TJA1050U [NXP]

High speed CAN transceiver; 高速CAN收发器
TJA1050U
型号: TJA1050U
厂家: NXP    NXP
描述:

High speed CAN transceiver
高速CAN收发器

网络接口 电信集成电路 电信电路
文件: 总16页 (文件大小:80K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TJA1050  
High speed CAN transceiver  
Preliminary specification  
1999 Sep 27  
File under Integrated Circuits, IC18  
Philips Semiconductors  
Preliminary specification  
High speed CAN transceiver  
TJA1050  
FEATURES  
GENERAL DESCRIPTION  
Fully compatible with the “ISO 11898” standard  
High speed (up to 1 Mbaud)  
The TJA1050 is the interface between the CAN protocol  
controller and the physical bus. The device provides  
differential transmit capability to the bus and differential  
receive capability to the CAN controller.  
Transmit Data (TXD) dominant time-out function  
Bus lines protected against transients in an automotive  
environment  
The TJA1050 is the successor to the PCA82C250 high  
speed CAN transceiver. The most important  
improvements are:  
Silent mode in which the transmitter is disabled  
Differential receiver with wide common-mode range for  
high ElectroMagnetic Immunity (EMI)  
Much lower ElectroMagnetic Emission (EME) due to  
optimal matching of the CANH and CANL output signals  
Input levels compatible with 3.3 V devices  
Thermally protected  
Improved behaviour in case of an unpowered node.  
Short-circuit proof to battery and ground  
An unpowered node does not disturb the bus lines  
At least 110 nodes can be connected.  
QUICK REFERENCE DATA  
SYMBOL  
VCC  
PARAMETER  
supply voltage  
CONDITIONS  
MIN. MAX. UNIT  
4.75  
5.25  
+40  
V
V
VCANH  
DC voltage at CANH  
0 < VCC < 5.25 V; no time limit  
27  
VCANL  
DC voltage at CANL  
Vi(dif)(bus)  
tPD(TXD-RXD)  
differential bus input voltage  
dominant  
VS = 0 V  
1.5  
3
V
propagation delay TXD to RXD;  
see Fig.4  
250  
ns  
Tamb  
operating ambient temperature  
40  
+125 °C  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TJA1050T  
TJA1050U  
SO8  
plastic small outline package; 8 leads; body width 3.9 mm  
bare die  
SOT96-1  
1999 Sep 27  
2
Philips Semiconductors  
Preliminary specification  
High speed CAN transceiver  
TJA1050  
BLOCK DIAGRAM  
V
CC  
3
8
S
60 µA  
V
CC  
GND  
TEMPERATURE  
PROTECTION  
200  
µA  
TXD  
1
DOMINANT  
TIME-OUT  
TIMER  
DRIVER  
TXD  
RXD  
7
V
CC  
CANH  
25  
kΩ  
4
5
0.5V  
CC  
25  
RECEIVER  
kΩ  
GND  
GND  
CANL  
6
REFERENCE  
VOLTAGE  
TJA1050  
V
ref  
2
GND  
MGS374  
Fig.1 Block diagram.  
PINNING  
SYMBOL  
PIN  
DESCRIPTION  
TXD  
1
transmit data input; reads in data  
from the CAN controller to the bus  
line drivers  
handbook, halfpage  
TXD  
1
2
3
4
8
7
6
5
S
GND  
VCC  
2
3
4
ground  
GND  
CANH  
CANL  
supply voltage  
TJA1050T  
V
RXD  
receive data output; reads out  
data from the bus lines to the  
CAN controller  
CC  
V
RXD  
ref  
MGS375  
Vref  
5
6
7
8
reference voltage output  
LOW-level CAN bus line  
HIGH-level CAN bus line  
CANL  
CANH  
S
select input for  
Fig.2 Pin configuration.  
high speed mode/silent mode  
1999 Sep 27  
3
Philips Semiconductors  
Preliminary specification  
High speed CAN transceiver  
TJA1050  
FUNCTIONAL DESCRIPTION  
Control line S (pin 8) allows two operating modes to be  
selected; high speed mode or silent mode.  
The TJA1050 is the interface between the CAN protocol  
controller and the physical bus. It is primarily intended for  
high speed automotive applications using baud rates from  
40 kbaud up to 1 Mbaud. It provides differential transmit  
capability to the bus and differential receiver capability to  
the CAN protocol controller. It is fully compatible to the  
“ISO 11898” standard.  
High speed mode is the normal operating mode and is  
selected by connecting pin S to ground. It is the default  
mode if pin S is unconnected.  
In the silent mode, the transmitter is disabled. All other IC  
functions continue to operate. The silent mode is selected  
by connecting pin S to VCC  
.
A current-limiting circuit protects the transmitter output  
stage from damage caused by accidental short-circuit to  
either positive or negative battery voltage, although power  
dissipation increases during this fault condition.  
A ‘TXD Dominant Time-out’ timer circuit prevents the bus  
lines being driven to a permanent dominant state (blocking  
all network communication) if TXD is forced permanently  
LOW by a hardware and/or software application failure.  
The timer is triggered by a negative edge on TXD. If the  
duration of the LOW-level on TXD exceeds the internal  
timer value, the transmitter is disabled, driving the bus into  
a recessive state. The timer is reset by a positive edge on  
TXD.  
A thermal protection circuit protects the IC from damage by  
switching off the transmitter if the junction temperature  
exceeds a value of approximately 165 °C. Because the  
transmitter dissipates most of the power, the power  
dissipation and temperature of the IC is reduced. All other  
IC functions continue to operate. The transmitter off-state  
resets when TXD goes HIGH. The thermal protection  
circuit is particularly needed when a bus line short-circuits.  
The CANH and CANL lines are protected from automotive  
electrical transients (according to “ISO 7637”; see Fig.6)  
and are also protected from Electro-Static-Discharge  
(ESD) of up to 4 kV from the human body.  
Table 1 Function table of the CAN transceiver  
(X = don’t care)  
VCC  
TXD  
S
CANH  
CANL  
LOW  
BUS STATE RXD  
4.75 to 5.25 V  
4.75 to 5.25 V  
0
0 (or floating)  
HIGH  
dominant  
recessive  
recessive  
recessive  
recessive  
0
1
1
X
X
X
1 (or floating)  
X
1
X
X
X
0.5 × VCC  
0.5 × VCC  
0.5 × VCC  
0.5 × VCC  
4.75 to 5.25 V  
<2 V (not powered)  
2 V < VCC < 4.75 V  
0 V <CANH< VCC 0 V <CANL< VCC  
0 V <CANH< VCC 0 V <CANL< VCC  
>2 V  
1999 Sep 27  
4
Philips Semiconductors  
Preliminary specification  
High speed CAN transceiver  
TJA1050  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 134). All voltages are referenced to GND (pin 2).  
Positive currents flow into the IC.  
SYMBOL  
PARAMETER  
supply voltage  
CANL, VCANH DC voltage at CANL and CANH  
CONDITIONS  
MIN.  
0.3  
MAX.  
+5.25  
UNIT  
VCC  
V
V
V
0 < VCC < 5.25 V;  
no time limit  
27  
+40  
V
TXD, VRXD  
,
DC voltage at TXD, RXD, Vref and S  
transient voltage at CANH and CANL  
0.3  
VCC + 0.3  
V
Vref and VS  
Vtrt(CANH)  
Vtrt(CANL)  
,
time limit is 1 µs  
55  
200  
4  
+55  
+200  
+4  
V
V
note 1  
Vesd  
electrostatic discharge at CANH; CANL note 3  
kV  
kV  
electrostatic discharge at TXD; VCC  
;
note 3  
2  
+2  
RXD; Vref and S  
electrostatic discharge at all pins  
storage temperature  
note 4  
200  
55  
40  
40  
+200  
+150  
+125  
+150  
V
Tstg  
Tamb  
Tj  
°C  
°C  
°C  
operating ambient temperature  
junction temperature  
note 2  
Notes  
1. The waveforms of the applied transients shall be in accordance with “ISO 7637 part 1”, test pulses 1, 2, 3a and 3b,  
(see Fig.6).  
2. In accordance with “IEC 747-1”. An alternative definition of Tj is: Tj = Tamb + P × Rth(j-a), where Rth(j-a) is a fixed value  
to be used for the calculation of Tj. The rating for Tj limits the allowable combinations of power dissipation (P) and  
ambient temperature (Tamb).  
3. Human body model; C = 100 pF R = 1.5 kΩ.  
4. Machine model; C = 200 pF R = 25 .  
THERMAL CHARACTERISTICS  
According to IEC 747-1.  
SYMBOL  
Rth(j-a)  
PARAMETER  
CONDITIONS  
in free air  
VALUE  
UNIT  
thermal resistance from junction to  
ambient; TJA1050T(SO8)  
160  
K/W  
QUALITY SPECIFICATION  
Quality specification “SNW-FQ-611 part D” is applicable.  
1999 Sep 27  
5
Philips Semiconductors  
Preliminary specification  
High speed CAN transceiver  
TJA1050  
CHARACTERISTICS  
VCC = 4.75 to 5.25 V; Tamb = 40 to +125 °C; RL = 60 unless specified otherwise; all voltages are referenced to GND  
(pin 2); positive currents flow into the IC; all parameters are guaranteed over the ambient temperature range by design,  
but only 100% tested at Tamb = 25 °C unless specified otherwise.  
SYMBOL  
Supply (VCC  
ICC  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
)
supply current  
dominant; VTXD = 0 V  
tbf  
75  
mA  
recessive; VTXD = VCC tbf  
13  
mA  
Transmitter data input (TXD)  
VIH  
VIL  
HIGH-level input voltage  
output recessive  
output dominant  
VTXD = VCC  
2.0  
0
VCC + 0.3  
+0.8  
V
LOW-level input voltage  
HIGH-level input current  
LOW-level input current  
TXD input capacitance  
0.3  
30  
100  
V
IIH  
+30  
µA  
µA  
pF  
IIL  
VTXD = 0 V  
200  
300  
tbf  
Ci(TXD)  
not tested  
Mode select input (S)  
VIH  
VIL  
IIH  
HIGH-level input voltage  
silent mode  
high speed mode  
VS = VCC  
2.0  
0.3  
30  
VCC + 0.3  
+0.8  
V
LOW-level input voltage  
HIGH-level input current  
LOW-level input current  
V
60  
0
100  
µA  
µA  
IIL  
VS = 0 V  
30  
+30  
Receiver data output (RXD)  
IOH HIGH-level output current  
IOL  
VRXD = 0.7 VCC  
VRXD = 0.45 V  
tbf  
2
tbf  
tbf  
20  
mA  
mA  
LOW-level output current  
8.5  
Vref  
Vref  
reference output voltage  
50 µA < IVref < 50 µA  
0.45VCC  
0.5VCC  
0.55VCC  
V
Bus lines (CANH; CANL)  
VCANH(reces) recessive bus voltage  
VCANL(reces)  
;
VTXD = VCC; no load  
2.0  
3.0  
V
Io(CANH)(reces); recessive output current  
Io(CANL)(reces)  
27 V < VCANH  
,
2.5  
+2.5  
mA  
VCANL < 32 V;  
0 V < VCC < 5.25 V  
Vo(CANH)  
Vo(CANL)  
Vi(dif)(bus)  
CANH dominant output  
voltage  
VTXD = 0 V  
2.8  
0.5  
1.5  
4.5  
2.0  
3.0  
V
V
V
CANL dominant output  
voltage  
differential bus input voltage VTXD = 0 V;  
(VCANH VCANL  
)
42.5 < RL < 60 Ω  
(dominant)  
V
TXD = VCC; no load  
500  
35  
35  
+50  
95  
150  
mV  
mA  
mA  
(recessive)  
Io(sc)(CANH)  
Io(sc)(CANL)  
CANH short-circuit output  
current  
VCANH = 0 V;  
VTXD = 0 V  
CANL short-circuit output  
current  
VCANL = 36 V;  
VTXD = 0 V  
1999 Sep 27  
6
Philips Semiconductors  
Preliminary specification  
High speed CAN transceiver  
TJA1050  
SYMBOL  
Vdif(th)  
PARAMETER  
CONDITIONS  
MIN.  
0.5  
TYP.  
0.7  
MAX.  
0.9  
UNIT  
differential receiver threshold 12 V < VCANH,  
V
voltage  
VCANL < 12 V; see Fig.5  
Vi(dif)(hys)  
differential receiver input  
voltage hysteresis  
see Fig.5  
100  
10  
200  
50  
mV  
kΩ  
%
Ri(cm)(CANH)  
Ri(cm)(CANL)  
Ri(cm)(m)  
;
CANH; CANL common  
mode input resistance  
25  
matching between CANH  
and CANL common mode  
input resistance  
VCANH = VCANL  
3  
+3  
Ri(dif)  
Ci(CANH)  
Ci(CANL)  
differential input resistance  
20  
50  
100  
20  
kΩ  
;
CANH; CANL input  
capacitance  
VTXD = VCC; not tested  
pF  
Ci(dif)  
differential input capacitance  
10  
pF  
ILI(CANH)  
ILI(CANL)  
;
CANH; CANL input leakage VCC = 0 V;  
current VCANH = VCANL = 5 V  
500  
µA  
Thermal shutdown  
Tj(sd) shutdown junction  
temperature  
155  
165  
180  
°C  
Timing characteristics (see Figs 3 and 4)  
td(TXD-BUSon) delay TXD to bus active  
td(TXD-BUSoff) delay TXD to bus inactive  
td(BUSon-RXD) delay bus active to RXD  
td(BUSoff-RXD) delay bus inactive to RXD  
VS = 0 V  
tbf  
tbf  
tbf  
tbf  
150  
100  
ns  
ns  
1999 Sep 27  
7
Philips Semiconductors  
Preliminary specification  
High speed CAN transceiver  
TJA1050  
TEST AND APPLICATION INFORMATION  
+
5 V  
handbook, halfpage  
47  
µF  
100  
nF  
V
CC  
3
TXD  
CANH  
CANL  
1
5
4
7
6
V
ref  
R
C
L
L
TJA1050  
60 Ω  
100 pF  
RXD  
2
8
GND  
S
15 pF  
MGS376  
Fig.3 Test circuit for timing characteristics.  
HIGH  
LOW  
TXD  
CANH  
CANL  
dominant  
(BUS on)  
0.9 V  
(1)  
V
i(dif)(bus)  
RXD  
0.5 V  
recessive  
(BUS off)  
HIGH  
0.7V  
CC  
0.3V  
CC  
LOW  
t
t
d(TXD-BUSon)  
t
d(TXD-BUSoff)  
t
d(BUSon RXD)  
d(BUSoff RXD)  
t
t
PD TXD RXD  
(
)
(
)
PD TXD RXD  
MGS377  
(1) Vi(dif)(bus) = VCANH VCANL  
Fig.4 Timing diagram for AC characteristics.  
8
1999 Sep 27  
Philips Semiconductors  
Preliminary specification  
High speed CAN transceiver  
TJA1050  
MGS378  
V
RXD  
HIGH  
LOW  
hysteresis  
0.5  
0.9  
V
i(dif)(bus)  
Fig.5 Hysteresis of the receiver.  
+
5 V  
47  
µF  
100  
nF  
V
CC  
3
TXD  
1 nF  
CANH  
1
5
4
7
V
ref  
TRANSIENT  
GENERATOR  
TJA1050  
1 nF  
CANL  
6
RXD  
MGS379  
2
8
GND  
S
15 pF  
The waveforms of the applied transients shall be in accordance with “ISO 7637 part 1”, test pulses 1, 2, 3a and 3b.  
Fig.6 Test circuit for automotive transients.  
1999 Sep 27  
9
Philips Semiconductors  
Preliminary specification  
High speed CAN transceiver  
TJA1050  
+
5 V  
120 Ω  
47  
µF  
100  
nF  
V
CC  
3
TXD  
1
5
4
TX0  
CANH  
CANL  
7
6
SJA1000  
V
ref  
CAN  
BUS LINE  
CAN  
TJA1050  
CONTROLLER  
RXD  
RX0  
2
8
GND  
S
120 Ω  
MGS380  
Fig.7 Application information.  
BONDING PAD LOCATIONS FOR TJA1050U  
Table 2 Bonding pad locations  
All x/y coordinates represent the position of the centre of  
each pad (in µm) with respect to x/y = 0 of the die (see  
Fig.8).  
COORDINATES  
SYMBOL  
PAD  
x
y
8
7
6
5
handbook, halfpage  
TXD  
GND  
VCC  
1
2
3
4
5
6
7
8
103  
740.5  
886.5  
1371.5  
1394  
1006  
542.5  
103  
103  
85  
111  
RXD  
Vref  
111  
TJA1050U  
1094  
1111  
1111  
1097  
test pad  
CANL  
CANH  
S
x
0
1
2
3
4
0
MGS381  
y
Fig.8 Bonding pad locations.  
1999 Sep 27  
10  
Philips Semiconductors  
Preliminary specification  
High speed CAN transceiver  
TJA1050  
PACKAGE OUTLINE  
SO8: plastic small outline package; 8 leads; body width 3.9 mm  
SOT96-1  
D
E
A
X
c
y
H
v
M
A
E
Z
5
8
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
4
e
w
M
detail X  
b
p
0
2.5  
5 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(2)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
5.0  
4.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.27  
0.050  
1.05  
0.041  
1.75  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.20  
0.014 0.0075 0.19  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.024  
0.028  
0.012  
inches 0.069  
0.01 0.004  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic or metal protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
EIAJ  
95-02-04  
97-05-22  
SOT96-1  
076E03S  
MS-012AA  
1999 Sep 27  
11  
Philips Semiconductors  
Preliminary specification  
High speed CAN transceiver  
TJA1050  
SOLDERING  
If wave soldering is used the following conditions must be  
observed for optimal results:  
Introduction to soldering surface mount packages  
Use a double-wave soldering method comprising a  
turbulent wave with high upward pressure followed by a  
smooth laminar wave.  
This text gives a very brief insight to a complex technology.  
A more in-depth account of soldering ICs can be found in  
our “Data Handbook IC26; Integrated Circuit Packages”  
(document order number 9398 652 90011).  
For packages with leads on two sides and a pitch (e):  
– larger than or equal to 1.27 mm, the footprint  
longitudinal axis is preferred to be parallel to the  
transport direction of the printed-circuit board;  
There is no soldering method that is ideal for all surface  
mount IC packages. Wave soldering is not always suitable  
for surface mount ICs, or for printed-circuit boards with  
high population densities. In these situations reflow  
soldering is often used.  
– smaller than 1.27 mm, the footprint longitudinal axis  
must be parallel to the transport direction of the  
printed-circuit board.  
Reflow soldering  
The footprint must incorporate solder thieves at the  
downstream end.  
Reflow soldering requires solder paste (a suspension of  
fine solder particles, flux and binding agent) to be applied  
to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement.  
For packages with leads on four sides, the footprint must  
be placed at a 45° angle to the transport direction of the  
printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
Several methods exist for reflowing; for example,  
infrared/convection heating in a conveyor type oven.  
Throughput times (preheating, soldering and cooling) vary  
between 100 and 200 seconds depending on heating  
method.  
During placement and before soldering, the package must  
be fixed with a droplet of adhesive. The adhesive can be  
applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the  
adhesive is cured.  
Typical reflow peak temperatures range from  
215 to 250 °C. The top-surface temperature of the  
packages should preferable be kept below 230 °C.  
Typical dwell time is 4 seconds at 250 °C.  
A mildly-activated flux will eliminate the need for removal  
of corrosive residues in most applications.  
Wave soldering  
Manual soldering  
Conventional single wave soldering is not recommended  
for surface mount devices (SMDs) or printed-circuit boards  
with a high component density, as solder bridging and  
non-wetting can present major problems.  
Fix the component by first soldering two  
diagonally-opposite end leads. Use a low voltage (24 V or  
less) soldering iron applied to the flat part of the lead.  
Contact time must be limited to 10 seconds at up to  
300 °C.  
To overcome these problems the double-wave soldering  
method was specifically developed.  
When using a dedicated tool, all other leads can be  
soldered in one operation within 2 to 5 seconds between  
270 and 320 °C.  
1999 Sep 27  
12  
Philips Semiconductors  
Preliminary specification  
High speed CAN transceiver  
TJA1050  
Suitability of surface mount IC packages for wave and reflow soldering methods  
SOLDERING METHOD  
PACKAGE  
WAVE  
REFLOW(1)  
BGA, SQFP  
not suitable  
suitable  
suitable  
suitable  
suitable  
suitable  
HLQFP, HSQFP, HSOP, HTSSOP, SMS not suitable(2)  
PLCC(3), SO, SOJ  
LQFP, QFP, TQFP  
SSOP, TSSOP, VSO  
suitable  
not recommended(3)(4)  
not recommended(5)  
Notes  
1. All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the maximum  
temperature (with respect to time) and body size of the package, there is a risk that internal or external package  
cracks may occur due to vaporization of the moisture in them (the so called popcorn effect). For details, refer to the  
Drypack information in the “Data Handbook IC26; Integrated Circuit Packages; Section: Packing Methods”.  
2. These packages are not suitable for wave soldering as a solder joint between the printed-circuit board and heatsink  
(at bottom version) can not be achieved, and as solder may stick to the heatsink (on top version).  
3. If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave direction.  
The package footprint must incorporate solder thieves downstream and at the side corners.  
4. Wave soldering is only suitable for LQFP, TQFP and QFP packages with a pitch (e) equal to or larger than 0.8 mm;  
it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
5. Wave soldering is only suitable for SSOP and TSSOP packages with a pitch (e) equal to or larger than 0.65 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
1999 Sep 27  
13  
Philips Semiconductors  
Preliminary specification  
High speed CAN transceiver  
TJA1050  
DEFINITIONS  
Data sheet status  
Objective specification  
Preliminary specification  
Product specification  
This data sheet contains target or goal specifications for product development.  
This data sheet contains preliminary data; supplementary data may be published later.  
This data sheet contains final product specifications.  
Limiting values  
Limiting values given are in accordance with the Absolute Maximum Rating System (IEC 134). Stress above one or  
more of the limiting values may cause permanent damage to the device. These are stress ratings only and operation  
of the device at these or at any other conditions above those given in the Characteristics sections of the specification  
is not implied. Exposure to limiting values for extended periods may affect device reliability.  
Application information  
Where application information is given, it is advisory and does not form part of the specification.  
LIFE SUPPORT APPLICATIONS  
These products are not designed for use in life support appliances, devices, or systems where malfunction of these  
products can reasonably be expected to result in personal injury. Philips customers using or selling these products for  
use in such applications do so at their own risk and agree to fully indemnify Philips for any damages resulting from such  
improper use or sale.  
BARE DIE DISCLAIMER  
All die are tested and are guaranteed to comply with all data sheet limits up to the point of wafer sawing for a period of  
ninety (90) days from the date of Philips' delivery. If there are data sheet limits not guaranteed, these will be separately  
indicated in the data sheet. There is no post waffle pack testing performed on individual die. Although the most modern  
processes are utilized for wafer sawing and die pick and place into waffle pack carriers, Philips Semiconductors has no  
control of third party procedures in the handling, packing or assembly of the die. Accordingly, Philips Semiconductors  
assumes no liability for device functionality or performance of the die or systems after handling, packing or assembly of  
the die. It is the responsibility of the customer to test and qualify their application in which the die is used.  
1999 Sep 27  
14  
Philips Semiconductors  
Preliminary specification  
High speed CAN transceiver  
TJA1050  
NOTES  
1999 Sep 27  
15  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: see Austria  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 6F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2886, Fax. +886 2 2134 2874  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
209/2 Sanpavuth-Bangna Road Prakanong, BANGKOK 10260,  
Tel. +66 2 745 4090, Fax. +66 2 398 0793  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Middle East: see Italy  
Tel. +381 11 62 5344, Fax.+381 11 63 5777  
For all other countries apply to: Philips Semiconductors,  
Internet: http://www.semiconductors.philips.com  
International Marketing & Sales Communications, Building BE-p, P.O. Box 218,  
5600 MD EINDHOVEN, The Netherlands, Fax. +31 40 27 24825  
68  
SCA  
© Philips Electronics N.V. 1999  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
285002/01/pp16  
Date of release: 1999 Sep 27  
Document order number: 9397 750 05732  

相关型号:

TJA1050U/N1,005

TJA1050 - High-speed CAN transceiver
NXP

TJA1050U/N1,027

TJA1050 - High-speed CAN transceiver
NXP

TJA1051

High-speed CAN transceiver
NXP

TJA10513

High-speed CAN transceiver
NXP

TJA1051E

High-speed CAN transceiver
NXP

TJA1051T

High-speed CAN transceiver
NXP

TJA1051T-118

High-speed CAN transceiver Rev. 6 — 25 March 2011
NXP

TJA1051T-3

High-speed CAN transceiver
NXP

TJA1051T-3112

High-speed CAN transceiver
NXP

TJA1051T-E

High-speed CAN transceiver
NXP

TJA1051T/1J

TJA1051 - High-speed CAN transceiver SOIC 8-Pin
NXP

TJA1051T/1U

TJA1051 - High-speed CAN transceiver SOIC 8-Pin
NXP