TEA1781T [NXP]

GreenChip PC secondary control ICs; 绿色芯片PC辅助控制IC
TEA1781T
型号: TEA1781T
厂家: NXP    NXP
描述:

GreenChip PC secondary control ICs
绿色芯片PC辅助控制IC

PC
文件: 总32页 (文件大小:194K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TEA1781T; TEA1782T  
GreenChip PC secondary control ICs  
Rev. 01 — 13 February 2009  
Preliminary data sheet  
1. General description  
The TEA1781T and TEA1782T are designed to cooperate with the TEA1771T primary  
side controller in a unique converter topology based on the active clamp forward  
converter. On the secondary side the output voltages are regulated via bidirectional  
switches. A typical application area of this converter is a power supply for a desktop PC.  
The TEA1781T and TEA1782T are secondary control ICs and regulate each output  
voltage independently of the primary duty cycle and other secondary output voltages.  
Because of these separated regulations, the system does not show any cross regulation  
and makes the design of the transformer easier.  
As each output can also be completely turned off, the system allows for an integrated  
standby supply. To maximize the efficiency in Standby mode, the duty cycle and operating  
frequency are minimized in Standby mode.  
The TEA1781T and TEA1782T have integrated drivers and individual output voltage  
regulators. In this way the 3.3 V, 5 V, 12 V and 5 V standby outputs of a typical PC power  
supply are regulated separately giving accurate output voltages and fast transient  
response.  
All requirements according to the Intel ATX specification (V 2.0) are integrated, such as  
soft start, a PS_ON# connection, a PwrOK signal and all required protections like  
OverCurrent Protection (OCP) and OverVoltage Protection (OVP). These voltage and  
current levels are monitored at each output separately. The system also has an  
OverTemperature Protection (OTP) function.  
The system fulfills the current and proposed efficiency standards such as 80+ gold,  
energy star and blue angel.  
The TEA1781T and TEA1782T are implemented in a high voltage (ABCD)  
Silicon On Insulator (SOI) process.  
2. Features  
I Designed for ATX PC power supplies  
I Integrated standby supply  
I Enhanced efficiency in Standby mode  
I No cross regulation  
I Accurate output voltage regulation  
I Fast transient response  
I Integrated soft start for all output voltages  
I Flexible transformer design without the need of a post regulator  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
I Overvoltage protection  
I Overcurrent protection  
I Overtemperature protection  
I System failure detection  
I Soft (re)start  
I Low external component count  
3. Applications  
I PC desktop power supply  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
SO28  
SO28  
Description  
Version  
TEA1781T  
TEA1782T  
Plastic small outline package; 28 leads; body width 7.5 mm  
Plastic small outline package; 28 leads; body width 7.5 mm  
SOT136-1  
SOT136-1  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
2 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
5. Block diagram  
10  
9
22  
18  
Soft Start  
start  
Start-up  
Enable  
ENABLE  
Temperature  
protection  
PowerGood  
PowerOK  
4
VSTARTUP  
VDD  
I
V
V
ref(5V)  
V
otp  
V
trip(ENABLE)  
start  
15  
ref(3V3)  
V
reg(VDD)  
PGOOD  
14  
13  
GND  
GND  
Control 5 V  
I-control 5 V  
V
ref(5V)  
Control 3.3 V  
I-control 3.3 V  
V
ref(3V3)  
I
I
V
trip  
Q
R
S
V/I  
V/I  
t
d
V/I  
Q
R
S
Pull-down  
Protection 5 V  
Protection  
3.3 V  
VSENSE_3V3  
I
I
pd  
pd  
19  
Drive SR  
Drive 5 V  
VDD  
I
> I  
I
I
> I  
ocp  
O
ocp  
O
V
V
ovp(VOUT_3V3)  
V
ovp(VOUT_5V)  
I
uvp(VOUT_5V)  
O
V
I
Drive  
3.3 V  
VDD  
O
ocp  
uvp(VOUT_3V3)  
V
ref(OCP)  
28 26 27  
2
3
1
11 12 6  
7
6
8
24 23 25 17 16 21  
20  
014aaa181  
Fig 1. TEA1781T block diagram  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
3 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
EN_NM  
ENABLE  
PS_OFF  
VDD GND GND  
Pull-  
down  
Enable NM  
Digital control  
STARTUP  
V
> V  
> V  
Startup  
Opto control  
UP  
VDD  
startup(VDD)  
V
VDD  
< V  
VDD  
stop(VDD)  
V
= 4 V  
ENABLE  
V
VDD  
I
startup(VDD)  
pd  
V
ENABLE  
V
V
EN_NM  
startup(VDD)  
OPTO  
I
> I  
+ EN_NM  
prot(ENABLE)  
ENABLE  
Soft Start  
DOWN  
+ PS_OFF+ PROT_12V + UVP_STB  
V/I  
start  
V
V
ref(stb)  
Vref(12V)  
Control 12 V  
system  
restart  
NORMAL  
= 11 V  
PROT/STDB  
= 4 V  
I
V
ENABLE  
V
ENABLE  
start  
ref(12V)  
normal  
PS_OFF  
V/I  
I
system failure  
detection  
V/I  
SYSTEM  
RESTART  
Power-  
Good  
I-control standby  
I
V
ref(stb)  
EN_NM  
PROT_12V PROT_STB UVP_STB  
PGOOD  
I
V/I  
Control 12 V  
V
trip  
Protection 12 V  
Control standby  
t
d
V
uvp(VOUT_12V1)  
12 V OCP detection  
Drive  
Q
R
S
3.3 V  
Protection  
standby  
V
ovp(VOUT_12V1)  
Q
R
S
I
VOUT_12V2  
V
uvp(VOUT_STB)  
I
VOUT_12V  
Drive SR  
Drive 12 V  
VDD  
I
> I  
OCP_STB  
VOUT_STB  
V
I
ovp(VOUT_STB)  
OCP_12V  
Drive  
standby  
VDD  
I
OCP_STB  
I
VOUT_STB  
V
ref(OCP)  
V
ref(OCP)  
FSR  
WND_SEC_1  
GSB_12V DF_12V  
FSB_12V  
GSR  
GSF_12V CS_12V  
PGND_12V  
VOUT_12V2  
GSB_STB  
FSB_STB  
VOUT_STB  
CS_STB  
OCP_STB  
VOUT_12V1 OCP_12V  
DF_STB PGND_STB GSF_STB  
014aaa182  
Fig 2. TEA1782T block diagram  
6. Pinning information  
6.1 Pinning  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
FSB_5V  
GSB_5V  
DF_5V  
FSR  
FSB_12V  
GSB_12V  
DF_12V  
FSR  
GSR  
GSR  
3
3
WND_SEC_2  
FSB_3V3  
GSB_3V3  
DF_3V3  
WND_SEC_1  
FSB_STB  
GSB_STB  
DF_STB  
OCP_STB  
CS_STB  
VOUT_STB  
OPTO  
4
4
VSTARTUP  
OCP  
OCP_12V  
CS_12V  
5
5
6
6
CS_5V  
VOUT_12V1  
VOUT_12V2  
EN_NM  
7
7
VOUT_5V  
VSENSE_5V  
VNTC  
PGOOD  
CS_3V3  
VOUT_3V3  
VSENSE_3V3  
PWROK  
PGND_3V3  
GSF_3V3  
VDD  
TEA1781T  
TEA1782T  
8
8
9
9
PS_OFF  
ENABLE  
PGND_12V  
GSF_12V  
GND  
10  
11  
12  
13  
14  
10  
11  
12  
13  
14  
ENABLE  
PGND_5V  
GSF_5V  
GND  
PGOOD  
PGND_STB  
GSF_STB  
VDD  
GND  
GND  
014aaa183  
014aaa184  
Fig 3. TEA1781T pin configuration  
Fig 4. TEA1782T pin configuration  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
4 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
6.2 Pin description  
Table 2.  
Symbol  
FSB_5V  
GSB_5V  
DF_5V  
TEA1781T pin description  
Pin  
1
Description  
floating supply switch SB_5V  
2
gate driver switch SB_5V  
drain voltage of switch SF_5V  
start-up voltage connected to rectified secondary winding voltage  
overcurrent protection  
3
VSTARTUP  
OCP  
4
5
CS_5V  
6
current sense 5 V output  
output voltage 5 V output  
sense voltage 5 V output  
NTC voltage  
VOUT_5V  
VSENSE_5V  
VNTC  
7
8
9
ENABLE  
PGND_5V  
GSF_5V  
GND  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
enabling Normal mode  
power ground 5 V output  
gate driver switch SF_5V  
ground  
GND  
ground  
VDD  
supply voltage  
GSF_3V3  
PGND_3V3  
PWROK  
VSENSE_3V3  
VOUT_3V3  
CS_3V3  
PGOOD  
DF_3V3  
GSB_3V3  
FSB_3V3  
WND_SEC_2  
GSR  
gate driver switch SF_3V3  
power ground 3V3 output  
power OK  
sense voltage 3.3 V output  
output voltage 3.3 V output  
current sense 5 V output  
PowerGood (delay setting for power OK)  
drain voltage of switch SF_3V3  
gate driver switch SB_3V3  
gate driver switch SB_3V3  
secondary transformer 3.3 V / 5 V winding voltage  
gate driver switch SR (3.3 V / 5 V)  
floating supply switch SR (3.3 V / 5 V)  
FSR  
Table 3.  
TEA1782T Pin description  
Symbol  
Pin  
1
Description  
FSB_12V  
GSB_12V  
DF_12V  
floating supply switch SB_12V  
gate driver switch SB_12V  
drain voltage of switch SF_12V  
overcurrent protection 12 V output  
current sense 12 V output  
output voltage 12 V1 output  
output voltage 12 V2 output  
enable Normal mode  
2
3
OCP_12V  
CS_12V  
4
5
VOUT_12V1  
VOUT_12V2  
EN_NM  
6
7
8
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
5 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
Table 3.  
TEA1782T Pin description …continued  
Symbol  
PS_OFF  
ENABLE  
PGND_12V  
GSF_12V  
GND  
Pin  
9
Description  
power supply off (via delay network connected to PS_ON#)  
enabling Normal mode  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
power ground 12 V output  
gate driver switch SF_12V  
ground  
GND  
ground  
VDD  
supply voltage  
GSF_STB  
PGND_STB  
PGOOD  
OPTO  
gate driver switch SF_stb  
power ground standby output  
PowerGood (delay setting for power OK)  
opto coupler  
VOUT_STB  
CS_STB  
OCP_STB  
DF_STB  
GSB_STB  
FSB_STB  
WND_SEC_1  
GSR  
output voltage standby output  
current sense standby output  
overcurrent protection standby output  
drain voltage of switch SF_stb  
gate driver switch SB_stb  
gate driver switch SB_stb  
secondary transformer 12 V / standby winding voltage  
gate driver switch SR (12 V)  
floating supply switch SR (12 V)  
FSR  
7. Functional description  
7.1 Introduction  
A PC power supply has to supply a number of different supply voltages: 12 V, 5 V, 3.3 V,  
12 V and 5 V standby. To achieve the required output voltage accuracy, the systems of  
today require dissipative post regulations.  
Because the system must be able to switch off the main supplies (12 V, 5 V, 3.3 V, 12 V)  
in Standby mode but keep the 5 V standby in operation, a separate standby supply is still  
common practice.  
With the GreenChip PC chip set (TEA1771T, TEA1781T, TEA1782T) a system  
configuration is introduced that integrates the post regulation and combines the main and  
standby converter into a single system. This high level of integration reduces the total cost  
of the system.  
Because the output voltages are regulated separately, it makes the design of the  
converter easier as none of the output voltages is directly related to the number of turns  
on the transformer.  
One of the main differences of this topology compared to commonly used solutions is the  
use of switches instead of Schottky diodes, although the rectifying switch is a so-called  
bidirectional switch. This switch is built up by two standard FETs in anti-series.  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
6 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
The freewheel switch behaves like an ideal diode so the setup runs in a discontinuous  
mode at low loads. Negative currents are avoided by the control ICs through this switch.  
Replacement of the rectifying Schottky diode by two switches in anti-series allows:  
Integration of the 5 V standby supply, because in Standby mode the main secondary  
outputs can be switched off.  
The supply voltages can be individually and more accurately regulated, eliminating  
ubiquitous post regulators.  
As the output voltages is now regulated by the secondary switches, the duty cycle of  
the primary control switch can be kept constant, preventing ringing at the primary  
reset voltage. A lower reset voltage results in lower required breakdown voltages of all  
applied FETs, both primary and secondary. This reduces costs.  
The use of Zero Voltage Switching (ZVS) at the primary side to fulfill the required  
standby efficiency.  
To fulfill the ATX12V specification on standby efficiency requirements, the system has a  
Standby mode in which the frequency, duty cycle and supply currents are reduced.  
The TEA1781T and TEA1782T are secondary control ICs. Together with the TEA1771T  
primary controller they form a unique system that fulfills the 80+ gold requirements at  
minimum costs, eliminating any cross regulation and maximizing standby efficiency.  
7.2 Supply  
When the voltage on the primary side from the rectified input mains reaches its starting  
value, the primary side starts up and switches the primary main switch. From that  
moment, the secondary rectified transformer voltage at Vstartup, see Figure 5, is a ratio of  
the input voltage.  
12 V  
V
VOUT_STB  
Start-up  
Start-up  
VSTARTUP  
VDD  
VDD  
UVLO  
V
startup(VDD)  
TEA1781  
TEA1782  
014aaa185  
Fig 5. Start-up sequence TEA1771T  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
7 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
The VDD capacitor is charged and regulated to the Vreg(VDD) level via a linear regulator in  
the TEA1781T. This VDD voltage is the supply voltage for both secondary ICs.  
Once the VDD voltage reaches the Vstartup(VDD) level, measured in the TEA1782T, the  
5 V standby is started up via a so-called soft start. This implies that during a certain time,  
tstart(soft), the output voltage slowly ramps up from zero to the required value. Once the  
system is started up, the VDD voltage is taken over by an auxiliary winding of the  
5 V standby output, as shown in Figure 5. This ensures an efficient 12 V VDD voltage  
during standby and normal operation.  
As the secondary ICs are supplied via the TEA1781T and measured in the TEA1782T,  
both ICs are disabled in case of an open connection in the supply chain.  
If the VDD voltage drops below its Vstop(VDD) level, the system disables all output voltages  
by actively turning off all switches. This avoids undefined conditions resulting from  
charged gate capacitances.  
7.3 Mode of operation  
After the system has started up, the TEA1782T defines the mode of operation. It features  
four operation modes: Start-up mode, Protection/Standby mode, Normal mode and  
System restart mode, as depicted in Figure 6.  
Digital control  
V
< V  
stop(VDD)  
VDD  
STARTUP  
= 4 V  
V
ENABLE  
V
> V  
startup(VDD)  
VDD  
I
> I  
+ EN_NM  
prot(ENABLE)  
ENABLE  
+ PS_OFF+ PROT_12V + UVP_STB  
NORMAL  
= 11 V  
PROT/STDB  
= 4 V  
V
ENABLE  
V
ENABLE  
PS_OFF  
system failure  
detection  
SYSTEM  
RESTART  
014aaa186  
Fig 6. State diagram TEA1771T  
When the VDD voltage is below its stop level, the TEA1782T enters the Start-up mode  
and the TEA1781T charges the VDD capacitors to Vreg(VDD) via the start-up pin. When it  
has charged the VDD capacitor above Vstartup(VDD), the TEA1782T jumps into  
Protection/Standby mode and the 5 V standby output slowly rises from zero to its required  
value.  
When the PS_OFF signal becomes active low, the system switches to Normal mode  
enabling the main outputs (3.3 V, 5 V, 12 V and 12 V). The 12 V (and 12 V) output is  
regulated by the TEA1782T itself, whereas the 3.3 V and 5 V output are regulated by the  
TEA1781T. The TEA1781T activates the 3.3 V and 5 V outputs via the ENABLE signal.  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
8 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
At any failure condition or as soon as the PS_OFF signal is high, the system switches to  
Protection / Standby mode. When a failure, such as a shorted or overloaded output, is  
detected, the system enters the Protection mode, disabling the main output circuits but  
leaving the standby output in operation. However, when, for example, a secondary FET is  
shorted, the system enters the System restart mode and switches off the primary side.  
When VDD is discharged below its minimum level, Vstop(VDD), the IC enters the Start-up  
mode and all switches are disabled.  
When the system is in Protection / Standby mode, the systems lowers its duty cycle and  
operating frequency to optimize the system’s efficiency.  
7.4 Enable Normal mode  
In Standby mode, an optional PFC may be switched off. When switched to Normal mode,  
the system has a programmable delay before the main outputs (3.3 V, 5 V and 12 V) are  
switched on. During this delay the PFC can be activated.  
An extra safety feature has been built in when enabling Normal mode. If the input voltage  
is too low, which can occur when the PFC fails, the system stays in Standby mode.  
The input voltage is measured on a rectified secondary voltage, reflecting the input  
voltage; see Figure 7.  
Np / Ns  
V
WND_SEC_2  
Enable NM  
Digital control  
EN_NM  
1.25 V  
014aaa187  
Fig 7. Enable Normal mode assures a proper start-up of the forward converter  
In addition to a minimum input voltage, a delay can also be made to assure a proper  
start-up of the PFC before the system switches to Normal mode. A circuit according to  
Figure 8 must be built between the PS_ON# signal from the motherboard and the  
PS_OFF pin of the TEA1782T.  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
9 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
5 V standby  
D1  
D2  
R1  
PS_ON#  
C1  
R2  
PS_OFF  
Digital control  
STARTUP  
V
< V  
stop(VDD)  
VDD  
V
= 4 V  
ENABLE  
V
> V  
startup(VDD)  
VDD  
I
> I  
+ EN_NM  
prot(ENABLE)  
ENABLE  
+ PS_OFF+ PROT_12V + UVP_STB  
NORMAL  
= 11 V  
PROT/STDB  
= 4 V  
V
ENABLE  
V
ENABLE  
PS_OFF  
system failure  
detection  
SYSTEM  
RESTART  
TEA1782  
014aaa188  
Fig 8. Enable Normal mode assures a proper start-up of the PFC  
7.5 Soft start  
When the TEA1782T enters the Protection/Standby mode after start-up, the 5 V standby  
output is started up via a soft start. The main output voltages, 3.3 V, 5 V, 12 V and 12 V  
are started up via a soft start when the TEA1782T enters the Normal mode. A soft start  
implies that the outputs will rise gradually and simultaneously from zero to their required  
value during a defined period (15 ms).  
When PS_OFF is turned low, the main outputs of the TEA178x chip set ensure that power  
sequencing is applied according to the ATX12V specification of Intel, i.e., the 12 V and 5 V  
outputs must be equal to, or greater than, the 3.3 V output during power-up and normal  
operation.  
7.6 Enable  
The TEA1782T is the master of the system. The required duty cycle is communicated to  
the primary controller TEA1771T via the opto coupler. The TEA1782T communicates to  
the TEA1781T via the enable signal, see Figure 9, if the main outputs are enabled or  
disabled. If the system is in Normal mode, the voltage of the enable signal exceeds the  
trip level, Vtrip(ENABLE), enabling all outputs. Otherwise the main outputs are disabled.  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
10 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
3.3 V / 5 V  
outputs are  
enabled  
ENABLE  
Digital control  
V
< V  
stop(VDD)  
VDD  
STARTUP  
= 4 V  
V
trip(ENABLE)  
V
ENABLE  
V
> V  
startup(VDD)  
V
VDD  
ENABLE  
I
ENABLE  
I
> I  
+ EN_NM  
prot(ENABLE)  
ENABLE  
temp.prot  
+ PS_OFF+ PROT_12V + UVP_STB  
protection 5 V  
protection 3.3 V  
NORMAL  
= 11 V  
TEA1781  
PROT/STDB  
= 4 V  
V
ENABLE  
V
ENABLE  
PS_OFF  
system failure  
detection  
SYSTEM  
RESTART  
TEA1782  
014aaa189  
Fig 9. The ENABLE signal is for communicating between the secondary control ICs  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
11 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
7.7 Output drivers  
Figure 10 shows a part of the secondary side output circuitry and the applied gate drive  
system.  
V
/ N  
V
+ 12 V  
VDD  
INDC  
WND_SEC_x  
WND_SEC_x  
V
0
Drive  
V
/ N  
0
INDC  
V
FSB_x  
V
DF_x  
DF_x  
V
VOUT_x  
SR  
WND_SEC_x  
SB  
SF  
V
014aaa190  
(1) WND_SEC_x: The “x” stands for either 1 or 2  
(2) FSR_x,, GSR_x, GSB_x, DF_x, FSB_x:  
The “x” for these pins and symbols stands for either 3V3, 5V or 12V  
(3) VOUT_x: The “x” stands for either 3V3, 5V, 12V1 or 12V2.  
Fig 10. Output driver circuit  
The freewheel switch SF is turned on and off between the VDD voltage (12 V) and ground  
level as the source of SF is connected to ground. The source of switch SB varies between  
zero (actually a small negative voltage when the SF or its back gate diode is conducting)  
and the maximum secondary transformer voltage. Therefore the driver of SB requires a  
bootstrap circuit.  
When VDF_x (VDF_3V3, VDF_5V, or VDF_12V) is (about) zero, the FSB capacitor is charged to  
the VDD level. Switch SB can then be turned on via this charged capacitor, as it ensures a  
VDD voltage with respect to DF_x (pins DF_3V3, DF_5V, or DF_12V). As this capacitor  
will be discharged when charging the gate source capacitance of SB, the driving voltage  
will be slightly less than the VDD voltage.  
The source of the rectifying switch SR is connected to the transformer, which can be  
positive or negative. Therefore the FSR capacitor is charged via a boost circuit with a  
special voltage source that is about 12 V higher than the secondary transformer voltage at  
the appropriate time.  
As the source of the rectifying switch SR is connected to the transformer, which can be  
either negative or positive, the TEA1781T and TEA1782T are developed in a special  
process (ABCD - SOI) which is capable of handling these (high) negative and positive  
voltages.  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
12 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
7.8 Output voltage regulation  
The output voltage is regulated to the required voltage level via a current mode control  
loop.  
V
0
ResetSB  
INDC / N  
V
WND_SEC_x  
V
I-control  
ref  
V / N  
rst  
Q
R
S
I
"1"  
"0"  
ResetSB  
SB  
V/I  
I
Control  
closed  
open  
closed  
open  
Drive  
SF  
VDD  
C
R
L
V
VOUT_x  
SR  
SB  
SF  
V
WND_SEC_x  
014aaa191  
(1) WND_SEC_x: The “x” stands for either 1 or 2  
(2) GSB_x, DF_x, FSB_x, GSF_x, CS_x:  
The “x” for these pins and symbols stands for either 3V3, 5V or 12V  
(3) VOUT_x: The “x” stands for either 3V3, 5V, 12V1 or 12V2.  
Fig 11. Output voltage regulation  
When the secondary side transformer voltage is negative, switch SB is turned off to avoid  
negative currents, see Figure 11. Once the secondary side transformer voltage is positive  
and the output current in the secondary coil has dropped below a certain value, switch SB  
is turned on again. This value is proportional to the difference between the output voltage  
and the reference voltage, increased with a ramp voltage. This type of regulation is called  
current mode control. A ramp voltage is required to stabilize the control loop for duty  
cycles smaller than 0.5 and is called slope compensation.  
The output current is measured using the output inductor series resistance. When the  
L
RL  
parallel RC network is R C =  
the voltage across the parallel capacitor equals the  
-----  
voltage across the inductors resistance. L and RL represent the inductance and the  
resistance value of the output inductor.  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
13 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
7.9 PowerOK  
The PowerOK signal is active HIGH when the main output voltages (12 V, 5 V and 3.3 V)  
are within their regulation limits. Figure 12 shows the corresponding block diagram.  
5 V standby  
VDD  
PWROK  
PWROK  
PowerOK  
PGOOD  
PGOOD  
PowerGood  
PowerGood  
V
PGOOD  
TEA1782  
Protection 5 V  
Protection 3.3 V  
Protection 12 V  
V
V
V
uvp  
uvp  
uvp  
TEA1781  
VOUT_5V  
VOUT_3V3  
VOUT_12V  
014aaa192  
Fig 12. PowerOK circuit diagram  
The PGOOD output is pulled down by the TEA1781T when either the 5 V or 3.3 V is below  
its lower limit, or by the TEA1782T when the 12 V is below its lower limit. When all main  
outputs are above their minimum value, the PGOOD signal slowly rises from zero to the  
VDD level. Once the PGOOD signal exceeds VPGOOD, the PWROK signal becomes active  
high.  
A delay can be set between the output voltages reaching their end value and the PWROK  
signal being active high via an RC network connected to the PGOOD pins.  
7.10 Pull-down main outputs  
According to the Intel ATX specification, the main outputs (3.3 V, 5 V and 12 V) must be at  
ground level in Standby mode. Therefore, these outputs are pulled low when the system is  
in Standby mode.  
The pull-down transistors for the 3.3 V and 5 V outputs are integrated in the TEA1781T,  
whereas the pull-down transistor for the 12 V is integrated in the TEA1782T.  
7.11 OPTO control  
The TEA1782T defines the mode of operation of the system. It communicates with the  
TEA1781T via the ENABLE pin and with the TEA1771T primary controller via the opto  
coupler connected to the OPTO control block. Depending on the mode of operation, the  
current to the opto coupler has the following values:  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
14 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
Table 4.  
OPTO control modes  
Mode of operation  
Standby mode  
Normal mode  
IOPTO  
0 mA to 3.5 mA  
3.5 mA  
System restart  
30 mA  
In Standby mode, a higher IOPTO current implies a higher duty cycle / frequency of the  
system. In Normal mode, the systems duty cycle/frequency is defined by the primary  
controller being related to the inverse of the input voltage. The OPTO control block  
diagram is given in Figure 13.  
off  
PVCC  
OPTO control  
UP  
S1 S3  
S2  
S4  
I
OPTO  
DOWN  
V/I  
Normal mode  
014aaa193  
Fig 13. TEA1782T OPTO control diagram  
At system start-up, the secondary controllers are supplied via a rectified secondary  
winding voltage. Therefore the secondary controllers are started up after the primary side  
has started up.  
As the voltage at the OPTO pin is zero when the secondary controllers are not yet  
supplied, the primary side starts up at the minimum duty cycle/frequency. Once the  
secondary side has started, it increases the operating duty cycle/frequency of the system  
depending on the standby load and mode of operation.  
When the system is in Normal mode, switch S3 is closed and the opto coupler current is  
increased to IOPTO (Normal mode). In this mode, the primary duty cycle is defined by the  
primary controller TEA1771T and is related to the inverse of the input voltage.  
When the secondary protection mode fails, switch S4 is closed and a maximum current  
flows through the opto coupler. This high current triggers the primary controller into  
Protection mode, switching off the primary main switch. A safe restart of the system will  
follow. This implies that the system will start up again after all the supply voltages, primary  
and secondary, are below their UVLO levels resulting in a total reset of the system.  
In Standby mode, the system minimizes the duty cycle of the primary control switch to  
reduce the magnetic losses in the transformer to a minimum. As the primary duty cycle  
has to be at least equal to the secondary duty cycle, the system will equalize both duty  
cycles in Standby mode. This is regulated in the opto control block.  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
15 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
The opto control compares the primary and secondary standby duty cycle and defines if  
the primary duty cycle has to be changed, see Figure 14.  
closed  
open  
S1  
primairy  
main switch  
V
0
/ N  
INDC  
V
WND_SEC_1  
V / N  
rst  
closed  
open  
SB  
decreasing prim δ  
"1"  
"0"  
down  
increasing prim δ  
"1"  
"0"  
up  
I
OPTO  
014aaa194  
Fig 14. TEA1782T OPTO control duty cycles  
The primary duty cycle is derived from the secondary transformer voltage. If VWND_SEC_1  
is above a certain positive level before the switch SB is turned on, a down pulse is  
generated. An up pulse is generated when VWND_SEC_1 is high after SB is turned on.  
The current into the opto coupler is regulated until it reaches a stable value via the down  
pulse and up pulse. Through the opto coupler, the primary duty cycle and frequency  
eventually stabilize to provide the duty cycle required by the secondary standby converter.  
7.12 Protections  
7.12.1 General  
All outputs have an OVP and an OCP function. The OVP and OCP functions have a delay  
of td(prot), which is typically 18 µs.  
If the output voltage or the output current on one of the main outputs (3.3 V, 5 V, 12 V1, or  
12 V2) exceeds their upper limit, the system will enter Protection mode. In this mode all  
main outputs are switched off by switching off all corresponding secondary switches. The  
system will enter the Normal mode again after toggling the PS_ON# signal or after a  
mains interruption.  
A 12 V OVP / OCP is detected in the TEA1782T. When detecting a 12 V OVP or OCP, the  
pin ENABLE is pulled down and as a result both the TEA1782T and the TEA1781T will  
disable the main outputs. The 5 V standby output remains on.  
A 3.3 V or 5 V OVP or OCP is detected in the TEA1781T and communicated to the  
TEA1782 via the pin ENABLE. As a result the TEA1782T will pull down the pin ENABLE,  
disabling all main outputs.  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
16 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
When the 5 V standby voltage / current exceeds its upper limit the output will be switched  
off. It will be turned on again at the next cycle as soon as the output voltage/current level  
drops below the upper limit.  
7.12.2 Undervoltage protection  
When undervoltage is detected on one of the main outputs (3.3 V, 5 V, 12 V) the pin  
PGOOD is pulled low which again pulls the PWROK signal low.  
When undervoltage on the 5 V standby output is detected, the system switches to  
Standby mode and returns back to Normal mode once the 5 V standby is above its  
minimum level.  
7.12.3 Overvoltage protection  
As stated previously, all outputs have an OVP function. However, the 12 V1 and 12 V2  
have one OVP function. It is assumed that the 12 V2 is directly coupled to the 12 V1  
voltage and therefore these voltages are about equal.  
All OVP levels are integrated and cannot be set externally.  
7.12.4 Overcurrent protection  
The OCP levels can be set externally. The maximum output current of the 12 V1 and 12  
V2 are supposed to be about equal, therefore have the same OCP setting. Figure 15  
gives the 12 V OCP block diagram.  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
17 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
Protection mode  
Protection 12 V  
I
2 × I  
> I  
VOUT_12V2 ocp_12V  
VOUT_12V  
or 2 × I  
> I  
VOUT_12V2  
ocp_12V  
V
ovp(VOUT_12V1)  
I
VOUT_12V2  
TEA1782  
I
VOUT_12V  
I
ocp_12V  
V
ref(OCP)  
CS_12V  
VOUT_12V1  
VOUT_12V2  
OCP_12V  
V
V
VOUT_12V1  
VOUT_12V2  
014aaa195  
Fig 15. 12 V output overcurrent protection  
The total output current (equal to Iout_12V1 + Iout_12V2) is measured via an RC network  
across the output inductor, using the series resistance of the output inductor. The 12V2  
output current is measured using a series resistance. Subtracting these two then gives the  
12V1 output current.  
Both output currents are then compared to the Iocp (12 V output) setting. If one of these  
currents exceeds the Iocp (12 V output) setting, the system will enter the Protection  
mode.The system supposes the extra series resistance to be half the value of the inductor  
series resistance. The Iocp (12 V output) has a default setting of 100 µA, corresponding  
to 180 mV for 12V1, and 90 mV for 12V2.  
Applying a series resistance of 5 mand an inductor series resistance of 10 m, the  
default OCP levels of the 12 V outputs are set at 18 A. The OCP levels of the 12 V outputs  
can be increased by a resistor from pin OCP_12V to ground and decreased by a resistor  
from pin VDD to pin OCP_12V.  
The 3.3 V and 5 V OCP can be adjusted externally, whereas the system assumes  
identical 3.3 V and 5 V OCP levels, see Figure 16. The output currents are measured via  
an RC network across the output inductor, making use of the inductor series resistance. If  
either the 5 V or 3.3 V output exceeds its OCP setting, the system enters the Protection  
mode.  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
18 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
Protection mode  
Protection 5 V  
Protection mode  
Protection 3.3 V  
I
> I  
I
> I  
ocp  
VOUT_5V  
ocp  
VOUT_3V3  
I
V
V
ovp(VOUT_5V)  
I
ovp(VOUT_3V3)  
I
ocp  
VOUT_3V3  
VOUT_5V  
V
ref(OCP)  
V
VOUT_5V  
V
VOUT_3V3  
014aaa196  
Fig 16. 3.3 V / 5 V output overcurrent protection  
The Iocp has a default setting of 100 µA. Applying an inductor series resistance of 10 m,  
the default OCP level is set at 19.5 A. The OCP levels of 3.3 V and 5 V can be increased  
by a resistor from pin OCP to ground and decreased by a resistor from pin VDD to pin  
OCP.  
The 5 V standby OCP level is set to approximately 2.5 A, assuming an inductors series  
resistance of 70 m. The OCP_STB level can be increased by a resistor from pin  
OCP_STB to ground and decreased by a resistor from pin VDD to pin OCP_STB.  
Besides changing the OCP level by a resistor connected to the OCP pin, this level can be  
changed by choosing a different series resistance of the output coil.  
Whereas an OCP on one of the main outputs results in a latched Protection mode, a 5 V  
standby OCP also disables the output but resumes switching at the next cycle when the  
output current drops below the OCP level. When the 5 V standby output voltage drops  
below its minimum level, because the output current is limited, the system switches to  
Standby mode.  
7.12.5 Overtemperature protection  
The system will enter the Protection mode at an initialized temperature level via an  
external NTC network connected to the VNTC pin of the TEA1781T. In this way the  
system can be protected against overtemperature.  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
19 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
If an OTP is detected all main outputs will be switched off, but the 5 V standby output  
remains on.  
7.12.6 System restart  
If an OCP, OVP, or OTP is detected on one of the main outputs, all these outputs are  
switched off and latched. A OCP or OVP detection on the 5 V standby will switch off its  
output but it will be resumed again at the next cycle.  
All outputs can be disabled individually by disabling the bidirectional switch (SR / SB).  
Disabling an output will resolve the reason why Protection mode was entered, which can  
be an OVP, OCP or OTP.  
If a certain time after entering Protection mode (td(restart) (500 µs)) the system still  
detects an OCP or OVP, the secondary side enters the system restart mode. In this mode  
the primary side is switched off via the opto coupler, followed by a safe restart. A  
continuous error could be caused by a shorted SB switch, for example.  
If a small increase of temperature is detected because of an OTP after entering Protection  
mode, the system will also turn off the primary side.  
So normally, an OCP, OVP or OTP will switch off the secondary outputs. Only when an  
OCP, OVP or OTP remains after the outputs are switched off, will the primary side be  
switched off. In that case the 5 V standby output will also drop.  
8. Limiting values  
Table 5.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
TEA1781T  
VDF_5V  
voltage on pin DF_5V  
7  
+40  
+75  
V
V
VVSTARTUP  
voltage on pin  
VSTARTUP  
0.4  
Iocp  
overcurrent protection  
current  
250  
+80  
µA  
VCS_5V  
voltage on pin CS_5V  
0.4  
0.4  
+7  
+7  
V
V
VVOUT_5V  
voltage on pin  
VOUT_5V  
VVSENSE_5V  
voltage on pin  
VSENSE_5V  
0.4  
+7  
V
VVNTC  
voltage on pin VNTC  
0.4  
0.4  
+7  
V
V
VENABLE  
voltage on pin  
ENABLE  
+13  
VPGND_5V  
voltage on pin  
PGND_5V  
-0.8  
+0.8  
V
VDD  
supply voltage  
0.4  
0.8  
+13  
V
V
VPGND_3V3  
voltage on pin  
PGND_3V3  
+0.8  
VPWROK  
voltage on pin PWROK  
0.4  
+13  
V
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
20 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
Table 5.  
Limiting values …continued  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
VVSENSE_3V3  
voltage on pin  
VSENSE_3V3  
0.4  
+7  
V
VVOUT_3V3  
voltage on pin  
VOUT_3V3  
0.4  
+7  
V
VCS_3V3  
voltage on pin CS_3V3  
voltage on pin PGOOD  
voltage on pin DF_3V3  
0.4  
0.4  
7  
+7  
V
V
V
V
VPGOOD  
+7  
VDF_3V3  
+40  
+40  
VWND_SEC_2  
voltage on pin  
WND_SEC_2  
40  
General  
Ptot  
total power dissipation Tamb < 45 °C  
storage temperature  
-
<tbd>  
+150  
+145  
W
Tstg  
55  
20  
°C  
°C  
Tj  
junction temperature  
Vesd  
electrostatic discharge human body model:[1]  
voltage  
all pins  
2000  
+2000  
V
machine model:[2]  
all pins  
200  
+200  
500  
V
V
charged device  
model  
-
TEA1782T  
VDF_12V  
voltage on pin DF_12V  
-7  
+73  
+80  
V
IOCP_12V  
current on pin  
OCP_12V  
250  
µA  
VCS_12V  
voltage on pin CS_12V with respect to  
VVOUT_12V1  
0.4  
0.4  
0.4  
+0.8  
+0.4  
+13.4  
V
V
V
VVOUT_12V1  
VVOUT_12V2  
voltage on pin  
VOUT_12V1  
with respect to  
VVOUT_12V2  
voltage on pin  
VOUT_12V2  
VEN_NM  
VPS_OFF  
voltage on pin EN_NM  
0.4  
0.4  
+13  
+13  
V
V
voltage on pin  
PS_OFF  
VPGND_12V  
voltage on pin  
PGND_12V  
0.8  
+0.8  
V
VDD  
supply voltage  
0.4  
0.8  
+13  
V
V
VPGND_STB  
voltage on pin  
PGND_STB  
+0.8  
VPGOOD  
voltage on pin PGOOD  
0.4  
0.4  
+13  
+7  
V
V
VVOUT_STB  
voltage on pin  
VOUT_STB  
VCS_STB  
IOCP_STB  
voltage on pin  
CS_STB  
0.4  
+7  
V
current on pin  
OCP_STB  
250  
+80  
µA  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
21 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
Table 5.  
Limiting values …continued  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
0.8  
73  
Max  
+73  
+73  
Unit  
V
VDF_STB  
voltage on pin DF_STB  
VWND_SEC_1  
voltage on pin  
WND_SEC_1  
V
General  
Ptot  
total power dissipation Tamb < 45 °C  
storage temperature  
-
<tbd>  
+150  
+145  
W
Tstg  
55  
20  
°C  
°C  
Tj  
junction temperature  
Vesd  
electrostatic discharge human body model:[1]  
voltage  
all pins  
1500  
150  
+1500  
V
machine model:[2]  
all pins  
+150  
+500  
V
V
charged device  
model  
[1] Human body model: equivalent to discharging a 100 pF capacitor through a 1.5 kseries resistor.  
[2] Machine model: equivalent to discharging a 200 pF capacitor through a 0.75 µH coil and a 10 series  
resistor.  
[3] Peak voltages up to the OVP level are allowed.  
9. Thermal characteristics  
Table 6.  
Thermal characteristics  
Parameter  
Symbol  
Conditions  
Typ  
Unit  
[1]  
Rth(j-a)  
thermal resistance from junction in free air  
to ambient  
<tbd>  
K/W  
[1] Thermal resistance Rth(j-a) can be lower when pin GND is connected to sufficient copper area on the  
printed-circuit board. See the TEA1771T application notes for details.  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
22 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
10. Characteristics  
Table 7.  
TEA1781T characteristics  
Tamb = 25 °C; no over temperature; all voltages are measured with respect to ground; currents are positive when flowing into  
the IC; unless otherwise specified.  
Symbol  
Supply  
Vreg(VDD)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
regulation voltage on pin Vstartup = 14 V to 90 V  
VDD  
9.0  
9.5  
10.1  
V
IVDD  
current on pin VDD  
Standby mode  
Normal mode  
-
-
1.2  
1.9  
-
-
mA  
mA  
Drivers  
Rpu  
pull-up resistance  
SR / SB drivers;  
13  
17  
21  
VWND(SEC)_2 = VDF_3V3 = VDF_5V = 40 V;  
VFSR = VFSB_3V3 = VFSB_5V = 52 V;  
VGSB_3V3 = VGSB_5V = VGSR = 51.5 V  
SF drivers; VDF_3V3 = VDF_5V = 1 V;  
VDD VGSF_3V3 (or VGSF_5V) = 0.5 V  
-
30  
-
V
Rpd  
pull-down resistance  
SR / SB drivers;  
3.5  
4.5  
5.5  
VWND(SEC)_2 = VDF_3V3 = VDF_5V = 40 V;  
VFSR = VFSB_3V3 = VFSB_5V = 52 V;  
VGSB_3V3 = VGSB_5V = VGSR = 40.5 V  
SF driver; VDF_3V3 = VDF_5V = 0 V;  
GSF_3V3 = VGSF_5V = 0.5 V  
3.5  
5.0  
4.5  
5.4  
5.5  
5.8  
V
Vfloat(UVLO)  
undervoltage lockout  
floating voltage  
SR/SB driver  
V
Control  
Vtrip(L)  
LOW-level trip voltage  
HIGH-level trip voltage  
delay time  
enable GSB;  
voltage on pin WND_SEC_2  
4.7 4.1 3.5  
3.4 4.5 5.6  
2.2 1.9 1.6  
V
enable GSR;  
voltage on pin DF (3.3 V and 5 V)  
V
Vtrip(H)  
enable GSB;  
voltage on pin WND_SEC_2  
V
enable GSR;  
voltage on pin DF (3.3 V and 5 V)  
5.8  
-
7.0  
0.9  
8.2  
-
V
td  
enable GSB  
µs  
I-Control 3.3 V  
Vref(3V3)  
reference voltage (3.3 V) VCS_3V3 = VVOUT  
VCS_3V3 = VVOUT + 100 mV  
3.25 3.35 3.45  
3.19 3.29 3.39  
V
V
I-Control 5 V  
Vref(5V)  
reference voltage (5 V)  
VCS_5V = VVOUT  
4.95 5.10 5.25  
4.85 5.00 5.15  
V
V
VCS_5V = VVOUT + 100 mV  
Pins VOUT_3V3 and VOUT_5V  
Ipd  
pull-down current  
Standby mode;  
2
4
6
mA  
V
VVOUT_3V3 = VVOUT_5V = 0.4 V  
Enable  
Vtrip(ENABLE)  
trip voltage on pin  
ENABLE  
7.0  
8.0  
9.0  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
23 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
Table 7.  
TEA1781T characteristics …continued  
Tamb = 25 °C; no over temperature; all voltages are measured with respect to ground; currents are positive when flowing into  
the IC; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IENABLE  
current on pin ENABLE  
current pulled out of the pin ENABLE to  
disable, to move to Protection mode  
1.0  
-
-
mA  
Soft start  
tstart(soft)  
soft start time  
10  
15  
20  
ms  
PGOOD and PWROK  
Isink(PGOOD)  
sink current on pin  
PGOOD  
VPGOOD = 0.4 V  
6.0  
2.5  
2.2  
16  
-
-
mA  
V
Vtrip(H)(PGOOD)  
Vtrip(L)(PGOOD)  
Isink(PWROK)  
HIGH-level trip voltage on  
pin PGOOD  
2.7  
2.4  
-
3.0  
2.7  
-
LOW-level trip voltage on LOW  
pin PGOOD  
V
sink current on pin  
PWROK  
VPWROK = 0.4 V  
mA  
Overcurrent protection  
Vref(OCP) reference voltage on pin OCP = n.c.  
1.21 1.25 1.29  
V
OCP  
[1]  
[1]  
[1]  
[1]  
Vocp  
overcurrent protection  
voltage  
V
CS_x VVOUT activating current  
155  
320  
60  
180  
380  
80  
205  
440  
105  
410  
mV  
mV  
mV  
mV  
protection; OCP = n.c.  
VCS_x VVOUT activating current  
protection; Iocp = 100 µA  
VCS_x VVOUT activating current  
protection; Iocp = 50 µA  
VCS_x VVOUT activating current  
310  
360  
protection during soft start; OCP = n.c.  
Undervoltage/overvoltage protection  
Vuvp(VOUT_3V3)  
undervoltage protection  
voltage on pin  
2.60 2.80 3.00  
V
VOUT_3V3  
Vuvp(VOUT_5V)  
Vovp(VOUT_3V3)  
undervoltage protection  
voltage on pin VOUT_5V  
4.00 4.25 4.50  
3.76 4.00 4.25  
V
V
overvoltage protection  
voltage on pin  
VOUT_3V3  
Vovp(VOUT_5V)  
overvoltage protection  
6.00 6.40 6.80  
V
voltage on pin VOUT_5V  
Temperature protection  
Votp(H) HIGH-level  
VENABLE = 12 V  
450  
320  
505  
375  
560  
430  
mV  
mV  
overtemperature  
protection voltage  
Votp(L)  
LOW-level  
VENABLE = 0 V  
overtemperature  
protection voltage  
[1] VCS_x: the “x” stand for either “3V3” or ”5V”.  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
24 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
Table 8.  
TEA1782T characteristics  
Tamb = 25 °C; no over temperature; all voltages are measured with respect to ground; currents are positive when flowing into  
the IC; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supply  
Vstartup(VDD)  
start-up voltage on  
pin VDD  
8.0  
6.9  
8.5  
7.4  
9.0  
7.9  
V
V
Vstop(VDD)  
stop voltage on pin  
VDD  
IVDD  
current on pin VDD  
start-up delay time  
-
3.0  
7
-
mA  
ms  
td(startup)  
5
9
Driver SF standby  
Rpu  
pull-up resistance  
SF driver; VDF_12V = VDF_STB = 1 V;  
-
35  
-
V
VDD VGSF_12V (or VGSF_STB) = 0.5 V  
SF driver; VDF_12V = VDF_STB = 0 V;  
GSF_12V = VGSF_STB = 0.5 V  
Rpd  
pull-down  
resistance  
5.0  
6.5  
8.0  
V
Drivers (12 V and SB standby)  
Rpu  
pull-up resistance  
SR / SB drivers;  
13  
17  
21  
VWND(SEC)_1 = VDF_12V = VDF_STB = 73 V;  
VFSR = VFSB_12V = VFSB_STB = 85 V;  
VGSR = VGSB_12V = VGSB_STB = 84.5 V  
SF driver; VDF_12V = VDF_STB = 1 V;  
VDD VGSF_12V (or VGSF_STB) = 0.5 V  
-
30  
-
V
Rpd  
pull-down  
resistance  
SR / SB drivers;  
3.5  
4.5  
5.5  
VWND(SEC)_1 = VDF_12V = VDF_STB = 73 V;  
VFSR = VFSB_12V = VFSB_STB = 85 V;  
VGSR = VGSF_12V = VGSF_STB = 73.5 V  
V
DF_12V = VDF_STB = 0 V;  
3.5  
5.0  
4.5  
5.4  
5.5  
5.8  
VGSF_12V = VGSF_STB = 0.5 V  
Vfloat(UVLO)  
undervoltage  
lockout floating  
voltage  
V
Control standby  
Vtrip(L)  
LOW-level trip  
voltage  
enable GSB standby;  
voltage on pin WND_SEC_1  
1.0  
8.0  
2.0  
9.0  
3.0  
V
V
Vtrip(H)  
HIGH-level trip  
voltage  
enable GSB standby;  
voltage on pin WND_SEC_1  
10.0  
Control 12 V  
Vtrip(L)  
LOW-level trip  
voltage  
enable GSB 12 V;  
voltage on pin WND_SEC_1  
12.5 11  
3.8 4.6  
9.5  
V
enable GSR; voltage on pin DF  
5.4  
V
V
Vtrip(H)  
HIGH-level trip  
voltage  
enable GSB 12 V;  
voltage on pin WND_SEC_1  
5.5 5.0 4.5  
enable GSR; voltage on pin DF  
enable GSB 12 V  
6.4  
0.7  
7.2  
0.9  
8.0  
1.1  
V
td  
delay time  
µs  
I-control standby  
Vref(stb)  
standby reference  
voltage  
4.85 5.00 5.15  
V
V
[1]  
VCS_x = VVOUT + 100 mV  
4.7  
4.9  
5.1  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
25 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
Table 8.  
TEA1782T characteristics …continued  
Tamb = 25 °C; no over temperature; all voltages are measured with respect to ground; currents are positive when flowing into  
the IC; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
I-Control 12 V  
Vref(12V)  
reference voltage  
(12 V)  
11.7 12.1 12.4  
11.5 11.9 12.3  
V
V
[1]  
VCS_x = VVOUT + 100 mV  
Standby mode;  
Pins VOUT_12V and VOUT_STB  
Ipd pull-down current  
4
6
8
mA  
VOUT_12V = VOUT_STB = 0.4 V  
Enable Normal mode  
VEN_NM voltage on pin  
EN_NM  
Digital control pin PS_OFF  
1.14 1.20 1.26  
0.66 0.70 0.74  
V
V
system to Standby mode  
Vtrip  
trip voltage  
Normal mode  
Standby mode  
1.0  
1.4  
1.2  
1.7  
1.4  
2.0  
V
V
Enable  
VENABLE  
voltage on pin  
ENABLE  
Normal mode  
10.5 11.0 11.5  
3.8 4.2 4.6  
600 450 300  
V
Standby mode  
V
Iprot(ENABLE)  
protection current  
on pin ENABLE  
Normal mode; Protection mode  
µA  
Soft start  
tstart(soft)  
soft start time  
10  
15  
-
20  
-
ms  
PowerGood and PowerOK  
Isink(PGOOD)  
sink current on pin VPGOOD = 0.4 V  
6.0  
mA  
PGOOD  
OPTO control  
IOPTO  
current on pin  
OPTO  
VOPTO = 5 V  
Standby mode  
0
-
IOPTO  
mA  
(Normal  
mode)  
Normal mode  
system restart  
4.5 3.5 2.5  
40 30 20  
mA  
mA  
Overcurrent protection (OCP levels for 12 V2 are half the values given below)  
Vref(OCP_12V)  
reference voltage  
on pin OCP_12V  
1.18 1.23 1.28  
V
Vref(OCP_STB)  
reference voltage  
on pin OCP_STB  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
26 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
Table 8.  
TEA1782T characteristics …continued  
Tamb = 25 °C; no over temperature; all voltages are measured with respect to ground; currents are positive when flowing into  
the IC; unless otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
[1]  
[1]  
Vocp  
overcurrent  
protection voltage  
VCS_x - VVOUT activating current  
155  
180  
205  
mV  
protection; OCP = n.c. (Can VCS be  
changed to e.g. VCS_12V or VCS_STB  
here. If so, then that is preferred here.)  
VCS_x VVOUT activating current  
320  
60  
380  
80  
440  
105  
mV  
mV  
protection; IOCP = 100 mA (Can VCS be  
changed to e.g. VCS_12V or VCS_STB  
here. If so, then that is preferred here.)  
VCS_x VOUT activating current  
protection; IOCP = +50 mA (Can VCS be  
changed to e.g. VCS_12V or VCS_STB  
here. If so, then that is preferred here.)  
V
CS_STB VVOUT_STB activating current  
230  
310  
270  
360  
310  
410  
mV  
mV  
protection during soft start;  
OCP_STB = n.c.  
VCS_12V VVOUT_12V activating current  
protection during soft start;  
OCP_12V = n.c.  
Undervoltage protection/overvoltage protection  
Vuvp(VOUT_STB) undervoltage  
protection voltage  
3.90 4.25 4.60  
9.70 10.20 10.70  
5.70 6.10 6.50  
13.7 14.5 15.2  
V
V
V
V
on pin VOUT_STB  
Vuvp(VOUT_12V1) undervoltage  
protection voltage  
on pin VOUT_12V1  
Vovp(VOUT_STB) overvoltage  
protection voltage  
on pin VOUT_STB  
Vovp(VOUT_12V1) overvoltage  
protection voltage  
on pin VOUT_12V1  
Protection  
td(prot)  
protection delay  
time  
9
18  
27  
µs  
µs  
System restart  
td(restart)  
restart delay time  
275  
550  
825  
[1] VCS_x: The “x” stands for either “12V” or “STB”  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
27 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
11. Application information  
S
S
B_3V3  
R
VOUT_3V3  
PWROK  
28 27 26 25 24 23 22 21 20 19 18 17 15 14  
TEA1781  
ntc  
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
VOUT_5V  
S
B_5V  
S
F_5V  
S
F_STB  
S
B_STB  
VOUT_STB  
28 27 26 25 24 23 22 21 20 19 18 17 16 15  
PS_ON#  
TEA1782  
S
R
1
2
3
4
5
6
7
8
9 10 11 12 13 14  
VOUT_12V2  
VOUT_12V1  
S
B_12V  
S
F_12V  
014aaa755  
Fig 17. Application diagram  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
28 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
12. Package outline  
SO28: plastic small outline package; 28 leads; body width 7.5 mm  
SOT136-1  
D
E
A
X
c
y
H
v
M
A
E
Z
28  
15  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
14  
w
detail X  
e
M
b
p
0
5
10 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
max.  
(1)  
(1)  
(1)  
UNIT  
mm  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
θ
1
2
3
p
E
p
Z
0.3  
0.1  
2.45  
2.25  
0.49  
0.36  
0.32  
0.23  
18.1  
17.7  
7.6  
7.4  
10.65  
10.00  
1.1  
0.4  
1.1  
1.0  
0.9  
0.4  
2.65  
0.1  
0.25  
0.01  
1.27  
0.05  
1.4  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.012 0.096  
0.004 0.089  
0.019 0.013 0.71  
0.014 0.009 0.69  
0.30  
0.29  
0.419  
0.394  
0.043 0.043  
0.016 0.039  
0.035  
0.016  
inches  
0.055  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT136-1  
075E06  
MS-013  
Fig 18. Package outline SOT136-1 (SO28)  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
29 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
13. Revision history  
Table 9.  
Revision history  
Document ID  
Release date  
Data sheet status  
Change notice  
Supersedes  
TEA1781_82_1  
20090213  
Preliminary data sheet  
-
-
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
30 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
14. Legal information  
14.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
damage. NXP Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
14.2 Definitions  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Terms and conditions of sale — NXP Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.nxp.com/profile/terms, including those pertaining to warranty,  
intellectual property rights infringement and limitation of liability, unless  
explicitly otherwise agreed to in writing by NXP Semiconductors. In case of  
any inconsistency or conflict between information in this document and such  
terms and conditions, the latter will prevail.  
14.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, NXP Semiconductors does not give any representations or  
warranties, expressed or implied, as to the accuracy or completeness of such  
information and shall have no liability for the consequences of use of such  
information.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
Suitability for use — NXP Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
14.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
GreenChip — is a trademark of NXP B.V.  
15. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
TEA1781_82_1  
© NXP B.V. 2009. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 13 February 2009  
31 of 32  
TEA1781T; TEA1782T  
NXP Semiconductors  
GreenChip PC secondary control ICs  
16. Contents  
1
2
3
4
5
General description . . . . . . . . . . . . . . . . . . . . . . 1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
7
7.1  
7.2  
7.3  
7.4  
7.5  
7.6  
7.7  
Functional description . . . . . . . . . . . . . . . . . . . 6  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Supply. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Mode of operation. . . . . . . . . . . . . . . . . . . . . . . 8  
Enable Normal mode . . . . . . . . . . . . . . . . . . . . 9  
Soft start . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Enable. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Output drivers . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Output voltage regulation . . . . . . . . . . . . . . . . 13  
PowerOK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Pull-down main outputs . . . . . . . . . . . . . . . . . 14  
OPTO control . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16  
Undervoltage protection . . . . . . . . . . . . . . . . . 17  
Overvoltage protection . . . . . . . . . . . . . . . . . . 17  
Overcurrent protection . . . . . . . . . . . . . . . . . . 17  
Overtemperature protection . . . . . . . . . . . . . . 19  
System restart . . . . . . . . . . . . . . . . . . . . . . . . 20  
7.8  
7.9  
7.10  
7.11  
7.12  
7.12.1  
7.12.2  
7.12.3  
7.12.4  
7.12.5  
7.12.6  
8
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . . 20  
Thermal characteristics. . . . . . . . . . . . . . . . . . 22  
Characteristics. . . . . . . . . . . . . . . . . . . . . . . . . 23  
Application information. . . . . . . . . . . . . . . . . . 28  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 29  
Revision history. . . . . . . . . . . . . . . . . . . . . . . . 30  
9
10  
11  
12  
13  
14  
Legal information. . . . . . . . . . . . . . . . . . . . . . . 31  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 31  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 31  
14.1  
14.2  
14.3  
14.4  
15  
16  
Contact information. . . . . . . . . . . . . . . . . . . . . 31  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2009.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 13 February 2009  
Document identifier: TEA1781_82_1  

相关型号:

TEA1782T

GreenChip PC secondary control ICs
NXP

TEA1791T

GreenChip synchronous rectifier controller
NXP

TEA1791T/N1

GreenChip synchronous rectifier controller
NXP

TEA1792AT/1,118

Synchronous rectification controller suitable for both high-side and low-side control SOIC 8-Pin
NXP

TEA1792AT/N1

IC SWITCHING CONTROLLER, Switching Regulator or Controller
NXP

TEA1792ATS

GreenChip synchronous rectifier controller
NXP

TEA1792ATS/1

IC SWITCHING CONTROLLER, Switching Regulator or Controller
NXP

TEA1792ATS/1,115

Synchronous rectification controller suitable for both high-side and low-side control TSOP 6-Pin
NXP

TEA1792ATS/N1

IC SWITCHING CONTROLLER, Switching Regulator or Controller
NXP

TEA1792N1

GreenChip synchronous rectifier controller
NXP

TEA1792T/N1

DIODE RECTIFIER DIODE, Rectifier Diode
NXP

TEA1792T/N1,118

Synchronous rectification controller suitable for both high-side and low-side control SOIC 8-Pin
NXP