TEA1742T/N1,118 [NXP]

IC CTRLR GREENCHIP PFC 8-SOIC;
TEA1742T/N1,118
型号: TEA1742T/N1,118
厂家: NXP    NXP
描述:

IC CTRLR GREENCHIP PFC 8-SOIC

功率因数校正
文件: 总17页 (文件大小:89K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TEA1742T  
GreenChip PFC controller  
Rev. 01 — 10 February 2009  
Objective data sheet  
1. General description  
The TEA1742T is a controller for Power Factor Correction (PFC). Its high level of  
integration allows the design of a cost-effective power supply with a very low number of  
external components.  
The special built-in green functions provide high efficiency at all power levels. This applies  
to quasi-resonant operation at high power levels and quasi-resonant operation with valley  
skipping.  
The TEA1742T enables highly efficient and reliable supplies with power requirements of  
up to 500 W, to be designed easily and with the minimum number of external components.  
2. Features  
2.1 Distinctive features  
I Universal mains supply operation (70 V (AC) to 276 V (AC))  
I Dual boost PFC with accurate output voltage (NXP patented)  
I High level of integration, resulting in a very low external component count and a  
cost-effective design  
I Low start-up supply voltage  
2.2 Green features  
I Valley/zero voltage switching for minimum switching losses (NXP patented)  
I Frequency limitation to reduce switching losses  
I High ohmic resistive dividers possible to minimize losses  
2.3 Protection features  
I Safe restart mode for system fault conditions  
I Continuous mode protection by means of demagnetization detection (NXP patented)  
I Accurate OverVoltage Protection (OVP)  
I Open control loop protection  
I IC OverTemperature Protection (OTP)  
I Low and adjustable OverCurrent Protection (OCP) trip level  
 
 
 
 
 
TEA1742T  
NXP Semiconductors  
GreenChip PFC controller  
3. Applications  
I The device can be used in all applications that require an efficient and cost-effective  
PFC solution up to 500 W. PC power supplies in particular can benefit from the high  
level of integration and high efficiency  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
TEA1742T  
SO8  
plastic small outline package; 8 leads; body width 3.9 mm  
SOT96-1  
TEA1742T_1  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 01 — 10 February 2009  
2 of 17  
 
 
TEA1742T  
NXP Semiconductors  
GreenChip PFC controller  
5. Block diagram  
PFCDRIVER  
7
PFC DRIVER  
PFC GATE  
1.12 V  
3.5 V  
DRV  
LOW  
VIN  
VINSENSE  
PFCCOMP  
2
3
R
S
PFC PROT  
PROT  
ENABLE PFC  
MAX  
3.7 V  
BOOST  
Q
1.25 V  
PFC  
OSC  
2.50 V  
VOSENSE  
5
8 µA  
V
V
START  
UVLO  
START STOP  
PFC  
SMPS  
CONTROL  
BOOST  
LOW VIN  
VoOVP  
PFC  
PROT  
OTP  
S
R
LATCHED  
PROTECTION  
VoSHORT  
OCP  
Vcc<4V  
PROT  
S
R
VoSHORT  
SAFE  
RESTART  
PROTECTION  
PFC DRIVER  
ENABLE PFC  
BLANK  
500 mV  
V
UVLO  
PFCSENSE  
6
60 µA  
SOFT START  
START STOP PFC  
TEMP  
OTP  
TIMER 4 µs  
VALLEY  
DETECT  
INTERNAL  
SUPPLY  
PFCAUX  
4
PFCGATE  
ZCS  
V
START  
UVLO  
TIMER 50 µs  
V
100 mV  
1
8
GND  
014aaa734  
V
CC  
Fig 1. Block diagram  
TEA1742T_1  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 01 — 10 February 2009  
3 of 17  
 
TEA1742T  
NXP Semiconductors  
GreenChip PFC controller  
6. Pinning information  
6.1 Pinning  
1
2
3
4
8
7
6
5
GND  
VINSENSE  
PFCCOMP  
PFCAUX  
V
CC  
PFCDRIVER  
PFCSENSE  
VOSENSE  
TEA1742T  
014aaa735  
Fig 2. Pin configuration: TEA1742T (SOT96-1)  
6.2 Pin description  
Table 2.  
Pin description  
Symbol  
Pin  
1
Description  
GND  
ground  
VINSENSE  
PFCCOMP  
PFCAUX  
VOSENSE  
PFCSENSE  
PFCDRIVER  
VCC  
2
sense input for mains voltage  
3
frequency compensation pin for PFC  
input from auxiliary winding for demagnetization timing for PFC  
sense input for PFC output voltage  
programmable current sense input for PFC  
gate driver output for PFC  
4
5
6
7
8
supply voltage  
TEA1742T_1  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 01 — 10 February 2009  
4 of 17  
 
 
 
TEA1742T  
NXP Semiconductors  
GreenChip PFC controller  
7. Functional description  
7.1 General control  
The TEA1742T contains a controller for a power factor correction circuit. A typical  
configuration is shown in Figure 3.  
7
6
5
4
3
8
V
CC  
TEA1742T  
2
1
014aaa736  
Fig 3. Typical configuration  
7.1.1 Start-up and UnderVoltage LockOut (UVLO)  
The control logic activates the internal circuitry when the voltage on pin VCC passes the  
Vstartup level. First, the soft start capacitor on the PFCSENSE pin is charged. When the  
soft start capacitor on the PFCSENSE pin is charged, the PFC circuit is activated. See  
Figure 4.  
When one of the protection functions is activated, the converter stops switching. For a  
restart protection the VCC has to be pulled below Vth(UVLO) to reset the protection. For a  
latched protection (OTP), the VCC has to drop below about 4 V (typ).  
TEA1742T_1  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 01 — 10 February 2009  
5 of 17  
 
 
 
 
TEA1742T  
NXP Semiconductors  
GreenChip PFC controller  
V
V
START  
UVLO  
V
CC  
V
V
start(VINSENSE)  
stop(VINSENSE)  
VINSENSE  
soft start  
PFCSENSE  
PFCDRIVER  
VOSENSE  
apply  
mains  
and VCC  
restart  
starting  
converter  
normal  
operation  
protection  
014aaa737  
Fig 4. Start-up sequence, normal operation and restart sequence  
7.1.2 Supply management  
All internal reference voltages are derived from a temperature compensated and trimmed  
on-chip band gap circuit. Internal reference currents are derived from a temperature  
compensated and trimmed on-chip current reference circuit.  
7.1.3 OverTemperature Protection (OTP)  
An accurate internal temperature protection is provided in the circuit. When the junction  
temperature exceeds the thermal shut-down temperature, the IC stops switching.  
OTP is a latched protection. It can be reset by removing the voltage on pin VCC  
.
7.2 Power factor correction circuit  
The power factor correction circuit operates in quasi-resonant or discontinuous conduction  
mode with valley switching. The next primary stroke is only started when the previous  
secondary stroke has ended and the voltage across the PFC MOSFET has reached a  
minimum value. The voltage on the PFCAUX pin is used to detect transformer  
demagnetization and the minimum voltage across the external PFC MOSFET switch.  
7.2.1 ton control  
The power factor correction circuit is operated in ton control. The resulting mains harmonic  
reduction of a typical application is well within the class-D requirements.  
TEA1742T_1  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 01 — 10 February 2009  
6 of 17  
 
 
 
 
TEA1742T  
NXP Semiconductors  
GreenChip PFC controller  
7.2.2 Valley switching and demagnetization (PFCAUX pin)  
The PFC MOSFET is switched on after the transformer is demagnetized. Internal circuitry  
connected to the PFCAUX pin detects the end of the secondary stroke. It also detects the  
voltage across the PFC MOSFET. The next stroke is started if the voltage across the PFC  
MOSFET is at its minimum in order to reduce switching losses and ElectroMagnetic  
Interference (EMI) (valley switching).  
If no demagnetization signal is detected on the PFCAUX pin, the controller generates a  
Zero Current Signal (ZCS), 50 ms (typ) after the last PFCGATE signal.  
If no valley signal is detected on the PFCAUX pin, the controller generates a valley signal  
4 ms (typ) after demagnetization was detected.  
To protect the internal circuitry, for example during lightning events, it is advisable to add a  
5 kseries resistor to this pin. To prevent incorrect switching due to external disturbance,  
the resistor should be placed close to the IC on the printed circuit board.  
7.2.3 Frequency limitation  
To optimize the transformer and minimize switching losses, the switching frequency is  
limited to fsw(PFC)max. If the frequency for quasi-resonant operation is above the fsw(PFC)max  
limit, the system switches over to discontinuous conduction mode. Also here, the PFC  
MOSFET is only switched on at a minimum voltage across the switch (valley switching).  
7.2.4 Mains voltage compensation (VINSENSE pin)  
The mathematical equation for the transfer function of a power factor corrector contains  
the square of the mains input voltage. In a typical application this results in a low  
bandwidth for low mains input voltages, while at high mains input voltages the Mains  
Harmonic Reduction (MHR) requirements may be hard to meet.  
To compensate for the mains input voltage influence, the TEA1742T contains a correction  
circuit. Via the VINSENSE pin the average input voltage is measured and the information  
is fed to an internal compensation circuit. With this compensation it is possible to keep the  
regulation loop bandwidth constant over the full mains input range, yielding a fast transient  
response on load steps, while still complying with class-D MHR requirements.  
In a typical application, the bandwidth of the regulation loop is set by a resistor and two  
capacitors on the PFCCOMP pin.  
7.2.5 Soft start-up (pin PFCSENSE)  
To prevent audible transformer noise at start-up or during hiccup, the transformer peak  
current, IDM, is increased slowly by the soft start function. This can be achieved by  
inserting RSS1 and CSS1 between pin PFCSENSE and current sense resistor RSENSE1  
An internal current source charges the capacitor to VPFCSENSE = Istart(soft)PFC × RSS1. The  
voltage is limited to Vstart(soft)PFC  
.
.
The start level and the time constant of the increasing primary current level can be  
adjusted externally by changing the values of RSS1 and CSS1  
.
τsoftstart = 3 × R  
× C  
SS1  
SS1  
TEA1742T_1  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 01 — 10 February 2009  
7 of 17  
 
 
 
 
TEA1742T  
NXP Semiconductors  
GreenChip PFC controller  
The charging current Istart(soft)PFC flows as long as the voltage on pin PFCSENSE is below  
0.5 V (typ). If the voltage on pin PFCSENSE exceeds 0.5 V, the soft start current source  
starts limiting the current Istart(soft)PFC. As soon as the PFC starts switching, the  
Istart(soft)PFC current source is switched off; see Figure 5.  
I
60 µA  
S1  
startup(soft)PFC  
SOFT START  
CONTROL  
R
C
SS1  
11  
OCP  
PFCSENSE  
SS1  
0.5 V  
R
SENSE1  
014aaa157  
Fig 5. Soft start-up of PFC  
7.2.6 Dual boost PFC  
The PFC output voltage is modulated by the mains input voltage. The mains input voltage  
is measured via the VINSENSE pin. The current is sourced from the VOSENSE pin if the  
voltage on the VINSENSE pin drops below 2.2 V (typ). To ensure the stability of the  
switch-over 200 mV is inserted around the 2.2 V, see Figure 6.  
For low VINSENSE input voltages, the output current is 8 mA (typ). This output current, in  
combination with the resistors on the VOSENSE pin, sets the lower PFC output voltage  
level at low mains voltages. At high mains input voltages the current is switched to zero.  
The PFC output voltage will then be at its maximum. As this current is zero in this  
situation, it does not effect the accuracy of the PFC output voltage.  
For proper switch-off behavior, the VOSENSE current is switched to its maximum value,  
8 mA (typ), as soon as the voltage on pin VOSENSE drops below 2.1 V (typ).  
2.2 V  
V
VINSENSE  
8 µA  
I
I(VOSENSE)  
014aaa738  
Fig 6. Voltage to current transfer function for dual boost PFC  
TEA1742T_1  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 01 — 10 February 2009  
8 of 17  
 
 
 
TEA1742T  
NXP Semiconductors  
GreenChip PFC controller  
7.2.7 Overcurrent protection (PFCSENSE pin)  
The maximum peak current is limited cycle-by-cycle by sensing the voltage across an  
external sense resistor, RSENSE1, on the source of the external MOSFET. The voltage is  
measured via the PFCSENSE pin.  
7.2.8 Mains undervoltage lockout / brownout protection (VINSENSE pin)  
To prevent the PFC from operating at very low mains input voltages, the voltage on the  
VINSENSE pin is sensed continuously. As soon as the voltage on this pin drops below the  
Vstop(VINSENSE) level, switching of the PFC is stopped.  
The voltage on pin VINSENSE is clamped to a minimum value,  
Vstart(VINSENSE) + Vpu(VINSENSE), for a fast restart as soon as the mains input voltage is  
restored after a mains dropout.  
7.2.9 Overvoltage protection (VOSENSE pin)  
To prevent output overvoltage during load steps and mains transients, an overvoltage  
protection circuit is built in.  
As soon as the voltage on the VOSENSE pin exceeds the Vovp(VOSENSE) level, switching of  
the power factor correction circuit is inhibited. Switching of the PFC recommences as  
soon as the VOSENSE pin voltage drops below the VOVP(VOSENSE) level again.  
When the resistor between pin VOSENSE and ground is open, the overvoltage protection  
is also triggered.  
7.2.10 PFC open-loop protection (VOSENSE pin)  
The power factor correction circuit does not start switching until the voltage on the  
VOSENSE pin is above the Vth(ol)(VOSENSE) level. This protects the circuit from open-loop  
and VOSENSE short situations.  
7.2.11 Driver (pin PFCDRIVER)  
The driver circuit to the gate of the power MOSFET has a current sourcing capability of  
typically 500 (TBF) mA and a current sink capability of typically 1.2 (TBF) A. This permits  
fast turn-on and turn-off of the power MOSFET for efficient operation.  
8. Limiting values  
Table 3.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Voltages  
VCC  
Parameter  
Conditions  
Min  
Max  
Unit  
supply voltage  
0.4  
0.4  
0.4  
0.4  
25  
+38  
+5  
V
V
V
V
V
V
VPFCCOMP voltage on pin PFCCOMP  
VVINSENSE voltage on pin VINSENSE  
VVOSENSE voltage on pin VOSENSE  
+5  
+5  
VPFCAUX  
voltage on pin PFCAUX  
+25  
+5  
VPFCSENSE voltage on pin PFCSENSE  
current limited  
0.4  
TEA1742T_1  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 01 — 10 February 2009  
9 of 17  
 
 
 
 
 
 
TEA1742T  
NXP Semiconductors  
GreenChip PFC controller  
Table 3.  
Limiting values …continued  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Currents  
IPFCSENSE current on pin PFCSENSE  
1  
+10  
+2  
mA  
A
IPFCDRIVER current on pin PFCDRIVER duty cycle < 10 %  
0.8  
General  
Ptot  
Tstg  
Tj  
total power dissipation  
storage temperature  
junction temperature  
Tamb < 75 °C  
-
0.45  
W
55  
20  
+150  
+150  
°C  
°C  
ESD  
VESD  
electrostatic discharge  
voltage  
class 1  
[1]  
[2]  
human body model  
machine model  
-
-
-
2000  
200  
V
V
V
charged device model  
500  
[1] Equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
[2] Equivalent to discharging a 200 pF capacitor through a 0.75 µH coil and a 10 resistor.  
9. Thermal characteristics  
Table 4.  
Symbol  
Rth(j-a)  
Thermal characteristics  
Parameter  
Conditions  
Typ  
Unit  
K/W  
thermal resistance from  
junction to ambient  
in free air; JEDEC test board  
150  
10. Characteristics  
Table 5.  
Characteristics  
Tamb = 25 °C; VCC = 20 V; all voltages are measured with respect to ground (pin 2); currents are positive when flowing into  
the IC; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supply voltage management (pin VCC  
)
Vstartup  
start-up voltage  
10.6  
10.3  
V
V
Vth(UVLO)  
undervoltage lockout threshold  
voltage  
Vhys  
hysteresis voltage  
V
startup Vth(UVLO)  
0.3  
<tbd>  
4
V
ICC(oper)  
Vrst(latch)  
operating supply current  
latched reset voltage  
no load on pin PFCDRIVER  
-
-
mA  
V
Input Voltage Sensing PFC (pin VINSENSE)  
Vstop(VINSENSE)  
Vstart(VINSENSE)  
Vpu(VINSENSE)  
stop voltage on pin VINSENSE  
start voltage on pin VINSENSE  
0.86  
1.11  
-
0.89  
1.15  
100  
0.92  
1.19  
-
V
V
pull-up voltage difference on  
pin VINSENSE  
active after Vstop(VINSENSE) is  
detected  
mV  
TEA1742T_1  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 01 — 10 February 2009  
10 of 17  
 
 
 
 
TEA1742T  
NXP Semiconductors  
GreenChip PFC controller  
Table 5.  
Characteristics …continued  
Tamb = 25 °C; VCC = 20 V; all voltages are measured with respect to ground (pin 2); currents are positive when flowing into  
the IC; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Ipu(VINSENSE)  
pull-up current on pin  
VINSENSE  
active after Vstop(VINSENSE) is  
detected  
55  
47  
40  
µA  
Vmvc(VINSENSE)max maximum mains voltage  
compensation voltage on pin  
VINSENSE  
4.0  
5
-
-
V
II(VINSENSE)  
input current on pin VINSENSE VINSENSE > Vstop(VINSENSE) after  
start(VINSENSE) is detected  
33  
100  
nA  
V
Vbst(dual)  
dual boost voltage  
current switch-over point  
switch-over region  
-
-
2.2  
-
-
V
200  
mV  
Loop compensation PFC (pin PFCCOMP)  
gm  
transconductance  
VVOSENSE to IO(PFCCOMP)  
VVOSENSE = 2.0V  
60  
80  
100  
45  
µA/V  
µA  
µA  
V
IO(PFCCOMP)  
output current on pin  
PFCCOMP  
33  
39  
VVOSENSE = 3.3V  
45  
2.5  
39  
2.7  
33  
2.9  
[1]  
[1]  
Vclamp(PFCCOMP)  
clamp voltage on pin  
PFCCOMP  
Low power mode, PFC off, lower  
clamp voltage  
Upper clamp voltage  
-
3.9  
3.5  
-
V
V
Vton(PFCCOMP)zero zero on-time voltage on pin  
PFCCOMP  
3.4  
3.6  
Vton(PFCCOMP)max maximum on-time voltage on  
pin PFCCOMP  
1.20  
1.25  
1.30  
V
Pulse width modulator PFC  
ton(PFC)  
PFC on-time  
VVINSENSE = 3.3 V, VPFCCOMP  
Vton(PFCCOMP)max  
=
=
3.6  
30  
4.5  
40  
5.0  
53  
µs  
µs  
VVINSENSE = 0.9 V, VPFCCOMP  
Vton(PFCCOMP)max  
Output voltage sensing PFC (pin VOSENSE)  
Vth(ol)(VOSENSE)  
Vreg(VOSENSE)  
Vovp(VOSENSE)  
Ibst(dual)  
open-loop threshold voltage on  
pin VOSENSE  
-
1.15  
-
V
regulation voltage on pin  
VOSENSE  
for IO(PFCCOMP) = 0  
2.475 2.500 2.525  
V
overvoltage protection voltage  
on pin VOSENSE  
2.60  
2.63  
-8  
2.67  
V
dual boost current  
VVINSENSE < Vbst(dual) or VVOSENSE  
< 2.1 V  
-
-
-
-
µA  
nA  
VVINSENSE > Vbst(dual)  
-30  
Overcurrent protection PFC (pin PFCSENSE)  
Vsense(PFC)max  
maximum PFC sense voltage  
V/t = 50 mV/µs  
V/t = 200 mV/µs  
0.49  
0.51  
250  
0.52  
0.54  
310  
0.55  
0.57  
370  
V
V
tleb(PFC)  
PFC leading edge blanking  
time  
ns  
Iprot(PFCSENSE)  
protection current on pin  
PFCSENSE  
50  
-
5  
nA  
TEA1742T_1  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 01 — 10 February 2009  
11 of 17  
TEA1742T  
NXP Semiconductors  
GreenChip PFC controller  
Table 5.  
Characteristics …continued  
Tamb = 25 °C; VCC = 20 V; all voltages are measured with respect to ground (pin 2); currents are positive when flowing into  
the IC; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Soft start PFC (pin PFCSENSE)  
Istart(soft)PFC  
Vstart(soft)PFC  
Rstart(soft)PFC  
Oscillator PFC  
fsw(PFC)max  
PFC soft start current  
75  
0.46  
12  
60  
0.50  
-
45  
0.54  
-
µA  
V
PFC soft start voltage  
enabling voltage  
PFC soft start resistance  
kΩ  
maximum PFC switching  
frequency  
100  
1.1  
125  
1.4  
150  
1.7  
kHz  
toff(PFC)min  
minimum PFC off-time  
µs  
Valley switching PFC (pin PFCAUX)  
(V/t)vrec(PFC)  
PFC valley recognition voltage  
-
-
1.7  
V/µs  
change with time  
[2]  
tvrec(PFC)  
PFC valley recognition time  
VPFCAUX = 1 V peak-peak  
-
-
50  
6
ns  
tto(vrec)PFC  
PFC valley recognition time-out  
time  
3
4
µs  
Demagnetization management PFC (pin PFCAUX)  
Vth(comp)PFCAUX  
tto(demag)PFC  
Iprot(PFCAUX)  
comparator threshold voltage  
on pin PFCAUX  
150 100 50  
mV  
µs  
PFC demagnetization time-out  
time  
40  
50  
-
60  
protection current on pin  
PFCAUX  
VPFCAUX = 50 mV  
75  
5  
nA  
Driver (pin PFCDRIVER)  
Isrc(PFCDRIVER) source current on pin  
VPFCDRIVER = 2 V  
VPFCDRIVER = 2 V  
VPFCDRIVER = 10 V  
-
-
-
-
0.5  
TBF  
-
A
A
A
V
PFCDRIVER  
Isink(PFCDRIVER)  
sink current on pin  
PFCDRIVER  
0.7  
TBF  
-
1.2  
TBF  
-
VO(PFCDRIVER)max maximum output voltage on pin  
PFCDRIVER  
11  
12  
Temperature protection  
Tpl(IC)  
IC protection level temperature  
130  
-
140  
10  
150  
-
°C  
°C  
Tpl(IC)hys  
hysteresis of IC protection level  
temperature  
[1] For a typical application with a compensation network on pin PFCCOMP, like the example in Figure 3.  
[2] Minimum required voltage change time for valley recognition on pin PFCAUX.  
TEA1742T_1  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 01 — 10 February 2009  
12 of 17  
 
TEA1742T  
NXP Semiconductors  
GreenChip PFC controller  
11. Application information  
Capacitor CVCC buffers the IC supply voltage, which has to be supplied by external  
means. Sense resistor RSENSE1 converts the current through the MOSFET S1 into a  
voltage at pin PFCSENSE. The value of RSENSE1 defines the maximum primary peak  
current in MOSFETS S1.  
RS1 is added to prevent the soft start capacitor from being charged during normal  
operation due to negative voltage spikes across the sense resistor.  
Resistor RAUX1 is added to protect the IC from damage during lightning events.  
D1  
C BUS  
S1  
CSS1  
RSS1  
RSENSE1  
RS1  
RAUX1  
7
6
5
8
4
COMPENSATION  
CVCC  
3
TEA1742T  
2
1
014aaa739  
Fig 7. Typical application diagram TEA1742T  
TEA1742T_1  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 01 — 10 February 2009  
13 of 17  
 
TEA1742T  
NXP Semiconductors  
GreenChip PFC controller  
12. Package outline  
SO8: plastic small outline package; 8 leads; body width 3.9 mm  
SOT96-1  
D
E
A
X
c
y
H
v
M
A
E
Z
5
8
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
4
e
w
M
detail X  
b
p
0
2.5  
5 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(2)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
5.0  
4.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.27  
0.05  
1.05  
0.041  
1.75  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.20  
0.014 0.0075 0.19  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.024  
0.028  
0.012  
inches 0.069  
0.01 0.004  
Notes  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
2. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-18  
SOT96-1  
076E03  
MS-012  
Fig 8. Package outline SOT96-1 (SO8)  
TEA1742T_1  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 01 — 10 February 2009  
14 of 17  
 
TEA1742T  
NXP Semiconductors  
GreenChip PFC controller  
13. Revision history  
Table 6.  
Revision history  
Document ID  
Release date  
Data sheet status  
Change notice  
Supersedes  
TEA1742T_1  
20090210  
Objective data sheet  
-
-
TEA1742T_1  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 01 — 10 February 2009  
15 of 17  
 
TEA1742T  
NXP Semiconductors  
GreenChip PFC controller  
14. Legal information  
14.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
to result in personal injury, death or severe property or environmental  
14.2 Definitions  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
14.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
14.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
GreenChip — is a trademark of NXP B.V.  
15. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
TEA1742T_1  
© NXP B.V. 2009. All rights reserved.  
Objective data sheet  
Rev. 01 — 10 February 2009  
16 of 17  
 
 
 
 
 
 
TEA1742T  
NXP Semiconductors  
GreenChip PFC controller  
16. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
2
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Distinctive features . . . . . . . . . . . . . . . . . . . . . . 1  
Green features . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Protection features . . . . . . . . . . . . . . . . . . . . . . 1  
2.1  
2.2  
2.3  
3
4
5
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
7
7.1  
7.1.1  
7.1.2  
7.1.3  
7.2  
Functional description . . . . . . . . . . . . . . . . . . . 5  
General control . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Start-up and UnderVoltage LockOut (UVLO) . . 5  
Supply management. . . . . . . . . . . . . . . . . . . . . 6  
OverTemperature Protection (OTP) . . . . . . . . . 6  
Power factor correction circuit. . . . . . . . . . . . . . 6  
7.2.1  
7.2.2  
ton control . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Valley switching and demagnetization  
(PFCAUX pin) . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Frequency limitation . . . . . . . . . . . . . . . . . . . . . 7  
Mains voltage compensation (VINSENSE pin). 7  
Soft start-up (pin PFCSENSE) . . . . . . . . . . . . . 7  
Dual boost PFC . . . . . . . . . . . . . . . . . . . . . . . . 8  
Overcurrent protection (PFCSENSE pin) . . . . . 9  
Mains undervoltage lockout / brownout  
7.2.3  
7.2.4  
7.2.5  
7.2.6  
7.2.7  
7.2.8  
protection (VINSENSE pin). . . . . . . . . . . . . . . . 9  
Overvoltage protection (VOSENSE pin) . . . . . . 9  
PFC open-loop protection (VOSENSE pin) . . . 9  
Driver (pin PFCDRIVER) . . . . . . . . . . . . . . . . . 9  
7.2.9  
7.2.10  
7.2.11  
8
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Thermal characteristics. . . . . . . . . . . . . . . . . . 10  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 10  
Application information. . . . . . . . . . . . . . . . . . 13  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 14  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 15  
9
10  
11  
12  
13  
14  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 16  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 16  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
14.1  
14.2  
14.3  
14.4  
15  
16  
Contact information. . . . . . . . . . . . . . . . . . . . . 16  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2009.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 10 February 2009  
Document identifier: TEA1742T_1  
 

相关型号:

TEA1750

GreenChip III SMPS control IC
NXP

TEA1750T

GreenChip III SMPS control IC
NXP

TEA1750T-T

IC,SMPS CONTROLLER,CURRENT-MODE,SOP,16PIN,PLASTIC
NXP

TEA1750T/N1

IC,SMPS CONTROLLER,CURRENT-MODE,SOP,16PIN,PLASTIC
NXP

TEA1751LT

GreenChip III SMPS control IC
NXP

TEA1751LT/N1,518

HV start-up DCM/QR flyback controller with integrated DCM/QR PFC controller SOP 16-Pin
NXP

TEA1751LT/N1/G,518

HV start-up DCM/QR flyback controller with integrated DCM/QR PFC controller SOP 16-Pin
NXP

TEA1751LT_1301

HV start-up DCM/QR flyback controller with integrated DCM/QR PFC controller
NXP

TEA1751T

GreenChip III SMPS control IC
NXP

TEA1751T/1791/DB/9

SMPS combo IC for dual boost PFC and flyback control, safe restart protection, SOT109-1 Package, No Marking, Boards
NXP

TEA1751T/N1,518

HV start-up DCM/QR flyback controller with integrated DCM/QR PFC controller SOP 16-Pin
NXP

TEA1751T/N1/G,518

HV start-up DCM/QR flyback controller with integrated DCM/QR PFC controller SOP 16-Pin
NXP