TDA9888TS [NXP]

DVB selective AGC amplifier; DVB选择性AGC放大器器
TDA9888TS
型号: TDA9888TS
厂家: NXP    NXP
描述:

DVB selective AGC amplifier
DVB选择性AGC放大器器

消费电路 商用集成电路 放大器 光电二极管
文件: 总22页 (文件大小:133K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TDA9888TS; TDA9889TS  
DVB selective AGC amplifier  
Product specification  
2004 Nov 02  
Supersedes data of 2002 Oct 23  
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
FEATURES  
Tuner Automatic Gain Control (TAGC) detector for  
independent tuner gain control loop applications  
Applicable for terrestrial and cable TV reception  
TAGC operating as peak-sync detector, fast reaction  
time due to additional speed-up detector  
70 dB variable gain wide-band Intermediate Frequency  
(IF) amplifier (AC-coupled)  
TAGC switch for feed-through of TAGC signal from  
analog TV demodulator (e.g. TDA9886) in case of  
hybrid (analog and digital TV demodulation) application  
Gain control via external control voltage (0 to 3 V)  
2 V (p-p) differential low IF (downconverted) output for  
direct Analog-to-Digital Converter (ADC) interfacing  
Stabilizer circuit for ripple rejection and to achieve  
Digital Video Broadcast (DVB) downconversion with  
integrated selectivity (allows to use one SAW filter  
applications)  
constant output signals  
Electrostatic discharge (ESD) protection for all pins.  
Integrated anti-aliasing tracking low-pass filter  
GENERAL DESCRIPTION  
Fully integrated synthesizer controlled oscillator with  
The TDA9888TS; TDA9889TS is an AGC amplifier circuit  
with integrated selectivity. The device provides  
downconversion and filtering without alignment for all DVB  
standards. The filtering considers the tough neighbouring  
channel conditions.  
excellent phase noise performance  
Synthesizer frequencies for a wide range of world wide  
DVB standards (for IF centre frequencies of 36, 44  
and 57 MHz) with different channel bandwidths  
(6, 7 and 8 MHz) are possible; see Tables 1 and 2  
4 MHz reference frequency input [signal from  
Phase-Locked Loop (PLL) tuning system] or operating  
as crystal oscillator  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TDA9888TS  
TDA9889TS  
SSOP16 plastic shrink small outline package; 16 leads; body width 5.3 mm  
SOT338-1  
2004 Nov 02  
2
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
QUICK REFERENCE DATA  
SYMBOL  
VP  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
4.5  
TYP. MAX. UNIT  
note 1  
5
5.5  
64  
V
IP  
supply current  
46  
55  
2
mA  
V
Vo(LIF)(p-p)  
typical low IF operating output  
voltage (peak-to-peak value)  
GIF(max)  
maximum conversion gain  
output peak-to-peak level to 85  
input RMS level ratio  
90  
dB  
GIF(cr)  
fosc  
IF gain control range  
see Fig.3  
60  
70  
31  
31.5  
32  
40  
53  
99  
97  
102  
dB  
synthesizer controlled oscillator  
frequencies  
see Tables 1 and 2  
MHz  
MHz  
MHz  
MHz  
MHz  
dBc  
dBc  
dBc  
dB  
φN(synth)  
synthesizer phase noise  
performance  
at 1 kHz  
89  
89  
98  
0.9  
at 10 kHz  
at 100 kHz  
αLIF  
low IF band amplitude characteristic 0 dB at middle of band  
(standard independent)  
+0.9  
αN1  
αN+1  
low-pass filter attenuation  
8 MHz band; at 15.75 MHz 15  
dB  
dB  
suppression of IF input frequencies input frequency between  
below wanted band at low IF output 21 and 31 MHz; referenced  
to 36 MHz  
30  
C/N  
carrier-to-noise ratio at low IF  
at f > 1 MHz; see Fig.5  
ripple = 70 Hz; see Fig.7  
112  
116  
1.4  
dBc/Hz  
%
PSRR  
power supply ripple rejection  
[residual ripple AM, modulation  
factor m at 2 V (p-p) low IF signal]  
f
Note  
1. Some parameters can be decreased at VP = 4.5 V.  
2004 Nov 02  
3
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
BLOCK DIAGRAM  
IF gain  
control input  
S0  
1
S1  
13  
S2  
3
TAGC TADJ TAGCEXT  
AGC  
6
10  
9
11  
TDA9888TS  
TDA9889TS  
IF AGC  
INTERFACE  
TUNER AGC  
LOGIC CONTROL  
low IF  
output  
2 V(p-p)  
differential  
15  
16  
LIF2  
LIF1  
8
7
DOWNCONVERTER  
IF1  
IF2  
TRACKING  
LOW-PASS FILTER  
AND  
COMPLEX FILTERING  
SYNTHESIZER  
AND  
REFERENCE GENERATION  
FILTER  
REFERENCE CONTROL  
SUPPLY  
12  
14  
4
2
5
MHC094  
V
P
GND  
LFS  
REF  
LFLP  
4 MHz crystal  
or external  
reference  
Fig.1 Block diagram.  
2004 Nov 02  
4
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
PINNING  
SYMBOL PIN  
DESCRIPTION  
S0  
1
logic switch S0 input (frequency  
select)  
REF  
S2  
2
3
4
5
6
7
8
9
4 MHz crystal or reference input  
logic switch S2 input (AGC select)  
loop filter synthesizer PLL  
handbook, halfpage  
S0  
REF  
S2  
1
2
3
4
5
6
7
8
16 IF2  
15 IF1  
14 GND  
13 S1  
LFS  
LFLP  
AGC  
LIF1  
LIF2  
TADJ  
loop filter low-pass control PLL  
AGC control voltage input  
LFS  
LFLP  
AGC  
LIF1  
LIF2  
TDA9888TS  
TDA9889TS  
low IF differential output 1  
12  
V
P
low IF differential output 2  
11 TAGCEXT  
10 TAGC  
tuner AGC TakeOver Point (TOP)  
adjustment  
9
TADJ  
TAGC  
10 tuner AGC output  
TAGCEXT 11 external tuner AGC voltage input  
MHC093  
VP  
S1  
12 supply voltage (+5 V)  
13 logic switch S1 input (frequency  
select)  
GND  
IF1  
14 ground supply  
15 IF differential input 1  
16 IF differential input 2  
Fig.2 Pin configuration.  
IF2  
FUNCTIONAL DESCRIPTION  
Tuner AGC  
Figure 1 shows the simplified block diagram of the device.  
The integrated circuit contains the following functional  
blocks:  
The tuner AGC is realized by a TakeOver Point (TOP)  
network and a peak-level detector. The threshold level of  
the peak detector can be adjusted by an external  
potentiometer connected to pin TADJ. For IF signals  
above this threshold the level detector provides a  
discharge current to pin TAGC. An additional current  
source is internally connected to this pin providing charge  
current to the external tuner AGC capacitor. For IF signals  
of 8 dB below the threshold voltage this current will be  
increased by a factor of approximately 40 for faster AGC  
reaction. The ratio of discharge to charge current is  
normally approximately 2000 and approximately 50 for  
fast mode.  
1. Gain controlled IF amplifier  
2. Tuner AGC  
3. Reference generation  
4. Synthesizer for downconversion  
5. Downconversion and complex filtering  
6. Tracking low-pass filter with reference control  
7. Low IF differential output stage  
8. Logic control  
For use of the device in different applications the charge  
current can be switched off, for hybrid applications the  
signal at pin TAGCEXT can be fed via a transmission gate  
to pin TAGC (TDA9888TS; TDA9889TS combined with  
analog IF), controlled by the 3-state input pin S2. With an  
activated transmission gate all internal currents are off.  
In the event that the tuner AGC is not needed (e.g. TAGC  
from channel decoder or from an analog IF in hybrid  
chassis), pin TADJ should be left open-circuit and  
9. Internal voltage stabilizer.  
Gain controlled IF amplifier  
The IF amplifier consists of three AC-coupled differential  
stages. Gain control is performed by emitter degeneration.  
Total gain control range is 70 dB (typ.). The differential  
input impedance is typical 2 kin parallel with 3 pF.  
therefore all internal AGC currents will be switched off.  
2004 Nov 02  
5
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
Reference generation  
Tracking low-pass filter with reference control  
The 4 MHz crystal is the reference for the downconversion  
synthesizer and the filter synthesizer.  
The low-pass filter is controlled by a reference signal  
[generated by a frequency synthesizer and can be  
switched by the standard selection (S0 and S1)].  
The downconverted DVB frequency and the frequency  
adjustment of the integrated filters are dependent on the  
precision of the reference signal at pin REF. An operation  
as crystal oscillator is possible as well as connecting this  
input via a serial capacitor to another low-ohmic reference  
frequency source.  
The tracking low-pass filter is designed as a  
Tschebyscheff filter to guarantee sufficient suppression for  
the neighbouring picture carrier. An all-pass filter corrects  
the characteristic to obtain a flat (equivalent ripple) group  
delay behaviour.  
The integrated divider-by-8 generates the internally  
needed 500 kHz reference frequency for the DVB  
synthesizer and the reference filter.  
Low IF differential output stage  
The output amplifier consists of two identical differential  
operational amplifiers with a high common mode (DC)  
rejection ratio, to provide a constant DC voltage at the  
output stage. The amplified Low IF (LIF) signal is available  
as a differential signal with an amplitude of 2 V (p-p) and  
DC level of 2 V (typ.) between the output terminals of both  
amplifiers.  
Synthesizer for downconversion  
The PLL synthesizer for downconversion consists of a  
Voltage Controlled Oscillator (VCO), a divider with a  
standard dependent divider factor, a frequency phase  
detector (constructed as a digital 3-state comparator) and  
a charge pump.  
Logic control  
The VCO operates as an integrated low radiation  
relaxation oscillator at double the conversion frequency.  
For downconversion the VCO frequency is divided-by-2 to  
provide two differential square wave signals with exactly  
90 degrees phase difference, independent of the VCO  
frequency.  
The logic control provides an easy selection of the most  
common standards for Europe, USA and Japan with the  
two switches S0 and S1 (frequency selection different for  
TDA9888TS and TDA9889TS) and controls all internal  
standard dependent stages.  
The five available tuner AGC modes can be set via the  
3-state input pin S2 and RTOP connection (at pin TADJ).  
The frequency phase detector compares the down-divided  
oscillator signal with the 500 kHz reference frequency  
signal and controls, via the charge pump, the control  
voltage at the external loop filter connected to pin LFS,  
which is required to tune the VCO exactly to the wanted  
frequency.  
Internal voltage stabilizer  
The band gap circuit generates a voltage of approximately  
2.4 V, independent of the supply voltage and the  
temperature. A voltage regulator circuit, controlled by this  
voltage, produces a constant voltage of 3.55 V which is  
used as an internal reference voltage.  
The divider, the frequency phase detector and the  
reference frequency divider are constructed in a low  
radiation technique to optimize the synthesizer spurious  
suppression in the downconverted output signal.  
Downconversion and complex filtering  
The gain controlled IF signal from the IF amplifier is fed to  
two identical linear mixers, operating in the ‘in phase’ and  
‘quadrature’ mode in accordance to the 0 and 90 degree  
VCO signal from the synthesizer. With this, the  
downconverted DVB low IF signal is available as an  
I and Q signal in the frequency band from 1 to 9 MHz.  
These signals are fed to the complex filter section. As a  
result of adding both signals, the unwanted mirror signal  
will be attenuated (approximately 34 dB). The unwanted  
frequency components below 1 MHz are attenuated in a  
high-pass filter. This signal is then fed through a  
group-delay equalizer circuit.  
2004 Nov 02  
6
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
MAX.  
5.5  
UNIT  
VP  
supply voltage  
IP = 64 mA; Tamb = 70 °C;  
maximum chip temperature of  
125 °C; Rth(j-a) = maximum  
V
Vi(n)  
tsc  
input voltage at pins 1 to 11, 13, 15 and 16  
short-circuit time to ground or VP  
storage temperature  
VP  
V
10  
s
Tstg  
Tamb  
Ves  
25  
+150  
+70  
+200  
°C  
°C  
V
ambient temperature  
20  
electrostatic handling voltage for all pins  
note 1  
note 2  
200  
2500 +2500  
V
Notes  
1. Machine model (class B; SNW-FQ-302B): discharging a 200 pF capacitor via a 0.75 µH inductance.  
2. Human body model (class 2; SNW-FQ-302A): discharging a 100 pF capacitor via a 1.5 kseries resistor.  
THERMAL CHARACTERISTICS  
SYMBOL  
PARAMETER  
CONDITIONS  
VALUE  
UNIT  
Rth(j-a)  
thermal resistance from junction to ambient in free air  
136  
K/W  
2004 Nov 02  
7
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
CHARACTERISTICS  
VP = 5 V; Tamb = 25 °C; 8 MHz system; see Tables 1 or 2, CW test input signal is used for specification;  
Vi(IF)(rms) = 10 mV frequency fIF = 36 MHz for low IF output of 5 MHz; IF input from 50 via broadband transformer  
1 : 1; gain controlled amplifier adjusted to low IF differential output of 2 V (p-p); measurements taken in test circuit of  
Fig.11 with external 4 MHz reference signal of 140 mV (RMS); unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Supply; pin VP  
VP  
IP  
supply voltage  
supply current  
total power dissipation  
note 1  
4.5  
5
5.5  
V
46  
55  
64  
mA  
Ptot  
275  
352  
mW  
IF amplifier; pins IF1 and IF2; differential  
GIF(max)  
GIF(min)  
GIF(cr)  
maximum conversion gain  
minimum conversion gain  
IF gain control range  
output peak-to-peak level to 85  
90  
20  
70  
15  
80  
2
dB  
input RMS level ratio  
23  
dB  
see Fig.3  
60  
dB  
BIF(3dB)(ll)  
BIF(3dB)(ul)  
Ri(dif)  
lower limit 3 dB IF bandwidth note 2  
upper limit 3 dB IF bandwidth note 2  
MHz  
MHz  
kΩ  
pF  
differential input resistance  
differential input capacitance  
DC input voltage  
note 2  
note 2  
Ci(dif)  
3
VI  
1.9  
V
Low IF output signal; pins LIF1 and LIF2; differential; see Fig.8  
Vo(LIF)(p-p)  
typical low IF operating output  
voltage (peak-to-peak value)  
2
V
V
V
Vclip(u)  
upper clipping voltage level  
(single-ended)  
2.9  
Vclip(l)  
lower clipping voltage level  
(single-ended)  
0.6  
Ro(diff)  
VO  
output resistance (differential) note 2  
DC output voltage  
2
1
150  
V
Ibias(int)  
internal DC bias current for  
0.8  
mA  
emitter-follower (single-ended)  
Io(source)(max) maximum AC and DC output  
source current (single-ended)  
2.5  
0.6  
mA  
mA  
Io(sink)(max)  
maximum AC and DC output  
sink current (single-ended)  
note 3  
note 2  
ZL(diff)  
differential load impedance  
1.7  
kΩ  
αLIF  
low IF band amplitude  
characteristic  
0 dB at middle of band  
(standard independent)  
0.9  
+0.9  
dB  
td(g)(LIF)  
low IF band group delay ripple from 1 MHz to 2 MHz  
from 2 MHz to end of band  
150  
100  
ns  
ns  
αN1  
low-pass filter attenuation  
6 MHz band; at 11.75 MHz  
7 MHz band; at 13.75 MHz  
8 MHz band; at 15.75 MHz  
any band; at 27 MHz  
15  
15  
15  
40  
dB  
dB  
dB  
dB  
α27MHz  
low-pass filter attenuation  
50  
2004 Nov 02  
8
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
SYMBOL  
αN+1  
PARAMETER  
CONDITIONS  
MIN.  
30  
TYP.  
35  
MAX.  
UNIT  
dB  
suppression of IF input  
frequencies below wanted  
band at low IF output  
input frequency between  
21 and 31 MHz; referenced  
to 36 MHz  
C/N  
carrier-to-noise ratio at low IF at f = 4.9 MHz; note 4a;  
112  
90  
116  
100  
dBc/Hz  
dBc/Hz  
dB  
see Fig.5  
at f = 4.9 MHz; note 4b;  
see Fig.5  
αd3  
intermodulation at  
fLIF1 = 4.1 MHz or  
fLIF2 = 5.9 MHz  
fIF1 = fosc + 4.7 MHz and  
fIF2 = fosc + 5.3 MHz;  
see Fig.6  
35  
αd2  
in-band harmonics  
fIF1 = fosc + 1.31 MHz  
40  
dB  
low IF = multiple of 1.31 MHz  
up to 7.86 MHz  
αH(spur)  
in-band spurious elements  
(1 to 9 MHz)  
AC load: ZL(diff) > 1.7 kΩ  
50  
50  
5
dB  
dB  
out-band spurious elements  
(>9 MHz)  
PSRR  
power supply ripple rejection  
[residual ripple FM, peak  
deviation f at 2 V (p-p) low IF  
signal]  
fripple = 70 Hz; see Fig.7  
fripple = 1 kHz; see Fig.7  
fripple = 10 kHz; see Fig.7  
fripple = 100 kHz; see Fig.7  
fripple = 70 Hz; see Fig.7  
Hz  
Hz  
Hz  
Hz  
%
25  
35  
1400  
2700  
1.4  
2000  
4000  
power supply ripple rejection  
[residual ripple AM, modulation  
factor m at 2 V (p-p) low IF  
signal]  
IF AGC control; pin AGC  
Ii(sink)(max) maximum input sink current  
Vi(max)  
2
µA  
maximum allowable input  
voltage  
VP  
V
Gv  
gain control voltage range  
0
3
V
SAGC  
negative control steepness  
Gv = 0.8 to 2.2 V  
45  
dB/V  
GIF/Vcon  
Tuner AGC; pin TAGC, operating as current output; see Figs 3 and 4  
Vi(IF)(min)(p-p) minimum controlled IF input  
signal voltage between  
RTOP = 22 k;  
ITAGC(sink) = 100 µA  
81  
84  
dBµV  
dBµV  
pins IF1 and IF2  
(peak-to-peak value)  
Vi(IF)(max)(p-p) maximum controlled IF input  
signal voltage between  
RTOP = 0 ;  
ITAGC(sink) = 100 µA  
102  
106  
pins IF1 and IF2  
(peak-to-peak value)  
Vi(IF)/T  
variation of AGC controlled IF RTOP = 8.2 k;  
input voltage with temperature ITAGC(sink) = 100 µA  
0.07  
600  
dB/K  
Isink  
sink current (tuner AGC  
discharge current)  
VTAGC = 1 V  
400  
500  
µA  
2004 Nov 02  
9
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
SYMBOL  
Isource(1)  
PARAMETER  
CONDITIONS  
normal mode  
MIN.  
0.21  
TYP.  
0.27  
MAX.  
0.33  
UNIT  
µA  
source current (tuner AGC  
charge current)  
Isource(2)  
fast mode activated by  
internal level detector  
8
10  
12  
µA  
Vsat(ul)  
Vsat(ll)  
αTH  
upper limit saturation voltage  
lower limit saturation voltage  
pin operating as current  
output  
VP 0.3  
8
V
0.3  
10  
V
level loss threshold of internal 0 dB corresponds to RTOP  
6
dB  
detector for activating fast  
AGC  
alignment  
tdet(off)  
fast AGC detection off time  
all signal events below αTH  
40  
60  
80  
ms  
External tuner AGC; electronic switch operation; pin TAGC connected to pin TAGCEXT  
Ron  
resistance between pins TAGC  
and TAGCEXT in operation  
900  
1200  
VP  
Vop(I/O)  
I/O operating voltage range  
0
V
Tuner AGC takeover point adjust and TAGC operating mode settings; pin TADJ; see Table 3  
VRTOP  
alignment voltage  
RTOP at pin  
0
2
V
TADJ = 0 to 22 kΩ  
VTADJ  
RTOP  
voltage at pin TADJ  
pin open-circuit  
1
3.5  
V
resistor connected between  
pin TADJ and GND  
for LOW: RTOP at pin TADJ  
for HIGH: pin open-circuit  
25  
kΩ  
MΩ  
Low-pass control PLL; pin LFLP  
VLFLP  
KO  
loop filter operating range  
1
4
9
3
V
VCO steepness: fVCO/VLFS note 5  
MHz/V  
µA/rad  
KD  
phase frequency detector  
steepness: ILFLP/∆ϕFM  
Rlf(int)  
internal loop filter resistor  
3.75  
4.7  
5.65  
65  
kΩ  
µA  
Isink/source  
phase frequency detector I/O  
current  
Synthesizer PLL; pin LFS  
VLFS  
KO  
loop filter operating range  
1
3
V
VCO steepness: fVCO/VLFS note 5  
25  
16  
MHz/V  
µA/rad  
KD  
phase frequency detector  
steepness: ILFS/∆ϕFM  
Isink/source  
phase frequency detector I/O  
current  
100  
µA  
φN(synth)  
synthesizer phase noise  
performance  
at 1 kHz  
89  
89  
98  
115  
50  
99  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc/Hz  
dBc  
at 10 kHz  
97  
at 100 kHz  
102  
119  
at 1.4 MHz  
αspur  
synthesizer spurious  
performance  
multiple of f = 500 kHz  
Ileak(lf)  
loop filter leakage current  
synthesizer spurious  
performance > 50 dBc  
10  
nA  
2004 Nov 02  
10  
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
Standard switch S0 and S1; pins S0 and S1; see Tables 1 or 2  
Vi  
input voltage  
for LOW  
for HIGH  
0
2
V
V
V
2.5  
VP  
Vfr(S0,S1)  
Ri  
free-running voltage at pin S0 pin open-circuit;  
or pin S1  
3.5  
Ifr(S0,S1) < 0.1 µA  
input resistance  
37  
kΩ  
Standard switch S2; pin S2; see Table 3  
Vi  
input voltage  
for LOW  
for MID  
0
0.8  
2
V
V
V
V
1.3  
2.5  
for HIGH  
VP  
Vfr(S2)  
Ri  
free-running voltage at pin S2 pin open-circuit;  
1.65  
Ifr(S2) < 0.1 µA  
input resistance  
25  
kΩ  
Reference input; pin REF; note 6  
VI  
DC input voltage  
2.3  
1.5  
2.6  
2
2.9  
2.5  
V
Ri  
input resistance  
kΩ  
pF  
Ci  
input capacitance  
2
Rxtal  
Cx  
resonance resistance of crystal operation as crystal oscillator  
200  
pull-up/down capacitance  
note 7  
depends on crystal type  
pF  
MHz  
fref  
fref  
frequency of reference signal  
4
tolerance of reference  
frequency  
note 8  
±100 ×  
106  
Vref(p-p)  
Ro(ref)  
CK  
amplitude of reference signal  
source (peak-to-peak value)  
operation as input terminal  
230  
1100  
4.7  
mV  
kΩ  
pF  
allowed output resistance of  
external reference source  
decoupling capacitance to  
external reference source  
operation as input terminal  
22  
100  
2004 Nov 02  
11  
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
Notes  
1. Some parameters can be decreased at VP = 4.5 V.  
2. This parameter is not tested during production and is only given as application information.  
3. For a higher AC load a resistor application is possible.  
4. Measured without input signal but AGC adjusted corresponding to following input level  
a) 10 mV (RMS)  
b) 0.5 mV (RMS).  
5. Calculation of the PLL loop filter by using following formulae, valid under the condition for the damping factor d 1.2 .  
K
K
1
1
--  
2
BL3 dB  
=
OK R  
and d =  
R
OK C  
-------  
with the following parameters  
LFS  
-------------  
D
LFS  
LFS  
D
2π n  
n
KO = VCO steepness (rad/V) or (2π Hz/V),  
KD = phase frequency detector steepness (µA/rad),  
LFS = synthesizer loop filter serial resistor (),  
CLFS = synthesizer loop filter serial capacitor (F),  
R
BL3dB = loop filter bandwidth at 3 dB amplitude (Hz),  
d = damping factor  
n = divider factor; see Table 4.  
6. The reference input at pin S2 is able to operate as a one-pin crystal oscillator as well as an input terminal with  
external reference signal, e.g. from the tuning system.  
7. The value of Cx determines the accuracy of the resonance frequency of the crystal and depends on the crystal type.  
8. The tolerance of the reference frequency determines the accuracy of the low IF. The tolerance of fosc is given by  
f  
fosc  
=
reff  
and the tolerance of fLIF is given by fLIF = −∆fosc  
.
----------  
osc  
fref  
Table 1 Standard switch settings for TDA9889TS  
CHANNEL  
BANDWIDTH  
(MHz)  
fIF(centre)  
(MHz)  
fosc  
(MHz)  
S1  
S0  
REGION  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
LOW  
HIGH  
LOW  
36  
36  
44  
36  
31  
31.5  
40  
8
7
6
6
Europe  
Europe  
USA  
32  
Europe  
2004 Nov 02  
12  
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
Table 2 Standard switch settings for TDA9888TS  
CHANNEL  
BANDWIDTH  
(MHz)  
fIF(centre)  
(MHz)  
fosc  
(MHz)  
S1  
S0  
REGION  
HIGH  
HIGH  
LOW  
LOW  
HIGH  
LOW  
HIGH  
LOW  
36  
36  
44  
57  
31  
31.5  
40  
8
7
6
6
Europe  
Europe  
USA  
53  
Japan  
Table 3 AGC mode settings  
S2  
RTOP  
FUNCTION (PIN TADJ)  
LOW  
MID  
connected  
all currents off; voltage from pin TAGCEXT switched to pin TAGC  
charge currents disabled; discharge current enabled  
all charge and discharge currents enabled  
HIGH  
MID/HIGH  
LOW  
open-circuit  
all currents off; pin TAGC high-ohmic  
all currents off; voltage from pin TAGCEXT switched to pin TAGC  
Table 4 Synthesizer PLL loop filter dimensions for different standards; see note 5 of Chapter “Characteristics”  
fIF(centre)  
(MHz)  
fosc  
(MHz)  
BL3dB  
(kHz)  
RLFS  
(k)  
CLFS  
(nF)  
CP(LFS)  
(pF)  
n
d
36  
31  
31.5  
32  
62  
63  
36.1  
35.6  
35  
1.22  
1.21  
1.20  
1.31  
1.52  
5.6  
4.7  
22  
64  
44  
57  
40  
80  
34  
6.8  
9.1  
18  
15  
53  
106  
34.4  
2004 Nov 02  
13  
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
MHC095  
MHC096  
120  
handbook, halfpage  
V
I
handbook, halfpage  
TAGC  
(V)  
TAGC  
(µA)  
V
i(IF)(rms)  
(dBµV)  
3
2
1
600  
500  
400  
300  
200  
100  
0
100  
90  
80  
70  
(1)  
60  
(2)  
(3)  
(4)  
0
40  
60  
0
80  
100  
120  
(dBµV)  
4
8
12  
16  
20  
24  
R
(k)  
V
TOP  
i(IF)(p-p)  
(1) IF AGC voltage.  
(3) Ituner; RTOP = 8.2 k.  
(4) Ituner; RTOP = 0 .  
(2) Ituner; RTOP = 22 k.  
Fig.4 Typical tuner takeover point as a function of  
Fig.3 Typical IF and tuner AGC characteristic.  
RTOP  
.
1 V (p-p)  
handbook, halfpage  
74 dBµV  
MHC097  
120  
handbook, halfpage  
C/N  
(dBc/Hz)  
31.0  
35.7 36.3  
4.1 4.7 5.3 5.9  
f
f
f
LIF  
(MHz)  
110  
100  
90  
IF  
osc  
(MHz)  
input conditions  
output signal  
Intermodulation  
MHC098  
handbook, halfpage  
80  
30  
31.0 32.31  
1.31 2.62 3.93 5.24 6.55 7.86 9.17  
0
50  
70  
90  
110  
(dBµV)  
f
f
f
IF  
(MHz)  
input conditions  
osc  
LIF  
(MHz)  
V
i(IF)(rms)  
output signal  
Harmonics  
MHC105  
Fig.5 Typical C/N ratio as a function of IF input  
voltage.  
Fig.6 Intermodulation and harmonics.  
2004 Nov 02  
14  
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
MHC100  
2
V
t
handbook, ha
LIF  
d(g)(LIF)  
1
0
(dB)  
(ns)  
V = V + V  
MHC099  
P
ripple  
handbook, halfpage  
1  
2  
3  
4  
5  
6  
(3)  
TDA9888TS  
TDA9889TS  
200  
(2)  
150  
100  
V
(V)  
P
50  
7  
8  
9  
(1)  
5.050  
5.000  
4.950  
0
50  
100  
10  
0
2
4
6
8
10  
(2)  
12  
14  
16  
f (MHz)  
tolerance scheme:  
(1)  
(3)  
(1) Channel bandwidth = 6 MHz.  
(2) Channel bandwidth = 7 MHz.  
(3) Channel bandwidth = 8 MHz.  
t (s)  
Fig.8 Detailed low IF amplitude and group delay  
pass band tolerance scheme.  
Fig.7 Ripple rejection condition.  
MHC102  
MHC101  
30  
LIF  
30  
LIF  
handbook, halfp
handbook, halfp
V
V
(dB)  
(dB)  
10  
10  
10  
10  
30  
50  
70  
30  
(3)  
(2)  
(1)  
50  
70  
90  
(3) (2) (1)  
90  
30  
0
5
10  
15  
20  
25  
30  
25  
20  
15  
10  
5  
0
f (MHz)  
f (MHz)  
tolerance scheme:  
tolerance scheme:  
(1)  
(2)  
(3)  
(1)  
(2)  
(3)  
(1) Channel bandwidth = 6 MHz.  
(2) Channel bandwidth = 7 MHz.  
(3) Channel bandwidth = 8 MHz.  
(1) Channel bandwidth = 6 MHz.  
(2) Channel bandwidth = 7 MHz.  
(3) Channel bandwidth = 8 MHz.  
Fig.9 Low IF amplitude stop band tolerance  
scheme.  
Fig.10 Low IF amplitude pass band tolerance  
scheme.  
2004 Nov 02  
15  
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
TEST AND APPLICATION INFORMATION  
TAGC  
external  
+ V  
GND  
TAGC  
TADJ  
P
51  
R
TOP  
22 kΩ  
H
L
IF input  
1 : 1  
S1  
10 nF  
IF input  
16  
1
15  
14  
3
13  
12  
11  
6
10  
7
9
8
TDA9888TS  
TDA9889TS  
2
4
5
f
ref  
S0  
H
S2  
C
C
LFS  
LFLP  
47 nF  
L
L
M
H
4.7 nF  
R
10 nF  
10 nF  
+ V  
LFS  
5.6 kΩ  
C
P
x
4 MHz  
100 pF  
LFS  
LFLP  
AGC  
LIF1  
LIF2  
51 Ω  
MHC103  
REF  
external reference input circuit  
Fig.11 Test circuit.  
2004 Nov 02  
16  
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
100 nF  
TADJ  
tuner AGC  
GND  
+ V  
P
1
2
5
4
SAW  
FILTER  
X7253D  
IF input  
10 nF  
R
TOP  
51  
22 kΩ  
IF input  
3
(2)  
(2)  
16  
15  
2
14  
3
13  
12  
11  
6
10  
9
8
TDA9888TS  
TDA9889TS  
1
4
5
7
C
P(LFS)  
22 pF  
(1)  
100 nF  
C
C
C
LFS  
LFLP  
47 nF  
x
4.7 nF  
4 MHz  
R
47  
kΩ  
LFS  
(1)  
5.6 kΩ  
CHANNEL DECODER  
LFS  
LFLP  
REF  
+ V  
P
MHC104  
fIF = 36 MHz; channel bandwidth = 8 MHz; external AGC from channel decoder; inclusive narrow band tuner AGC.  
(1) Depends on channel decoder.  
(2) Open-pin if tuner AGC is not needed.  
Fig.12 Application circuit.  
2004 Nov 02  
17  
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
PACKAGE OUTLINE  
SSOP16: plastic shrink small outline package; 16 leads; body width 5.3 mm  
SOT338-1  
D
E
A
X
c
y
H
v
M
A
E
Z
9
16  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
8
1
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
p
p
1
2
3
E
max.  
8o  
0o  
0.21  
0.05  
1.80  
1.65  
0.38  
0.25  
0.20  
0.09  
6.4  
6.0  
5.4  
5.2  
7.9  
7.6  
1.03  
0.63  
0.9  
0.7  
1.00  
0.55  
mm  
2
0.25  
0.65  
1.25  
0.2  
0.13  
0.1  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT338-1  
MO-150  
2004 Nov 02  
18  
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
SOLDERING  
To overcome these problems the double-wave soldering  
method was specifically developed.  
Introduction to soldering surface mount packages  
If wave soldering is used the following conditions must be  
observed for optimal results:  
This text gives a very brief insight to a complex  
technology. A more in-depth account of soldering ICs can  
be found in our “Data Handbook IC26; Integrated Circuit  
Packages” (document order number 9398 652 90011).  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by  
a smooth laminar wave.  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering can still be used for  
certain surface mount ICs, but it is not suitable for fine  
pitch SMDs. In these situations reflow soldering is  
recommended.  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
Reflow soldering  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling  
or pressure-syringe dispensing before package  
placement. Driven by legislation and environmental  
forces the worldwide use of lead-free solder pastes is  
increasing.  
The footprint must incorporate solder thieves at the  
downstream end.  
For packages with leads on four sides, the footprint  
must be placed at a 45° angle to the transport direction  
of the printed-circuit board. The footprint must  
incorporate solder thieves downstream and at the side  
corners.  
Several methods exist for reflowing; for example,  
convection or convection/infrared heating in a conveyor  
type oven. Throughput times (preheating, soldering and  
cooling) vary between 100 seconds and 200 seconds  
depending on heating method.  
During placement and before soldering, the package  
must be fixed with a droplet of adhesive. The adhesive  
can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 °C to 270 °C depending on solder paste material.  
The top-surface temperature of the packages should  
preferably be kept:  
Typical dwell time of the leads in the wave ranges from  
3 seconds to 4 seconds at 250 °C or 265 °C, depending  
on solder material applied, SnPb or Pb-free respectively.  
below 225 °C (SnPb process) or below 245 °C (Pb-free  
process)  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
– for all BGA, HTSSON..T and SSOP..T packages  
Manual soldering  
– for packages with a thickness 2.5 mm  
– for packages with a thickness < 2.5 mm and a  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
volume 350 mm3 so called thick/large packages.  
below 240 °C (SnPb process) or below 260 °C (Pb-free  
process) for packages with a thickness < 2.5 mm and a  
volume < 350 mm3 so called small/thin packages.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 seconds to 5 seconds  
between 270 °C and 320 °C.  
Moisture sensitivity precautions, as indicated on packing,  
must be respected at all times.  
Wave soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit  
boards with a high component density, as solder bridging  
and non-wetting can present major problems.  
2004 Nov 02  
19  
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
WAVE  
REFLOW(2)  
not suitable suitable  
PACKAGE(1)  
BGA, HTSSON..T(3), LBGA, LFBGA, SQFP, SSOP..T(3), TFBGA,  
VFBGA, XSON  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP, HSQFP, HSSON,  
HTQFP, HTSSOP, HVQFN, HVSON, SMS  
not suitable(4)  
suitable  
PLCC(5), SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended(5)(6) suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L(8), PMFP(9), WQCCN..L(8)  
not recommended(7)  
suitable  
not suitable  
not suitable  
Notes  
1. For more detailed information on the BGA packages refer to the “(LF)BGA Application Note” (AN01026); order a copy  
from your Philips Semiconductors sales office.  
2. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
3. These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no account  
be processed through more than one soldering cycle or subjected to infrared reflow soldering with peak temperature  
exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package body peak temperature  
must be kept as low as possible.  
4. These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the solder  
cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink on the top side,  
the solder might be deposited on the heatsink surface.  
5. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
6. Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is definitely not  
suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
7. Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger than  
0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
8. Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered pre-mounted  
on flex foil. However, the image sensor package can be mounted by the client on a flex foil by using a hot bar  
soldering process. The appropriate soldering profile can be provided on request.  
9. Hot bar soldering or manual soldering is suitable for PMFP packages.  
2004 Nov 02  
20  
Philips Semiconductors  
Product specification  
DVB selective AGC amplifier  
TDA9888TS; TDA9889TS  
DATA SHEET STATUS  
DATA SHEET  
STATUS(1)  
PRODUCT  
STATUS(2)(3)  
LEVEL  
DEFINITION  
I
Objective data  
Development This data sheet contains data from the objective specification for product  
development. Philips Semiconductors reserves the right to change the  
specification in any manner without notice.  
II  
Preliminary data Qualification  
This data sheet contains data from the preliminary specification.  
Supplementary data will be published at a later date. Philips  
Semiconductors reserves the right to change the specification without  
notice, in order to improve the design and supply the best possible  
product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips  
Semiconductors reserves the right to make changes at any time in order  
to improve the design, manufacturing and supply. Relevant changes will  
be communicated via a Customer Product/Process Change Notification  
(CPCN).  
Notes  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
2. The product status of the device(s) described in this data sheet may have changed since this data sheet was  
published. The latest information is available on the Internet at URL http://www.semiconductors.philips.com.  
3. For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
DEFINITIONS  
DISCLAIMERS  
Short-form specification  
The data in a short-form  
Life support applications  
These products are not  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes in the products -  
including circuits, standard cells, and/or software -  
described or contained herein in order to improve design  
and/or performance. When the product is in full production  
(status ‘Production’), relevant changes will be  
Application information  
Applications that are  
communicated via a Customer Product/Process Change  
Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these  
products, conveys no licence or title under any patent,  
copyright, or mask work right to these products, and  
makes no representations or warranties that these  
products are free from patent, copyright, or mask work  
right infringement, unless otherwise specified.  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
2004 Nov 02  
21  
Philips Semiconductors – a worldwide company  
Contact information  
For additional information please visit http://www.semiconductors.philips.com.  
Fax: +31 40 27 24825  
For sales offices addresses send e-mail to: sales.addresses@www.semiconductors.philips.com.  
© Koninklijke Philips Electronics N.V. 2004  
SCA76  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
R25/03/pp22  
Date of release: 2004 Nov 02  
Document order number: 9397 750 14249  

相关型号:

TDA9889

DVB selective AGC amplifier
NXP

TDA9889TS

DVB selective AGC amplifier
NXP

TDA9897

Multistandard hybrid IF processing
NXP

TDA9897HL

Multistandard hybrid IF processing
NXP

TDA9897HL/V2/S1

IC SPECIALTY CONSUMER CIRCUIT, PQFP48, 7 X 7 MM, 1.40 MM HEIGHT, PLASTIC, SOT313-2, MS-026, LQFP-48, Consumer IC:Other
NXP

TDA9897HL/V3

Multistandard hybrid IF processing
NXP

TDA9897HN

Multistandard hybrid IF processing
NXP

TDA9897HN/V2

IC SPECIALTY CONSUMER CIRCUIT, PQCC48, 7 X 7 MM, 0.85 MM HEIGHT, PLASTIC, SOT619-1, MO-220, HVQFN-48, Consumer IC:Other
NXP

TDA9897HN/V3

Multistandard hybrid IF processing
NXP

TDA9897HN/V3,551

TDA9897; TDA9898 - Multistandard hybrid IF processing QFN 48-Pin
NXP

TDA9897HN/V3,557

TDA9897; TDA9898 - Multistandard hybrid IF processing QFN 48-Pin
NXP

TDA9897S1

Multistandard hybrid IF processing
NXP