TDA9910HW/6 [NXP]

12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC) direct/ultra high IF sampling; 12位,高达80 M采样/秒,模拟数字转换器( ADC )直接/超高IF采样
TDA9910HW/6
型号: TDA9910HW/6
厂家: NXP    NXP
描述:

12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC) direct/ultra high IF sampling
12位,高达80 M采样/秒,模拟数字转换器( ADC )直接/超高IF采样

转换器
文件: 总21页 (文件大小:135K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TDA9910  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
direct/ultra high IF sampling  
Rev. 02 — 9 December 2004  
Objective data sheet  
1. General description  
The TDA9910 is a 12-bit Analog-to-Digital Converter (ADC) optimized for direct IF  
sampling, and supporting the most demanding use conditions in ultra high IF radio  
transceivers for cellular infrastructure and other applications such as wireless access  
system, optical networking and fixed telecommunication. Thanks to its broadband input  
capabilities, the TDA9910 is ideal for single and multiple carriers data conversion.  
Operating at a maximum sampling rate of 80 Msample/s, analog input signals are  
converted into 12-bit binary coded digital words. All static digital inputs are CMOS  
compatible. All output signals are LVCMOS compatible. The TDA9910 offers the most  
possible flexible acquisition control system thanks to its programmable Complete  
Conversion Signal (CCS) that allows to adjust the delay of the acquisition clock.  
Thanks to its internal front-end buffer, the TDA9910 offers the lowest input capacitance  
(< 1 pF) and therefore the highest flexibility in front-end aliasing filter strategy.  
Released in HTQFP48, it keeps the industry's smallest ADC of its category.  
2. Features  
12-bit resolution  
Direct IF sampling up to 370 MHz  
90 dB SFDR; 71 dB SNR (fi = 225 MHz; B = 5 MHz)  
72 dB SFDR; 66 dB SNR (fi = 175 MHz; B = Nyquist)  
High-speed sampling rate up to 80 Msample/s  
Programmable acquisition output clock (complete conversion signal)  
Internal front-end buffer (input capacitance below 1 pF)  
Full-scale controllable from 1.5 V to 2 V (p-p); continuous scale  
Single 5 V power supply  
3.3 V LVCMOS compatible digital outputs  
Binary or two’s-complement LVCMOS outputs  
CMOS compatible static digital inputs  
Only 2 clock cycles latency  
Industrial temperature range from 40 °C to +85 °C  
HTQFP48 package.  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
3. Applications  
2.5G and 3G cellular base infrastructure radio transceivers  
Wireless access systems  
Fixed telecommunication  
Optical networking  
WLAN infrastructure.  
4. Ordering information  
Table 1:  
Ordering information  
Package  
Name  
Type number  
Sampling frequency  
(Msample/s)  
Description  
Version  
TDA9910HW/6 HTQFP48  
TDA9910HW/8  
plastic thermal enhanced thin quad flat package;  
48 leads; body 7 × 7 × 1 mm; exposed die pad  
SOT545-2  
60  
80  
5. Block diagram  
CLK  
CLKN  
TDA9910  
2
DEL0 to  
DEL1  
CLOCK DRIVER  
CCS  
12  
12  
D0 to D11  
OTC  
LATCH  
front-end  
buffer  
TRACK  
AND  
HOLD  
IN  
RESISTOR  
LADDERS  
ADC  
CORE  
INN  
V
CCO  
U/I  
IR  
LATCH  
FSIN  
VREF  
REFERENCE  
CMADC  
REFERENCE  
OUTPUTS  
ENABLE  
FSOUT  
001aaa511  
CMADC  
DEC  
CE_N  
Fig 1. Block diagram.  
9397 750 14418  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 02 — 9 December 2004  
2 of 21  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
6. Pinning information  
6.1 Pinning  
n.c.  
AGND1  
IN  
1
2
3
4
5
6
7
8
9
36 D0  
35 D1  
34 D2  
33 D3  
32 D4  
31 D5  
30 D6  
29 D7  
28 D8  
27 D9  
26 D10  
25 D11  
CMADC  
INN  
AGND1  
DEC  
TDA9910HW  
n.c.  
FSOUT  
FSIN 10  
n.c. 11  
n.c. 12  
DGND  
001aaa512  
Fig 2. Pin configuration.  
6.2 Pin description  
Table 2:  
Symbol  
Pin description  
Pin  
Type[1]  
Description  
n.c.  
1
-
not connected  
AGND1  
IN  
2
G
I
analog ground 1  
analog input voltage  
3
CMADC  
INN  
4
O
I
regulator common mode ADC output  
complementary analog input voltage  
analog ground 1  
5
AGND1  
DEC  
n.c.  
6
G
I/O  
-
7
decoupling node  
8
not connected  
FSOUT  
FSIN  
n.c.  
9
O
I
full-scale reference voltage output  
full-scale reference voltage input  
not connected  
10  
11  
12  
13  
14  
-
n.c.  
-
not connected  
n.c.  
-
not connected  
DEL1  
I
complete conversion signal delay input 1  
9397 750 14418  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 02 — 9 December 2004  
3 of 21  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
Table 2:  
Symbol  
DEL0  
Pin description …continued  
Pin  
Type[1]  
Description  
15  
I
complete conversion signal delay input 0  
digital supply voltage 2 (5.0 V)  
digital ground 2  
VCCD2(5V0) 16  
P
DGND2  
CE_N  
OTC  
17  
18  
19  
20  
G
I
chip enable input (CMOS level; active LOW)  
control input for two’s complement output (active HIGH)  
data output ground  
I
OGND  
G
P
VCCO(3V3) 21  
OGND 22  
VCCO(3V3) 23  
data output supply voltage (3.3 V)  
data output ground  
G
P
data output supply voltage (3.3 V)  
in-range output  
IR  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
O
O
O
O
O
O
O
O
O
O
O
O
O
O
G
I
D11  
D10  
D9  
data output bit 11 (MSB)  
data output bit 10  
data output bit 9  
D8  
data output bit 8  
D7  
data output bit 7  
D6  
data output bit 6  
D5  
data output bit 5  
D4  
data output bit 4  
D3  
data output bit 3  
D2  
data output bit 2  
D1  
data output bit 1  
D0  
data output bit 0 (LSB)  
complete conversion signal output  
digital ground 1  
CCS  
DGND1  
CLKN  
CLK  
complementary clock input  
clock input  
I
VCCD1(5V0) 41  
P
digital supply voltage 1 (5.0 V)  
digital ground 1  
DGND1  
AGND2  
42  
43  
G
G
P
analog ground 2  
VCCA2(5V0) 44  
VCCA1(5V0) 45  
analog supply voltage 2 (5.0 V)  
analog supply voltage 1 (5.0 V)  
analog ground 1  
P
AGND1  
46  
G
P
VCCA1(5V0) 47  
analog supply voltage 1 (5.0 V)  
analog ground 1  
AGND1  
DGND  
48  
G
exposed G  
die pad  
digital ground  
[1] P: power supply; G: ground; I: input; O: output.  
9397 750 14418  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 02 — 9 December 2004  
4 of 21  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
7. Limiting values  
Table 3:  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
VCCA  
Parameter  
Conditions  
Min  
0.5  
0.5  
0.5  
Max  
+7.0  
+7.0  
+5.0  
Unit  
V
[1]  
[1]  
[2]  
analog supply voltage  
digital supply voltage  
output supply voltage  
supply voltage difference  
VCCD  
V
VCCO  
V
VCC  
V
V
V
CCA VCCD  
CCD VCCO  
CCA VCCO  
1.0  
1.0  
1.0  
0
+1.0  
V
V
V
V
+4.0  
+4.0  
VIN, VINN  
input voltage  
referenced  
to AGND  
VCCA + 1  
VCLK, VCLKN input voltage for differential  
clock drive  
referenced  
to DGND  
0
VCCD + 1  
V
IO  
output current  
-
<tbd>  
+150  
+85  
mA  
°C  
°C  
°C  
Tstg  
Tamb  
Tj  
storage temperature  
ambient temperature  
junction temperature  
55  
40  
-
150  
[1] The supply voltages VCCA and VCCD may have any value between 0.5 V and +7.0 V provided that the  
supply voltage differences VCC are respected.  
[2] The supply voltage VCCO may have any value between 0.5 V and +5.0 V provided that the supply voltage  
differences VCC are respected.  
8. Thermal characteristics  
Table 4:  
Thermal characteristics  
Symbol  
Parameter  
Conditions  
Typ  
Unit  
[1]  
[1]  
Rth(j-a)  
thermal resistance from junction  
to ambient  
36.2  
K/W  
Rth(j-c)  
thermal resistance from junction  
to case  
14.3  
K/W  
[1] In compliance with JEDEC test board, in free air.  
9. Characteristics  
Table 5:  
Characteristics  
VCCA = 4.75 V to 5.25 V; VCCD = 4.75 V to 5.25 V; VCCO = 2.7 V to 3.6 V; AGND and DGND shorted together; Tamb = 40 °C  
to +85 °C; VIN(p-p) VINN(p-p) = 2.0 V 0.5 dB; VFSIN = VCCA1 1.77 V; Vi(CM) = VCCA1 1.85 V; typical values measured at  
VCCA = VCCD = 5 V, VCCO = 3.3 V, Tamb = 25 °C and CL = 10 pF; unless otherwise specified.  
Symbol Parameter  
Conditions  
Test[1] Min  
Typ  
Max  
Unit  
Supplies  
VCCA  
analog supply voltage  
digital supply voltage  
output supply voltage  
4.75  
4.75  
2.7  
5.0  
5.0  
3.3  
5.25  
5.25  
3.6  
V
V
V
VCCD  
VCCO  
9397 750 14418  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 02 — 9 December 2004  
5 of 21  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
Table 5:  
Characteristics …continued  
VCCA = 4.75 V to 5.25 V; VCCD = 4.75 V to 5.25 V; VCCO = 2.7 V to 3.6 V; AGND and DGND shorted together; Tamb = 40 °C  
to +85 °C; VIN(p-p) VINN(p-p) = 2.0 V 0.5 dB; VFSIN = VCCA1 1.77 V; Vi(CM) = VCCA1 1.85 V; typical values measured at  
VCCA = VCCD = 5 V, VCCO = 3.3 V, Tamb = 25 °C and CL = 10 pF; unless otherwise specified.  
Symbol Parameter  
Conditions  
Test[1] Min  
Typ  
122  
52  
Max  
Unit  
mA  
mA  
mA  
ICCA  
ICCD  
ICCO  
analog supply current  
digital supply current  
output supply current  
-
-
-
-
-
-
fCLK = 80 Msample/s;  
fi = 175 MHz  
29  
Ptot  
total power dissipation  
fCLK = 80 Msample/s;  
DC input  
-
870  
-
mW  
Clock inputs: pins CLK and CLKN[2]  
VIL LOW-level input voltage referenced to DGND;  
CCD = 5 V  
V
PECL mode  
TTL mode  
3.19  
-
-
3.52  
0.8  
V
V
DGND  
VIH  
HIGH-level input voltage referenced to DGND;  
CCD = 5 V  
V
PECL mode  
TTL mode  
VCLK or  
3.83  
2.0  
20  
-
-
-
4.12  
VCCD  
-
V
V
IIL  
LOW-level input current  
HIGH-level input current  
D
µA  
V
CLKN = 3.52 V  
VCLK or  
CLKN = 2.00 V  
VCLK or  
CLKN = 3.83 V  
VCLK or  
CLKN = 0.80 V  
1
-
-
-
nA  
µA  
nA  
V
V
IIH  
-
30  
2
-
V
-
-
V
VCLK  
differential AC input  
voltage for switching  
AC mode; DC voltage  
level is 2.5 V  
-
1.5  
(VCLK VCLKN  
)
Ri  
Ci  
input resistance  
fCLK = 80 Msample/s  
fCLK = 80 Msample/s  
-
-
6.3  
1.1  
-
-
kΩ  
input capacitance  
pF  
Analog inputs: pins IN and INN  
IIL  
IIH  
Ri  
LOW-level input current  
HIGH-level input current  
input resistance  
VFSIN = VCCA 1.75 V  
VFSIN = VCCA 1.75 V  
fi = 21.4 MHz  
-
5
5
-
-
µA  
µA  
MΩ  
MΩ  
MΩ  
fF  
-
-
D
D
D
D
D
D
6.3  
6.3  
6.3  
-
-
fi = 93 MHz  
-
-
fi = 175 MHz  
-
-
Ci  
input capacitance  
fi = 21.4 MHz  
-
700  
700  
700  
fi = 93 MHz  
-
-
fF  
fi = 175 MHz  
-
-
fF  
Vi(CM)  
common mode input  
voltage  
VIN = VINN  
output code = 2047  
;
VCCA 2  
VCCA 1.85 VCCA 1.6  
V
Digital inputs: pins OTC and CE_N  
VIL  
LOW-level input voltage  
HIGH-level input voltage  
DGND  
-
-
0.3 × VCCD  
V
V
VIH  
0.7 × VCCD  
VCCD  
9397 750 14418  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 02 — 9 December 2004  
6 of 21  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
Table 5:  
Characteristics …continued  
VCCA = 4.75 V to 5.25 V; VCCD = 4.75 V to 5.25 V; VCCO = 2.7 V to 3.6 V; AGND and DGND shorted together; Tamb = 40 °C  
to +85 °C; VIN(p-p) VINN(p-p) = 2.0 V 0.5 dB; VFSIN = VCCA1 1.77 V; Vi(CM) = VCCA1 1.85 V; typical values measured at  
VCCA = VCCD = 5 V, VCCO = 3.3 V, Tamb = 25 °C and CL = 10 pF; unless otherwise specified.  
Symbol Parameter  
Conditions  
VIL = 0.8 V  
VIH = 2.0 V  
Test[1] Min  
Typ  
5
Max  
Unit  
µA  
IIL  
LOW-level input current  
HIGH-level input current  
-
-
-
-
IIH  
5
µA  
Digital inputs: pins DEL0 and DEL1  
VIL  
VIH  
IIL  
LOW-level input voltage  
HIGH-level input voltage  
LOW-level input current  
HIGH-level input current  
DGND  
-
0.3 × VCCD  
V
0.7 × VCCD  
-
VCCD  
V
VIL = 0.8 V  
VIH = 2.0 V  
-
-
80  
80  
-
-
µA  
µA  
IIH  
Voltage controlled regulator output: pin CMADC  
Vo(CM)  
common mode output  
voltage  
IL = 0 mA  
-
-
V
CCA 1.88 -  
CCA 1.91 -  
V
V
IL = 2 mA  
V
Reference voltage input: pin FSIN[3]  
VFSIN  
IFSIN  
full-scale fixed voltage  
input current  
-
V
CCA 1.84 -  
V
-
1
-
µA  
V
Vi(p-p)  
input voltage  
see Figure 5;  
1.5  
1.9  
2.0  
(peak-to-peak value)  
Vi = VIN VINN;  
Vi(CM) = VCCA 1.91 V  
Full-scale voltage controlled regulator output: pin FSOUT  
Vo(ref)  
1.9 V full-scale output  
voltage  
IL = IFSIN  
IL = 2 mA  
-
-
V
CCA 1.84 -  
CCA 1.87 -  
V
V
V
Digital outputs: pins D11 to D0, IR and CCS  
Output levels  
VOL  
VOH  
IOZ  
LOW-level output voltage IOL = 2 mA  
DGND  
-
DGND + 0.5  
VCCO  
V
HIGH-level output voltage IOH = 0.4 mA  
VCCO 0.5 -  
V
output current in 3-state  
output level between  
20  
1
+20  
µA  
0.5 V and VCCO  
Timing[4]  
td(s)  
sampling delay time  
output hold time  
CL = 10 pF  
CL = 10 pF  
CL = 10 pF  
-
-
-
0.2  
4
-
-
-
ns  
ns  
ns  
th(o)  
td(o)  
output delay time  
5
3-state output delay  
tdZH  
tdZL  
tdHZ  
tdLZ  
enable HIGH  
-
-
-
-
3
5
8
5
-
-
-
-
ns  
ns  
ns  
ns  
enable LOW  
disable HIGH  
disable LOW  
Clock timing inputs: pins CLK and CLKN  
fCLK(min) minimum clock frequency  
-
-
-
8
-
Msample/s  
Msample/s  
fCLK(max) maximum clock frequency duty cycle 45 % to  
65 %  
80  
tCLKH  
tCLKL  
clock pulse width HIGH  
clock pulse width LOW  
fi = 175 MHz  
fi = 175 MHz  
5.6  
5.6  
-
-
-
-
ns  
ns  
9397 750 14418  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 02 — 9 December 2004  
7 of 21  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
Table 5:  
Characteristics …continued  
VCCA = 4.75 V to 5.25 V; VCCD = 4.75 V to 5.25 V; VCCO = 2.7 V to 3.6 V; AGND and DGND shorted together; Tamb = 40 °C  
to +85 °C; VIN(p-p) VINN(p-p) = 2.0 V 0.5 dB; VFSIN = VCCA1 1.77 V; Vi(CM) = VCCA1 1.85 V; typical values measured at  
VCCA = VCCD = 5 V, VCCO = 3.3 V, Tamb = 25 °C and CL = 10 pF; unless otherwise specified.  
Symbol Parameter  
Timing complete conversion signal: pin CCS; see Figure 6  
Conditions  
Test[1] Min  
Typ  
Max  
Unit  
tcd(o)  
complete conversion  
signal delay time  
CL = 10 pF;  
DEL0 = LOW;  
DEL1 = HIGH  
-
0.2  
-
ns  
CL = 10 pF;  
DEL0 = HIGH;  
DEL1 = LOW  
-
-
1.3  
2.4  
-
-
ns  
ns  
CL = 10 pF;  
DEL0 = HIGH;  
DEL1 = HIGH  
Analog signal processing (clock duty cycle 50 %; VIN VINN = 1.9 V; Vref = VCCA3 1.75 V)  
INL  
integral non-linearity  
fCLK = 20 Msample/s;  
fi = 21.4 MHz  
-
±1.6  
-
-
LSB  
LSB  
DNL  
differential non-linearity  
fCLK = 20 Msample/s;  
fi = 21.4 MHz; no  
missing code  
-
±0.4  
guaranteed  
Eoffset  
offset error  
VCCA = VCCD = 5 V;  
-
5
-
mV  
V
CCO = 3.3 V;  
amb = 25 °C;  
output code = 2047  
T
EG  
gain error amplitude  
(spread from device to  
device)  
V
V
CCA = VCCD = 5 V;  
CCO = 3.3 V;  
-
-
0.8  
-
-
%FS  
MHz  
T
amb = 25 °C  
B
analog bandwidth[5]  
fCLK = 80 Msample/s;  
370  
3 dB; full-scale input  
THD  
total harmonic distortion  
TDA9910/6[6]  
fi = 21.4 MHz  
fi = 93 MHz  
fi = 175 MHz  
fi = 21.4 MHz  
fi = 93 MHz  
fi = 175 MHz  
fi = 21.4 MHz  
fi = 93 MHz  
fi = 175 MHz  
fi = 21.4 MHz  
fi = 93 MHz  
fi = 175 MHz  
-
-
-
-
-
-
-
-
-
-
-
-
74  
72  
72  
76  
74  
70  
67.5  
67.2  
66.5  
67  
-
-
-
-
-
-
-
-
-
-
-
-
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBc  
total harmonic distortion  
TDA9910/8[6]  
SNR  
signal-to-noise ratio  
TDA9910/6[7]  
dBc  
dBc  
signal-to-noise ratio  
TDA9910/8[7]  
dBc  
66.7  
66  
dBc  
dBc  
9397 750 14418  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 02 — 9 December 2004  
8 of 21  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
Table 5:  
Characteristics …continued  
VCCA = 4.75 V to 5.25 V; VCCD = 4.75 V to 5.25 V; VCCO = 2.7 V to 3.6 V; AGND and DGND shorted together; Tamb = 40 °C  
to +85 °C; VIN(p-p) VINN(p-p) = 2.0 V 0.5 dB; VFSIN = VCCA1 1.77 V; Vi(CM) = VCCA1 1.85 V; typical values measured at  
VCCA = VCCD = 5 V, VCCO = 3.3 V, Tamb = 25 °C and CL = 10 pF; unless otherwise specified.  
Symbol Parameter  
Conditions  
fi = 21.4 MHz  
fi = 93 MHz  
fi = 175 MHz  
fi = 21.4 MHz  
fi = 93 MHz  
fi = 175 MHz  
Test[1] Min  
Typ  
76  
73  
73  
79  
75  
72  
86  
Max  
Unit  
dBc  
dBc  
dBc  
dBc  
dBc  
dBc  
dB  
SFDR  
spurious free dynamic  
range TDA9910/6  
-
-
-
-
-
-
-
-
-
-
-
-
-
-
spurious free dynamic  
range TDA9910/8  
ACPR  
adjacent channel power  
rejection  
fi = 93 MHz; 5 MHz  
channel spacing;  
B = 4.096 MHz  
fi = 175 MHz; 5 MHz  
channel spacing;  
B = 4.096 MHz  
-
74  
-
dB  
d2(IM2)  
second order  
intermodulation  
distortion[8]  
fi1 = 21 MHz;  
fi2 = 22 MHz  
-
-
-
-
-
-
81  
83  
80  
87  
88  
83  
-
-
-
-
-
-
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
dBFS  
fi1 = 93 MHz;  
fi2 = 96 MHz  
fi1 = 174 MHz;  
fi2 = 176 MHz  
d3(IM3)  
third order  
intermodulation  
distortion[8]  
fi1 = 21 MHz;  
fi2 = 22 MHz  
fi1 = 93 MHz;  
fi2 = 96 MHz  
fi1 = 174 MHz;  
fi2 = 176 MHz  
[1] D = guaranteed by design;  
C = guaranteed by characterization;  
I = 100 % industrially tested.  
[2] The circuit has two clock inputs: CLK and CLKN. There are 5 modes of operation:  
a) PECL mode 1: (DC levels vary 1:1 with VCCD) CLK and CLKN inputs are at differential PECL levels.  
b) PECL mode 2: (DC levels vary 1:1 with VCCD) CLK input is at PECL level and sampling is taken on the falling edge of the clock input  
signal. A DC level of 3.65 V has to be applied on CLKN decoupled to GND via a 100 nF capacitor.  
c) PECL mode 3: (DC levels vary 1:1 with VCCD) CLKN input is at PECL level and sampling is taken on the rising edge of the clock input  
signal. A DC level of 3.65 V has to be applied on CLK decoupled to GND via a 100 nF capacitor.  
d) Differential AC driving mode 4: When driving the CLK input directly and with any AC signal of minimum 1 V (p-p) and with a DC level  
of 2.5 V, the sampling takes place at the falling edge of the clock signal.  
When driving the CLKN input with the same signal, sampling takes place at the rising edge of the clock signal. It is recommended to  
decouple the CLKN or CLK input to DGND via a 100 nF capacitor.  
e) TTL mode 5: CLK input is at TTL level and sampling is taken on the falling edge of the clock input signal.  
In that case CLKN pin has to be connected to the ground.  
[3] The ADC input range can be adjusted with an external reference connected to FSIN pin. This voltage has to be referenced to VCCA.  
[4] Output data acquisition: the output data is available after the maximum delay of td(o)  
.
[5] The 3 dB analog bandwidth is determined by the 3 dB reduction in the reconstructed output, the input being a full-scale sine wave.  
[6] The total harmonic distortion is obtained with the addition of the first five harmonics.  
[7] The signal-to-noise ratio takes into account all harmonics above five and noise up to Nyquist frequency.  
9397 750 14418  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 02 — 9 December 2004  
9 of 21  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
[8] Intermodulation measured relative to either tone with analog input frequencies fi1 and fi2. The two input signals have the same amplitude  
and the total amplitude of both signals provides full-scale to the converter (6 dB below full-scale for each input signal).  
d3(IM3) is the ratio of the RMS value of either input tone to the RMS value of the worst case third order intermodulation product; d2(IM2) is  
the ratio of the RMS value of either input tone to the RMS value of the worst case second order intermodulation product.  
Table 6:  
Output coding with differential inputs  
VIN(p-p) VINN(p-p) = 1.9 V; VFSIN = VCCA1 1.77 V; typical values to AGND.  
Code  
VIN(p-p) VINN(p-p) IR  
(V) (V)  
Binary outputs  
(D11 to D0)  
Two’s complement outputs  
(D11 to D0)  
Underflow < 2.675 > 3.625  
0
1
1
...  
1
...  
1
1
0
0000 0000 0000  
0000 0000 0000  
0000 0000 0001  
...  
1000 0000 0000  
1000 0000 0000  
1000 0000 0001  
...  
0
2.675  
3.625  
1
-
-
...  
...  
...  
2047  
...  
3.15  
...  
3.15  
...  
0111 1111 1111  
...  
1111 1111 111  
...  
4094  
4095  
Overflow  
-
-
1111 1111 110  
1111 1111 111  
1111 1111 111  
0111 1111 110  
0111 1111 111  
0111 1111 111  
3.625  
2.675  
> 3.625 < 2.675  
Table 7:  
Mode selection  
Two’s complement output  
(OTC)  
Chip enable  
input (CE_N)  
Data output (D0 to D11; IR)  
0
0
0
1
binary; active  
1
X[1]  
two’s complement; active  
high-impedance  
[1] X = don’t care.  
n
CLK  
50 %  
t
d(o)  
V
0.5 V  
CCO  
data  
n 1  
data  
n
data  
n + 1  
D0 to D11  
0.5 V  
t
h(o)  
t
d(s)  
IN  
sample  
sample  
n + 1  
sample  
n + 2  
sample  
n + 3  
sample  
n + 4  
n
001aaa513  
Fig 3. Output timing diagram.  
9397 750 14418  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 02 — 9 December 2004  
10 of 21  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
001aaa514  
0
(1)  
power  
spectrum  
(dBc)  
−40  
(2)  
(3)  
(4)  
(5)  
(6)  
80  
120  
160  
0
10  
20  
30  
40  
f (MHz)  
i
(1) fi = 15 MHz; 0 dBc  
(2) fi = 5.1 MHz; 73.64 dBc  
(3) fi = 9.88 MHz; 82.6 dBc  
(4) fi = 20.1 MHz; 77.26 dBc  
(5) fi = 30 MHz; 71.73 dBc  
(6) fi = 35.1 MHz; 71.68 dBc  
THD (5H): 66.93 dBc  
SFDR: 71.68 dBc  
Fig 4. Single tone; fi = 175 MHz; fCLK = 80 Msample/s.  
001aaa515  
2.2  
V
i(CM)  
(V)  
(3)  
2.0  
1.8  
1.6  
1.4  
(2)  
(1)  
1.5  
1.6  
1.7  
1.8  
1.9  
V  
2.0  
(V)  
V
CCA  
FSIN  
(1) Vi(CM) = 1.54 V; VCCA VFSIN = 1.5 V  
(2) Vi(CM) = 1.9 V; VCCA VFSIN = 1.84 V  
(3) Vi(CM) = 2.07 V; VCCA VFSIN = 2.0 V  
Fig 5. ADC full-scale; Vi(CM) as a function of VCCA VFSIN  
.
9397 750 14418  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 02 — 9 December 2004  
11 of 21  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
The TDA9910 allows to modify the ADC full-scale. This could be done with FSIN  
(full-scale input) according to Figure 5.  
The TDA9910 generates an adjustable clock output called Complete Conversion Signal  
(CCS), which can be used to control the acquisition of converted output data by the digital  
circuit connected to the TDA9910 output data bus. Two logic inputs, DEL0 and DEL1 pins,  
allow to adjust the delay of the edge of the CCS signal to achieve an optimal position in  
the stable, usable zone of the data.  
Table 8:  
Complete conversion signal selection  
DEL1 DEL0 CCS output  
0
0
1
1
0
1
0
1
high-impedance  
active, typical delay 0.2 ns  
active, typical delay 1.3 ns  
active, typical delay 2.4 ns  
(1)  
D0 to D11  
t
cd(o)  
CCS  
001aaa516  
(1) tcd(o) is referenced to the middle of the active data.  
Fig 6. Complete conversion signal timing diagram.  
10. Definitions  
10.1 Static parameters  
10.1.1 INL (integral non-linearity)  
It is defined as the deviation of the transfer function from a best fit straight line (linear  
regression computation). The INL of the code i is obtained from the equation:  
VI(i) VI(ideal)  
INL(i) =  
-------------------------------------------  
S
where:  
S is corresponding to the slope of the ideal straight line (code width); i is corresponding to  
the code value.  
10.1.2 DNL (differential non-linearity)  
It is the deviation in code width from the value of 1 LSB.  
VI(i + 1) VI(i)  
DNL(i) =  
----------------------------------------  
S
9397 750 14418  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 02 — 9 December 2004  
12 of 21  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
where:  
i = 0x(2n 2)  
10.2 Dynamic parameters  
Figure 7 shows the spectrum of a single tone full-scale input sine wave with frequency ft,  
conforming to coherent sampling (ft/fs = M/N, with M number of cycles and N number of  
samples, M and N being relatively prime), and digitized by the ADC under test.  
001aaa518  
magnitude  
a
1
SFDR  
a
3
a
k
a
2
measured output range (MHz)  
f /2  
s
Fig 7. Single tone spectrum of full-scale input sine wave with frequency ft.  
Remark: In the following equations, Pnoise is the power of the terms which include the  
effects of random noise, non-linearities, sampling time errors, and “quantization noise”.  
10.2.1 SINAD (signal-to-noise and distortion)  
The ratio of the output signal power to the noise plus distortion power for a given sample  
rate and input frequency, excluding the DC component:  
Psignal  
SINAD[dB] = 10log10  
---------------------------------------  
Pnoise + distortion  
10.2.2 ENOB (effective number of bits)  
It is derived from SINAD and gives the theoretical resolution an ideal ADC would require  
to obtain the same SINAD measured on the real ADC. A good approximation gives:  
SINAD 1.76  
ENOB =  
----------------------------------  
6.02  
10.2.3 THD (total harmonic distortion)  
The ratio of the power of the harmonics to the power of the fundamental. For k 1  
harmonics the THD is:  
9397 750 14418  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 02 — 9 December 2004  
13 of 21  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
Pharmonics  
THD[dB] = 10log10  
-------------------------  
Psignal  
where:  
Pharmonics = a22 + a32 + + a2k  
Psignal = a21  
The value of k is usually 6 (i.e. calculation of THD is done on the first 5 harmonics).  
10.2.4 SNR (signal-to-noise ratio)  
The ratio of the output signal power to the noise power, excluding the harmonics and the  
DC component is:  
Psignal  
SNR[dB] = 10log10  
----------------  
Pnoise  
10.2.5 SFDR (spurious free dynamic range)  
The number SFDR specifies available signal range as the spectral distance between the  
amplitude of the fundamental and the amplitude of the largest spurious harmonic and  
non-harmonic, excluding DC component:  
a1  
SFDR[dB] = 20log10  
------------------  
max(S)  
10.2.6 IMD2 (IMD3)  
001aaa527  
magnitude  
IMD3  
measured output range (MHz)  
f /2  
s
Fig 8. Spectral of dual tone input sine wave with frequency.  
9397 750 14418  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 02 — 9 December 2004  
14 of 21  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
From a dual tone input sinusoid (ft1 and ft2, these frequencies being chosen according to  
the coherence criterion), the intermodulation distortion products IMD2 and IMD3  
(respectively, 2nd and 3rd order components) are defined, as follows.  
The ratio of the RMS value of either tone to the RMS value of the worst second (third)  
order intermodulation product.  
The total intermodulation distortion IMD is given by:  
Pintermod  
IMD[dB] = 10log10  
----------------------  
Psignal  
where:  
Pintermod = ai2m( f  
) a2im( f  
) + a2im( f  
) + a2im( f  
) + …  
+ 2 f  
t2  
f  
+ f  
f  
2 f  
+ f  
t1  
t2  
t1  
t1  
t2  
t1  
t2  
t1  
+ a2im(2 f  
) + a2im(2 f  
t1  
)
t2  
t2  
with a2im( f corresponding to the power in the intermodulation component at frequency ft.  
)
t1  
Psignal = a2f + a2f  
t1  
t2  
9397 750 14418  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 02 — 9 December 2004  
15 of 21  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
11. Application information  
11.1 TDA9910 in 3G radio receivers  
The TDA9910 has been proven in many 3G radio receivers with various operating  
conditions regarding Input Frequency (IF), signal IF bandwidth and sampling frequency.  
The TDA9910 provides with a maximum analog input signal frequency of 400 MHz. It  
allows a significant cost-down of the RF front-end, from two mixers to only one, even in  
multi-carriers architecture.  
Table 9 describes some possible applications with the TDA9910 in high IF sampling  
mode.  
Table 9:  
fi (MHz)  
350  
Examples of possible fi, fCLK, IF BW combinations supported  
fCLK (Msample/s)  
80  
IF BW (MHz)[1] SNR (dB)  
SFDR (dBc)  
5.00  
0.25  
1.60  
4.80  
20.00  
10.00  
3.50  
1.25  
65  
71  
72  
71  
68  
70  
71  
72  
71  
80  
76  
77  
76  
85  
76  
79  
243.95  
96  
9.60  
76.80  
96  
76.80  
96  
76.80  
80  
61.44  
78.4  
70  
44.80  
40.00  
[1] IF bandwidth corresponds to the observed area on the ADC output spectrum.  
For a dual carrier W-CDMA receiver, the most important parameters are sensitivity and  
Adjacent Channel Selectivity (ACS). The sensitivity is defined as the lowest detectable  
signal level. In W-CDMA, it can be far below the noise floor. This difference, between the  
sensitivity and the noise floor, is defined by the Sensitivity-to-Noise Ratio (SENR). Its  
value is negative due to the gain processing. The Adjacent Channel Power Ratio (ACPR)  
is the difference between the full-scale 3 dB peak and the noise floor. It represents the  
ratio of the adjacent-channel power and the average power level of the channel. The ACS  
is defined by the sum of SENR and ACPR.  
interfering channel  
wanted channel  
ACS  
ACPR  
noise floor  
NF  
SENR  
sensibility  
thermal noise  
001aaa517  
Fig 9. Adjacent channel sensitivity and ADC sensibility.  
9397 750 14418  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 02 — 9 December 2004  
16 of 21  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
11.2 Application diagram  
ADT1_1WT  
100 nF  
n.c.  
CLK  
6
2
3
5
50  
4
1
V
V
CCD  
CCA  
2.2 kΩ  
V
CCD1  
TL431CPK  
100  
nF  
48 47 46 45 44 43 42 41 40 39 38 37  
330 nF  
D0  
n.c.  
ADT1_1WT  
36  
1
AGND1  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
D8  
D9  
D10  
D11  
35  
34  
33  
32  
31  
30  
29  
28  
27  
26  
25  
2
3
5
6
2
100 Ω  
IN  
CMADC  
INN  
3
n.c.  
4
100 nF  
1
4
5
IN  
AGND1  
DEC  
6
TDA9910HW  
100 Ω  
10 nF  
7
n.c.  
100 nF  
8
FSOUT  
FSIN  
9
DGND  
10  
11  
12  
n.c.  
n.c.  
13 14 15 16 17 18 19 20 21 22 23 24  
G1  
10 nF  
V
CCD  
V
CCO  
V
CCD  
4700_000_S  
(16)  
10  
(41)  
analog ground  
digital ground  
100  
nF  
10  
nF  
330  
nF  
nF  
V
CCA  
(44)  
4700_000_S  
(45)  
(47)  
100  
nF  
10  
nF  
10  
nF  
10  
nF  
330  
nF  
HF70ACB  
V
CCO  
(21)  
LM317MDT  
(23)  
IN  
OUT  
5 V  
xx  
3
2
4.7  
µF  
470  
nF  
240  
100  
nF  
10  
nF  
10  
nF  
1
10 V  
xx  
ADJ  
GND  
300  
coa002  
Fig 10. Application diagram.  
9397 750 14418  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 02 — 9 December 2004  
17 of 21  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
12. Package outline  
HTQFP48: plastic thermal enhanced thin quad flat package; 48 leads;  
body 7 x 7 x 1 mm; exposed die pad  
SOT545-2  
c
y
exposed die pad side  
X
D
h
36  
25  
A
24  
37  
Z
E
e
H
E
E
E
(A )  
3
h
A
2
A
A
1
w M  
θ
b
p
L
p
L
pin 1 index  
13  
48  
detail X  
1
12  
w M  
Z
v
v
M
M
A
B
D
b
p
e
D
B
H
D
0
2.5  
scale  
5 mm  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
(1)  
θ
UNIT  
A
A
A
b
c
D
D
E
E
e
H
H
E
L
L
v
w
y
Z
Z
1
2
3
p
h
h
D
p
D
E
max.  
0.15 1.05  
0.05 0.95  
0.27 0.20 7.1  
0.17 0.09 6.9  
4.6  
4.4  
7.1  
6.9  
4.6  
4.4  
9.1  
8.9  
9.1  
8.9  
0.75  
0.45  
0.9  
0.6  
0.9  
0.6  
7°  
0°  
mm  
1.2  
0.25  
0.5  
1
0.2 0.08 0.08  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
03-04-07  
04-01-29  
SOT545-2  
MS-026  
Fig 11. Package outline SOT545-2 (HTQFP48).  
9397 750 14418  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 02 — 9 December 2004  
18 of 21  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
13. Revision history  
Table 10: Revision history  
Document ID  
TDA9910_2  
Release date Data sheet status  
20041209 Objective data sheet  
Change notice Doc. number  
Supersedes  
-
9397 750 14418 TDA9910_1  
Modifications:  
Four values changed in Table 5 (Clock timing inputs)  
9397 750 14418  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 02 — 9 December 2004  
19 of 21  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
14. Data sheet status  
Level Data sheet status[1] Product status[2] [3]  
Definition  
I
Objective data  
Development  
This data sheet contains data from the objective specification for product development. Philips  
Semiconductors reserves the right to change the specification in any manner without notice.  
II  
Preliminary data  
Qualification  
This data sheet contains data from the preliminary specification. Supplementary data will be published  
at a later date. Philips Semiconductors reserves the right to change the specification without notice, in  
order to improve the design and supply the best possible product.  
III  
Product data  
Production  
This data sheet contains data from the product specification. Philips Semiconductors reserves the  
right to make changes at any time in order to improve the design, manufacturing and supply. Relevant  
changes will be communicated via a Customer Product/Process Change Notification (CPCN).  
[1]  
[2]  
Please consult the most recently issued data sheet before initiating or completing a design.  
The product status of the device(s) described in this data sheet may have changed since this data sheet was published. The latest information is available on the Internet at  
URL http://www.semiconductors.philips.com.  
[3]  
For data sheets describing multiple type numbers, the highest-level product status determines the data sheet status.  
15. Definitions  
16. Disclaimers  
Short-form specification The data in a short-form specification is  
extracted from a full data sheet with the same type number and title. For  
detailed information see the relevant data sheet or data handbook.  
Life support — These products are not designed for use in life support  
appliances, devices, or systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips Semiconductors  
customers using or selling these products for use in such applications do so  
at their own risk and agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
Limiting values definition Limiting values given are in accordance with  
the Absolute Maximum Rating System (IEC 60134). Stress above one or  
more of the limiting values may cause permanent damage to the device.  
These are stress ratings only and operation of the device at these or at any  
other conditions above those given in the Characteristics sections of the  
specification is not implied. Exposure to limiting values for extended periods  
may affect device reliability.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes in the products - including circuits, standard cells, and/or  
software - described or contained herein in order to improve design and/or  
performance. When the product is in full production (status ‘Production’),  
relevant changes will be communicated via a Customer Product/Process  
Change Notification (CPCN). Philips Semiconductors assumes no  
responsibility or liability for the use of any of these products, conveys no  
license or title under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that these products are  
free from patent, copyright, or mask work right infringement, unless otherwise  
specified.  
Application information Applications that are described herein for any  
of these products are for illustrative purposes only. Philips Semiconductors  
make no representation or warranty that such applications will be suitable for  
the specified use without further testing or modification.  
17. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
9397 750 14418  
© Koninklijke Philips Electronics N.V. 2004. All rights reserved.  
Objective data sheet  
Rev. 02 — 9 December 2004  
20 of 21  
TDA9910  
Philips Semiconductors  
12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC)  
18. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 3  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 3  
7
8
9
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Thermal characteristics. . . . . . . . . . . . . . . . . . . 5  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . 5  
10  
10.1  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Static parameters . . . . . . . . . . . . . . . . . . . . . . 12  
INL (integral non-linearity) . . . . . . . . . . . . . . . 12  
DNL (differential non-linearity) . . . . . . . . . . . . 12  
Dynamic parameters. . . . . . . . . . . . . . . . . . . . 13  
SINAD (signal-to-noise and distortion) . . . . . . 13  
ENOB (effective number of bits) . . . . . . . . . . . 13  
THD (total harmonic distortion). . . . . . . . . . . . 13  
SNR (signal-to-noise ratio) . . . . . . . . . . . . . . . 14  
SFDR (spurious free dynamic range) . . . . . . . 14  
IMD2 (IMD3) . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
10.1.1  
10.1.2  
10.2  
10.2.1  
10.2.2  
10.2.3  
10.2.4  
10.2.5  
10.2.6  
11  
11.1  
11.2  
Application information. . . . . . . . . . . . . . . . . . 16  
TDA9910 in 3G radio receivers. . . . . . . . . . . . 16  
Application diagram . . . . . . . . . . . . . . . . . . . . 17  
12  
13  
14  
15  
16  
17  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 18  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 19  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . . 20  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Contact information . . . . . . . . . . . . . . . . . . . . 20  
© Koninklijke Philips Electronics N.V. 2004  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior  
written consent of the copyright owner. The information presented in this document does  
not form part of any quotation or contract, is believed to be accurate and reliable and may  
be changed without notice. No liability will be accepted by the publisher for any  
consequence of its use. Publication thereof does not convey nor imply any license under  
patent- or other industrial or intellectual property rights.  
Date of release: 9 December 2004  
Document number: 9397 750 14418  
Published in The Netherlands  

相关型号:

TDA9910HW/8

12-bit, up to 80 Msample/s, Analog-to-Digital Converter (ADC) direct/ultra high IF sampling
NXP

TDA9910HW/8/C1

IC 1-CH 12-BIT RESISTANCE LADDER ADC, PARALLEL ACCESS, PQFP48, 7 X 7 MM, 1 MM HEIGHT, PLASTIC, SOT545-2, MS-026, HTQFP-48, Analog to Digital Converter
NXP

TDA9917HW/12/C1

IC 1-CH 8-BIT RESISTANCE LADDER ADC, PARALLEL ACCESS, PQFP48, 7 X 7 MM, 1.00 MM HEIGHT, PLASTIC, MS-026, SOT545-2, QFP-48, Analog to Digital Converter
NXP

TDA9917HW/25/C1

IC 1-CH 8-BIT RESISTANCE LADDER ADC, PARALLEL ACCESS, PQFP48, 7 X 7 MM, 1.00 MM HEIGHT, PLASTIC, MS-026, SOT545-2, QFP-48, Analog to Digital Converter
NXP

TDA9923AHW

IC 4-CH 12-BIT RESISTANCE LADDER ADC, SERIAL ACCESS, PQFP48, 7 X 7 MM, 1.00 MM HEIGHT, PLASTIC, MS-026, SOT545-3, QFP-48, Analog to Digital Converter
NXP

TDA9935

Dual 14-bit, up to 160 Msample/s, 2 ⅴ interpolating Digital-to-Analog Converter (DAC)
NXP

TDA9935HW

Dual 14-bit, up to 160 Msample/s, 2 ⅴ interpolating Digital-to-Analog Converter (DAC)
NXP

TDA9950

CEC/I2C-bus translator
NXP

TDA9950TT

CEC/I2C-bus translator
NXP

TDA9950TT/C2,512

IC SPECIALTY CONSUMER CIRCUIT, PDSO20, 4.40 MM, PLASTIC, SOT360-1, MO-153, TSSOP-20, Consumer IC:Other
NXP

TDA9950TT/C2,518

IC SPECIALTY CONSUMER CIRCUIT, PDSO20, 4.40 MM, PLASTIC, SOT360-1, MO-153, TSSOP-20, Consumer IC:Other
NXP

TDA9950TT/C3,512

SOT360-1 Package, Standard Marking, Tube Dry Pack
NXP