TDA9321 [NXP]

I2C-bus controlled TV input processor; I2C总线控制的TV输入处理器
TDA9321
型号: TDA9321
厂家: NXP    NXP
描述:

I2C-bus controlled TV input processor
I2C总线控制的TV输入处理器

电视
文件: 总44页 (文件大小:252K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA9321H  
I2C-bus controlled TV input  
processor  
1998 Dec 16  
Preliminary specification  
File under Integrated Circuits, IC02  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
FEATURES  
Multistandard Vision IF (VIF) circuit with Phase-Locked  
Loop (PLL) demodulator  
Sound IF (SIF) amplifier with separate input for single  
reference Quasi Split Sound (QSS) mode and separate  
Automatic Gain Control (AGC) circuit  
Horizontal synchronization circuit with switchable time  
constant for the PLL and Macrovision/subtitle gating  
AM demodulator without extra reference circuit  
Switchable group delay correction circuit which can be  
used to compensate the group delay pre-correction of  
the B/G TV standard in multistandard TV receivers  
Horizontal synchronization pulse output or clamping  
pulse input/output  
Vertical count-down circuit  
Several (I2C-bus controlled) switch outputs which can  
Vertical synchronization pulse output  
Two-level sandcastle pulse output  
I2C-bus control of various functions  
Low dissipation.  
be used to switch external circuits such as sound traps,  
etc.  
Flexible source selection circuit with 2 external  
CVBS inputs, 2 Luminance (Y) and Chrominance (C)  
(or additional CVBS) inputs and 2 independently  
switchable outputs  
GENERAL DESCRIPTION  
Comb filter interface with CVBS output and Y/C input  
Integrated chrominance trap circuit  
The TDA9321H (see Fig.1) is an input processor for  
‘High-end’ television receivers. It contains the following  
functions:  
Integrated luminance delay line with adjustable delay  
time  
Multistandard IF amplifier with PLL demodulator  
QSS-IF amplifier and AM sound demodulator  
CVBS and Y/C switch with various inputs and outputs  
Integrated chrominance band-pass filter with switchable  
centre frequency  
Multistandard colour decoder with 4 separate pins for  
crystal connection and automatic search system  
Multistandard colour decoder which can also decode the  
PALplus helper signal  
PALplus helper demodulator  
Integrated baseband delay line (64 µs)  
Possible blanking of the helper signals for PALplus and  
EDTV-2  
Sync processor which generates the horizontal and  
vertical drive pulses for the feature box  
(100 Hz applications) or display processor  
(50 Hz applications).  
Internal baseband delay line  
Two linear RGB inputs with fast blanking; the  
RGB signals are converted to YUV signals before they  
are supplied to the outputs; one of the RGB inputs can  
also be used as YUV input  
The supply voltage for the TDA9321H is 8 V.  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TDA9321H  
QFP64  
plastic quad flat package; 64 leads (lead length 1.95 mm);  
SOT319-2  
body 14 × 20 × 2.8 mm  
1998 Dec 16  
2
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
QUICK REFERENCE DATA  
SYMBOL  
Supply  
PARAMETER  
MIN.  
TYP.  
MAX.  
UNIT  
VP  
IP  
supply voltage (pins VP1 and VP2  
)
7.2  
8.0  
8.8  
V
supply current (pins VP1 and VP2)  
120  
mA  
Input signals  
Vi(VIF)(rms)  
VIF amplifier sensitivity (RMS value)  
SIF amplifier sensitivity (RMS value)  
CVBS or Y input signal (peak-to-peak value)  
35  
µV  
µV  
V
Vi(SIF)(rms)  
30  
Vi(CVBS/Y)(p-p)  
Vi(C)(p-p)  
1.0  
0.3  
chrominance input signal (burst amplitude)  
(peak-to-peak value)  
V
Vi(RGB)(p-p)  
RGB input signal (peak-to-peak value)  
0.7  
V
Output signals  
Vo(VIFO)(p-p)  
demodulated CVBS output signal (peak-to-peak value)  
2.5  
1.0  
V
V
Vo(CVBSPIP)(p-p) CVBS output signal for Picture-In-Picture  
(peak-to-peak value)  
Vo(CVBSTXT)(p-p) CVBS output signal for teletext (peak-to-peak value)  
0
2.0  
5
V
Io(TAGC)  
tuner AGC output current  
mA  
mV  
mV  
V
Vo(QSS)(rms)  
Vo(AM)(rms)  
Vo(V)(p-p)  
Vo(U)(p-p)  
Vo(Y)(b-w)  
Vo(hor)  
QSS output signal (RMS value)  
demodulated AM sound output signal (RMS value)  
V output signal (peak-to-peak value)  
U output signal (peak-to-peak value)  
Y output signal (black-to-white value)  
horizontal pulse output  
100  
500  
1.05  
1.33  
1.0  
5
V
V
V
Vo(ver)  
vertical pulse output  
5
V
Vo(sc)(p-p)  
subcarrier output signal (peak-to-peak value)  
250  
mV  
1998 Dec 16  
3
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
  g
DEC  
4
DEC  
1
V
V
DEC  
DIG  
DEC  
35  
VIF1  
2
VIF2  
3
VIFPLL  
6
SIF1 SIF2  
63 64  
QSS/AM  
5
PH1LF HA/CLP SCO  
VA  
61  
SCL  
46  
SDA  
47  
RI1 GI1 BI1 RGB1  
36 37 38 39  
VIF  
SIF  
P1 P2  
11 45 33  
BG  
58  
60  
59  
41 RI2  
VIFVCO1  
VIFVCO2  
7
8
VIF AMPLIFIER  
AND PLL  
DEMODULATOR  
AGC/AFC  
2
42 GI2  
43 BI2  
PULSE  
GENERATOR  
VERTICAL  
DIVIDER  
I C-BUS  
SIF AMPLIFIER  
AGC  
SUPPLY  
TRANSCEIVER  
RGB MATRIX  
TAGC 62  
40 RGB2  
Y-delay  
AFC  
TOP  
Y
U
V
YO  
UO  
VO  
49  
50  
51  
TDA9321H  
VERTICAL  
SYNC  
SEPARATOR  
VCO AND  
HORIZONTAL  
PLL  
VIFO 10  
Y
SOUND  
TRAP  
VIDEO AMPLIFIER  
MUTE  
QSS MIXER  
AM DEMODULATOR  
Y/U/V  
Y-DELAY  
SWITCH  
U
IDENT  
mute  
V
Y
12  
13  
GDI  
GROUP DELAY  
CORRECTION  
SYNC  
IN-LOCK  
DETECTOR  
VIDEO  
IDENTIFICATION  
SYNC  
SEPARATOR  
Y-SWITCH  
AND TRAPS  
BASEBAND  
DELAY LINE  
GDO  
switch control  
Y/CVBS  
helper  
CVBS  
R-Y  
B-Y  
int 14  
AV1 15  
CVBS1 16  
AV2 17  
AUTOMATIC  
CHROMINANCE  
CONTROL  
CLOCHE  
FILTER  
FILTER  
TUNING  
SECAM  
DECODER  
PAL(NTSC)/  
SECAM SWITCH  
f
sc  
CVBS2 18  
SW0 19  
DEC  
53  
SEC  
hue  
VIDEO SWITCHES  
AND  
CONTROL  
CVBS/Y3 20  
C3 21  
SW1 22  
PAL/NTSC  
PLL  
HUE CONTROL  
Y/C  
DETECTOR  
BANDPASS  
FILTER  
SYSTEM  
IDENTIFICATION  
PAL/NTSC  
DEMODULATOR  
CVBS/Y4 23  
C4 24  
AS 48  
34  
32  
26  
25  
27  
28  
29  
9
31  
44  
30  
54 55 56 57 52  
LFBP  
MGR473  
CVBSTXT CVBSPIP CVBSCF SYS1 SYS2 YCF CCF  
GND1 GND2 GND3  
REFO  
subcarrier  
COMB FILTER  
Fig.1 Block diagram.  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
PINNING  
SYMBOL PIN  
DECDIG  
CVBSTXT 34 CVBS output for teletext  
DESCRIPTION  
SYMBOL PIN  
DESCRIPTION  
SIF AGC decoupling  
33 digital supply decoupling  
DECSIF  
VIF1  
1
2
3
4
5
6
7
8
9
VIF input 1  
DECBG  
RI1  
35 band gap decoupling  
36 red input 1  
VIF2  
VIF input 2  
DECVIF  
QSS/AM  
VIFPLL  
VIFVCO1  
VIFVCO2  
GND1  
VIFO  
VIF AGC decoupling  
combined QSS and AM sound output  
VIF PLL filter  
GI1  
37 green input 1  
BI1  
38 blue input 1  
RGB1  
RGB2  
RI2  
39 RGB insertion input 1  
40 RGB insertion input 2  
41 red input 2  
VIF VCO tuned circuit 1  
VIF VCO tuned circuit 2  
main supply ground  
GI2  
42 green input 2  
10 VIF output  
BI2  
43 blue input 2  
VP1  
11 positive supply 1 (+8 V)  
12 group delay correction input  
13 group delay correction output  
14 internal CVBS input  
15 AV input 1  
GND3  
VP2  
44 ground 3  
GDI  
45 positive supply 2 (+8 V)  
46 serial clock input (I2C-bus)  
47 serial data input/output (I2C-bus)  
48 address select input (I2C-bus)  
49 luminance output  
GDO  
SCL  
CVBSint  
AV1  
SDA  
AS  
CVBS1  
AV2  
16 CVBS input 1  
YO  
17 AV input 2  
UO  
50 U-signal output  
CVBS2  
SW0  
18 CVBS input 2  
19 switch output bit 0 (I2C-bus)  
VO  
51 V-signal output  
LFBP  
DECSEC  
XTALA  
XTALB  
XTALC  
XTALD  
PH1LF  
SCO  
HA/CLP  
52 loop filter burst phase detector  
53 SECAM PLL decoupling  
54 crystal A (4.433619 MHz)  
55 crystal B (3.582056 MHz)  
56 crystal C (3.575611 MHz)  
57 crystal D (3.579545 MHz)  
58 phase 1 loop filter  
59 sandcastle pulse output  
CVBS/Y3 20 CVBS or luminance input 3  
C3  
21 chrominance input 3  
SW1  
22 switch output bit 1 (I2C-bus)  
CVBS/Y4 23 CVBS or luminance input 4  
C4  
24 chrominance input 4  
SYS1  
CVBSCF  
SYS2  
YCF  
25 system output 1 for comb filter  
26 CVBS output for comb filter  
27 system output 2 for comb filter  
28 luminance input from comb filter  
29 chrominance input from comb filter  
30 reference output (subcarrier)  
31 digital supply ground  
60 horizontal pulse output or clamp pulse  
input/output  
CCF  
VA  
61 vertical pulse output  
62 tuner AGC output  
63 SIF input 1  
REFO  
GND2  
TAGC  
SIF1  
SIF2  
CVBSPIP 32 CVBS output for Picture-In-Picture  
64 SIF input 2  
1998 Dec 16  
5
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
DEC  
SIF  
1
2
3
4
5
6
7
8
9
51 VO  
50 UO  
49 YO  
48 AS  
47 SDA  
46 SCL  
VIF1  
VIF2  
DEC  
VIF  
QSS/AM  
VIFPLL  
VIFVCO1  
VIFVCO2  
GND1  
V
45  
44 GND3  
BI2  
P2  
43  
42 GI2  
RI2  
VIFO 10  
TDA9321H  
V
11  
41  
P1  
GDI 12  
40 RGB2  
39 RGB1  
38 BI1  
GDO 13  
CVBS  
14  
int  
AV1 15  
CVBS1 16  
AV2 17  
37 GI1  
36 RI1  
DEC  
35  
34 CVBSTXT  
DEC  
BG  
CVBS2 18  
SW0 19  
33  
DIG  
MGR474  
Fig.2 Pin configuration.  
6
1998 Dec 16  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
The input of the ident circuit is connected to pin 14  
FUNCTIONAL DESCRIPTION  
Vision IF amplifier  
(see Fig.3). This has the advantage that the ident circuit  
can also be made operative when a scrambled signal is  
received (descrambler connected between pins 10  
and 14). A second advantage is that the ident circuit can  
be used when the VIF amplifier is not used (e.g. with  
built-in satellite tuners). The video ident circuit can also be  
used to identify the selected CBVS or Y/C signal.  
The switching between the 2 modes can be realized with  
bit VIM.  
The VIF amplifier contains 3 AC-coupled control stages  
with a total gain control range which is higher than 66 dB.  
The sensitivity of the circuit is comparable with that of  
modern IF-ICs.  
The video signal is demodulated by a PLL carrier  
regenerator. This circuit contains a frequency detector and  
a phase detector. During acquisition the frequency  
detector will tune the VCO to the correct frequency.  
The initial adjustment of the oscillator is realized via the  
I2C-bus. The switching between SECAM L and L’ can also  
be realized via the I2C-bus. After lock-in the phase  
detector controls the VCO so that a stable phase  
relationship between the VCO and the input signal is  
achieved. The VCO operates at twice the IF frequency.  
The reference signal for the demodulator is obtained by  
means of a frequency divider circuit. To get a good  
performance for phase modulated carrier signals the  
control speed of the PLL can be increased by bit FFI.  
The TDA9321H contains a group delay correction circuit  
which can be switched between the BG and a flat group  
delay response characteristic. This has the advantage that  
in multistandard receivers no compromise has to be made  
for the choice of the SAW filter. Both the input and output  
of the group delay correction circuit are externally  
available so that the sound trap can be connected  
between the VIF output and the group delay correction  
input. The output signal of the correction circuit can be  
supplied to the internal video processing circuit and to the  
external SCART plug.  
The IC has several (I2C-bus controlled) output ports which  
can be used to switch sound traps or other external  
components.  
The AFC output is obtained by using the VCO control  
voltage of the PLL and can be read via the I2C-bus.  
For fast search tuning systems the window of the AFC can  
be increased with a factor 3. The setting is realized with  
bit AFW.  
When the VIF amplifier is not used the complete VIF  
amplifier can be switched off with bit IFO.  
The AGC detector operates on top-sync and  
Sound circuit  
top-white-level. The demodulation polarity is switched via  
the I2C-bus. The AGC detector time constant capacitor is  
connected externally; this is mainly because of the  
flexibility of the application. The time constant of the AGC  
system during positive modulation is rather long, this is to  
avoid visible variations of the signal amplitude. To improve  
the speed of the AGC system a circuit has been included  
which detects whether the AGC detector is activated every  
frame period. When, during 3 field periods, no action is  
detected the speed of the system is increased. For signals  
without peak white information the system switches  
automatically to a gated black level AGC. Because a black  
level clamp pulse is required for this mode of operation the  
circuit will only switch to black level AGC in the internal  
mode.  
The SIF amplifier is similar to the VIF amplifier and has a  
gain control range of approximately 66 dB. The AGC  
circuit is related to the SIF carrier levels (average level of  
AM or FM carriers) and ensures a constant signal  
amplitude to the AM demodulator and the QSS mixer.  
The single reference QSS mixer is realized by a multiplier.  
In this multiplier the SIF signal is converted to the  
intercarrier frequency by mixing it with the regenerated  
picture carrier from the VCO. The mixer output signal is  
supplied to the output via a high-pass filter for attenuation  
of the residual video signals. With this system a high  
performance hi-fi stereo sound processing can be  
achieved.  
The AM sound demodulator is realized by a multiplier.  
The modulated SIF signal is multiplied in phase with the  
limited SIF signal. The demodulator output signal is  
supplied to the output via a low-pass filter for attenuation  
of the carrier harmonics.  
The circuits contain a video identification (ident) circuit  
which is independent of the synchronization circuit.  
Therefore search tuning is possible when the display  
section of the receiver is used as a monitor. However, this  
ident circuit cannot be made as sensitive as the slower  
sync ident circuit (bit SL). It is recommended to use both  
ident outputs to obtain a reliable search system. The ident  
output is supplied to the tuning system via the I2C-bus.  
1998 Dec 16  
7
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
The luminance output signal which is derived from the  
incoming CVBS or Y/C signal can be varied in amplitude  
by means of a separate gain setting control via the I2C-bus  
control bits GAI1 and GAI0. The gain variation which can  
be realized with these bits is 1 to +2 dB.  
Video switches  
The circuit has 3 CVBS inputs (1 internal and 2 externals)  
and 2 Y/C inputs. The Y/C inputs can also be used as  
additional CVBS inputs. The switch configuration is given  
in Fig.3. The various sources can be selected via the  
I2C-bus.  
Colour decoder  
The circuit can be set in a mode in which it automatically  
detects whether a CVBS or a Y/C signal is supplied to the  
Y/C inputs. In this mode the TV-standard identification first  
takes place on the added Y/CVBS and the C input signal.  
Then both chrominance input signal amplitudes are  
checked once and the input signal with the highest burst  
signal amplitude is selected. The result of the detection  
can be read via the I2C-bus.  
The colour decoder can decode PAL, NTSC and SECAM  
signals. The PAL/NTSC decoder contains an  
alignment-free crystal oscillator with 4 separate pins for  
crystal connection, a killer circuit and two colour difference  
demodulators. The 90° phase shift for the reference signal  
is produced internally.  
Because it is possible to connect 4 different crystals to the  
colour decoder, all colour standards can be decoded  
without external switching circuits. Which crystals are  
connected to the decoder must be indicated via the  
I2C-bus. The crystal connection pins which are not used  
must be left open-circuit.  
The IC has 2 inputs (AV1 and AV2) which can be used to  
read the status levels of pin 8 of the SCART plug.  
The information is available in the output status byte 02 in  
bits D0 to D3.  
The 3 outputs of the video switches (CVBSCF, CVBSTXT  
and CVBSPIP) can be independently switched to the  
various input signals. The names are just arbitrary and it is,  
for instance, possible to use the CVBSCF signal to drive  
the comb filter and the teletext decoder in parallel and to  
supply the CVBSTXT signal to the SCART plug (via an  
emitter follower).  
The horizontal oscillator is calibrated by means of the  
crystal frequency of the colour PLL. For a reliable  
calibration it is very important that the crystal indication  
bits XA to XD are not corrupted. For this reason  
bits XA to XD can be read in the output bytes so that the  
software can check the I2C-bus transmission.  
The IC contains an Automatic Colour Limiting (ACL) circuit  
which is switchable via the I2C-bus and prevents  
oversaturation occuring when signals with a high  
chrominance-to-burst ratio are received. The ACL circuit is  
designed such that it only reduces the chrominance signal  
and not the burst signal. This has the advantage that the  
colour sensitivity is not affected by this function. The ACL  
function is mainly intended for NTSC signals but it can also  
be used for PAL signals. For SECAM signals the ACL  
function should be switched off.  
For comb filter interfacing the circuit has the CVBSCF  
output, a 3rd Y/C input, a reference signal output REFO  
and 2 control pins (SYS1 and SYS2) which switch the  
comb filter to the standard of the incoming signal (as  
detected by the ident circuit of the colour decoder). When  
a signal is recognized which can be combed and the comb  
filter is enabled by bit ECMB the Y/C signals coming from  
the comb filter are automatically selected. This is indicated  
via bit CMB in output status byte 02 (D5). For signals  
which cannot be combed (such as SECAM or  
black-to-white signals) the Y/C signals coming from the  
comb filter are not selected.  
The SECAM decoder contains an auto-calibrating PLL  
demodulator which has two references: the 4.43 MHz  
subcarrier frequency which is obtained from the crystal  
oscillator which is used to tune the PLL to the desired  
free-running frequency and the band gap reference to  
obtain the correct absolute value of the output signal.  
The VCO of the PLL is calibrated during each vertical  
blanking period, when the IC is in search or SECAM mode.  
Chrominance and luminance processing  
The circuits contain a chrominance band-pass, a SECAM  
cloche filter and a chrominance trap circuit. The filters are  
realized by means of gyrator circuits and they are  
automatically calibrated by comparing the tuning  
frequency with the crystal frequency of the decoder.  
The luminance delay line is also realized by means of  
gyrator circuits. The centre frequency of the chrominance  
band-pass filter is switchable via the I2C-bus so that the  
performance can be optimized for ‘front-end’ signals and  
external CVBS signals.  
The circuit can also decode the PALplus helper signal and  
can insert the various reference signals: set-ups and  
timing signals which are required for the PALplus decoder  
ICs.  
The baseband delay line (TDA4665 function) is integrated.  
1998 Dec 16  
8
This text is here in white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here in  
_white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader.This text is here inThis text is here in  
white to force landscape pages to be rotated correctly when browsing through the pdf in the Acrobat reader. white to force landscape pages to be ...  
ahdnbok,uflapegwidt  
VIM  
VIDEO  
IDENTIFICATION  
ident  
TDA9321H  
to luminance/sync  
processing  
to chrominance  
processing  
+
+
+
14  
16  
18  
20  
21  
23  
24  
28 29  
26  
34  
32  
CVBS  
CVBS1  
CVBS2  
CVBS/Y3  
C3  
CVBS/Y4  
C4  
YCF CCF  
CVBSCF  
CVBSPIP  
int  
CVBSTXT  
MGR475  
Fig.3 Video switches and interfacing of video ident.  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
If required the IC can select the time constant depending  
on the noise content of the incoming video signal.  
RGB switch and matrix  
The IC has 2 RGB inputs with fast switching. The switching  
of the various sourcing is controlled via the I2C-bus and the  
condition of the switch inputs can be read from the I2C-bus  
status bytes. If the RGB signals are not synchronous with  
the selected decoder input signal, an external clamp pulse  
has to be supplied to the HA/CLP input. The IC must be set  
in this mode via the I2C-bus. In that case the vertical pulse  
is suppressed by switching the VA output in a  
The free-running frequency of the oscillator is determined  
by a digital control circuit which is locked to the reference  
signal of the colour decoder. When the IC is switched on  
the HA/CLP is suppressed and the oscillator is calibrated  
as soon as all subaddress bytes have been sent. When the  
frequency of the oscillator is correct the HA/CLP signal is  
switched on again. When the coincidence detector  
indicates an out-of-lock situation the calibration procedure  
is repeated.  
high-impedance off-state.  
When an external RGB signal is mixed with the internal  
YUV signal it is necessary to switch-off the PALplus  
demodulation. To detect the presence of a fast blanking a  
circuit is added which forces bits MACP and HD to zero if  
a blanking pulse is detected in 2 consecutive lines. This  
system is chosen to prevent switching-off at every spike  
which is detected on the fast blanking input.  
The VA pulse is obtained via a vertical count-down circuit.  
The count-down circuit has various windows depending on  
the incoming signal (50 or 60 Hz standard or  
non-standard). The count-down circuit can be forced in  
various modes via the I2C-bus. To obtain short switching  
times of the count-down circuit during a channel change  
the divider can be forced in the search window by means  
of bit NCIN.  
The IC has the possibility to use the RGB1 input as YUV  
input. This function can be enabled by means of bit YUV in  
subaddress 0A (D3). When switched to the YUV input the  
input signals must have the same amplitude and polarity  
as the YUV output signals. The Y signal has to be supplied  
to the GI1 input, the U signal to the BI1 input and the  
V signal to the RI1 input.  
I2C-BUS SPECIFICATION  
The slave address of the IC is given in Table 1. Bit A1 is  
controlled via pin AS. When pin AS is connected to  
pin GND2 it is at logic 0 and when connected to VP2 it is at  
logic 1. When pin AS is left open-circuit it is connected to  
ground via an internal pull-up resistor. The circuit operates  
at clock frequencies of up to 400 kHz.  
Synchronization circuit  
The sync separator is preceded by a controlled amplifier  
which adjusts the sync pulse amplitude to a fixed level.  
These pulses are fed to the slicing stage which operates at  
50% of the amplitude. The separated sync pulses are fed  
to the phase detector and to the coincidence detector. This  
coincidence detector is used to detect whether the line  
oscillator is synchronized and can also be used for  
transmitter identification. This circuit can be made less  
sensitive with bit STM. This mode can be used during  
search tuning to avoid the tuning system stopping at very  
weak input signals. The PLL has a very high statical  
steepness so that the phase of the picture is independent  
of the line frequency.  
Table 1 Slave address bits  
A6  
A5  
A4  
A3  
A2  
A1  
A0  
R/W  
1
0
0
0
1
1/0  
1
1/0  
Start-up procedure  
Read the status bytes until bit POR = 0 and send all  
subaddress bytes. It is advised to check the I2C-bus  
transmission by reading the output status bits SXA  
to SXD. This ensures a good operation of the calibration  
system of the horizontal oscillator. The horizontal output  
signal is switched on when the oscillator is calibrated.  
For the horizontal output pulse 2 conditions are possible:  
An HA pulse which has a phase and width which is  
identical to the incoming horizontal sync pulse  
Each time before the data in the IC is refreshed, the status  
bytes must be read. If bit POR = 1, then the procedure  
mentioned above must be carried out to restart the IC.  
When this procedure is not carried out the horizontal  
frequency may be incorrect after power-up or after a power  
dip.  
A clamp pulse (CLP) which has a phase and width which  
is identical to the clamp pulse in the sandcastle pulse.  
The HA/CLP signal is generated by means of an oscillator  
which is running at a frequency of 440 × fhor. Its frequency  
is divided by 440 to lock the first loop to the incoming  
signal. The time constant of the loop can be forced by the  
I2C-bus (fast or slow).  
The valid subaddresses are 00 to 0E. Subaddresses  
FE and FF are reserved for test purposes. Auto-increment  
mode is available for the subaddresses.  
1998 Dec 16  
10  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
Inputs and outputs  
Table 2 Input status bits  
DATA BYTE  
SUBADDRESS  
FUNCTION  
(HEX)  
D7  
D6  
CM2  
MACP HOB  
D5  
D4  
D3  
D2  
D1  
D0  
Colour decoder 0  
Colour decoder 1  
Luminance  
00  
01  
02  
03  
04  
05  
06  
07  
08  
09  
0A  
0B  
0C  
0D  
0E  
CM3  
CM1  
HBC  
GAI1  
A5  
0
CM0  
HD  
GAI0  
A4  
XD  
FCO  
YD3  
A3  
0
XC  
ACL  
YD2  
A2  
XB  
CB  
YD1  
A1  
XA  
BPS  
YD0  
A0  
0
0
0
0
0
0
Hue control  
Spare  
0
0
0
0
Synchronization 0  
Synchronization 1  
Spare  
FORF FORS  
FOA  
0
FOB  
0
0
VIM  
HO  
0
POC  
EMG  
0
VID  
NCIN  
0
0
0
0
0
BSY  
0
0
0
Video switches 0  
Video switches 1  
RGB switch  
0
0
0
ECMB DEC3 DEC2 DEC1 DEC0  
0
PIP2  
0
PIP1  
0
PIP0  
0
0
YUV  
0
TXT2 TXT1 TXT0  
0
ECL  
0
IE2  
OS1  
STM  
A1  
IE1  
OS0  
VSW  
A0  
Output switches  
Vision IF  
0
0
0
0
FFI  
0
IFO  
0
GD  
A5  
A5  
MOD  
A4  
AFW  
A3  
IFS  
A2  
A2  
Tuner takeover  
Adjustment IF-PLL  
L’FA  
A6  
A4  
A3  
A1  
A0  
INPUT CONTROL BITS  
Table 4 Crystal indication  
Table 3 Colour decoder mode  
XA to XD  
CONDITION  
0
1
crystal not present  
crystal present; note 1  
CM3 CM2 CM1 CM0 DECODER MODE  
XTAL  
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
PAL/NTSC/SECAM  
PAL/NTSC  
PAL  
A
A
A
A
A
B
B
B
Note  
1. When a comb filter is used, the various crystals must  
be connected to the IC as indicated in the pinning  
diagram. This is required because the ident system  
switches automatically to the comb filter when a signal  
is identified which can be combed (correct  
NTSC  
SECAM  
PAL/NTSC  
PAL  
combination of colour standard and crystal frequency).  
For applications without comb filter only the crystal on  
pin XTALA is important (4.43 MHz); to pins XTALB to  
XTALD an arbitrary 3.5 MHz crystal can be connected.  
NTSC  
PAL/NTSC/SECAM A/B/C/D  
PAL/NTSC  
PAL  
C
C
NTSC  
C
PAL/NTSC  
PAL/NTSC  
PAL  
A/B/C/D  
D
D
D
NTSC  
1998 Dec 16  
11  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
Table 5 Motion Adaptive Colour Plus (MACP)  
Table 10 Chrominance band-pass centre frequency  
MACP  
MODE  
CB  
CENTRE FREQUENCY  
0
1
internal 4.43 MHz trap used  
0
1
fc  
external MACP chrominance filtering used;  
4.43 MHz trap bypassed and black set-up  
200 mV; note 1  
1.1 × fc  
Table 11 Bypass of chrominance baseband delay line  
Note  
BPS  
DELAY LINE MODE  
1. The black set-up will only be present in a norm sync  
condition.  
0
1
active  
bypassed  
Table 6 Helper output blanking (PALplus/EDTV-2)  
Table 12 Gain luminance channel  
GAI1 GAI0 GAIN SETTING  
HOB  
HBC  
SNR  
BLANKING  
0
1
1
1
X(1)  
0
X(1) off  
X(1) on  
0
0
1
1
0
1
0
1
1 dB  
0 dB  
1
0
1
off  
on  
+1 dB  
+2 dB  
1
Note  
1. X = don’t care.  
Table 13 Y-delay adjustment; note 1  
YD0 to YD3  
Y-DELAY  
Table 7 PALplus helper demodulation active  
YD3  
YD2  
YD1  
YD0  
YD3 × 160 ns +  
YD2 × 160 ns +  
YD1 × 80 ns +  
YD0 × 40 ns  
HD  
CONDITIONS  
0
1
off  
on; PALplus mode with helper set-up 400 mV  
and black set-up 200 mV; note 1  
Note  
Note  
1. For an equal delay of the luminance and chrominance  
signal the delay must be set at a value of 280 ns  
(YD3 to YD0 = 1011). This is only valid for a CVBS  
signal without group delay distortions.  
1. Black and helper set-up will only be present in a norm  
sync condition.  
Table 8 Forced colour on  
Table 14 Forced field frequency  
FCO  
MODE  
FORF FORS  
FIELD FREQUENCY  
0
1
not active  
active  
0
0
auto (60 Hz when line not  
synchronized)  
0
1
1
1
0
1
forced 60 Hz; note 1  
Table 9 Automatic colour limiting  
keep last detected field frequency  
ACL  
COLOUR LIMITING  
auto (50 Hz when line not  
synchronized)  
0
1
not active  
active  
Note  
1. When switched to this mode the divider will directly  
switch to forced 60 Hz only.  
1998 Dec 16  
12  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
Table 15 Phase 1 (ϕ1) time constant; see also Table 57  
Table 19 Blanked sync on pin YO  
BSY  
CONDITIONS  
FOA  
FOB  
MODE  
0
1
unblanked sync; note 1  
blanked sync  
0
0
1
1
0
1
0
1
normal  
slow  
slow or fast  
fast  
Note  
1. Except for PALplus with black set-up.  
Table 16 Video ident mode  
Table 20 Condition of horizontal output  
VIM  
MODE  
HO  
0
CONDITIONS  
0
1
ident coupled to internal CVBS (pin 14)  
ident coupled to selected CVBS  
clamp pulse available on pin HA/CLP  
horizontal pulse available on pin HA/CLP  
1
Table 17 Synchronization mode  
Table 21 Enable ‘Macrovision/subtitle’ gating  
POC  
MODE  
EMG  
MODE  
0
1
active  
0
1
disable gating  
enable gating  
not active  
Table 18 Video ident mode  
Table 22 Vertical divider mode  
VID  
0
VIDEO IDENT MODE  
NCIN  
VERTICAL DIVIDER MODE  
ϕ1 loop switched-on and off  
0
1
normal operation  
1
not active  
switched to search window  
Table 23 Video switch control  
ECMB(1)  
DEC3  
DEC2  
DEC1  
DEC0  
SELECTED SIGNAL  
CVBSint  
SIGNAL TO COMB  
CVBSint  
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
0
0
0
0
0
1
1
0
0
0
1
1
1
1
1
1
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
1
0
1
1
0
1
0
1
X(2)  
0
CVBS1  
CVBS1  
1
CVBS2  
CVBS2  
0
CVBS3  
CVBS3  
1
Y3/C3  
Y3 + C3  
0
CVBS4  
CVBS4  
1
Y4/C4  
Y4 + C4  
0
AUTO Y3/C3; note 3  
AUTO Y4/C4; note 3  
YCF/CCF  
CVBS3 or Y3 + C3  
CVBS4 or Y4 + C4  
CVBSint  
0
X(2)  
0
YCF/CCF  
CVBS1  
1
YCF/CCF  
CVBS2  
0
YCF/CCF  
CVBS3  
0
YCF/CCF  
CVBS4  
0
AUTO COMB3; note 4  
AUTO COMB4; note 4  
CVBS3 or Y3 + C3  
CVBS4 or Y4 + C4  
0
1998 Dec 16  
13  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
Notes  
1. When bit ECMB = 1 the subcarrier frequency is present on pin 30. The YCF and CCF signals coming from the comb  
filter are only switched on when a signal is received that can be combed.  
2. X = don’t care.  
3. AUTO YC means the decoder switches between CVBS and Y/C depending on the presence of the burst signal on  
these signals.  
4. AUTO COMB means the decoder switches to Y/C mode if the burst is present on the C input and to the comb filter  
output if the burst is present on the CVBS signal.  
Table 24 Video switch outputs  
Table 29 Output switches OS0 and OS1  
TXT2  
PIP2  
TXT1  
PIP1  
TXT0  
PIP0  
OUTPUT SIGNAL TXT  
OUTPUT SIGNAL PIP  
OS0; OS1  
CONDITIONS  
0
1
output = LOW  
output = HIGH  
0
0
0
1
1
1
1
0
1
1
0
0
1
1
0
1
0
1
0
1
CVBSint  
CVBS1  
CVBS2  
CVBS3  
Y3 + C3  
CVBS4  
Y4 + C4  
Table 30 Fast filter IF-PLL  
FFI  
CONDITIONS  
normal time constant  
fast time constant  
0
1
Table 31 IF circuit not active  
Table 25 Enable YUV input (on RGB1 input)  
IFO  
MODE  
YUV  
MODE  
0
1
normal operation of IF amplifier  
IF amplifier switched off  
0
1
RGB1 input active  
YUV input active  
Table 32 Group delay correction  
Table 26 External RGB clamp mode  
GD  
GROUP DELAY CHARACTERISTIC  
ECL  
MODE  
0
1
flat  
0
1
off; internal clamp pulse used  
according to BG standard  
on; external clamp pulse has to be supplied to  
pin HA/CLP  
Table 33 Modulation standard  
MOD  
MODULATION  
Table 27 Enable fast blanking RGB1  
0
1
negative  
positive  
IE1  
FAST BLANKING  
0
1
not active  
active  
Table 34 AFC window  
AFW  
AFC WINDOW  
Table 28 Enable fast blanking RGB2  
0
1
normal  
IE2  
0
FAST BLANKING  
enlarged  
not active  
active  
1
1998 Dec 16  
14  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
Table 35 IF sensitivity  
Table 37 Video mute  
IFS  
IF SENSITIVITY  
VSW  
STATE  
0
1
normal  
0
1
normal operation  
VIF signal switched off  
reduced  
Table 36 Search tuning mode  
Table 38 PLL demodulator frequency shift  
STM  
MODE  
L’FA  
MODE  
normal IF frequency  
0
1
normal operation  
reduced sensitivity of video ident circuit  
0
1
frequency shift for L’ standard  
Table 39 Output status bits  
DATA BYTE  
SUBADDRESS  
(HEX)  
FUNCTION  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
Output status bytes  
00  
01  
02  
03  
POR  
CD3  
IN1  
X(1)  
CD2  
IN2  
X(1)  
CD1  
CMB  
ID1  
X(1)  
CD0  
YC  
SNR  
SXD  
S2A  
IFI  
FSI  
SXC  
S2B  
PL  
SL  
IVW  
SXA  
S1B  
AFB  
SXB  
S1A  
AFA  
ID3  
ID2  
ID0  
Note  
1. X = don’t care.  
OUTPUT CONTROL BITS  
Table 40 Power-on reset  
POR  
Table 43 Phase 1 (ϕ1) lock indication  
SL  
INDICATION  
0
1
not locked  
locked  
MODE  
0
1
normal  
power-down  
Table 44 Condition vertical divider  
Table 41 Signal-to-noise ratio of sync signal  
IVW  
STANDARD VIDEO SIGNAL  
no standard video signal  
0
1
SNR  
SIGNAL-TO-NOISE RATIO  
S/N > 20 dB  
S/N < 20 dB  
standard video signal in ‘narrow window’ or  
standard TV norm (525 or 625 lines)  
0
1
Table 45 Crystal indication (SXA to SXD)  
Table 42 Field frequency indication  
SXA to SXD  
CONDITIONS  
no crystal connected  
crystal connected  
FSI  
FREQUENCY  
0
1
0
1
50 Hz  
60 Hz  
1998 Dec 16  
15  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
Table 46 Colour decoder mode  
CD3  
CD2  
CD1  
CD0  
STANDARD  
XTAL  
0
0
0
0
0
0
0
0
1
1
1
0
0
0
0
1
1
1
1
0
0
0
0
0
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
1
0
1
0
no colour standard identified  
A/B/C/D  
NTSC  
A
A
B
B
C
C
D
D
A
PAL  
NTSC  
PAL  
NTSC  
PAL  
NTSC  
PAL  
SECAM  
illegal forced mode; note 1  
Note  
1. This mode is generated when trying (e.g. via software control) to force the decoder to a standard with a crystal which  
is not connected to the IC.  
Table 47 Indication RGB1/RGB2 insertion  
Table 51 Output video identification  
IN1; IN2  
RGB INSERTION  
IFI  
VIDEO SIGNAL  
0
1
no insertion  
full insertion  
0
1
no video signal identified  
video signal identified  
Table 48 Condition YCF/CCF inputs from comb filter  
Table 52 In-lock indication IF-PLL  
CMB  
CONDITION YCF/CCF INPUTS  
not selected  
selected  
PL  
0
CONDITIONS  
0
1
PLL not locked  
PLL locked  
1
Table 53 AFC output  
Table 49 Input signal condition; note 1  
AFA  
AFB  
CONDITIONS  
YC  
0
CONDITIONS  
CVBS signal available  
Y/C signal available  
0
0
1
1
0
1
0
1
outside window; too low  
outside window; too high  
in window; below reference  
in window; above reference  
1
Note  
1. During the search mode for the colour system, bit YC  
will indicate logic 1.  
Table 50 Condition of AV1 and AV2 inputs  
S1A; S1B;  
CONDITIONS  
S2A  
S2B  
0
0
1
0
1
0
no external source  
external source with 4 : 3 input signal  
external source with 16 : 9 input signal  
1998 Dec 16  
16  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
Table 54 IC version indication  
ID3  
ID2  
ID1  
ID0  
IC TYPE  
0
1
0
0
0
0
1
1
TDA9321HN1  
TDA9321HN2  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
PARAMETER  
supply voltage on pins VP1 and VP2  
storage temperature  
CONDITIONS  
MIN.  
MAX.  
9.0  
UNIT  
VP  
V
Tstg  
Tamb  
Tsld  
Tj  
25  
25  
+150  
+70  
°C  
°C  
°C  
°C  
V
operating ambient temperature  
soldering temperature  
for 5 s  
260  
junction temperature  
150  
Ves  
electrostatic handling on all pins  
notes 1 and 2  
notes 1 and 3  
3000  
300  
+3000  
+300  
V
Notes  
1. All pins are protected against ESD by means of internal clamping diodes.  
2. Human Body Model (HBM): R = 1.5 k; C = 100 pF.  
3. Machine Model (MM): R = 0 ; C = 200 pF.  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth(j-a)  
PARAMETER  
CONDITIONS  
VALUE  
50  
UNIT  
thermal resistance from junction to ambient  
in free air  
K/W  
QUALITY SPECIFICATION  
Quality specification in accordance with “SNW-FQ-611E”.  
Latch-up performance  
At an ambient temperature of 70 °C all pins meet the following specification:  
Positive stress test: Itrigger 100 mA or Vpin 1.5 × VP(max)  
Negative stress test: Itrigger ≤ −100 mA or Vpin ≤ −0.5 × VP(max)  
.
1998 Dec 16  
17  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
CHARACTERISTICS  
VP = 8 V; Tamb = 25 °C; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supply (pins VP1 and VP2); note 1  
VP  
IP  
supply voltage  
(pins VP1 and VP2  
7.2  
8.0  
8.8  
V
)
)
supply current  
(pins VP1 and VP2  
120  
960  
140  
mA  
Ptot  
total power dissipation  
mW  
Vision IF circuit  
VISION IF AMPLIFIER INPUTS (PINS VIF1 AND VIF2)  
Vi(rms)  
input sensitivity (RMS value)  
note 2  
fi(VIF) = 38.90 MHz  
fi(VIF) = 45.75 MHz  
fi(VIF) = 58.75 MHz  
35  
100  
100  
100  
µV  
µV  
µV  
mV  
35  
40  
Vi(max)(rms)  
maximum input signal  
(RMS value)  
150  
200  
Ri(dif)  
Ci(dif)  
Gv  
differential input resistance  
differential input capacitance  
voltage gain control range  
note 3  
note 3  
2
kΩ  
pF  
dB  
3
70  
75  
80  
PLL DEMODULATOR (PLL FILTER ON PIN VIFPLL); note 4  
fPLL  
PLL frequency range  
PLL catching range  
PLL acquisition time  
32  
2.0  
60  
3.3  
20  
MHz  
MHz  
ms  
fcr(PLL)  
tacq(PLL)  
fVCO/T  
2.7  
VCO frequency dependency  
with temperature  
notes 5 and 6  
via I2C-bus  
±20 × 106 K1  
ftune(VCO)  
VCO tuning frequency range  
3.0  
23  
3.7  
29  
4.2  
33  
MHz  
fDAC  
frequency variation per step of  
the DAC (A0 to A6)  
kHz  
fshift  
frequency shift  
with bit L’FA  
5.5  
MHz  
VIDEO AMPLIFIER OUTPUT (PIN VIFO); note 7  
Vo(z)  
zero signal output level  
note 8  
negative modulation  
positive modulation  
negative modulation  
positive modulation  
4.6  
1.9  
1.9  
4.4  
4.7  
2.0  
2.0  
4.5  
0
4.8  
2.1  
2.1  
4.6  
15  
V
V
V
V
%
Vo(ts)  
Vo(w)  
Vo  
top-sync level  
white level  
difference in amplitude  
between negative and positive  
modulation  
Zo(v)  
video output impedance  
50  
Ibias(int)  
internal bias current of NPN  
1.0  
mA  
emitter follower output transistor  
1998 Dec 16  
18  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Isource(max)  
Bv(3dB)  
maximum source current  
5
mA  
3 dB bandwidth of  
6
8
10  
MHz  
demodulated output signal  
Gdif  
differential gain  
note 9  
1.5  
2.5  
5
%
deg  
%
V
ϕdif  
differential phase  
notes 6 and 9  
note 10  
NLvid  
Vclamp  
Nclamp  
Nins  
video non-linearity  
2.5  
6.0  
1.5  
2.7  
white spot clamping level  
noise inverter clamping level  
note 11  
note 11  
V
noise inverter insertion level  
(identical to black level)  
V
dblue  
intermodulation at ‘blue’  
notes 6 and 12  
f = 0.92 or 1.1 MHz  
f = 2.66 or 3.3 MHz  
notes 6 and 12  
60  
60  
66  
66  
dB  
dB  
dyellow  
intermodulation at ‘yellow’  
f = 0.92 or 1.1 MHz  
f = 2.66 or 3.3 MHz  
notes 6 and 13  
56  
60  
56  
49  
62  
66  
60  
53  
5.5  
2.5  
dB  
dB  
dB  
dB  
mV  
mV  
S/NW  
weighted signal-to-noise ratio  
65  
S/NUW  
Vrc  
unweighted signal-to-noise ratio notes 6 and 13  
residual carrier signal note 6  
Vrc(2H)  
2nd harmonic of residual carrier note 6  
signal  
PSRR  
power supply ripple rejection  
at the output  
40  
dB  
VIF AND TUNER AGC; note 14  
Timing of VIF-AGC with a 2.2 µF capacitor (pin DECVIF  
)
MVI  
modulated video interference  
60% AM for 1 to 100 mV;  
0 to 200 Hz; system B/G  
10  
%
tres  
response time  
VIF input signal  
2
ms  
amplitude increase of  
52 dB; positive and  
negative modulation  
VIF input signal  
amplitude decrease of  
52 dB  
negative modulation  
positive modulation  
50  
ms  
ms  
µA  
nA  
%
100  
IL  
leakage current of the capacitor negative modulation  
10  
200  
2
on pin 4  
positive modulation  
Vo(v)  
change in video output signal  
capacitor on pin 4 is  
amplitude over 1 vertical period 0.5 µF  
for peak white AGC at positive  
modulation  
1998 Dec 16  
19  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Tuner takeover point adjustment (via I2C-bus)  
Vstrt(min)(rms)  
Vstrt(max)(rms)  
Vmax/T  
minimum start level  
(RMS value)  
0.4  
0.8  
mV  
mV  
dB  
maximum start level  
(RMS value)  
100  
150  
6
maximum variation with  
temperature  
Tamb = 0 to 70 °C  
8
Tuner control output (pin TAGC)  
Vo(max) maximum output voltage  
maximum tuner gain;  
note 3  
9
V
Vo(sat)  
output saturation voltage  
minimum tuner gain;  
Io = 2 mA  
300  
mV  
Io(max)  
IL  
maximum output current swing  
leakage current  
5
2
1
4
mA  
µA  
dB  
for RF AGC  
Vi  
input signal variation  
for complete tuner control 0.5  
AFC OUTPUT (VIA I2C-BUS); note 15  
RESAFC  
AFC resolution  
2
bits  
kHz  
kHz  
fw  
window sensitivity  
normal window mode  
enlarged window mode  
65  
80  
240  
100  
300  
195  
VIDEO IDENTIFICATION OUTPUT (VIA I2C-BUS)  
td  
delay time  
for identification after the  
AGC has stabilized on a  
new transmitter  
10  
ms  
Sound IF circuit  
SOUND IF AMPLIFIER (PINS SIF1 AND SIF2)  
Vi(rms)  
input sensitivity (RMS value)  
FM mode (3 dB)  
AM mode (3 dB)  
FM mode  
30  
70  
70  
140  
2
70  
100  
µV  
µV  
mV  
mV  
kΩ  
pF  
Vi(max)(rms)  
maximum input signal  
(RMS value)  
50  
80  
AM mode  
Ri(dif)  
differential input resistance  
differential input capacitance  
voltage gain control range  
note 3  
Ci(dif)  
note 3  
3
Gv  
64  
50  
dB  
dB  
αct(SIF-VIF)  
crosstalk between inputs SIF  
and VIF  
1998 Dec 16  
20  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
QSS AND AM SOUND OUTPUT (PIN QSS/AM)  
General  
Ro  
output resistance  
DC output voltage  
250  
VO  
3.3  
1.0  
V
Ibias(int)  
internal bias current of emitter  
follower  
0.7  
mA  
Isink(max)  
maximum AC and DC sink  
current  
0.7  
2.0  
mA  
mA  
Isource(max)  
maximum AC and DC source  
current  
QSS output signal  
Vo(rms)  
output signal amplitude  
SC1 on; SC2 off  
75  
100  
125  
mV  
(RMS value)  
B3dB  
3 dB bandwidth  
7.5  
9
2
MHz  
mV  
Vr(SC)(rms)  
residual IF sound carrier  
(RMS value)  
S/NW  
weighted signal-to-noise ratio  
(SC1/SC2)  
ratio of PC/SC1 at  
VIF input of 40 dB or  
higher; note 16  
black picture  
white picture  
53/48 58/55  
52/47 55/53  
44/42 48/46  
dB  
dB  
dB  
6 kHz sine wave  
(black-to-white  
modulation)  
250 kHz sine wave  
(black-to-white  
modulation)  
44/25 48/30  
dB  
SC subharmonics  
(f = 2.75 MHz ±3 kHz)  
45/44 51/50  
46/45 52/51  
dB  
dB  
SC subharmonics  
(f = 2.87 MHz ±3 kHz)  
AM output signal  
Vo(rms)  
output signal amplitude  
54% modulation  
400  
500  
600  
mV  
(RMS value)  
THD  
total harmonic distortion  
3 dB bandwidth  
0.5  
125  
53  
1.0  
%
B3dB  
S/NW  
100  
47  
kHz  
dB  
weighted signal-to-noise ratio  
1998 Dec 16  
21  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Video switches and comb filter interface  
VIDEO SWITCHES FOR CVBS, Y AND C SIGNALS  
Signal on pins CVBSint, CVBS1, CVBS2, CVBS/Y3 and CVBS/Y4  
Vi(n)(p-p)  
input voltage  
note 17  
1.0  
1.43  
V
(peak-to-peak value)  
Ii(n)  
input current  
4
µA  
kΩ  
dB  
Zsource(max)  
αsup(n)  
maximum source impedance  
1.0  
suppression of non-selected  
signals  
fi = 0 to 5 MHz; note 6  
notes 3 and 18  
50  
Signal on pins C3 and C4  
Vi(n)(p-p)  
input voltage  
(peak-to-peak value)  
0.3  
50  
1.0  
V
Zi(n)  
input impedance  
kΩ  
Signal on pin CVBSTXT  
Vo(p-p)  
output signal amplitude  
1.6  
2.0  
2.4  
V
(peak-to-peak value)  
Vbl  
black level  
2.6  
4
V
Vbl/T  
black level dependency with  
temperature  
mV/K  
Zo  
output impedance  
250  
1.2  
Signal on pin CVBSPIP  
Vo(p-p)  
output signal amplitude  
0.8  
1.0  
V
(peak-to-peak value)  
Vbl  
black level  
3.6  
9
V
Vbl/T  
black level dependency with  
temperature  
mV/K  
Zo  
output impedance  
250  
COMB FILTER INTERFACE; note 19  
Signal on pin CVBSCF  
Vo(p-p)  
output signal amplitude  
0.8  
1.0  
1.2  
V
(peak-to-peak value)  
output impedance  
black level  
Zo  
250  
Vbl  
3.6  
9
V
Vbl/T  
black level dependency with  
temperature  
mV/K  
Signal on pin YCF  
Vi(p-p) input voltage  
1.0  
4
1.43  
V
(peak-to-peak value)  
Ii  
input current  
µA  
1998 Dec 16  
22  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Signal on pin CCF  
Vi  
Zi  
input voltage  
input impedance  
burst amplitude  
0.3  
50  
1.0  
V
kΩ  
Reference signal output (pin REFO); note 20  
Vo(p-p)  
VO(en)  
VO(dis)  
output signal amplitude  
(peak-to-peak value)  
CL = 15 pF  
0.2  
4.0  
0.25  
4.2  
0.3  
4.6  
1.4  
V
V
V
DC output level to enable  
comb filter  
DC output level to disable  
comb filter  
0.1  
Switching levels of SYS1 and SYS2 outputs (pins SYS1 and SYS2); note 21  
VOH  
HIGH-level output voltage  
LOW-level output voltage  
output sink current  
4.0  
5.0  
0.1  
5.5  
0.4  
V
VOL  
V
Io(sink)  
Io(source)  
2
mA  
mA  
output source current  
2
DETECTION OF STATUS LEVELS OF SCART PLUG PIN 8; note 22  
Vdet(int-ext)  
Vdet(ext-ext)  
Ri  
detection voltage between  
internal and external (16 : 9)  
source  
2.0  
5.3  
60  
2.2  
5.5  
100  
2.4  
5.7  
V
detection voltage between  
external (16 : 9) and external  
(4 : 3) source  
V
input resistance  
kΩ  
Chrominance and luminance filters and delay lines  
CHROMINANCE TRAP CIRCUIT; note 23  
ftrap  
trap frequency  
f
osc ±1%  
MHz  
MHz  
MHz  
MHz  
MHz  
dB  
during SECAM reception  
fSC = 3.58 MHz  
4.3 ±1.5%  
B3dB  
3 dB bandwidth  
2.6  
3.2  
2.8  
3.4  
3.1  
3.0  
3.6  
3.3  
fSC = 4.43 MHz  
during SECAM reception 2.9  
26  
CSR  
colour subcarrier rejection  
CHROMINANCE BAND-PASS CIRCUIT  
fc  
centre frequency  
bit CB = 0  
bit CB = 1  
fosc  
MHz  
MHz  
1.1fosc  
3
Qbp  
band-pass quality factor  
CLOCHE FILTER  
fc  
B
centre frequency  
bandwidth  
4.26  
241  
4.29  
268  
4.31  
295  
MHz  
kHz  
1998 Dec 16  
23  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Y-DELAY LINE  
td  
delay time  
bits YD3 to YD0 = 1011;  
note 6  
crystal A  
490  
520  
550  
ns  
crystal B, C or D  
530  
560  
590  
ns  
ns  
td(tr)  
tuning range delay time  
bandwidth  
with respect to  
280  
+160  
520/560 ns; 12 settings;  
see Table 13  
B
note 6  
8
MHz  
V
GROUP DELAY CORRECTION (PINS GDI AND GDO); note 24  
Vi(GDI)(p-p)  
input signal amplitude on  
2.0  
pin GDI (peak-to-peak value)  
Ii(GDI)  
input current on pin GDI  
0.1  
2.0  
1.0  
2.2  
µA  
Vo(GDO)(p-p)  
output signal amplitude on  
1.8  
V
pin GDO (peak-to-peak value)  
Vo(GDO)  
output top-sync level on  
pin GDO  
2.4  
5
V
Vo(GDO)/T top-sync level on pin GDO  
mV/K  
variation with temperature  
Zo(GDO)  
output impedance on pin GDO  
250  
Colour demodulation part  
CHROMINANCE AMPLIFIER  
CRACC  
ACC control range  
note 25  
26  
dB  
dB  
Vo(CRACC)  
change in amplitude of the  
output signals over CRACC  
2
THck(on)  
hysck(off)  
threshold colour killer ON  
colour killer from  
OFF to ON  
40  
35  
dB  
hysteresis colour killer OFF  
note 6  
strong signal;  
S/N 40 dB  
3
1
dB  
dB  
noisy input signals  
ACL CIRCUIT; note 26  
C/CACL  
ACL chrominance burst ratio  
when the ACL starts to  
operate  
3.0  
REFERENCE PART  
Phase-locked loop; note 27  
fcr  
catching range  
phase shift  
±360  
±600  
Hz  
∆ϕ  
for a ±400 Hz deviation of  
the oscillator frequency;  
note 6  
2
deg  
1998 Dec 16  
24  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Oscillator  
TCfosc  
temperature coefficient of  
oscillator frequency  
note 6  
1
Hz/K  
Hz  
fosc/VP  
oscillator frequency variation  
with respect to the supply  
voltage  
VP = 8 V ±10%; note 6  
25  
Rneg(min)  
CL(max)  
minimum negative resistance  
maximum load capacitance  
1.0  
15  
kΩ  
pF  
HUE CONTROL; note 28  
CRhue  
hue control range  
63 steps; see Fig.4  
±35  
±40  
deg  
deg  
hue/VP  
hue dependency with respect  
to the supply voltage  
VP ±10%; note 6  
0
hue/T  
hue dependency with  
temperature  
Tamb = 0 to 70 °C; note 6  
0
deg  
DEMODULATORS  
General  
V/V  
spread of signal amplitude ratio note 6  
between standards  
1  
+1  
dB  
PAL/NTSC demodulator  
G(B-Y)(R-Y)  
gain between both  
demodulators (B Y) and  
(R Y)  
1.60  
1.78  
650  
1.96  
B3dB(dem)  
3 dB bandwidth of  
note 29  
kHz  
demodulators  
Vo(rc)(p-p)  
residual carrier output  
(peak-to-peak value)  
f = fosc; (R Y) output  
f = fosc; (B Y) output  
f = 2fosc; (R Y) output  
f = 2fosc; (B Y) output  
at (R Y) output  
5
mV  
mV  
mV  
mV  
mV  
5
5
5
RRH/2(p-p)  
Vo/T  
Vo/VP  
ϕe  
H/2 ripple rejection  
(peak-to-peak value)  
25  
output voltage variation with  
temperature  
note 6  
note 6  
0.1  
%/K  
dB/V  
deg  
output voltage variation with  
respect to the supply voltage  
0.3  
±5  
phase error in the demodulated note 6  
signals  
1998 Dec 16  
25  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
SECAM demodulator  
fblos  
blos/T  
black level offset frequency  
7
kHz  
f
black level offset frequency  
variation with temperature  
60  
Hz/K  
fp  
pole frequency of de-emphasis  
ratio pole and zero frequency  
non-linearity  
77  
85  
3
93  
kHz  
fp/fz  
NL  
Vcal  
3
%
V
calibration voltage  
3
4
5
Baseband delay line  
Vo  
variation of output signal  
for adjacent time samples 0.1  
at constant input signals  
0.1  
5
dB  
Vr(clk)(p-p)  
residual clock signal  
(peak-to-peak value)  
mV  
td  
delay  
delayed signal  
63.94 64.0  
64.06  
80  
µs  
ns  
%
non-delayed signal  
40  
60  
Vo  
difference in output amplitude  
when delay line is  
bypassed or not (with  
bit BPS)  
5
PALplus helper demodulator  
Vo(helper)(p-p) helper output voltage  
610  
380  
686  
400  
770  
420  
mV  
mV  
(peak-to-peak value)  
Vsu(helper)  
helper set-up amplitude  
only helper  
lines 22 and 23  
td(g)  
group delay  
within pass band  
10  
5
ns  
ϕe(dem)  
αsup  
demodulation phase error  
suppression  
including H/2 phase error  
deg  
dB  
for modulated helper in  
demodulated 0 to 1 MHz  
signal  
36  
Vr  
residual signal  
at 4.43 MHz signal  
in ACC  
36  
36  
dB  
dB  
ns  
THD  
total harmonic distortion  
helper output timing to Y output  
offset voltage  
to(helper-Y)  
Voffset  
10  
5
for demodulated mid grey  
to inserted mid grey level;  
mid grey line 23 to line 22  
mV  
tW(su)(helper)  
td  
helper set-up pulse width  
52.8  
8.6  
µs  
µs  
delay between mid sync of input bits YD3 to YD0 = 1011;  
and start of helper set-up  
note 30  
delay between start of black  
set-up and start of helper set-up  
only lines 22 and 23  
30.8  
2.6  
µs  
Bhelper(3dB)  
3 dB bandwidth of helper  
MHz  
baseband  
1998 Dec 16  
26  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
RGB switch and YUV switch  
RGB SWITCH (PINS RI1 TO BI1 AND RI2 TO BI2)  
Vi(p-p)  
input signal amplitude  
(peak-to-peak value)  
0.7  
1.0  
V
Zsource(max)  
maximum source impedance  
1.0  
10  
kΩ  
Vbl(int-ext)  
difference between black level  
of internal and external signals  
at the outputs  
mV  
Ii  
input current  
no clamping; note 3  
note 6  
0.1  
0
1
µA  
td  
delay difference between the  
three channels  
20  
ns  
YUV INPUTS (WHEN ACTIVATED)  
Vi(Y)(p-p)  
Vi(U)(p-p)  
Vi(V)(p-p)  
Y input signal amplitude  
(peak-to-peak value)  
1.0  
V
V
V
U input signal amplitude  
(peak-to-peak value)  
1.33  
1.05  
V input signal amplitude  
(peak-to-peak value)  
Zsource(max)  
maximum source impedance  
1.0  
10  
kΩ  
Vbl(int-ext)  
difference between black level  
of internal and external signals  
at the outputs  
mV  
Ii  
input current  
no clamping; note 3  
0.1  
1
µA  
FAST BLANKING (PINS RGB1 AND RGB2)  
Vi  
input voltage  
no data insertion  
data insertion  
0.4  
V
0.9  
V
Vi(max)  
Ii  
maximum input pulse  
input current  
3.5  
0.2  
tbf  
V
mA  
ns  
td(blank-RGB) delay difference between  
note 6  
blanking and RGB signals  
αsup(int)  
suppression of internal YUV  
signals  
data insertion;  
fi = 0 to 5 MHz; note 6  
55  
55  
dB  
dB  
ns  
αsup(ext)  
suppression of external RGB  
signals  
no data insertion;  
fi = 0 to 5 MHz; note 6  
td(blank-YUV)  
delay between blanking input  
and YUV outputs  
tbf  
LUMINANCE OUTPUT (PIN YO); note 31  
Vo(p-p)  
output signal amplitude  
(peak-to-peak value)  
black-to-white  
black-to-white  
1.0  
V
Vo  
output voltage during PALplus  
0.8  
V
Vbl(YUV-RGB) difference in black level  
10  
mV  
between YUV and RGB mode  
1998 Dec 16  
27  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
SYMBOL  
Zo  
PARAMETER  
output impedance  
CONDITIONS  
MIN.  
TYP.  
MAX.  
250  
UNIT  
VO  
output DC voltage level  
black level  
2.8  
7
3.0  
3.2  
V
BRGB(3dB)  
3 dB bandwidth of the RGB  
MHz  
switch circuit  
S/N  
signal-to-noise ratio  
fi = 0 to 5 MHz  
52  
dB  
Vsu(bl)  
black set-up amplitude  
bit MACP = 1 or  
bit HD = 1  
190  
200  
210  
mV  
tW(su)(bl)  
td  
black set-up pulse width  
52.8  
8.8  
µs  
µs  
delay between mid sync at input note 30  
and black set-up  
Voffset  
offset voltage  
Ybl to re-inserted black  
10  
mV  
G(Y/CVBS-YO)  
gain from internal Y/CVBS  
to YO  
1.35  
1.08  
1.43  
1.14  
1.50  
1.20  
bit MACP = 1 or  
bit HD = 1  
UO AND VO SIGNAL OUTPUTS (PINS UO AND VO)  
Vo(VO)(p-p)  
output voltage on pin VO  
(peak-to-peak value)  
standard EBU colour bar 0.88  
standard EBU colour bar 1.12  
1.05  
1.33  
1.25  
1.58  
V
V
Vo(UO)(p-p)  
output voltage on pin UO  
(peak-to-peak value)  
Zo  
output impedance  
250  
2.6  
10  
VO  
output DC voltage level  
2.2  
2.4  
V
Vbl(YUV-RGB) difference in black level  
mV  
between YUV and RGB mode  
COLOUR MATRIX FROM RGB TO YUV  
G
gain  
from RI to YO  
0.40  
0.79  
0.15  
0.40  
0.79  
1.19  
0.94  
0.79  
0.15  
0.43  
0.84  
0.16  
0.43  
0.84  
1.27  
1.00  
0.84  
0.16  
0.46  
0.90  
0.17  
0.46  
0.90  
1.35  
1.07  
0.90  
0.17  
from GI to YO  
from BI to YO  
from RI to UO  
from GI to UO  
from BI to UO  
from RI to VO  
from GI to VO  
from BI to VO  
Horizontal and vertical synchronization  
SYNC VIDEO INPUTS  
Vsync  
SLhor  
SLvert  
sync pulse amplitude  
slicing level for horizontal sync note 32  
slicing level for vertical sync note 32  
note 3  
35  
50  
35  
300  
55  
350  
60  
mV  
%
40  
45  
%
1998 Dec 16  
28  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
HORIZONTAL OSCILLATOR  
ffr  
free-running frequency  
15625  
Hz  
ffr  
spread on free-running  
frequency  
±2  
%
f/VP  
f/T  
frequency dependency with  
respect to the supply voltage  
VP = 8.0 V ±10%; note 6  
0.2  
0.5  
80  
%
frequency variation with  
temperature  
Tamb = 0 to 70 °C; note 6  
Hz  
FIRST CONTROL LOOP (PIN PH1LF); note 33  
fhr(PLL)  
fcr(PLL)  
S/N  
PLL holding range  
PLL catching range  
signal-to-noise ratio  
±0.9  
±0.9  
17  
±1.2  
kHz  
kHz  
dB  
note 6  
±0.6  
for the video input signal 15  
at which the time  
19  
constant is switched  
hyssw  
hysteresis at the switching point  
sigma value of phase jitter  
2
3
4
5
dB  
ns  
σϕ  
in automatic mode; ±3 σ  
HORIZONTAL PULSE OUTPUT AND CLAMP PULSE INPUT/OUTPUT (PIN HA/CLP)  
Switched to HA output (bit HO = 1)  
VOH  
HIGH-level output voltage  
LOW-level output voltage  
output sink current  
Io(source) = 2 mA  
Io(sink) = 2 mA  
4.0  
5.0  
0.2  
5.5  
0.4  
V
VOL  
V
Io(sink)  
Io(source)  
tW  
2
mA  
mA  
µs  
output source current  
pulse width  
2
at nominal horizontal  
frequency  
4.6  
4.7  
4.8  
td  
delay between mid sync of input note 30  
and mid HA pulse  
0.3  
0.45  
0.6  
µs  
Switched to CLP output (bit HO = 0)  
tW  
pulse width  
at nominal horizontal  
frequency  
3.5  
5.2  
3.6  
5.3  
3.7  
5.4  
µs  
µs  
td1  
delay between start of CLP  
pulse to start of black set-up  
bit HD = 1 or  
bit MACP = 1;  
bits YD3 to YD0 = 1011;  
at nominal horizontal  
frequency  
td2  
delay between mid sync of input note 30  
and start CLP pulse  
3.0  
3.2  
3.4  
µs  
Switched to CLP input (bit ECL = 1)  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
clamping pulse width  
0
0.6  
5.5  
V
VIH  
2.4  
1.8  
V
tW(clamp)  
3.5  
µs  
1998 Dec 16  
29  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
V(clamp)(n)  
clamping offset between  
pins UO and VO  
10  
mV  
Zi  
input impedance  
3
MΩ  
VERTICAL OSCILLATOR; note 34  
ffr  
free-running frequency  
50 Hz mode  
50  
60  
Hz  
60 Hz mode  
Hz  
flock  
D/D  
LR  
frequency locking range  
divider ratio  
45  
64.5  
Hz  
not locked  
625/525  
lines  
locking range  
488  
722  
lines/  
frame  
VERTICAL PULSE OUTPUT (PIN VA)  
VOH  
HIGH-level output voltage  
Io(source) = 2 mA  
Io(sink) = 2 mA  
4.0  
5.0  
0.2  
5.5  
0.4  
V
VOL  
LOW-level output voltage  
output sink current  
output source current  
pulse width  
V
Io(sink)  
Io(source)  
tW  
2
mA  
mA  
lines  
lines  
µs  
2
fVA = 50 Hz  
2.5  
3.0  
37.7  
fVA = 60 Hz  
td  
delay between start of vertical  
sync of input and positive edge  
of vertical pulse on pin VA  
note 35  
Zo  
output impedance  
bit ECL = 1  
3
MΩ  
SANDCASTLE OUTPUT (PIN SCO)  
General  
Vz  
zero level voltage  
output sink current  
0
0.5  
0.5  
1.0  
V
Io(sink)  
mA  
Horizontal/vertical blanking  
Vo  
output voltage level  
2.2  
2.5  
0.7  
10  
2.8  
V
Io(source)  
tW(h)  
td  
output source current  
mA  
µs  
µs  
horizontal blanking pulse width  
delay between start horizontal  
blanking and start clamping  
pulse  
6.4  
Clamping pulse  
Vo  
output voltage level  
output source current  
pulse width  
4.2  
4.5  
0.7  
3.6  
4.8  
V
Io(source)  
tW  
mA  
µs  
1998 Dec 16  
30  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
3.0  
TYP.  
MAX.  
3.4  
UNIT  
µs  
td  
delay between mid sync of input note 30  
and start of clamping pulse  
3.2  
I2C-BUS CONTROL  
SCL AND SDA INPUTS/OUTPUTS (PINS SCL AND SDA)  
Vi  
input voltage range  
0
5.5  
1.5  
V
VIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
V
VIH  
3.5  
V
IIL  
VIL = 0 V  
10  
10  
µA  
µA  
V
IIH  
VIH = 5.5 V  
IOL(SDA) = 3 mA  
VOL(SDA)  
LOW-level output voltage on  
pin SDA  
0.4  
SW0 AND SW1 OUTPUTS (PINS SW0 AND SW1); note 36  
VOH  
HIGH-level output voltage  
LOW-level output voltage  
output sink current  
4.0  
5.0  
0.2  
5.5  
0.4  
V
VOL  
V
IO(sink)  
IO(source)  
2
mA  
mA  
output source current  
2
Notes to the characteristics  
1. The two supply pins VP1 and VP2 must be decoupled separately but they must be connected to a single power supply  
to avoid too big differences between them.  
2. On set AGC.  
3. This parameter is not tested during production and is just given as application information for the designer of the  
television receiver.  
4. Loop filter bandwidth Blpf = 60 kHz (natural frequency fn = 15 kHz; damping factor d = 2; calculated with top sync  
level as fPLL input signal level). LC-VCO circuit between pins 7 and 8: Q0 = 60; Cint = 30 pF.  
5. The optimum temperature stability of the PLL can be obtained when a TOKO coil as given in Table 55 is applied.  
6. This parameter is not tested during production but is guaranteed by the design and qualified by means of matrix  
batches which are made in the pilot production period.  
7. Measured at 10 mV (RMS value) top sync input signal.  
8. So called projected zero point, i.e. with switched demodulator.  
9. Measured in accordance with the test line given in Fig.5. For the differential phase test the peak white setting is  
reduced to 87%.  
The differential gain is expressed as a percentage of the difference in peak amplitudes between the largest and  
smallest value relative to the subcarrier amplitude at blanking level.  
The differential phase is defined as the difference in degrees between the largest and smallest phase angle.  
10. This figure is valid for the complete video signal amplitude (peak white-to-black). See Fig.6.  
11. The noise inverter is only active in the ‘strong signal mode’ (no noise detected in the incoming signal).  
1998 Dec 16  
31  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
12. The input conditions and test set-up are given in Figs 8 and 9. The figures are measured with an input signal of  
10 mV (RMS value). The intermodulation figures are defined:  
V0at 3.58 MHz  
α0.92 = 20 log  
α2.76 = 20 log  
+ 3.6 dB ; α0.92 value at 0.92 MHz referenced to black or white signal;  
; α2.76 value at 2.76 MHz referenced to colour carrier.  
--------------------------------------  
V0at 0.92 MHz  
V0at 3.58 MHz  
--------------------------------------  
V0at 2.76 MHz  
13. Measured at an input signal of 10 mV (RMS value). The S/N is the ratio of black-to-white amplitude with respect to  
the black level noise voltage (RMS value). B = 5 MHz. Weighted in accordance with CCIR 567.  
14. The AGC response time also depends on the acquisition time of the PLL demodulator. The values given are valid  
when the PLL is in lock.  
15. The AFC control voltage is obtained from the control voltage of the VCO of the PLL demodulator. The tuning  
information is supplied to the tuning system via the I2C-bus. Two bits are reserved for this function. The AFC value  
is valid only when bit PL = 1.  
16. The weighted S/N ratio is measured under the following conditions:  
a) The VIF modulator must meet the following specifications:  
Incidental phase modulation for black-to-white jumps less than 0.5 degrees.  
QSS AF performance, measured with the television-demodulator AMF2 (audio output, weighted S/N ratio)  
better than 60 dB (deviation 27 kHz) for 6 kHz sine wave black-to-white modulation.  
Picture-to-sound carrier ratio: PC/SC1 = 13 dB (transmitter).  
b) The measurements must be carried out with the Siemens SAW filters G3962 for VIF and G9350 for SIF.  
Input level for SIF at 10 mV (RMS value) with 27 kHz deviation.  
c) The PC/SC ratio at the VIF input is calculated as the addition of the TV transmitter ratio and the SAW filter PC/SC  
ratio. This PC/SC ratio is necessary to achieve the S/NW values as indicated.  
17. Signal with negative-going sync. Amplitude includes sync pulse amplitude.  
18. Indicated is a signal for a colour bar with 75% saturation (chrominance to burst amplitude ratio = 2.2 : 1).  
19. When a signal is identified which can be combed (correct combination of colour standard and reference crystal) the  
comb filter is switched to that mode via pins 25 and 27 and then the filter is activated by switching on the reference  
carrier signal and connecting the output signals of the comb filter (pins 28 and 29) to the video processing circuits.  
20. The subcarrier output signal can be used as a reference signal for external comb filter ICs (e.g. SAA4961). When  
bit ECMB = 0 the subcarrier signal is suppressed and the DC level is LOW. When bit ECMB = 1 the output level is  
HIGH and the subcarrier signal is present.  
21. The outputs SYS1 and SYS2 can be used to switch the comb filter to the different colour standards (e.g. PAL-M,  
PAL-N, PAL-B/G and NTSC-M) and are controlled by the colour decoder identification circuit.  
The setting of the outputs for the various standards is given in Table 56.  
22. For the detection of the status of the incoming SCART signal a voltage divider with a ratio of 2 : 3 has to be connected  
between pin 8 of the SCART plug and the detection input. The impedance of the voltage divider should not be too  
high-ohmic because of the input impedance of 100 k.  
23. When the decoder is forced to a fixed subcarrier frequency (via bits XA to XD or bit CM) the chrominance trap is  
always switched on, also when no colour signal is identified. When 2 crystals are active the chrominance trap is  
switched off if no colour signal is identified.  
24. The typical group delay characteristic for the B/G standard is given in Fig.7.  
25. At a chrominance input voltage of 660 mV (p-p) [colour bar with 75% saturation i.e. burst signal amplitude  
300 mV (p-p)] the dynamic range of the ACC is +6 and 20 dB.  
26. The ACL function can be activated by bit ACL. The ACL circuit reduces the gain of the chrominance amplifier for input  
signals with a C/CACL which exceeds a value of 3.0.  
1998 Dec 16  
32  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
27. All frequency variations are referenced to 3.58 or 4.43 MHz carrier frequency. All oscillator specifications are  
measured with the Philips crystal series 9922 520 with a series capacitance Cs = 18 pF. The oscillator circuit is rather  
insensitive to the spurious responses of the crystal. As long as the resonance resistance of the third overtone is  
higher than that of the fundamental frequency the oscillator will operate at the correct frequency. The typical crystal  
parameters for the crystal series are:  
a) Load resonance frequencies fL: 4.433619, 3.579545, 3.582056 and 3.575611 MHz; Cs = 20 pF.  
b) Motional capacitance Cmot = 20.6 fF (4.43 MHz crystal) or Cmot = 14.7 fF (3.58 MHz crystal).  
c) Parallel capacitance Cp = 5.0 pF.  
The minimum detuning range can only be specified if both the IC and the crystal tolerances are known and therefore  
the figures regarding catching range are only valid for the specified crystal series. In this figure tolerances of the  
crystal with respect to the nominal frequency, motional capacitance and ageing have been taken into account and  
have been counted for gaussic addition. Whenever different typical crystal parameters are used the following  
equation might be helpful for calculating the impact on the tuning capabilities:  
Cmot  
Detuning range =  
--------------------------  
2
Cp  
1 +  
------  
Cs  
The resulting detuning range should be corrected for temperature shift and supply voltage deviation of both the IC  
and the crystal. To guarantee a catching range of ±300 Hz on 4.43 MHz the minimum motional capacitance of the  
crystal must have a value 13.2 fF or higher. For a catching range of 250 Hz with the 3.58 MHz crystal the minimum  
motional capacitance must have a value of 9 fF. The actual series capacitance in the application should be  
Cs = 18 pF to account for parasitic capacitances on-chip and off-chip.  
28. The hue control is active for NTSC on the demodulated colour difference signals and for PALplus on the demodulated  
helper signal.  
29. This parameter indicates the bandwidth of the complete chrominance circuit including the chrominance band-pass  
filter. The bandwidth of the low-pass filter of the demodulator is approximately 1 MHz.  
30. This delay is partially caused by the low-pass filter at the sync separator input.  
31. The internal luminance signal (signal which is derived from the incoming CVBS or Y/C signals) has a separate gain  
control setting (controlled by the I2C-bus bits GAI1 and GAI0 and with a gain variation between 1 and +2 dB) which  
can be used to get an optimal input signal amplitude for the feature box.  
32. The slicing level is independent of sync pulse amplitude. The given percentage is the distance between the slicing  
level and the black level (back porch). When the amplitude of the sync pulse exceeds the value of 350 mV the sync  
separator will slice the sync pulse at a level of 175 mV above top sync. The maximum sync pulse amplitude is 4 V  
(peak-to-peak value).  
33. To obtain a good performance for both weak signal and VCR playback the time constant of the first control loop is  
switched depending on the input signal condition and the condition of the I2C-bus. Therefore the circuit contains a  
noise detector and the time constant is switched to the slow mode when too much noise is present in the signal. In the  
fast mode during the vertical retrace time the phase detector current is increased 50% so that phase errors due to  
head-switching of the VCR are corrected as soon as possible. Switching between the two modes can be automatic  
or overruled by the I2C-bus.  
The circuit contains a video identification circuit which is independent of the first control loop. This identification circuit  
can be used to close or open the first control loop when a video signal is present or not present on the input. This  
enables a stable On Screen Display (OSD) when just noise is present at the input. The coupling of the video  
identification circuit with the first control loop can be revoked via the I2C-bus.  
1998 Dec 16  
33  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
To prevent the horizontal synchronization being disturbed by anti copy signals such as Macrovision the phase  
detector is gated during the vertical retrace period from line 11 to 17 (60 Hz signal) or from line 11 to 22 (50 Hz  
signal) so that pulses during scan have no effect on the output voltage. The width of the gate pulse is approximately  
22 µs. During weak signal conditions (noise detector active) the gating is active during the complete scan period and  
the width of the gate pulse is reduced to 5.7 µs so that the effect of noise is reduced to a minimum.  
The output current of the phase detector in the various conditions is shown in Table 57.  
34. The timing pulses for the vertical ramp generator are obtained from the horizontal oscillator via a divider circuit.  
This divider circuit has 3 modes of operation:  
a) Search mode large window.  
This mode is switched on when the circuit is not synchronized or when a non-standard signal [number of lines  
per frame outside the range between 311 and 314 (50 Hz mode) or between 261 and 264 (60 Hz mode)] is  
received. In the search mode the divider can be triggered between line 244 and line 361 (approximately  
43.3 to 64.5 Hz).  
b) Standard mode narrow window.  
This mode is switched on when more than 15 succeeding vertical sync pulses are detected in the narrow window.  
When the circuit is in the standard mode and a vertical sync pulse is missing the retrace of the vertical ramp  
generator is started at the end of the window. Consequently, the disturbance of the picture is very small.  
The circuit will switch back to the search window when, for 6 successive vertical periods, no sync pulses are  
found within the window.  
c) Standard TV-norm [divider ratio 525 (60 Hz) or 625 (50 Hz)].  
When the system is switched to the narrow window a check is performed to establish whether the incoming  
vertical sync pulses are in accordance with the TV-norm. When 15 standard TV-norm pulses are counted the  
divider system is switched to the standard divider ratio mode. In this mode the divider is always reset at the  
standard value even if the vertical sync pulse is missing.  
When 3 vertical sync pulses are missed the system switches back to the narrow window and when also in this  
window no sync pulses are found (condition 3 missing pulses) the system switches over to the search window.  
The vertical divider needs some waiting time during channel-switching of the tuner. When a fast reaction of the  
divider is required during channel-switching the system can be forced to the search window by means of bit NCIN in  
subaddress 06.  
35. The delay between the positive edge of VA and the positive edge of CLP (negative edge of HA) after VA is 32.0 µs  
for field 1 and 0 µs for field 2. Especially for PALplus signals the regenerated VA pulses must have a fixed and known  
phase relation to the undisturbed VA pulses of the incoming video signal. This relationship must remain correct as  
long as the vertical divider is in the standard mode (indirect sync mode). Therefore the coincidence window used  
here must be a half line window. With a well defined phase relationship of the generated VA pulses to the generated  
HA pulses a correct field identification and all the required timing signals referring to a certain line in each frame can  
be generated externally in the PALplus decoder environment.  
36. Pins 19 and 22 are for general purpose outputs that can be used to switch external circuits e.g. sound traps, etc.  
They are controlled via the I2C-bus by bits OS0 (pin 19) and OS1 (pin 22).  
1998 Dec 16  
34  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
Table 55 Coil data for the VIF-PLL demodulator (approximated coil values)  
fVIF  
(MHz)  
fVCO  
(MHz)  
L
(nH)  
TOKO SAMPLE NUMBER  
REMARKS  
38.9  
45.75  
58.75  
77.8  
91.5  
150  
100  
70  
P369INAS-159HM  
P369INAS-160HM  
P369INAS-161HM  
5 mm; 5 km long; TC = 30 ±100 ppm/°C  
117.5  
Table 56 Switching conditions of pins SYS1 and SYS2  
COLOUR STANDARD  
PAL-M  
SYS1  
LOW  
LOW  
HIGH  
HIGH  
SYS2  
LOW  
HIGH  
LOW  
HIGH  
ACTIVE CRYSTAL  
C
A
D
B
PAL-B, G, H, D and I  
NTSC-M  
PAL-N  
Table 57 Output current of the phase detector in the various conditions  
I2C-BUS COMMANDS  
IC CONDITIONS  
ϕ-1 CURRENT/MODE  
VID  
POC  
FOA  
FOB  
IDENT  
COIN  
NOISE  
SCAN  
V-RETR  
GATING  
MODE  
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
1
1
1
0
0
0
1
1
0
0
1
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
yes  
no  
yes  
no  
yes  
yes  
no  
yes  
180  
30  
270  
30  
no(1)  
yes  
no  
auto  
auto  
auto  
slow  
slow  
fast  
180  
30  
270  
30  
yes  
no  
180  
180  
30  
270  
270  
30  
no  
yes  
yes  
yes  
no  
slow  
fast  
180  
6
270  
6
no  
no  
OSD  
off  
Note  
1. When the Macrovision is active a gating is present during a part of the vertical retrace, pulse width 22 µs. In the other  
gating conditions the pulse width is 5.7 µs and the gating is continuous.  
1998 Dec 16  
35  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
MLA739  
50  
(deg)  
30  
10  
10  
30  
50  
0
10  
20  
30  
40  
DAC (HEX)  
Fig.4 Hue control curve.  
MBC212  
100%  
92%  
16 %  
30%  
for negative modulation  
100% = 10% rest carrier  
Fig.5 Video output signal.  
36  
1998 Dec 16  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
MBC211  
100%  
86%  
72%  
58%  
44%  
30%  
µs  
32 36 40 44 48 52 56 60 64  
10 12  
22 26  
Fig.6 Test signal waveform.  
MGR476  
500  
handbook, halfpage  
t
d(g)  
(ns)  
400  
300  
200  
100  
0
0
1
2
3
4
5
f (MHz)  
Fig.7 Group delay characteristic.  
37  
1998 Dec 16  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
3.2 dB  
10 dB  
13.2 dB  
13.2 dB  
30 dB  
30 dB  
SC CC  
PC  
SC CC  
PC  
MBC213  
BLUE  
YELLOW  
SC = sound carrier, with respect to top sync level.  
CC = colour carrier, with respect to top sync level.  
PC = picture carrier, with respect to top sync level.  
Fig.8 Input signal conditions.  
PC  
TEST  
CIRCUIT  
SPECTRUM  
ANALYZER  
SC  
Σ
ATTENUATOR  
gain setting  
adjusted for blue  
CC  
MBC210  
Fig.9 Test set-up intermodulation.  
38  
1998 Dec 16  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
TEST AND APPLICATION INFORMATION  
TAGC  
RGB1 RGB2  
RI1 GI1 BI1  
RI2 GI2 BI2  
RI1 GI1 BI1 BL1 RI2 GI2 BI2 BL2  
62 36 37 38 39  
2
40 41 42 43  
49  
30 31 32 33  
28  
35 36 37 38  
40  
VIF1  
VIF2  
YIN  
UIN  
VIN  
YO  
UO  
VO  
RO  
GO  
BO  
IF  
SAW  
FILTER  
3
27  
26  
50  
51  
41  
42  
CVBS1  
16  
15  
18  
43  
44  
AV1  
CVBS2  
AV2  
BCL  
FEATURE  
BOX  
BLKIN  
TDA9321H  
TDA9330H  
17  
VDOA  
VDOB  
1
2
CVBS/Y3  
C3  
20  
21  
H
D
HA  
VA  
60  
61  
24  
23  
EWO  
3
V
D
23  
24  
CVBS/Y4  
C4  
HOUT  
HFB  
8
13  
34  
32  
26  
28  
29  
MGR477  
CVBSCF YCF CCF  
COMB FILTER  
CVBSTXT  
CVBSPIP  
Fig.10 Application diagram.  
1998 Dec 16  
39  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
PACKAGE OUTLINE  
QFP64: plastic quad flat package; 64 leads (lead length 1.95 mm); body 14 x 20 x 2.8 mm  
SOT319-2  
y
X
A
51  
33  
52  
32  
Z
E
e
A
2
H
A
E
(A )  
3
E
A
1
θ
w M  
p
pin 1 index  
L
p
b
L
20  
64  
detail X  
1
19  
w M  
Z
D
v
M
A
b
p
e
D
B
H
v
M
B
D
0
5
10 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
D
H
L
L
v
w
y
Z
Z
E
θ
1
2
3
p
E
p
D
max.  
7o  
0o  
0.25 2.90  
0.05 2.65  
0.50 0.25 20.1 14.1  
0.35 0.14 19.9 13.9  
24.2 18.2  
23.6 17.6  
1.0  
0.6  
1.2  
0.8  
1.2  
0.8  
mm  
3.20  
0.25  
1
1.95  
0.2  
0.2  
0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-02-04  
97-08-01  
SOT319-2  
1998 Dec 16  
40  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
The footprint must incorporate solder thieves at the  
downstream end.  
SOLDERING  
Introduction to soldering surface mount packages  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Reflow soldering  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
Manual soldering  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
Wave soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
1998 Dec 16  
41  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
WAVE  
REFLOW(1)  
HLQFP, HSQFP, HSOP, SMS  
PLCC(3), SO  
not suitable(2)  
suitable  
suitable  
suitable  
suitable  
suitable  
suitable  
not recommended(3)(4)  
LQFP, QFP, TQFP  
SQFP  
not suitable  
not recommended(5)  
SSOP, TSSOP, VSO  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
1998 Dec 16  
42  
Philips Semiconductors  
Preliminary specification  
I2C-bus controlled TV input processor  
TDA9321H  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
PURCHASE OF PHILIPS I2C COMPONENTS  
Purchase of Philips I2C components conveys a license under the Philips’ I2C patent to use the  
components in the I2C system provided the system conforms to the I2C specification defined by  
Philips. This specification can be ordered using the code 9398 393 40011.  
1998 Dec 16  
43  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Middle East: see Italy  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +61 2 9805 4455, Fax. +61 2 9805 4466  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213, Tel. +43 160 1010,  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Fax. +43 160 101 1210  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
Norway: Box 1, Manglerud 0612, OSLO,  
220050 MINSK, Tel. +375 172 200 733, Fax. +375 172 200 773  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belgium: see The Netherlands  
Brazil: see South America  
Pakistan: see Singapore  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 689 211, Fax. +359 2 689 102  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. +48 22 612 2831, Fax. +48 22 612 2327  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381  
Portugal: see Spain  
Romania: see Italy  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Colombia: see South America  
Czech Republic: see Austria  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Tel. +65 350 2538, Fax. +65 251 6500  
Denmark: Prags Boulevard 80, PB 1919, DK-2300 COPENHAGEN S,  
Tel. +45 32 88 2636, Fax. +45 31 57 0044  
Slovakia: see Austria  
Slovenia: see Italy  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615800, Fax. +358 9 61580920  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 7430 Johannesburg 2000,  
Tel. +27 11 470 5911, Fax. +27 11 470 5494  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 40 99 6161, Fax. +33 1 40 99 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 23 53 60, Fax. +49 40 23 536 300  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Greece: No. 15, 25th March Street, GR 17778 TAVROS/ATHENS,  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +30 1 4894 339/239, Fax. +30 1 4814 240  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2865, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Tel. +90 212 279 2770, Fax. +90 212 282 6707  
Italy: PHILIPS SEMICONDUCTORS, Piazza IV Novembre 3,  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
20124 MILANO, Tel. +39 2 6752 2531, Fax. +39 2 6752 2557  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5077  
MIDDLESEX UB3 5BX, Tel. +44 181 730 5000, Fax. +44 181 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Tel. +1 800 234 7381  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 625 344, Fax.+381 11 635 777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
© Philips Electronics N.V. 1998  
SCA60  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
545104/750/01/pp44  
Date of release: 1998 Dec 16  
Document order number: 9397 750 04062  

相关型号:

TDA9321H

I2C-bus controlled TV input processor
NXP

TDA9330

I2C-bus controlled TV display processors
NXP

TDA9330H

I2C-bus controlled TV display processors
NXP

TDA9331H

I2C-bus controlled TV display processors
NXP

TDA9332

I2C-bus controlled TV display processors
NXP

TDA9332H

I2C-bus controlled TV display processors
NXP

TDA9351PS

TV signal processor-Teletext decoder with embedded m-Controller
NXP

TDA935XPS

TV signal processor-Teletext decoder with embedded m-Controller
NXP

TDA9380

TDA938O超级芯片将微处理器(CPU)与TV信号处理器集成在一起
ETC

TDA9381PS/N2

TV signal processor-Teletext decoder with embedded m-Controller
NXP

TDA9400

INTEGRATED CIRCUITS FOR TV AND RADIO RECEVERS
ETC