TEA1068T [NXP]

Versatile telephone transmission circuit with dialler interface; 与拨号接口的多功能电话传输电路
TEA1068T
型号: TEA1068T
厂家: NXP    NXP
描述:

Versatile telephone transmission circuit with dialler interface
与拨号接口的多功能电话传输电路

电信集成电路 电信电路 电话电路 光电二极管
文件: 总24页 (文件大小:171K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TEA1068  
Versatile telephone transmission  
circuit with dialler interface  
1996 Apr 23  
Product specification  
Supersedes data of June 1990  
File under Integrated Circuits, IC03  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
Large gain setting range on microphone and earpiece  
FEATURES  
amplifiers  
Voltage regulator with adjustable static resistance  
Provides supply for external circuitry  
Line current-dependent line loss compensation facility  
for microphone and earpiece amplifiers  
Symmetrical high-impedance inputs (64 k) for  
dynamic, magnetic or piezoelectric microphones  
Gain control adaptable to exchange supply  
DC line voltage adjustment facility.  
Asymmetrical high-impedance input (32 k) for electret  
microphone  
GENERAL DESCRIPTION  
Dual-Tone Multi-Frequency (DTMF) signal input with  
confidence tone  
The TEA1068 is a bipolar integrated circuit performing all  
speech and line interface functions required in fully  
electronic telephone sets. It performs electronic switching  
between dialling and speech.  
Mute input for pulse or DTMF dialling  
Power down input for pulse dial or register recall  
Receiving amplifier for magnetic, dynamic or  
piezoelectric earpieces  
QUICK REFERENCE DATA  
SYMBOL  
VLN  
PARAMETER  
CONDITIONS  
Iline = 15 mA  
MIN. TYP. MAX. UNIT  
line voltage  
line current  
TEA1068  
4.2  
4.45  
4.7  
V
Iline  
normal operation  
10  
10  
140  
100  
1.3  
82  
mA  
mA  
mA  
µA  
TEA1068T  
normal operation  
ICC  
internal supply current  
power down; input LOW  
power down; input HIGH  
0.96  
55  
VCC  
supply voltage for peripherals  
Iline = 15 mA;  
MUTE = HIGH  
Ip = 1.2 mA  
Ip = 1.7 mA  
2.8  
2.5  
3.05  
V
V
Gv  
voltage gain  
microphone amplifier  
44  
60  
39  
6.3  
60  
1
dB  
dB  
dB  
V
receiving amplifier  
17  
Gv  
line loss compensation gain control range  
exchange supply voltage  
exchange feeding bridge resistance range  
ambient operating temperature  
5.5  
24  
5.9  
Vexch  
Rexch  
Tamb  
0.4  
25  
kΩ  
°C  
+75  
ORDERING INFORMATION  
TYPE  
PACKAGE  
DESCRIPTION  
NUMBER  
NAME  
VERSION  
TEA1068  
DIP18  
SO20  
plastic dual in-line package; 18 leads (300 mil)  
SOT102-1  
SOT163-1  
TEA1068T  
plastic small outline package; 20 leads; body width 7.5 mm  
1996 Apr 23  
2
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
BLOCK DIAGRAM  
V
CC  
15 (17)  
LN  
1 (1)  
11 (12)  
6 (6)  
5 (5)  
4 (4)  
GAR  
QR+  
QR−  
IR  
TEA1068  
TEA1068T  
8 (9)  
7 (7)  
MIC+  
MIC−  
2 (2)  
3 (3)  
GAS1  
GAS2  
13 (15)  
DTMF  
dB  
14 (16)  
12 (14)  
MUTE  
PD  
SUPPLY AND  
REFERENCE  
AGC  
CIRCUIT  
CURRENT  
REFERENCE  
10 (11)  
16 (18)  
REG  
17 (19)  
AGC  
9 (10)  
STAB  
18 (20)  
MBH130  
SLPE  
V
EE  
The figures in parentheses refer to the TEA1068T.  
Fig.1 Block diagram.  
1996 Apr 23  
3
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
PINNING  
PIN  
SYMBOL  
DESCRIPTION  
TEA1068  
TEA1068T  
LN  
1
2
1
2
positive line terminal  
GAS1  
GAS2  
QR−  
QR+  
GAR  
MIC−  
n.c.  
gain adjustment transmitting amplifier  
gain adjustment transmitting amplifier  
inverting output receiving amplifier  
non-inverting output receiving amplifier  
gain adjustment receiving amplifier  
inverting microphone input  
not connected  
3
3
4
4
5
5
6
6
7
7
8
MIC+  
STAB  
VEE  
8
9
non-inverting microphone input  
current stabilizer  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
10  
11  
negative line terminal  
IR  
receiving amplifier input  
n.c.  
not connected  
PD  
12  
13  
14  
15  
16  
17  
18  
power-down input  
DTMF  
MUTE  
VCC  
dual-tone multi-frequency input  
mute input  
positive supply decoupling  
voltage regulator decoupling  
automatic gain control input  
slope (DC resistance) adjustment  
REG  
AGC  
SLPE  
handbook, halfpage  
LN  
GAS1  
GAS2  
QR−  
1
2
3
4
5
6
7
8
9
20 SLPE  
handbook, halfpage  
LN  
GAS1  
GAS2  
QR−  
SLPE  
AGC  
1
2
3
4
5
6
7
8
9
18  
17  
16  
15  
14  
13  
AGC  
REG  
19  
18  
17  
REG  
V
CC  
V
CC  
16 MUTE  
15 DTMF  
14 PD  
QR+  
MUTE  
DTMF  
QR+  
TEA1068  
TEA1068T  
GAR  
GAR  
MIC−  
MIC−  
12 PD  
11 IR  
n.c.  
13 n.c.  
12 IR  
MIC+  
MIC+  
V
10  
STAB  
EE  
V
11  
STAB 10  
EE  
MBH132  
MBH131  
Fig.2 Pin configuration TEA1068.  
Fig.3 Pin configuration TEA1068T.  
1996 Apr 23  
4
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
FUNCTIONAL DESCRIPTION  
Supplies: VCC, LN, SLPE, REG and STAB  
Power for the TEA1068 and its peripheral circuits is usually  
obtained from the telephone line. The TEA1068 develops  
its own supply at VCC and regulates its voltage drop. The  
supply voltage VC  
Cm  
a
y
a
l
c
i
r
c
u
i
t
s
D
c
e
a
c
p
C
o
a
u
c
p
i
l
i
o
a
n
d
t
V
C
1996 Apr 23  
5
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
Mute input (MUTE)  
Automatic Gain Control input AGC  
A HIGH level at MUTE enables the DTMF input and  
inhibits the microphone and the receiving amplifier inputs.  
Automatic line loss compensation is achieved by  
connecting a resistor R6 between AGC and VEE. This  
automatic gain control varies the microphone amplifier  
gain and the receiving amplifier gain in accordance with  
the DC line current.  
A LOW level or an open circuit has the reverse effect.  
MUTE switching causes only negligible clicks at the  
earpiece outputs and on the line.  
The control range is 5.9 dB. This corresponds to a line  
length of 5 km for a 0.5 mm diameter copper twisted-pair  
cable with a DC resistance of 176 /km and an average  
attenuation 1.2 dB/km.  
Dual-Tone Multi Frequency input (DTMF)  
When the DTMF input is enabled, dialling tones may be  
sent onto the line. The voltage gain from DTMF to LN is  
typically 25.5 dB (when R7 = 68 k) and varies with R7 in  
the same way as the gain of the microphone amplifier.  
The signalling tones can be heard in the telephone  
earpiece at a low level (confidence tone).  
Resistor R6 should be chosen in accordance with the  
exchange supply voltage and its feeding bridge resistance  
(see Fig.13 and Table 1). Different values of R6 give the  
same ratio of line currents for start and end of the control  
range. If automatic line loss compensation is not required,  
AGC may be left open. The amplifiers then all give their  
maximum gain as specified.  
Receiving amplifier: IR, QR+, QRand GAR  
The receiving amplifier has one input IR and two  
complementary outputs, a non-inverting output QR+ and  
an inverting output QR. These outputs may be used for  
single-ended or for differential drive depending on the  
sensitivity and type of earpiece used (see Fig.12). Gain  
from IR to QR+ is typically 25 dB (when R4 = 100 k).  
This is sufficient for low-impedance magnetic or dynamic  
microphones, which are suited for single-ended drive.  
By using both outputs (differential drive), the gain is  
increased by 6 dB. This feature can be used when the  
earpiece impedance exceeds 450 , (high-impedance  
dynamic or piezoelectric types).  
Power-Down input (PD)  
During pulse dialling or register recall (timed loop break),  
the telephone line is interrupted. During these  
interruptions, the telephone line provides no power for the  
transmission circuit or circuits supplied by VCC. The charge  
held on C1 will bridge these gaps. This bridging is made  
easier by a HIGH level on the PD input, which reduces the  
typical supply current from 1 mA to 55 µA and switches off  
the voltage regulator, thus preventing discharge through  
LN. When PD is HIGH, the capacitor at REG is  
disconnected with the effect that the voltage stabilizer will  
have no switch-on delay after line interruptions. This  
minimizes the contribution of the IC to the current  
waveform during pulse dialling or register recall. When this  
facility is not required, PD may be left open-circuit.  
The output voltage of the receiving amplifier is specified for  
continuous-wave drive. The maximum output voltage will  
be higher under speech conditions where the ratio of peak  
to RMS value is higher.  
The receiving amplifier gain can be adjusted between  
17 dB and 33 dB with single-ended drive and between  
26 dB and 39 dB with differential drive to suit the sensitivity  
of the transducer used. The gain is set by the external  
resistor R4 connected between GAR and QR+. Overall  
receive gain between LN and QR+ is calculated by  
subtracting the anti-side-tone network attenuation (32 dB)  
from the amplifier gain. Two external capacitors,  
C4 = 100 pF and C7 = 10 × C4 = 1 nF, are necessary to  
ensure stability. A larger value of C4 may be chosen to  
obtain a first-order, low-pass filter. The ‘cut-off’ frequency  
corresponds with the time constant R4 × C4.  
Side-tone suppression  
Suppression of the transmitted signal in the earpiece is  
obtained by the anti-side-tone network consisting of  
R1//Zline, R2, R3 and Zbal (see Fig.14). Maximum  
compensation is obtained when the following conditions  
are fulfilled:  
R9 × R2 = R1 (R3 + [R8//Zbal] )  
(1)  
[Zbal (Zbal + R8) = Zline (Zline + R1) ]  
(2)  
1996 Apr 23  
6
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
chosen for Zbal, thus giving an optimum setting for short or  
long lines.  
If fixed values are chosen for R1, R2, R3 and R9, then  
condition (1) will always be fulfilled, provided that  
R8//Zbal << R3. To obtain optimum side-tone  
Example: the balanced line impedance (Zbal) at which the  
optimum suppression is preset can be calculated by:  
suppression, condition (2) has to be fulfilled, resulting in:  
Z
bal = (R8/R1) Zline = k × Zline, where k is a scale factor:  
Assume Zline = 210 + (1265 /140 nF), representing a  
5 km line of 0.5 mm diameter, copper, twisted-pair cable  
matched to 600 (176 /km; 38 nF/km). When k = 0.64,  
then R8 = 390 ; Zbal = 130 + (820 //220 nF).  
k = (R8/R1).  
Scale factor k (dependent on the value of R8) must be  
chosen to meet the following criteria:  
The anti-side-tone network for the TEA1060 family shown  
in Fig.5 attenuates the signal received from the line by  
32 dB before it enters the receiving amplifier.  
The attenuation is almost constant over the whole audio  
frequency range.  
1. Compatibility with a standard capacitor from the E6 or  
E12 range for Zbal  
2. Zbal//R8 << R3 to fulfil condition (1) and thus  
ensuring correct anti-side-tone bridge operation  
3. Zbal + R8 >> R9 to avoid influencing the transmitter  
gain.  
Figure 6 shows a conventional Wheatstone bridge  
anti-side-tone circuit that can be used as an alternative.  
Both bridge types can be used with either resistive or  
complex set impedances.  
In practice, Zline varies greatly with the line length and  
cable type; consequently, an average value has to be  
LN  
R1  
R9  
R2  
Z
line  
V
IR  
i
m
EE  
R
t
R3  
Z
R8  
bal  
SLPE  
MSA500  
Fig.5 Equivalent circuit of TEA1060 family anti-side-tone bridge.  
1996 Apr 23  
7
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
LN  
R1  
R9  
Z
bal  
Z
line  
V
IR  
i
m
EE  
R
t
R8  
R
A
SLPE  
MSA501  
Fig.6 Equivalent circuit of an anti-side-tone network in a Wheatstone bridge configuration.  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134).  
SYMBOL  
VLN  
PARAMETER  
CONDITIONS  
MIN.  
MAX.  
12  
UNIT  
positive continuous line voltage  
V
V
VLN(R)  
repetitive line voltage during switch-on or  
line interruption  
13.2  
VLN(RM)  
repetitive peak line voltage for a 1 ms pulse R9 = 20 ;  
28  
V
per 5 s  
R10 = 13 Ω; (Fig.15)  
Iline  
Vn  
line current  
R9 = 20 ; note 1  
R9 = 20 ; note 2  
140  
mA  
V
voltage on any other pin  
total power dissipation  
TEA1068  
V
EE 0.7 VCC + 0.7  
Ptot  
769  
555  
mW  
mW  
°C  
TEA1068T  
Tstg  
Tamb  
Tj  
IC storage temperature  
operating ambient temperature  
junction temperature  
40  
25  
+125  
+75  
°C  
125  
°C  
Notes  
1. Mostly dependent on the maximum required Tamb and on the voltage between LN and SLPE. See Figs 7 and 8 to  
determine the current as a function of the required voltage and the temperature.  
2. Calculated for the maximum ambient temperature specified Tamb = 75 °C and a maximum junction temperature of  
125 °C.  
1996 Apr 23  
8
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
THERMAL CHARACTERISTICS  
SYMBOL  
Rth j-a  
PARAMETER  
VALUE  
UNIT  
thermal resistance from junction to ambient in free air  
TEA1068  
65  
90  
K/W  
K/W  
TEA1068T  
MBH125  
MBH133  
160  
LN  
(mA)  
150  
LN  
(mA)  
handbook, halfpage  
handbook, halfpage  
I
I
140  
130  
(1)  
120  
100  
80  
110  
90  
(2)  
(1)  
(2)  
(3)  
(4)  
(3)  
70  
(4)  
60  
50  
40  
2
30  
2
4
6
8
10  
-V  
12  
4
6
8
10  
12  
V
(V)  
V
V  
(V)  
LN SLPE  
LN  
SLPE  
(1) Tamb = 45 °C; Ptot = 1231 mW.  
(2) amb = 55 °C; Ptot = 1077 mW.  
(1) Tamb = 45 °C; Ptot = 888 mW.  
(2) amb = 55 °C; Ptot = 777 mW.  
T
T
(3) Tamb = 65 °C; Ptot = 923 mW.  
(4) Tamb = 75 °C; Ptot = 769 mW.  
(3) Tamb = 65 °C; Ptot = 666 mW.  
(4) Tamb = 75 °C; Ptot = 555 mW.  
Fig.7 Safe operating area TEA1068.  
Fig.8 Safe operating area TEA1068T.  
1996 Apr 23  
9
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
CHARACTERISTICS  
Iline = 10 to 140 mA; VEE = 0 V; f = 800 Hz; Tamb = 25 °C; unless otherwise specified.  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
Supplies: LN and VCC  
VLN  
voltage drop over circuit between  
LN and VEE  
microphone inputs open  
I
I
I
I
line = 5 mA  
3.95  
4.25  
4.45  
6.1  
4.55  
4.7  
6.7  
7.5  
0
V
line = 15 mA  
line = 100 mA  
line = 140 mA  
4.2  
5.4  
V
V
V
VLN/T  
voltage drop variation with  
temperature  
Iline = 15 mA  
4  
2  
mV/K  
VLN  
voltage drop over circuit, between Iline = 15 mA  
LN and VEE with external resistor  
R
R
VA (LN to REG) = 68 kΩ  
3.45  
3.8  
5
4.1  
V
V
RVA  
VA (REG to SLPE) = 39 k4.65  
5.35  
ICC  
supply current  
VCC = 2.8 V  
PD = LOW  
0.96  
55  
1.3  
82  
mA  
PD = HIGH  
µA  
VCC  
supply voltage available for  
peripheral circuitry  
Iline = 15 mA; MUTE = HIGH  
Ip = 1.2 mA  
2.8  
3.5  
3.05  
3.75  
V
V
Ip = 0 mA  
Microphone inputs MIC+ and MIC−  
Zi  
input impedance  
differential between  
MIC+ and MIC−  
51  
64  
32  
77  
kΩ  
kΩ  
single-ended MIC+ or  
25.5  
38.5  
MICto VEE  
CMRR  
Gv  
common mode rejection ratio  
82  
dB  
dB  
dB  
voltage gain from MIC+/MICto LN Iline = 15 mA; R7 = 68 k;  
51  
0.5  
52  
53  
+0.5  
Gvf  
gain variation with frequency at  
f = 300 Hz and f = 3400 Hz  
with respect to 800 Hz  
±0.2  
GvT  
gain variation with temperature at  
Iline = 50 mA;  
±0.2  
dB  
25 °C and +75 °C  
with respect to 25 °C; without  
R6  
Dual-tone multi-frequency input DTMF  
Zi  
input impedance  
16.8  
24.5  
0.5  
20.7  
25.5  
±0.2  
24.6  
26.5  
+0.5  
kΩ  
dB  
dB  
Gv  
voltage gain from DTMF to LN  
Iline = 15 mA; R7 = 68 kΩ  
Gvf  
gain variation with frequency at  
f = 300 Hz and f = 3400 Hz  
with respect to 800 Hz  
GvT  
gain variation with temperature at  
Iline = 50 mA;  
±0.5  
dB  
T
amb = −25 °C and +75 °C  
with respect to 25 °C  
Gain adjustment connections GAS1 and GAS2  
Gv  
gain variation with R7, transmitting  
amplifier  
8  
+8  
dB  
1996 Apr 23  
10  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
Transmitting amplifier output LN  
VLN(rms)  
output voltage (RMS value)  
Iline = 15 mA  
THD = 2%  
1.9  
2.3  
2.6  
72  
V
THD = 10%  
V
Vno(rms)  
noise output voltage (RMS value)  
Iline = 15 mA; R7 = 68 k;  
200 between MICand  
MIC+; psophometrically  
weighted (P53 curve)  
dBmp  
Receiving amplifier input IR  
Zi input impedance  
Receiving amplifier outputs QR+ and QR−  
17  
21  
4
25  
kΩ  
Zo  
Gv  
output impedance  
single ended  
Iline = 15 mA  
voltage gain from IR to QR+ or  
QR−  
RL (from QR+ or  
QR) = 300 ; single-ended  
24  
30  
0.5  
25  
26  
32  
0
dB  
dB  
dB  
dB  
RL (from QR+ or  
QR) = 600 ; differential  
31  
Gvf  
gain variation with frequency at  
f = 300 Hz and f = 3400 Hz  
with respect to 800 Hz  
0.2  
±0.2  
GvT  
gain variation with temperature at  
Iline = 50 mA;  
T
amb = −25 °C and +75 °C  
with respect to 25 °C;  
without R6  
Vo(rms)  
output voltage (RMS value)  
sine wave drive; Iline = 15 mA;  
Ip = 0 mA; THD = 2%;  
R4 = 100 kΩ  
single-ended; RL = 150 Ω  
single-ended; RL = 450 Ω  
differential; f = 3400 Hz;  
0.3  
0.4  
0.8  
0.38  
0.52  
1.0  
V
V
V
R
series = 100 ; CL = 47 nF  
Vno(rms)  
noise output voltage (RMS value)  
Iline = 15 mA; R4 = 100 k;  
IR open-circuit  
psophometrically weighted  
(P53 curve)  
single-ended; RL = 300 Ω  
differential; RL = 600 Ω  
50  
µV  
µV  
100  
Gain adjustment GAR  
Gv  
gain variation of receiving amplifier  
8  
+8  
dB  
achievable by varying R4 between  
GAR and QR  
1996 Apr 23  
11  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP. MAX. UNIT  
MUTE input  
VIH  
HIGH level input voltage  
LOW level input voltage  
input current  
1.5  
VCC  
0.3  
15  
V
VIL  
V
IMUTE  
Gv  
8
µA  
dB  
voltage gain reduction between  
MUTE = HIGH  
70  
MIC+ and MICto LN  
Gv  
voltage gain from DTMF to QR+ or MUTE = HIGH; R4 = 100 k;  
QRsingle-ended; RL = 300 Ω  
21  
19  
17  
dB  
Power-Down input PD  
VIH  
VIL  
Ipd  
HIGH level input voltage  
1.5  
5
VCC  
0.3  
10  
V
LOW level input voltage  
V
input current in power-down  
condition  
µA  
Automatic Gain Control input AGC  
Gv  
gain control range from IR to  
Iline = 70 mA; R6 = 110 kΩ  
5.5  
5.9  
6.3  
dB  
QR+/QRand from MIC+/MICto between AGC and VEE  
LN  
Iline(H)  
Iline(L)  
Gv  
highest line current for maximum  
gain  
R6 = 110 kbetween AGC  
and VEE  
23  
mA  
mA  
dB  
lowest line current for minimum  
gain  
R6 = 110 kbetween AGC  
and VEE  
61  
voltage gain variation  
between Iline = 15 mA and  
Iline = 35 mA; R6 = 110 kΩ  
between AGC and VEE  
1.0  
1.5  
2.0  
R
I
a
R1  
line  
line  
I
I
+ 0.5 mA  
CC  
SLPE  
I
p
LN  
V
CC  
TEA1068  
R
exch  
DC  
AC  
0.5 mA  
peripheral  
circuits  
C1  
V
V
exch  
REG  
C3  
STAB  
SLPE  
R9  
EE  
I
SLPE  
R5  
MBH134  
Fig.9 Supply arrangement.  
12  
1996 Apr 23  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
MBH124  
3
handbook, halfpage  
(1)  
I
p
(mA)  
(2)  
2
(3)  
1
(4)  
0
0
1
2
3
4
V
(V)  
CC  
Curve (1) is valid when the receiving amplifier is not driven or when MUTE = HIGH. Curve (2) is valid when MUTE = LOW and the receiving amplifier  
is driven; Vo(rms) = 150 mV; RL = 150 asymmetrical.  
The supply possibilities can be increased simply by setting the voltage drop over the circuit VLN to a higher value by means of resistor RVA connected  
between REG and SLPE.  
Fig.10 Typical current Ip available from VCC for peripheral circuitry with VCC 2.2 V.  
V
CC  
MIC+  
MIC−  
MIC−  
MIC+  
MIC−  
(1)  
MIC+  
V
EE  
MBH135  
a. Magnetic or dynamic  
microphone.  
b. Electret microphone.  
c. Piezoelectric microphone.  
(1) May be connected to decrease the terminating impedance.  
Fig.11 Alternative microphone arrangements.  
1996 Apr 23  
13  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
(1)  
(2)  
QR+  
QR+  
QR−  
QR+  
QR−  
QR+  
QR−  
V
QR−  
EE  
MBH136  
a. Dynamic earpiece  
with less than 450 Ω  
impedance.  
b. Dynamic earpiece with  
more than 450 Ω  
impedance.  
c. Magnetic earpiece  
with more than 450 Ω  
impedance.  
d. Piezoelectric  
earpiece.  
(1) May be connected to prevent distortion (inductive load).  
(2) Required to increase the phase margin (capacitive load).  
Fig.12 Alternative receiver arrangements.  
d
MBH137  
R6 = ∞  
0
G  
v
(dB)  
2  
4  
6  
48.7 k78.7 k110 k140 kΩ  
0
20  
40  
60  
80  
100  
120  
140  
(mA)  
I
line  
R9 = 20 .  
Fig.13 Variation of gain with line current, with R6 as a parameter.  
14  
1996 Apr 23  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
Table 1 Values of resistor R6 for optimum line loss compensation, for various usual values of exchange supply  
voltage Vexch and exchange feeding bridge resistance Rexch; R9 = 20 Ω  
R6 (k)  
V
exch (V)  
Rexch = 400 Ω  
Rexch = 600 Ω  
Rexch = 800 Ω  
Rexch = 1000 Ω  
24  
36  
48  
60  
61.9  
100  
140  
X
48.7  
78.7  
110  
X
X
X
68  
60.4  
82  
93.1  
120  
102  
I
R1  
620 Ω  
LN  
line  
V
V
100 µF  
CC  
QR−  
QR+  
IR  
R
o
L
MIC+  
MIC−  
DTMF  
MUTE  
600 Ω  
V
i
C4  
100 pF  
R4  
100 kΩ  
GAR  
TEA1068  
100 µF  
C7 1 nF  
C1  
GAS1  
10 to 140 mA  
R7  
68 kΩ  
10 µF  
PD  
V
C6  
100 pF  
GAS2  
V
i
EE  
REG AGC STAB SLPE  
C3  
4.7  
µF  
R5  
3.6  
kΩ  
R9  
20 Ω  
R6  
MBH138  
Voltage gain is defined as; Gv = 20 log Vo/Vi . For measuring the gain from MIC+ and MIC, the MUTE input should be LOW or open, for measuring  
the DTMF input, MUTE should be HIGH. Inputs not under test should be open.  
Fig.14 Test circuit for defining voltage gain of MIC+, MICand DTMF inputs.  
1996 Apr 23  
15  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
I
R1  
line  
620 Ω  
100 µF  
10 µF  
LN  
V
CC  
QR−  
QR+  
IR  
600 Ω  
Z
V
o
L
MIC+  
MIC−  
DTMF  
MUTE  
10 µF  
V
R4  
100  
kΩ  
C4  
100 pF  
i
TEA1068  
GAR  
C7 1 nF  
C1  
GAS1  
100 µF  
10 to 140 mA  
R7  
C6  
100 pF  
PD  
V
GAS2  
EE  
REG AGC STAB SLPE  
C3  
4.7  
µF  
R5  
3.6  
kΩ  
R9  
20 Ω  
R6  
MBH139  
Voltage gain is defined as; Gv = 20 log Vo/Vi .  
Fig.15 Test circuit for defining voltage gain of the receiving amplifier.  
1996 Apr 23  
16  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
APPLICATION INFORMATION  
R1  
C1  
620 Ω  
100 µF  
R10  
R3  
13 Ω  
130 kΩ  
LN  
V
CC  
C5  
100 nF  
R11  
IR  
BAS11  
(2x)  
QR−  
QR+  
DTMF  
from dial  
and  
control  
circuits  
C4  
100 pF  
R4  
R3  
3.92  
telephone  
line  
MUTE  
PD  
TEA1068  
BZW14  
(2x)  
GAR  
1 nF  
kΩ  
C7  
MIC+  
MIC−  
V
SLPE  
GAS1 GAS2 REG  
AGC  
STAB  
EE  
R8  
R7  
R5  
3.6 kΩ  
C3  
4.7 µF  
C6  
100 pF  
390 Ω  
R6  
Z
bal  
R9  
20 Ω  
MBH140  
Typical application of the TEA1068, shown here with a piezoelectric earpiece and DTMF dialling. The bridge to the left and R10 limit the current into  
the circuit and the voltage across the circuit during line transients. Pulse dialling or register recall require a different protection arrangement.  
Fig.16 Application diagram.  
1996 Apr 23  
17  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
h
LN  
V
V
DD  
CC  
DTMF  
MUTE  
PD  
TONE  
cradle  
contact  
PCD3310  
TEA1068  
M1  
DP/FLO  
V
V
EE  
SS  
telephone  
line  
BSN254A  
MBA279 - 1  
The dashed lines show an optional flash (register recall by timed loop break).  
Fig.17 DTMF set with a CMOS DTMF dialling circuit.  
1996 Apr 23  
18  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
PACKAGE OUTLINES  
DIP18: plastic dual in-line package; 18 leads (300 mil)  
SOT102-1  
D
M
E
A
2
A
A
1
L
c
e
w M  
Z
b
1
(e )  
1
b
b
2
18  
10  
M
H
pin 1 index  
E
1
9
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
(1)  
Z
A
A
A
2
(1)  
(1)  
1
w
UNIT  
mm  
b
b
b
c
D
E
e
e
L
M
M
H
1
2
1
E
max.  
min.  
max.  
max.  
1.40  
1.14  
0.53  
0.38  
1.40  
1.14  
0.32  
0.23  
21.8  
21.4  
6.48  
6.20  
3.9  
3.4  
8.25  
7.80  
9.5  
8.3  
4.7  
0.51  
3.7  
2.54  
0.10  
7.62  
0.30  
0.254  
0.01  
0.85  
0.055 0.021 0.055 0.013  
0.044 0.015 0.044 0.009  
0.86  
0.84  
0.26  
0.24  
0.15  
0.13  
0.32  
0.31  
0.37  
0.33  
inches  
0.19  
0.020  
0.15  
0.033  
Note  
1. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
93-10-14  
95-01-23  
SOT102-1  
1996 Apr 23  
19  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
SO20: plastic small outline package; 20 leads; body width 7.5 mm  
SOT163-1  
D
E
A
X
c
y
H
E
v
M
A
Z
20  
11  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
10  
w
detail X  
e
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.30  
0.10  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
13.0  
12.6  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
mm  
2.65  
0.25  
0.01  
1.27  
0.050  
1.4  
0.25 0.25  
0.01  
0.1  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.51  
0.014 0.009 0.49  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches 0.10  
0.055  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-01-24  
97-05-22  
SOT163-1  
075E04  
MS-013AC  
1996 Apr 23  
20  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
Several techniques exist for reflowing; for example,  
SOLDERING  
Introduction  
thermal conduction by heated belt. Dwell times vary  
between 50 and 300 seconds depending on heating  
method. Typical reflow temperatures range from  
215 to 250 °C.  
There is no soldering method that is ideal for all IC  
packages. Wave soldering is often preferred when  
through-hole and surface mounted components are mixed  
on one printed-circuit board. However, wave soldering is  
not always suitable for surface mounted ICs, or for  
printed-circuits with high population densities. In these  
situations reflow soldering is often used.  
Preheating is necessary to dry the paste and evaporate  
the binding agent. Preheating duration: 45 minutes at  
45 °C.  
WAVE SOLDERING  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “IC Package Databook” (order code 9398 652 90011).  
Wave soldering techniques can be used for all SO  
packages if the following conditions are observed:  
A double-wave (a turbulent wave with high upward  
pressure followed by a smooth laminar wave) soldering  
technique should be used.  
DIP  
SOLDERING BY DIPPING OR BY WAVE  
The longitudinal axis of the package footprint must be  
parallel to the solder flow.  
The maximum permissible temperature of the solder is  
260 °C; solder at this temperature must not be in contact  
with the joint for more than 5 seconds. The total contact  
time of successive solder waves must not exceed  
5 seconds.  
The package footprint must incorporate solder thieves at  
the downstream end.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
The device may be mounted up to the seating plane, but  
the temperature of the plastic body must not exceed the  
specified maximum storage temperature (Tstg max). If the  
printed-circuit board has been pre-heated, forced cooling  
may be necessary immediately after soldering to keep the  
temperature within the permissible limit.  
Maximum permissible solder temperature is 260 °C, and  
maximum duration of package immersion in solder is  
10 seconds, if cooled to less than 150 °C within  
6 seconds. Typical dwell time is 4 seconds at 250 °C.  
REPAIRING SOLDERED JOINTS  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Apply a low voltage soldering iron (less than 24 V) to the  
lead(s) of the package, below the seating plane or not  
more than 2 mm above it. If the temperature of the  
soldering iron bit is less than 300 °C it may remain in  
contact for up to 10 seconds. If the bit temperature is  
between 300 and 400 °C, contact may be up to 5 seconds.  
REPAIRING SOLDERED JOINTS  
Fix the component by first soldering two diagonally-  
opposite end leads. Use only a low voltage soldering iron  
(less than 24 V) applied to the flat part of the lead. Contact  
time must be limited to 10 seconds at up to 300 °C. When  
using a dedicated tool, all other leads can be soldered in  
one operation within 2 to 5 seconds between  
270 and 320 °C.  
SO  
REFLOW SOLDERING  
Reflow soldering techniques are suitable for all SO  
packages.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
1996 Apr 23  
21  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
1996 Apr 23  
22  
Philips Semiconductors  
Product specification  
Versatile telephone transmission circuit  
with dialler interface  
TEA1068  
NOTES  
1996 Apr 23  
23  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Australia: 34 Waterloo Road, NORTH RYDE, NSW 2113,  
Tel. (02) 805 4455, Fax. (02) 805 4466  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. (01) 60 101-1256, Fax. (01) 60 101-1250  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211,  
Volodarski Str. 6, 220050 MINSK,  
Portugal: see Spain  
Romania: see Italy  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 1231,  
Tel. (65) 350 2000, Fax. (65) 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
South Africa: S.A. PHILIPS Pty Ltd.,  
Tel. (172) 200 733, Fax. (172) 200 773  
Belgium: see The Netherlands  
195-215 Main Road Martindale, 2092 JOHANNESBURG,  
P.O. Box 7430 Johannesburg 2000,  
Brazil: see South America  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. (359) 2 689 211, Fax. (359) 2 689 102  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS:  
Tel. (800) 234-7381, Fax. (708) 296-8556  
Chile: see South America  
Tel. (011) 470-5911, Fax. (011) 470-5494  
South America: Rua do Rocio 220 - 5th floor, Suite 51,  
CEP: 04552-903-SÃO PAULO-SP, Brazil,  
P.O. Box 7383 (01064-970),  
Tel. (011) 821-2333, Fax. (011) 829-1849  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. (03) 301 6312, Fax. (03) 301 4107  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. (852) 2319 7888, Fax. (852) 2319 7700  
Colombia: see South America  
Sweden: Kottbygatan 7, Akalla. S-16485 STOCKHOLM,  
Tel. (0) 8-632 2000, Fax. (0) 8-632 2745  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. (01) 488 2211, Fax. (01) 481 77 30  
Taiwan: PHILIPS TAIWAN Ltd., 23-30F, 66,  
Chung Hsiao West Road, Sec. 1, P.O. Box 22978,  
TAIPEI 100, Tel. (886) 2 382 4443, Fax. (886) 2 382 4444  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. (66) 2 745-4090, Fax. (66) 2 398-0793  
Turkey: Talatpasa Cad. No. 5, 80640 GÜLTEPE/ISTANBUL,  
Tel. (0212) 279 2770, Fax. (0212) 282 6707  
Ukraine: PHILIPS UKRAINE,  
2A Akademika Koroleva str., Office 165, 252148 KIEV,  
Tel. 380-44-4760297, Fax. 380-44-4766991  
United Kingdom: Philips Semiconductors LTD.,  
276 Bath Road, Hayes, MIDDLESEX UB3 5BX,  
Tel. (0181) 730-5000, Fax. (0181) 754-8421  
United States: 811 East Arques Avenue, SUNNYVALE,  
CA 94088-3409, Tel. (800) 234-7381, Fax. (708) 296-8556  
Uruguay: see South America  
Czech Republic: see Austria  
Denmark: Prags Boulevard 80, PB 1919, DK-2300  
COPENHAGEN S, Tel. (032) 88 2636, Fax. (031) 57 1949  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. (358) 0-615 800, Fax. (358) 0-61580 920  
France: 4 Rue du Port-aux-Vins, BP317,  
92156 SURESNES Cedex,  
Tel. (01) 4099 6161, Fax. (01) 4099 6427  
Germany: P.O. Box 10 51 40, 20035 HAMBURG,  
Tel. (040) 23 53 60, Fax. (040) 23 53 63 00  
Greece: No. 15, 25th March Street, GR 17778 TAVROS,  
Tel. (01) 4894 339/4894 911, Fax. (01) 4814 240  
Hungary: see Austria  
India: Philips INDIA Ltd, Shivsagar Estate, A Block,  
Dr. Annie Besant Rd. Worli, BOMBAY 400 018  
Tel. (022) 4938 541, Fax. (022) 4938 722  
Indonesia: see Singapore  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. (01) 7640 000, Fax. (01) 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, TEL AVIV 61180,  
Tel. (03) 645 04 44, Fax. (03) 648 10 07  
Vietnam: see Singapore  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. (381) 11 825 344, Fax. (359) 211 635 777  
Italy: PHILIPS SEMICONDUCTORS,  
Piazza IV Novembre 3, 20124 MILANO,  
Tel. (0039) 2 6752 2531, Fax. (0039) 2 6752 2557  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108, Tel. (03) 3740 5130, Fax. (03) 3740 5077  
Korea: Philips House, 260-199 Itaewon-dong,  
Yongsan-ku, SEOUL, Tel. (02) 709-1412, Fax. (02) 709-1415  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA,  
SELANGOR, Tel. (03) 750 5214, Fax. (03) 757 4880  
Mexico: 5900 Gateway East, Suite 200, EL PASO,  
TEXAS 79905, Tel. 9-5(800) 234-7831, Fax. (708) 296-8556  
Middle East: see Italy  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. (040) 2783749, Fax. (040) 2788399  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. (09) 849-4160, Fax. (09) 849-7811  
Internet: http://www.semiconductors.philips.com/ps/  
For all other countries apply to: Philips Semiconductors,  
Marketing & Sales Communications, Building BE-p,  
P.O. Box 218, 5600 MD EINDHOVEN, The Netherlands,  
Fax. +31-40-2724825  
SCDS48  
© Philips Electronics N.V. 1996  
All rights are reserved. Reproduction in whole or in part is prohibited without the  
prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation  
or contract, is believed to be accurate and reliable and may be changed without  
notice. No liability will be accepted by the publisher for any consequence of its  
use. Publication thereof does not convey nor imply any license under patent- or  
other industrial or intellectual property rights.  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. (022) 74 8000, Fax. (022) 74 8341  
Philippines: PHILIPS SEMICONDUCTORS PHILIPPINES Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC,  
MAKATI, Metro MANILA,  
Printed in The Netherlands  
Tel. (63) 2 816 6380, Fax. (63) 2 817 3474  
Poland: Ul. Lukiska 10, PL 04-123 WARSZAWA,  
Tel. (022) 612 2831, Fax. (022) 612 2327  
417021/10/ed/pp24  
Date of release: 1996 Apr 23  
9397 750 00804  
Document order number:  

相关型号:

TEA1068T-T

IC TELEPHONE SPEECH CKT, PDSO20, PLASTIC, SO-20, Telephone Circuit
NXP

TEA1068TD

Telephone Circuit, Bipolar, PDSO20
PHILIPS

TEA1068TD-G

Telephone Circuit, Bipolar, PDSO20
PHILIPS

TEA1068TD-T

IC TELEPHONE SPEECH CKT, PDSO20, PLASTIC, SO-20, Telephone Circuit
NXP

TEA1069

Versatile speech/dialler/ringer with music-on-hold
NXP

TEA1069A

Versatile speech/dialler/ringer with music-on-hold
NXP

TEA1069AH

Versatile speech/dialler/ringer with music-on-hold
NXP

TEA1069AH-T

IC TELEPHONE MULTIFUNCTION CKT, PQFP44, PLASTIC, QFP-44, Telephone Circuit
NXP

TEA1069AHB-S

Telephone Circuit, Bipolar, PQFP44
PHILIPS

TEA1069H

Versatile speech/dialler/ringer with music-on-hold
NXP

TEA1069H-T

暂无描述
NXP

TEA1069N

Versatile speech/dialler/ringer with music-on-hold
NXP