit  
V
VCC  
supply voltage  
operating  
V
VI  
input voltage  
VCC + 0.3 V  
IORM  
Tstg  
Tamb  
repetitive peak output current  
storage temperature  
2
A
non-operating  
55  
40  
+150  
+85  
°C  
°C  
operating ambient  
temperature  
Ptot  
total power dissipation  
-
-
1.25  
12  
W
V
VCC(sc)  
supply voltage to guarantee  
short-circuit protection  
10. Thermal characteristics  
Table 6: Thermal characteristics  
Symbol  
Parameter  
Conditions  
Value Unit  
100 K/W  
Rth(j-a)  
thermal resistance from junction to ambient  
in free air  
9397 750 06864  
© Philips Electronics N.V. 2000. All rights reserved.  
Product specification  
Rev. 02 — 7 April 2000  
6 of 21  
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
11. Static characteristics  
Table 7: Static characteristics  
VCC = 9 V; Tamb = 25 °C; RL = 16 ; VMODE = 0 V; Vi = 0 V; measured in test circuit Figure 13; unless otherwise specified.  
Symbol  
VCC  
Iq  
Parameter  
Conditions  
operating  
RL = ∞  
Min  
Typ  
Max  
18  
Unit  
V
supply voltage  
6
-
9
[1]  
[2]  
quiescent supply current  
standby supply current  
DC output voltage  
14  
20  
mA  
µA  
V
Istb  
VMODE = VCC  
-
-
10  
VO  
-
4.5  
-
[3]  
VOUT  
differential output voltage offset  
mode selection input voltage  
-
-
-
-
-
-
200  
0.5  
mV  
V
VMODE  
operating mode  
mute mode  
0
3
VCC 1.5  
V
standby mode  
0 < VMODE < VCC  
V
CC 0.5  
VCC  
20  
V
IMODE  
mode selection input current  
-
µA  
[1] With a load connected at the outputs the quiescent current will increase, the maximum of this increase being equal to the differential  
output voltage offset (∆VOUT) divided by the load resistance (RL).  
[2] The DC output voltage with respect to ground is approximately 0.5VCC  
.
[3] VOUT = | VOUT+ VOUT|.  
MGU023  
MGU022  
20  
30  
handbook, halfpage  
handbook, halfpage  
I
I
q
q
(mA)  
25  
(mA)  
16  
V
= 11 V  
9 V  
CC  
20  
15  
10  
5
12  
8
4
0
0
0
0
2
4
6
8
10  
12  
(V)  
4
8
12  
16  
V
20  
(V)  
V
MODE  
CC  
Fig 3. Quiescent supply current as function of supply  
voltage.  
Fig 4. Quiescent supply current as function of mode  
voltage.  
9397 750 06864  
© Philips Electronics N.V. 2000. All rights reserved.  
Product specification  
Rev. 02 — 7 April 2000  
7 of 21  
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
12. Dynamic characteristics  
Table 8: Dynamic characteristics  
VCC = 9 V; Tamb = 25 °C; RL = 16 ; f = 1 kHz; VMODE = 0 V; measured in test circuit Figure 13; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
THD = 10%  
THD = 0.5%  
Po = 0.5 W  
Min  
1.2  
0.8  
-
Typ  
1.5  
1
Max  
-
Unit  
W
Po  
output power  
-
W
THD  
Gv  
total harmonic distortion  
voltage gain  
0.03  
32  
0.3  
33  
110  
120  
-
%
31  
70  
-
dB  
kΩ  
µV  
dB  
dB  
Zi(dif)  
Vn(o)  
SVRR  
differential input impedance  
noise output voltage  
90  
[1]  
[2]  
[2]  
90  
supply voltage ripple rejection  
fripple = 1 kHz  
50  
-
65  
fripple = 100 Hz  
to 20 kHz  
60  
-
[3]  
Vo(mute)  
output voltage  
mute mode  
-
-
50  
µV  
[1] The noise output voltage is measured at the output in a frequency range from 20 Hz to 20 kHz (unweighted), with a source impedance  
RS = 0 at the input.  
[2] Supply voltage ripple rejection is measured at the output, with a source impedance RS = 0 at the input. The ripple voltage is a sine  
wave with a frequency fripple and an amplitude of 700 mV (RMS), which is applied to the positive supply rail.  
[3] Output voltage in mute mode is measured with an input voltage of 1 V (RMS) in a bandwidth of 20 kHz, so including noise.  
MGU025  
10  
V
o
(V)  
1
1  
10  
2  
10  
3  
10  
4  
10  
V
= 11 V  
9 V  
CC  
5  
10  
0
2
4
6
8
10  
12  
V
(V)  
MODE  
Fig 5. Output voltage as function of mode voltage.  
9397 750 06864  
© Philips Electronics N.V. 2000. All rights reserved.  
Product specification  
Rev. 02 — 7 April 2000  
8 of 21  
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
MGU018  
MGU019  
2
2
10  
10  
handbook, halfpage  
handbook, halfpage  
THD  
(%)  
THD  
(%)  
10  
10  
1
1
(1)  
(1)  
(2)  
1  
1  
10  
10  
(2)  
2  
2  
10  
10  
2  
1  
2  
1  
10  
10  
1
10  
10  
10  
1
10  
P
(W)  
P (W)  
o
o
a. VCC = 9 V; RL = 16 ; f = 1 kHz.  
b. VCC = 11 V; RL = 25 ; f = 1 kHz.  
(1) Measured on the standard printed-circuit board without an additional heatsink (see Figure 14). These curves Influence of  
thermal feedback caused by the high power dissipation in combination with the high thermal resistance of the plastic  
package.  
(2) Measured with a small heatsink on top of the plastic package body; Rth(h-a) = 30 K/W.  
Fig 6. Total harmonic distortion as function of output power.  
MGU021  
MGU020  
10  
10  
handbook, halfpage  
handbook, halfpage  
THD  
(%)  
THD  
(%)  
1
1
(1)  
(2)  
(1)  
(2)  
1  
1  
10  
10  
2  
2  
10  
10  
2
3
4
5
2
3
4
5
10  
10  
10  
10  
10  
10  
10  
10  
10  
10  
f (Hz)  
f (Hz)  
a. VCC = 9 V; RL = 16 ; Po = 0.1 W.  
b. VCC = 9 V; RL = 16 ; Po = 0.5 W.  
No bandpass filter applied.  
(1) Measured on the standard printed-circuit board without an additional heatsink (see Figure 14). These curves Influence of  
thermal feedback caused by the high power dissipation in combination with the high thermal resistance of the plastic  
package.  
(2) Measured with a small heatsink on top of the plastic package body; Rth(h-a) = 30 K/W.  
Fig 7. Total harmonic distortion as function of frequency.  
9397 750 06864  
© Philips Electronics N.V. 2000. All rights reserved.  
Product specification  
Rev. 02 — 7 April 2000  
9 of 21  
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
MGU026  
MGU027  
3
2
handbook, halfpage  
handbook, halfpage  
P
o
P
tot  
(W)  
(W)  
2.5  
1.5  
R
= 16 Ω  
25 Ω  
L
2
R
= 16 Ω  
25 Ω  
L
1
1.5  
1
0.5  
0
0.5  
0
0
0
2
4
6
8
10  
12  
V
14  
(V)  
2
4
6
8
10  
12  
14  
(V)  
V
CC  
CC  
THD = 10%; f = 1 kHz.  
THD = 1%.  
Fig 8. Output power as function of supply voltage.  
Fig 9. Total power dissipation as function of supply  
voltage.  
MGU029  
MGU028  
100  
2
handbookη, halfpage  
handbook, halfpage  
P
(%)  
(W)  
80  
1.5  
(1)  
(1)  
(2)  
60  
(2)  
1
40  
0.5  
0
20  
0
0
0.5  
1
1.5  
2
2.5  
(W)  
0
0.5  
1
1.5  
2
2.5  
P
P (W)  
o
o
(1) VCC = 9 V.  
(2) VCC = 11 V.  
(1) VCC = 9 V; RL = 16 .  
(2) VCC = 11 V; RL = 25 V.  
Fig 10. Efficiency as function of output power.  
Fig 11. Power dissipation as function of output power.  
9397 750 06864  
© Philips Electronics N.V. 2000. All rights reserved.  
Product specification  
Rev. 02 — 7 April 2000  
10 of 21  
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
MGU024  
0
SVRR  
(dB)  
20  
B
40  
60  
A
80  
2
3
4
5
10  
10  
10  
10  
10  
f (Hz)  
VCC = 9 V; RS = 0 ; Vripple = 700 mV (RMS); no bandpass filter applied.  
Curve A: inputs short-circuited  
Curve B: inputs short-circuited and connected to ground (asymmetrical application)  
Fig 12. Supply voltage ripple rejection as function of frequency.  
9397 750 06864  
© Philips Electronics N.V. 2000. All rights reserved.  
Product specification  
Rev. 02 — 7 April 2000  
11 of 21  
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
13. Internal circuitry  
Table 9: Internal circuitry  
Pin  
Symbol  
Equivalent circuit  
3 and 5  
IN+ and IN−  
V
CC  
V
V
CC  
CC  
1.5 kΩ  
45 kΩ  
1.5 kΩ  
45 kΩ  
3
5
1/2 V  
CC  
(SVR)  
MGU082  
7 and 2  
OUTand OUT+  
100 Ω  
2, 7  
40 Ω  
1/2 V  
CC  
MGU083  
4
MODE  
V
CC  
V
CC  
1 kΩ  
1 kΩ  
20 kΩ  
V
CC  
4
OFF  
MUTE  
HIGH  
HIGH  
MGU073  
6
SVR  
V
CC  
Standby  
20 kΩ  
20 kΩ  
6
MGU084  
9397 750 06864  
© Philips Electronics N.V. 2000. All rights reserved.  
Product specification  
Rev. 02 — 7 April 2000  
12 of 21  
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
14. Application information  
+V  
CC  
1000 µF  
100 nF  
220 nF  
R
s
1
Symmetrical  
input  
30 kΩ  
C
i
IN−  
5
3
+
7
2
OUT−  
R
220 nF  
220 nF  
i
45 kΩ  
1/2 V  
+
R
s
1.5  
nF  
+
R
L
16 Ω  
CC  
1/2 V  
CC  
R
Asymmetrical  
input  
i
+
C
i
OUT+  
45 kΩ  
IN+  
220 nF  
signal  
GND  
30 kΩ  
V
TDA8941P  
CC  
V
CC  
R
MODE  
SVR  
STANDBY/  
MUTE LOGIC  
4
6
20 kΩ  
R
SHORT CIRCUIT  
AND  
TEMPERATURE  
PROTECTION  
C1  
1/2 V  
CC  
MICROCONTROLLER  
C2  
signal  
GND  
10  
µF  
20 kΩ  
C1 C2  
MODE  
8
Standby  
Mute  
On  
0
0
1
0
1
0
GND  
MGU016  
Fig 13. Application diagram.  
14.1 Printed-circuit board (PCB)  
14.1.1 Layout and grounding  
For a high system performance level certain grounding techniques are essential.  
The input reference grounds have to be tied with their respective source grounds and  
must have separate tracks from the power ground tracks; this will prevent the large  
(output) signal currents from interfering with the small AC input signals.  
The small-signal ground tracks should be physically located as far as possible from  
the power ground tracks. Supply and output tracks should be as wide as possible for  
delivering maximum output power.  
9397 750 06864  
© Philips Electronics N.V. 2000. All rights reserved.  
Product specification  
Rev. 02 — 7 April 2000  
13 of 21  
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
54 mm  
i
56 mm  
OUT+  
ON  
MUTE  
OUT−  
+
10 µF  
1
IN−  
IN+  
220 nF  
1.5 nF  
V
CC  
100 nF  
1000 µF  
GND  
MGU017  
Fig 14. Printed-circuit board layout (single-sided); components view.  
14.1.2 Power supply decoupling  
Proper supply bypassing is critical for low-noise performance and high supply voltage  
ripple rejection. The respective capacitor locations should be as close as possible to  
the device and grounded to the power ground. Proper power supply decoupling also  
prevents oscillations.  
For suppressing higher frequency transients (spikes) on the supply line a capacitor  
with low ESR – typical 100 nF – has to be placed as close as possible to the device.  
For suppressing lower frequency noise and ripple signals, a large electrolytic  
capacitor – e.g. 1000 µF or greater – must be placed close to the device.  
The bypass capacitor on the SVR pin reduces the noise and ripple on the midrail  
voltage. For good THD and noise performance a low ESR capacitor is recommended.  
9397 750 06864  
© Philips Electronics N.V. 2000. All rights reserved.  
Product specification  
Rev. 02 — 7 April 2000  
14 of 21  
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
14.2 Thermal behaviour and Tamb(max) calculation  
The measured maximum thermal resistance of the IC package, Rth(j-a) is 100 K/W.  
A calculation for the maximum ambient temperature can be made, with the following  
parameters:  
VCC = 9 V and RL = 16 Ω  
Tj(max) = 150 °C.  
Rth(tot) is the total thermal resistance between the junction and the ambient.  
At VCC = 9 V and RL = 16 the measured worst-case sine-wave dissipation is  
1.15 W; see Figure 11. For Tj(max) = 150 °C the maximum ambient temperature is:  
Tamb(max) = 150 – 1.15 × 100 = 35 °C  
The calculation above is for an application at worst-case (stereo) sine-wave output  
signals. In practice music signals will be applied, which decreases the maximum  
power dissipation to approximately half of the sine-wave power dissipation (see  
Section 8.2.2). For Tj(max) = 150 °C the maximum ambient temperature is:  
Tamb(max) = 150 – 0.6 × 100 = 90 °C  
To increase the lifetime of the IC, Tj(max) should be reduced to 125 °C. This results in:  
Tamb(max) = 125 – 0.6 × 100 = 65 °C  
15. Test information  
15.1 Quality information  
The General Quality Specification for Integrated Circuits, SNW-FQ-611D is  
applicable.  
15.2 Test conditions  
Tamb = 25 °C; VCC = 9 V; f = 1 kHz; RL = 16 ; audio pass band 22 Hz to 22 kHz;  
unless otherwise specified.  
Remark: In the graphs as function of frequency no bandpass filter was applied;  
see Figure 7 and 12.  
9397 750 06864  
© Philips Electronics N.V. 2000. All rights reserved.  
Product specification  
Rev. 02 — 7 April 2000  
15 of 21  
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
16. Package outline  
DIP8: plastic dual in-line package; 8 leads (300 mil)  
SOT97-1  
D
M
E
A
2
A
A
1
L
c
w M  
Z
b
1
e
(e )  
1
M
H
b
b
2
8
5
pin 1 index  
E
1
4
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
A
A
A
2
(1)  
(1)  
Z
1
w
UNIT  
mm  
b
b
b
c
D
E
e
e
L
M
M
H
1
2
1
E
max.  
min.  
max.  
max.  
1.73  
1.14  
0.53  
0.38  
1.07  
0.89  
0.36  
0.23  
9.8  
9.2  
6.48  
6.20  
3.60  
3.05  
8.25  
7.80  
10.0  
8.3  
4.2  
0.51  
3.2  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
1.15  
0.068 0.021 0.042 0.014  
0.045 0.015 0.035 0.009  
0.39  
0.36  
0.26  
0.24  
0.14  
0.12  
0.32  
0.31  
0.39  
0.33  
inches  
0.17  
0.020  
0.13  
0.045  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-02-04  
99-12-27  
SOT97-1  
050G01  
MO-001  
SC-504-8  
Fig 15. DIP8 package outline.  
9397 750 06864  
© Philips Electronics N.V. 2000. All rights reserved.  
Product specification  
Rev. 02 — 7 April 2000  
16 of 21  
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
17. Soldering  
17.1 Introduction to soldering through-hole mount packages  
This text gives a brief insight to wave, dip and manual soldering. A more in-depth  
account of soldering ICs can be found in our Data Handbook IC26; Integrated Circuit  
Packages (document order number 9398 652 90011).  
Wave soldering is the preferred method for mounting of through-hole mount IC  
packages on a printed-circuit board.  
17.2 Soldering by dipping or by solder wave  
The maximum permissible temperature of the solder is 260 °C; solder at this  
temperature must not be in contact with the joints for more than 5 seconds. The total  
contact time of successive solder waves must not exceed 5 seconds.  
The device may be mounted up to the seating plane, but the temperature of the  
plastic body must not exceed the specified maximum storage temperature (Tstg(max)).  
If the printed-circuit board has been pre-heated, forced cooling may be necessary  
immediately after soldering to keep the temperature within the permissible limit.  
17.3 Manual soldering  
Apply the soldering iron (24 V or less) to the lead(s) of the package, either below the  
seating plane or not more than 2 mm above it. If the temperature of the soldering iron  
bit is less than 300 °C it may remain in contact for up to 10 seconds. If the bit  
temperature is between 300 and 400 °C, contact may be up to 5 seconds.  
17.4 Package related soldering information  
Table 10: Suitability of through-hole mount IC packages for dipping and wave soldering  
methods  
Package  
Soldering method  
Dipping  
Wave  
DBS, DIP, HDIP, SDIP, SIL  
suitable  
suitable[1]  
[1] For SDIP packages, the longitudinal axis must be parallel to the transport direction of the  
printed-circuit board.  
9397 750 06864  
© Philips Electronics N.V. 2000. All rights reserved.  
Product specification  
Rev. 02 — 7 April 2000  
17 of 21  
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
18. Revision history  
Table 11: Revision history  
Rev Date  
CPCN Description  
02 20000407  
-
Product specification; second version; supersedes initial version TDA8941P-01 of  
14 April 1999 (9397 750 04876). Modifications:  
Table 1 on page 1:THD: Max value 0.1% changed to 0.3%;  
SVRR: Typ value 65 dB added  
Ordering options removed  
Section 8 “Functional description”:  
Section 8.1 “Input configuration” on page 3 added.  
Section 8.2 “Power amplifier” on page 4: ........, capable of delivering a peak output  
current of 1.5 A changed to 2 A.  
Section 8.2.1 “Output power measurement” on page 4 added  
Section 8.2.2 “Headroom” on page 4 added  
Section 8.3 “Mode selection”:  
Standby mode: VMODE > (VCC 0.5 V) changed to (VCC 0.5 V) < VMODE < VCC; The  
power consumption of the TDA8941P will be reduced to <0.18 mW added.  
Mute mode: the DC level of the input and output pins remain on half the supply  
voltage added;  
2.5 V < VMODE < (VCC 1.5 V) changed to 3 V < VMODE < (VCC 1.5 V)  
Section 8.3.1 “Switch-on and switch-off” on page 5 added.  
Section 8.4 “Supply Voltage Ripple Rejection (SVRR)” on page 5 added  
Section 8.5 “Built-in protection circuits” on page 6 added  
Table 5 on page 6:  
Ptot value added 1.25 W  
VCC(sc) value added 12 V  
Table 7 on page 7: VMODE - mute mode - value Min 2.5 changed to 3 V  
Table 8 on page 8:  
THD: Max value 0.1% changed to 0.3%  
SVRR; Typ values 65 and 60 dB added  
Rsource changed to RS in table and associated table notes  
Table note [2]: .... 100 mV (RMS).... changed to ... 700 mV (RMS)....  
Figure 3 to 12: figures added  
Section 13 “Internal circuitry” on page 12: added  
Figure 13: figure modified  
Section 14.1 “Printed-circuit board (PCB)” on page 13: added  
Figure 14: figure added  
Section 14.2 “Thermal behaviour and Tamb(max) calculation” on page 15: added  
Section 15 “Test information” on page 15: Section 15.1 updated  
Section 15.2 “Test conditions” on page 15: added.  
01 19990414  
-
Preliminary specification; initial version.  
9397 750 06864  
© Philips Electronics N.V. 2000. All rights reserved.  
Product specification  
Rev. 02 — 7 April 2000  
18 of 21  
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
19. Data sheet status  
[1]  
Datasheet status  
Product status Definition  
Development  
Objective specification  
This data sheet contains the design target or goal specifications for product development. Specification may  
change in any manner without notice.  
Preliminary specification Qualification  
This data sheet contains preliminary data, and supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to make changes at any time without notice in order to improve design and  
supply the best possible product.  
Product specification  
Production  
This data sheet contains final specifications. Philips Semiconductors reserves the right to make changes at any  
time without notice in order to improve design and supply the best possible product.  
[1]  
Please consult the most recently issued data sheet before initiating or completing a design.  
20. Definitions  
21. Disclaimers  
Short-form specification The data in  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
a
short-form specification is  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes, without notice, in the products, including circuits, standard  
cells, and/or software, described or contained herein in order to improve  
design and/or performance. Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
licence or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products  
are free from patent, copyright, or mask work right infringement, unless  
otherwise specified.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
9397 750 06864  
© Philips Electronics N.V. 2000 All rights reserved.  
Product specification  
Rev. 02 — 7 April 2000  
19 of 21  
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
Philips Semiconductors - a worldwide company  
Argentina: see South America  
Netherlands: Tel. +31 40 278 2785, Fax. +31 40 278 8399  
New Zealand: Tel. +64 98 49 4160, Fax. +64 98 49 7811  
Norway: Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Philippines: Tel. +63 28 16 6380, Fax. +63 28 17 3474  
Poland: Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Australia: Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
Austria: Tel. +43 160 101, Fax. +43 160 101 1210  
Belarus: Tel. +375 17 220 0733, Fax. +375 17 220 0773  
Belgium: see The Netherlands  
Brazil: see South America  
Bulgaria: Tel. +359 268 9211, Fax. +359 268 9102  
Canada: Tel. +1 800 234 7381  
Romania: see Italy  
Russia: Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
China/Hong Kong: Tel. +852 2 319 7888, Fax. +852 2 319 7700  
Colombia: see South America  
Czech Republic: see Austria  
Slovenia: see Italy  
Denmark: Tel. +45 3 288 2636, Fax. +45 3 157 0044  
Finland: Tel. +358 961 5800, Fax. +358 96 158 0920  
France: Tel. +33 14 099 6161, Fax. +33 14 099 6427  
Germany: Tel. +49 40 23 5360, Fax. +49 402 353 6300  
Hungary: see Austria  
South Africa: Tel. +27 11 471 5401, Fax. +27 11 471 5398  
South America: Tel. +55 11 821 2333, Fax. +55 11 829 1849  
Spain: Tel. +34 33 01 6312, Fax. +34 33 01 4107  
Sweden: Tel. +46 86 32 2000, Fax. +46 86 32 2745  
Switzerland: Tel. +41 14 88 2686, Fax. +41 14 81 7730  
Taiwan: Tel. +886 22 134 2865, Fax. +886 22 134 2874  
Thailand: Tel. +66 27 45 4090, Fax. +66 23 98 0793  
Turkey: Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Ukraine: Tel. +380 44 264 2776, Fax. +380 44 268 0461  
United Kingdom: Tel. +44 208 730 5000, Fax. +44 208 754 8421  
United States: Tel. +1 800 234 7381  
India: Tel. +91 22 493 8541, Fax. +91 22 493 8722  
Indonesia: see Singapore  
Ireland: Tel. +353 17 64 0000, Fax. +353 17 64 0200  
Israel: Tel. +972 36 45 0444, Fax. +972 36 49 1007  
Italy: Tel. +39 039 203 6838, Fax +39 039 203 6800  
Japan: Tel. +81 33 740 5130, Fax. +81 3 3740 5057  
Korea: Tel. +82 27 09 1412, Fax. +82 27 09 1415  
Malaysia: Tel. +60 37 50 5214, Fax. +60 37 57 4880  
Mexico: Tel. +9-5 800 234 7381  
Uruguay: see South America  
Vietnam: see Singapore  
Yugoslavia: Tel. +381 11 3341 299, Fax. +381 11 3342 553  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors,  
International Marketing & Sales Communications,  
Building BE, P.O. Box 218, 5600 MD EINDHOVEN,  
The Netherlands, Fax. +31 40 272 4825  
Internet: http://www.semiconductors.philips.com  
(SCA69)  
9397 750 06864  
© Philips Electronics N.V. 2000. All rights reserved.  
Product specification  
Rev. 02 — 7 April 2000  
20 of 21  
TDA8941P  
1.5 W mono BTL audio amplifier  
Philips Semiconductors  
Contents  
1
2
3
4
5
6
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3  
8
8.1  
8.2  
Functional description . . . . . . . . . . . . . . . . . . . 3  
Input configuration . . . . . . . . . . . . . . . . . . . . . . 3  
Power amplifier. . . . . . . . . . . . . . . . . . . . . . . . . 4  
Output power measurement . . . . . . . . . . . . . . . 4  
Headroom. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Mode selection . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Switch-on and switch-off. . . . . . . . . . . . . . . . . . 5  
Supply Voltage Ripple Rejection (SVRR). . . . . 5  
Built-in protection circuits . . . . . . . . . . . . . . . . . 6  
Short-circuit protection . . . . . . . . . . . . . . . . . . . 6  
Thermal shutdown protection . . . . . . . . . . . . . . 6  
8.2.1  
8.2.2  
8.3  
8.3.1  
8.4  
8.5  
8.5.1  
8.5.2  
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Thermal characteristics. . . . . . . . . . . . . . . . . . . 6  
Static characteristics. . . . . . . . . . . . . . . . . . . . . 7  
Dynamic characteristics . . . . . . . . . . . . . . . . . . 8  
Internal circuitry. . . . . . . . . . . . . . . . . . . . . . . . 12  
10  
11  
12  
13  
14  
Application information. . . . . . . . . . . . . . . . . . 13  
Printed-circuit board (PCB). . . . . . . . . . . . . . . 13  
Layout and grounding. . . . . . . . . . . . . . . . . . . 13  
Power supply decoupling . . . . . . . . . . . . . . . . 14  
Thermal behaviour and Tamb(max) calculation . 15  
14.1  
14.1.1  
14.1.2  
14.2  
15  
15.1  
15.2  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 15  
Quality information . . . . . . . . . . . . . . . . . . . . . 15  
Test conditions . . . . . . . . . . . . . . . . . . . . . . . . 15  
16  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 16  
17  
17.1  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Introduction to soldering through-hole  
mount packages . . . . . . . . . . . . . . . . . . . . . . 17  
Soldering by dipping or by solder wave . . . . . 17  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 17  
Package related soldering information . . . . . . 17  
17.2  
17.3  
17.4  
18  
19  
20  
21  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 18  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 19  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
© Philips Electronics N.V. 2000.  
Printed in The Netherlands  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or  
contract, is believed to be accurate and reliable and may be changed without notice. No  
liability will be accepted by the publisher for any consequence of its use. Publication  
thereof does not convey nor imply any license under patent- or other industrial or  
intellectual property rights.  
Date of release: 7 April 2000  
Document order number: 9397 750 06864  

相关型号:

TDA8941P

1.5 W mono Bridge Tied Load BTL audio amplifier
NXP
NXP

TDA8942

2 x 1.5 W stereo Bridge Tied Load BTL audio amplifier
NXP

TDA8942P

2 x 1.5 W stereo Bridge Tied Load BTL audio amplifier
NXP

TDA8942P/N1,112

IC 1.5 W, 2 CHANNEL, AUDIO AMPLIFIER, PDIP16, 0.300 INCH, PLASTIC, SOT-38-1, MO-001, DIP-16, Audio/Video Amplifier
NXP

TDA8943

6 W mono Bridge Tied Load BTL audio amplifier
NXP

TDA8943SF

6 W mono Bridge Tied Load BTL audio amplifier
NXP
NXP

TDA8944

2 x 7 W stereo Bridge Tied Load BTL audio amplifier
NXP

TDA8944AJ

2 x 7 W BTL audio amplifier with DC gain control
NXP

TDA8944AJ/N2,112

TDA8944AJ - 2 x 7 W BTL audio amplifier with DC gain control ZIP 17-Pin
NXP

TDA8944J

2 x 7 W stereo Bridge Tied Load BTL audio amplifier
NXP