TJA1080 [NXP]

FlexRay transceiver; FlexRay收发器
TJA1080
型号: TJA1080
厂家: NXP    NXP
描述:

FlexRay transceiver
FlexRay收发器

文件: 总44页 (文件大小:210K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
TJA1080  
FlexRay transceiver  
Rev. 01 — 20 July 2006  
Preliminary data sheet  
1. General description  
The TJA1080 is a FlexRay transceiver, which is compatible with the FlexRay electrical  
physical layer specification V2.1 Rev. A (see Ref. 1). It is primarily intended for  
communication systems from 1 Mbit/s to 10 Mbit/s, and provides an advanced interface  
between the protocol controller and the physical bus in a FlexRay network.  
The TJA1080 can be configured to be used as an active star transceiver or as a node  
transceiver.  
The TJA1080 provides differential transmit capability to the network and differential  
receive capability to the FlexRay controller. It offers excellent EMC performance as well as  
high ESD protection.  
The TJA1080 actively monitors the system performance using dedicated error and status  
information (readable by any microcontroller), as well as internal voltage and temperature  
monitoring.  
The TJA1080 supports the mode control as used in Philips TJA1054 (see Ref. 2) and  
TJA1041 (see Ref. 3) CAN transceivers.  
2. Features  
2.1 Optimized for time triggered communication systems  
I Data transfer up to 10 Mbit/s  
I Usable for 14 V and 42 V powered systems  
I Very low ElectroMagnetic Emission (EME) to support unshielded cable  
I Differential receiver with high common-mode range for ElectroMagnetic Immunity  
(EMI)  
I Transceiver can be used for small linear passive bus topologies as well as active star  
topologies  
I Auto I/O level adaptation to host controller supply voltage VIO  
I Bus guardian interface included  
I Automotive product qualification in accordance with AEC-Q100  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
2.2 Low power management  
I Low power management including two inhibit switches  
I Very low current in Sleep and Standby mode  
I Wake-up via wake-up symbol on the bus lines (remote), negative edge on pin WAKE  
(local), and a positive edge on pin STBN if VIO is present  
I Wake-up source recognition  
I Automatic power-down (in star Sleep mode) in star configuration  
2.3 Diagnosis (detection and signalling)  
I Overtemperature detection  
I Short-circuit on bus lines  
I VBAT power-on flag (first battery connection and cold start)  
I Pin TXEN and pin BGE clamping  
I Undervoltage detection on pins VBAT, VCC and VIO  
I Wake source indication  
2.4 Protections  
I Bus pins protected against 8 kV HBM ESD pulses  
I Bus pins protected against transients in automotive environment (ISO 7637 class C  
compliant)  
I Bus pins short-circuit proof to battery voltage (14 V and 42 V) and ground  
I Fail-safe mode in case of an undervoltage on pins VBAT, VCC or VIO  
I Passive behavior of bus lines in the event that transceiver is not powered up  
3. Quick reference data  
Table 1.  
Quick reference data  
Symbol Parameter  
Conditions  
Min  
0.3  
6.5  
Typ  
Max  
+60  
60  
Unit  
V
VBAT  
VCC  
VBUF  
VIO  
supply voltage on pin VBAT  
no time limit  
-
-
-
-
-
-
-
-
operating range  
no time limit  
V
supply voltage  
0.3  
4.75  
0.3  
4.75  
0.3  
2.2  
+5.5  
5.25  
+5.5  
5.25  
+5.5  
5.25  
+5.5  
+5.5  
+60  
+60  
50  
V
operating range  
no time limit  
V
supply voltage on pin VBUF  
supply voltage on pin VIO  
V
operating range  
no time limit  
V
V
operating range  
V
VTRXD0  
VTRXD1  
VBP  
voltage on pin TRXD0  
voltage on pin TRXD1  
voltage on pin BP  
0.3  
0.3  
60  
60  
-
V
V
-
V
VBM  
voltage on pin BM  
-
V
IBAT  
supply current on pin VBAT  
low power modes in  
node configuration  
35  
µA  
normal power modes  
-
0.075  
1
mA  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
2 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
Table 1.  
Quick reference data …continued  
Symbol Parameter  
Conditions  
Min  
1  
-
Typ  
0
Max  
+5  
Unit  
µA  
ICC  
supply current  
low power modes  
Normal mode; VBGE  
0 V; VTXEN = VIO;  
=
10  
15  
mA  
Receive only mode; star  
Idle mode  
[1]  
Normal mode; VBGE  
VIO; VTXEN = 0 V; VBUF  
open  
=
-
-
28.5  
10  
35  
15  
mA  
mA  
Normal mode;  
VBGE = VIO; VTXEN = 0 V;  
R
bus = ∞ Ω  
star Transmit mode  
star Receive mode  
low power modes  
-
50  
38  
+1  
30  
62  
mA  
mA  
µA  
-
42  
IIO  
supply current on pin VIO  
1  
-
+5  
Normal and Receive  
only mode; VTXD = VIO  
1000  
µA  
VOH(dif)  
VOL(dif)  
VIH(dif)  
differential HIGH-level output voltage on pins BP and BM;  
600  
800  
1200  
600  
300  
mV  
mV  
mV  
40 < Rbus < 55 ;  
VCC = VBUF = 5 V  
differential LOW-level output voltage on pins BP and BM;  
1200  
150  
800  
225  
40 < Rbus < 55 ;  
VCC = VBUF = 5 V  
differential HIGH-level input voltage  
differential LOW-level input voltage  
virtual junction temperature  
on pins BP and BM;  
normal power modes;  
10 V < VBP < +15 V;  
10 V < VBM < +15 V  
VIL(dif)  
on pins BP and BM;  
normal power modes;  
10 V < VBP < +15 V;  
10 V < VBM < +15 V  
300  
225  
150  
mV  
[2]  
Tvj  
40  
-
+150  
°C  
[1] Current flows from VCC to VBUF. This means that the maximum sum current ICC + IBUF is 35 mA.  
[2] In accordance with IEC 60747-1. An alternative definition of virtual junction temperature Tvj is: Tvj = Tamb + TD x Rth(j-a), where Rth(j-a) is  
a fixed value to be used for the calculation of Tvj. The rating for Tvj limits the allowable combinations of power dissipation (P) and  
ambient temperature (Tamb).  
4. Ordering information  
Table 2.  
Ordering information  
Type number  
Package  
Name  
Description  
Version  
TJA1080TS/N  
SSOP20  
plastic shrink small outline package; 20 leads; body with 5.3 mm  
SOT339-1  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
3 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
5. Block diagram  
V
V
V
V
IO  
4
CC  
BUF  
20  
BAT  
19  
14  
1
INH2  
2
INH1  
TJA1080  
11  
10  
TRXD0  
TRXD1  
18  
BP  
SIGNAL  
ROUTER  
TRANS-  
MITTER  
17  
BM  
V
IO  
5
6
8
9
3
TXD  
TXEN  
BGE  
STBN  
EN  
INPUT  
VOLTAGE  
ADAPTATION  
BUS  
FAILURE  
DETECTION  
RXDINT  
7
RXD  
ERRN  
RXEN  
OUTPUT  
VOLTAGE  
ADAPTATION  
13  
12  
NORMAL  
RXDINT  
RECEIVER  
STATE  
MACHINE  
V
BAT  
OVER-  
TEMPERATURE  
DETECTION  
15  
WAKE-UP  
DETECTION  
WAKE  
OSCILLATOR  
LOW-  
UNDERVOLTAGE  
DETECTION  
POWER  
RECEIVER  
16  
001aae436  
GND  
Fig 1. Block diagram  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
4 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
6. Pinning information  
6.1 Pinning  
1
2
20  
19  
18  
17  
16  
15  
14  
13  
12  
11  
INH2  
INH1  
EN  
V
V
BUF  
CC  
3
BP  
4
V
BM  
IO  
5
TXD  
TXEN  
RXD  
GND  
WAKE  
TJA1080TS  
6
7
V
BAT  
8
BGE  
ERRN  
RXEN  
TRXD0  
9
STBN  
TRXD1  
10  
001aae437  
Fig 2. Pin configuration  
6.2 Pin description  
Table 3.  
Pin description  
Symbol Pin  
Type  
Description  
INH2  
INH1  
EN  
1
2
3
4
5
6
O
O
I
inhibit 2 output for switching external voltage regulator  
inhibit 1 output for switching external voltage regulator  
enable input; when HIGH enabled; internal pull-down  
supply voltage for VIO voltage level adaptation  
transmit data input; internal pull-down  
VIO  
P
I
TXD  
TXEN  
I
transmitter enable input; when HIGH transmitter disabled; internal  
pull-up  
RXD  
BGE  
7
8
O
I
receive data output  
bus guardian enable input; when LOW transmitter disabled; internal  
pull-down  
STBN  
9
I
standby input; when LOW low power mode; internal pull-down  
data bus line 1 for inner star connection  
TRXD1 10  
TRXD0 11  
I/O  
I/O  
O
O
P
data bus line 0 for inner star connection  
RXEN  
ERRN  
VBAT  
12  
13  
14  
15  
receive data enable output; when LOW bus activity detected  
error diagnoses output; when LOW error detected  
battery supply voltage  
WAKE  
I
local wake-up input; internal pull-up or pull-down (depends on  
voltage at pin WAKE)  
GND  
BM  
16  
17  
18  
19  
20  
P
ground  
I/O  
I/O  
P
bus line minus  
bus line plus  
BP  
VCC  
VBUF  
supply voltage (+5 V)  
buffer supply voltage  
P
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
5 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
7. Functional description  
The block diagram of the total transceiver is illustrated in Figure 1.  
7.1 Operating configurations  
7.1.1 Node configuration  
In node configuration the transceiver operates as a stand-alone transceiver.  
The transceiver can be configured as node by connecting pins TRXD0 and TRXD1 to  
ground during a power-on situation (PWON flag is set). The configuration will be latched  
when the PWON flag is reset.  
The following operating modes are selectable:  
Normal: normal power mode  
Receive: normal power mode  
Standby: low power mode  
Go-to-sleep: low power mode  
Sleep: low power mode  
7.1.2 Star configuration  
In star configuration the transceiver operates as a branch of a FlexRay active star.  
The transceiver can be configured as star by connecting pin TRXD0 or TRXD1 to VBUF  
during a PWON situation (PWON flag is set). The configuration will be latched when the  
PWON flag is reset.  
It is possible to redirect data from one branch to other branches via the inner bus. It is also  
possible to send data to all branches via pin TXD, if pins TXEN and BGE have the correct  
polarity.  
The following operating modes are available:  
Star idle: normal power mode  
Star transmit: normal power mode  
Star receive: normal power mode  
Star sleep: low power mode  
Star standby: low power mode  
Star locked: normal power mode  
In the star configuration all modes are autonomously controlled by the transceiver, except  
in the case of a wake-up.  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
6 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
7.1.3 Bus activity and idle detection  
The following mechanisms for activity and idle detection are valid for node and star  
configurations in normal power modes:  
If the absolute differential voltage on the bus lines is higher than Vi(dif)det(act) for  
tdet(act)(bus), then activity is detected on the bus lines and pin RXEN is switched to LOW  
which results in pin RXD being released  
If, after bus activity detection, the differential voltage on the bus lines is higher than  
VIH(dif), pin RXD will go HIGH  
If, after bus activity detection, the differential voltage on the bus lines is lower than  
VIL(dif), pin RXD will go LOW  
If the absolute differential voltage on the bus lines is lower than Vi(dif)det(act) for  
tdet(idle)(bus), then idle is detected on the bus lines and pin RXEN is switched to HIGH.  
This results in pin RXD being blocked (pin RXD is switched to HIGH or stays HIGH)  
Additionally, in star configuration, activity and idle can be detected:  
If pin TXEN is LOW for longer than tdet(act)(TXEN), activity is detected on pin TXEN  
If pin TXEN is HIGH for longer than tdet(idle)(TXEN), idle is detected on pin TXEN  
If pin TRXD0 or TRXD1 is LOW for longer than tdet(act)(TRXD), activity is detected on  
pins TRXD0 and TRXD1  
If pin TRXD0 or TRXD1 is HIGH for longer than tdet(idle)(TRXD), idle is detected on pins  
TRXD0 and TRXD1  
7.2 Operating modes in node configuration  
The TJA1080 provides two control pins STBN and EN in order to select one of the modes  
of operation in node configuration. See Table 4 for a detailed description of the pin  
signalling in node configuration, and Figure 3 for the timing diagram.  
All modes are directly controlled via pins EN and STBN unless an undervoltage situation  
is present.  
If VIO and (VBUF or VBAT) are within their operating range, pin ERRN indicates the error  
flag.  
Table 4.  
Pin  
Pin signalling in node configuration  
Mode  
Normal  
Receive only  
HIGH  
Go-to-sleep  
Standby  
LOW  
Sleep  
LOW  
X
STBN  
EN  
HIGH  
LOW  
HIGH  
LOW  
HIGH  
LOW  
ERRN  
LOW: error flag set [3]  
HIGH: error flag set[3] [4]  
LOW: bus activity  
HIGH: bus idle  
LOW: bus DATA_0  
LOW: wake flag set [4]  
HIGH: wake flag reset [4]  
LOW: wake flag set [4]  
HIGH: wake flag reset [4]  
LOW: wake flag set [4]  
HIGH: wake flag reset [4]  
RXEN  
RXD  
HIGH: bus DATA_1 or idle  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
7 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
Table 4.  
Pin  
Pin signalling in node configuration …continued  
Mode  
Normal  
HIGH  
Receive only  
Go-to-sleep  
HIGH  
Standby  
HIGH  
float [5]  
Sleep  
float [4]  
float [4]  
INH1  
INH2  
HIGH  
float [5]  
Transmitter enabled  
disabled [4]  
disabled [4]  
[3] Pin ERRN provides a serial interface for retrieving diagnostic information.  
[4] Valid if VIO and VBUF or VBAT are present.  
[5] If wake flag is not set.  
TXD  
BGE  
TXEN  
BP  
BM  
RXEN  
RXD  
001aae439  
Fig 3. Timing diagram in normal mode node configuration  
The state diagram in node configuration is illustrated in Figure 4.  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
8 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
1
4
RECEIVE ONLY  
NORMAL  
STBN = 1  
EN = 0  
STBN = 1  
EN = 1  
3, 30  
5
15, 25, 43, 44  
8, 17, 40  
6, 33  
10, 20  
2
14, 24, 41, 42  
28, 29  
31, 32  
11, 21  
7, 16, 39  
12, 22, 36  
(1)  
STANDBY  
GO-TO-SLEEP  
STBN = 0  
EN = 0  
STBN = 0  
EN = 1  
19  
23  
9, 18  
37, 38  
13, 34, 35  
26, 45, 46  
27, 47, 48  
SLEEP  
STBN = 0  
EN = X  
001aae438  
(1) At the first battery connection the transceiver will enter the Standby mode.  
Fig 4. State diagram in node configuration  
The state transitions are represented with numbers, which correspond with the numbers  
in the last column of Table 5 to Table 8.  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
9 of 44  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 5.  
State transitions forced by EN and STBN (node configuration)  
indicates the action that initiates a transaction; 1 and 2 are the consequences of a transaction.  
Transition  
from mode  
Direction to Transition  
Pin  
STBN  
H
Flag  
Note  
mode  
number  
EN  
L  
H
UVVIO  
UVVBAT  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
UVVCC  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
2 cleared  
2 cleared  
X
PWON  
Wake  
cleared  
cleared  
cleared  
X
Normal  
receive only  
go-to-sleep  
standby  
1
2
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
L  
L  
H
cleared  
[1]  
3
L  
H  
H  
L
cleared  
Receive only normal  
go-to-sleep  
4
X
X
X
X
X
X
X
X
X
X
X
X
5
L  
L  
H  
H  
L
X
standby  
6
X
[2][3]  
[2][3]  
Standby  
normal  
7
H  
L
1 set  
1 set  
X
receive only  
go-to-sleep  
8
9
H  
H
[2][4]  
[2][4]  
[4]  
Go-to-sleep normal  
10  
H  
H  
L
cleared  
cleared  
X
1 set  
1 set  
X
receive only 11  
L  
L  
H
standby  
sleep  
12  
13  
14  
[5]  
L
X
cleared  
1 set  
1 set  
[2][3]  
[2][3]  
Sleep  
normal  
H  
H  
H
2 cleared 2 cleared 2 cleared  
2 cleared 2 cleared 2 cleared  
receive only 15  
L
[1] STBN must be set to LOW 60 µs after EN.  
[2] Positive edge on pin STBN sets the wake flag.  
[3] Setting the wake flag clears the UVVIO, UVVBAT and UVVCC flag.  
[4] Hold time of go-to-sleep is less than the minimum hold time.  
[5] Hold time of go-to-sleep becomes greater than the minimum hold time.  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 6.  
State transitions forced by a wake-up (node configuration)  
indicates the action that initiates a transaction; 1 and 2 are the consequences of a transaction.  
Transition  
from mode  
Direction to Transition  
Pin  
Flag  
Note  
mode  
number  
STBN  
EN  
H
L
Wake  
set  
set  
set  
set  
set  
set  
set  
set  
set  
set  
set  
set  
UVVIO  
UVVBAT  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
UVVCC  
PWON  
[1]  
[1]  
[1]  
[1]  
Standby  
Go-to-sleep  
Sleep  
normal  
16  
H
H
L
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
1 cleared  
1 cleared  
1 cleared  
1 cleared  
cleared  
X
X
X
X
X
X
X
X
X
X
X
X
receive only 17  
go-to-sleep  
standby  
18  
19  
20  
H
L
L
normal  
H
H
L
H
L
receive only 21  
cleared  
standby  
22  
23  
24  
L
cleared  
go-to-sleep  
normal  
L
H
H
L
cleared  
[1]  
[1]  
[1]  
[1]  
H
H
L
1 cleared 1 cleared 1 cleared  
1 cleared 1 cleared 1 cleared  
1 cleared 1 cleared 1 cleared  
1 cleared 1 cleared 1 cleared  
receive only 25  
standby  
26  
27  
L
go-to-sleep  
L
H
[1] Setting the wake flag clears the UVVIO, UVVBAT and UVVCC flag.  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 7.  
State transitions forced by an undervoltage condition (node configuration)  
indicates the action that initiates a transaction; 1 and 2 are the consequences of a transaction.  
Transition from Direction to  
Transition  
number  
Flag  
Note  
mode  
mode  
UVVIO  
set  
UVVBAT  
cleared  
set  
UVVCC  
cleared  
cleared  
set  
cleared  
cleared  
set  
cleared  
cleared  
set  
X
PWON  
Wake  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
[1]  
Normal  
sleep  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
cleared  
1 cleared  
1 cleared  
1 cleared  
1 cleared  
1 cleared  
1 cleared  
1 cleared  
1 cleared  
1 cleared  
1 cleared  
1 cleared  
sleep  
cleared  
cleared  
set  
cleared  
standby  
sleep  
cleared  
cleared  
set  
cleared  
Receive only  
Go-to-sleep  
Standby  
X
X
X
X
X
X
X
X
sleep  
cleared  
cleared  
set  
standby  
sleep  
cleared  
cleared  
set  
sleep  
cleared  
cleared  
set  
standby  
sleep  
cleared  
cleared  
set  
[1][2]  
[1][3]  
sleep  
cleared  
X
[1] UVVIO, UVVBAT or UVVCC detected clears the wake flag.  
[2] UVVIO overrules UVVCC  
[3] UVVBAT overrules UVVCC  
.
.
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
Table 8.  
State transitions forced by an undervoltage recovery (node configuration)  
indicates the action that initiates a transaction; 1 and 2 are the consequences of a transaction.  
Transition  
from mode  
Direction to Transition  
Pin  
Flag  
Note  
mode  
number  
STBN  
EN  
H
L
UVVIO  
UVVBAT  
UVVCC  
PWON  
Wake  
[1]  
[1]  
Standby  
normal  
39  
H
H
H
H
H
H
L
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
cleared  
X
X
X
X
X
X
X
X
X
X
X
receive only 40  
cleared  
X
[2][3]  
[4]  
Sleep  
normal  
normal  
41  
42  
H
H
L
cleared  
cleared  
1 set  
X
[2][3]  
[4]  
receive only 43  
receive only 44  
cleared  
cleared  
1 set  
L
X
[2][3]  
[4]  
standby  
45  
46  
47  
48  
L
cleared  
cleared  
1 set  
standby  
L
L
X
[2][3]  
[4]  
go-to-sleep  
go-to-sleep  
L
H
H
cleared  
cleared  
1 set  
L
X
[1] Recovery of UVVCC flag.  
[2] Recovery of UVVBAT flag.  
[3] Clearing the UVVBAT flag sets the wake flag.  
[4] Recovery of UVVIO flag.  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
7.2.1 Normal mode  
In Normal mode the transceiver is able to transmit and receive data via the bus lines BP  
and BM. The output of the normal receiver is directly connected to pin RXD.  
The transmitter behavior in normal mode of operation, with no time-out present on pins  
TXEN and BGE and the temperature flag not set is given in Table 9.  
In this mode pins INH1 and INH2 are set HIGH.  
Table 9.  
Transmitter function table  
BGE  
L
TXEN TXD  
Transmitter  
X
H
L
X
X
H
transmitter is disabled  
transmitter is disabled  
X
H
transmitter is enabled; the bus lines are actively driven; BP is driven  
HIGH and BM is driven LOW  
H
L
L
transmitter is enabled; the bus lines are actively driven; BP is driven  
LOW and BM is driven HIGH  
7.2.2 Receive only mode  
In receive only mode the transceiver can only receive data. The transmitter is disabled,  
regardless of the voltages on pins BGE and TXEN.  
In this mode pins INH1 and INH2 are set HIGH.  
7.2.3 Standby mode  
In Standby mode the transceiver enters a low power mode which means very low current  
consumption. In the Standby mode the device is not able to transmit or receive data and  
the low power receiver is activated to monitor bus activity.  
Standby mode can be entered if the correct polarity is applied to pins EN and STBN (see  
Figure 4 and Table 5) or an undervoltage is present on pin VCC; see Figure 4.  
If an undervoltage is present on pin VCC, direct switching to a normal power mode is not  
possible. By applying a positive edge on pin STBN and thus setting the wake flag, all  
undervoltage flags are reset and therefore switching to a normal power mode is possible.  
The transceiver will then enter the mode indicated on pins EN and STBN  
In this mode the transceiver can be switched to any other mode if no undervoltage is  
present on pins VIO and VBAT  
.
Pin INH1 is set to HIGH. If the wake flag is set, pin INH2 is set to HIGH and pins RXEN  
and RXD are set to LOW, otherwise pin INH2 is floating and pins RXEN and RXD are set  
to HIGH; see Section 7.5.  
7.2.4 Go-to-sleep mode  
In this mode the transceiver behaves as in Standby mode. If this mode is selected for a  
longer time than the go-to-sleep command hold time (minimum hold time) and the wake  
flag has been previously cleared, the transceiver will enter Sleep mode, regardless of the  
voltage on pin EN.  
If the voltage regulator that supplies the host is switched via pin INH1, pin EN becomes  
LOW if pin INH1 is switched off.  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
14 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
7.2.5 Sleep mode  
In Sleep mode the transceiver has entered a low power mode. The only difference with  
Standby mode is that pin INH1 is also set floating. Sleep mode is directly entered if the  
UVVIO or UVVBAT flag is set.  
In this mode the transceiver can be switched to any other mode if no undervoltage is  
present on pins VIO, VCC and VBAT. In case of an undervoltage on pin VCC or VBAT while  
VIO is present, the wake flag is set by a positive edge on pin STBN.  
The undervoltage flags will be reset by setting the wake flag, and therefore the transceiver  
will enter the mode indicated on pins EN and STBN if VIO is present.  
A detailed description of the wake-up mechanism is given in Section 7.5.  
7.3 Operating modes in star configuration  
In star configuration mode control via pins EN and STBN is not possible. The transceiver  
autonomously controls the operating modes except in the case of wake-up.  
The timing diagram of a transceiver configured in star configuration is illustrated in  
Figure 6. The state diagram in star configuration is illustrated in Figure 5. A detailed  
description of the pin signalling in star configuration is given in Table 10.  
If VIO and (VBUF or VBAT) are within their operating range, pin ERRN will indicate the error  
flag.  
Table 10. Pin signalling in star configuration  
Mode  
TRXD0 / ERRN  
RXEN  
RXD  
LOW  
Transmitter INH1  
INH2  
TRXD1  
LOW  
HIGH  
LOW  
HIGH  
HIGH  
Star Transmit output [1] error flag error flag bus  
bus idle bus  
bus  
enabled  
HIGH HIGH  
input [2]  
set [3]  
reset [3]  
activity  
DATA_0 DATA_1  
Star Receive output  
disabled [1]  
Star Idle  
input  
Star Locked input  
Star Standby input  
error flag Error flag wakeag wakeag wakeag wakeag  
set [1][3] reset [1][3] set [1] reset [1] set [1] reset [1]  
Star Sleep  
input  
float [1] float [1]  
[1] Valid if VIO and (VBUF or VBAT) are present.  
[2] TRXD lines are switched as input if TRXD activity is the initiator for star Transmit mode.  
[3] Pin ERRN provides a serial interface for retrieving diagnostic information.  
[4] TRXD lines switched as output if TXEN activity is the initiator for star Transmit mode.  
Pin BGE has to be connected to pin VIO in order to enable the transmitter via pin TXEN. If  
pin BGE is connected to ground, it is not possible to activate the transmitter via pin TXEN.  
If pin TXEN is not used (no controller connected to the transceiver), it has to be connected  
to pin VIO in order to prevent TXEN activity detection.  
In all modes pin RXD is connected to the output of the normal mode receiver and  
therefore represents the data on the bus lines.  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
15 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
STAR LOCKED  
INH1 = HIGH  
INH2 = HIGH  
TXEN activity detected for  
bus activity detected for  
longer than t  
longer than t  
to(tx-locked)  
to(rx-locked)  
idle detected on  
the bus lines  
and TXEN for longer  
than t  
to(locked-idle)  
idle detected on  
TRXD0, TRXD1,  
TXEN and the  
bus lines  
idle detected on  
TRXD0, TRXD1,  
TXEN and the  
bus lines  
STAR TRANSMIT  
STAR IDLE  
STAR RECEIVE  
INH1 = HIGH  
INH2 = HIGH  
INH1 = HIGH  
INH2 = HIGH  
INH1 = HIGH  
INH2 = HIGH  
TRXD0, TRXD1,  
TXEN activity detected  
bus activity  
detected  
wake  
flag 1  
wake flag 1 or  
UV signal 0  
VCC  
time in star  
locked longer  
than t  
no acivity on TRXD0,  
TRXD1, TXEN and the  
bus lines for longer  
to(locked-sleep)  
than t  
to(idle-sleep)  
STAR SLEEP  
STAR STANDBY  
INH1 = floating  
INH2 = floating  
INH1 = HIGH  
INH2 = HIGH  
from star idle, star  
transmit or star receive if  
wake flag set and under  
voltage present on V  
for longer than  
CC  
t > t  
to(uv)(VCC)  
from any mode if UV  
power-on  
VCC  
001aae441  
flag is set regardless PWON flag  
V
> V  
BAT BAT(PWON)  
Fig 5. State diagram in star configuration  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
16 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
star transmit  
star idle  
star receive  
star idle  
star transmit  
star idle  
TRXD0  
TRXD1  
TXEN  
TXD  
TRXDOUT  
BP  
BM  
RXEN  
RXD  
001aae440  
TRXDOUT is a virtual signal that indicates the state of the TRXD lines. TRXDOUT HIGH means TRXD lines switched as  
output. TRXDOUT LOW means TRXD lines switched as input.  
Fig 6. Timing diagram in star configuration  
7.3.1 Star Idle mode  
This mode is entered if one of the following events occurs:  
From star Receive mode and star Transmit mode if idle is detected on the bus lines,  
on pin TXEN and on pins TRXD0 and TRXD1.  
If the transceiver is in star Locked mode and idle is detected on the bus lines and pin  
TXEN for longer than tto(locked-idle)  
.
If the transceiver is in star Standby mode and the wake flag is set or no undervoltage  
is present.  
If the transceiver is in star Sleep mode and the wake flag is set, the transceiver enters  
star Idle mode in order to obtain a stable starting point (no glitches on the bus lines  
etc).  
In star Idle mode the transceiver monitors pins TXEN, TRXD0 and TRXD1 and the  
bus lines for activity. In this mode the transmitter is disabled.  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
17 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
7.3.2 Star Transmit mode  
This mode is entered if one of the following events occur:  
If the transceiver is in star Idle mode and activity is detected on pin TXEN.  
If the transceiver is in star Idle mode and activity is detected on pins TRXD0 and  
TRXD1.  
In star Transmit mode the transmitter is enabled and the transceiver can transmit data on  
the bus lines. It transmits the data received on pins TXD or TRXD0 and TRXD1 on the bus  
lines.  
7.3.3 Star Receive mode  
This mode is entered if the transceiver is in star Idle mode and activity has been detected  
on the bus lines.  
In star Receive mode the transceiver transmit data via the TRXD0 and TRXD1 lines to  
other transceivers connected to the bus lines. The transmitter is always disabled.  
7.3.4 Star Standby mode  
This mode is entered if one of the following events occur:  
From star Idle, star Transmit or star Receive modes if the wake flag is set and an  
undervoltage on pin VCC is present for longer than tto(uv)(VCC)  
.
If the PWON flag is set.  
In star Standby mode the transceiver enters a low power mode. In this mode the current  
consumption is as low as possible to prevent discharging the capacitor at pin VBUF  
.
If pins VIO and VBUF are within their temperature range, pins RXD and RXEN will indicate  
the wake flag.  
7.3.5 Star Sleep mode  
This mode is entered if one of the following events occur:  
From any mode if an undervoltage on pin VCC is present for longer than tdet(uv)(VCC)  
.
If the transceiver is in star Idle mode and no activity is detected on the bus lines and  
pins TXEN, TRXD0 and TRXD1 for longer than tto(idle-sleep)  
If star Locked mode is active for longer than tto(locked-sleep)  
.
.
In star Sleep mode the transceiver will enter a low power mode. In this mode the current  
consumption is as low as possible to prevent the car battery from discharging. The inhibit  
switches are switched off.  
In this mode the wake flag wakes the transceiver. A detailed description of the wake-up  
mechanism is given in Section 7.5.  
If pins VIO and VBUF are within their temperature range, pins RXD and RXEN will indicate  
the wake flag.  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
18 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
7.3.6 Star Locked mode  
This mode is entered if one of the following events occur:  
If the transceiver is in star Transmit mode and activity on pin TXEN is detected for  
longer than tto(tx-locked)  
If the transceiver is in star Receive mode and activity is detected on the bus lines for  
longer than tto(rx-locked)  
.
.
This mode is a fail-silent mode and in this mode the transmitter is disabled.  
7.4 Start-up  
7.4.1 Node configuration  
Node configuration can be selected by applying a voltage lower than 0.3VBUF to pins  
TRXD0 and TRXD1 during power-on. Node configuration is latched by resetting the  
PWON flag while the voltage on pins TRXD0 and TRXD1 is lower than 0.3VBUF; see  
Section 7.7.4 for (re)setting the PWON flag.  
7.4.2 Star configuration  
Star configuration can be selected by applying a voltage higher than 0.7VBUF to pins  
TRXD0 or TRXD1 during power-on. Star configuration is latched by resetting the PWON  
flag while one of the voltages on pins TRXD0 or TRXD1 is higher than 0.7VBUF. See  
Section 7.7.4 for (re)setting the PWON flag. In this case the transceiver goes from node  
Standby mode to star Idle mode.  
7.5 Wake-up mechanism  
7.5.1 Node configuration  
If a node configured transceiver is in Sleep mode (pins INH1 and INH2 are switched off), it  
will enter Standby mode or go-to-sleep mode (depending on the level at pin EN). In both  
modes pin INH1 is switched on, pin INH2 is switched on or off depending on whether the  
wake flag is set.  
If no undervoltage is present on pins VIO and VBAT, the transceiver switches immediately  
to the mode indicated on pins EN and STBN.  
In Standby, go-to-sleep and Sleep mode pins RXD and RXEN are driven LOW if the wake  
flag is set.  
7.5.2 Star configuration  
If a star configured transceiver is in Sleep mode (pins INH1 and INH2 are switched off) it  
will enter star Idle mode (pins INH1 and INH2 are switched on) if the wake flag is set. In  
star Idle mode, the transceiver enters the appropriate mode directly, depending on which  
event has set the wake flag:  
If the wake-up source was pin WAKE or a positive edge on pin STBN, the transceiver  
will remain in star Idle mode.  
If the wake-up source was activity detected on pins TRXD0 and TRXD1, the  
transceiver will change from star Idle mode to star Transmit mode.  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
19 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
If the wake-up source was a wake-up symbol, the transceiver will change from star  
Idle mode to star Receive mode.  
7.5.3 Bus wake-up  
Bus wake-up is detected if two consecutive DATA_0 of at least tdet(wake)DATA_0 separated by  
an idle or DATA_1 of at least tdet(wake)idle, followed by an idle or DATA_1 of at least  
tdet(wake)idle are present on the bus lines within tdet(wake)tot  
.
t
det(wake)tot  
0 V  
V
dif  
425 mV  
t
t
t
t
det(wake)Data_0  
det(wake)idle  
det(wake)Data_0  
det(wake)idle  
001aae442  
Fig 7. Bus wake-up timing  
7.5.4 Local wake-up via pin WAKE  
If the voltage on pin WAKE is lower than Vth(det)(WAKE) for longer than twake(WAKE) (falling  
edge on pin WAKE) a local wake-up event on pin WAKE is detected. At the same time, the  
biasing of this pin is switched to pull-down.  
If the voltage on pin WAKE is higher than Vth(det)(WAKE) for longer than twake, the biasing of  
this pin is switched to pull-up, and no local wake-up will be detected.  
pull-up  
pull-up  
pull-down  
t
t
wake(WAKE)  
wake(WAKE)  
V
BAT  
0 V  
WAKE  
RXD and  
RXEN  
V
BAT  
0 V  
INH1 and  
INH2  
001aae443  
Sleep mode: VIO and (VBAT or VCC) still provided.  
Fig 8. Local wake-up timing via pin WAKE  
7.6 Fail silent behavior  
In order to be fail silent, undervoltage detection is implemented. An undervoltage will be  
detected on pins VCC, VIO and VBAT  
.
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
20 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
7.6.1 VBAT undervoltage  
Node configuration: If the UVVBAT flag is set the transceiver will enter Sleep mode  
(pins INH1 and INH2 are switched off) regardless of the voltage present on pins EN  
and STBN. If the undervoltage recovers the wake flag will be set and the transceiver  
will enter the mode determined by the voltages on pins EN and STBN.  
Star configuration: The TJA1080 in star configuration is able to transmit and receive  
data as long as VCC and VIO are within their operating range, regardless of the  
undervoltage on VBAT  
.
7.6.2 VCC undervoltage  
Node configuration: If the UVVCC flag is set the transceiver will enter the Standby  
mode (pin INH2 is switched off) regardless of the voltage present on pins EN and  
STBN. If the undervoltage recovers or the wake flag is set mode switching via pins EN  
and STBN is possible.  
Star configuration: If the UVVCC flag is set the transceiver will enter the star Sleep  
mode.  
7.6.3 VIO undervoltage  
Node configuration: If the voltage on pin VIO is lower than Vuvd(VIO) (even if the UVVIO  
flag is reset) pins EN, STBN, TXD and BGE are set LOW (internally) and pin TXEN is  
set HIGH (internally). If the UVVIO flag is set the transceiver will enter Sleep mode  
(pins INH1 and INH2 are switched off).  
Star configuration: If an undervoltage is present on pin VIO (even if the UVVIO flag is  
reset) pins EN, STBN, TXD and BGE are set LOW (internally) and pin TXEN is set  
HIGH (internally). If the VIO undervoltage flag is set, pin INH1 is switched off. If an  
undervoltage is present on pin VIO and VCC is within the operating range, the TJA1080  
will forward the received data to all other branches.  
7.7 Flags  
7.7.1 Local wake-up source flag  
The local wake-up source flag can only be set in a low power mode. When a wake-up  
event on pin WAKE is detected (see Section 7.5.4) it sets the local wake-up source flag.  
The local wake-up source flag is reset by entering a low power mode.  
7.7.2 Remote wake-up source flag  
The remote wake-up source flag can only be set in a low power mode. When a bus  
wake-up event is detected on the bus lines (see Section 7.5.3) it sets the remote wake-up  
source flag. The remote wake-up source flag is reset by entering a low power mode.  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
21 of 44  
TJA1080  
Philips Semiconductors  
7.7.3 Wake flag  
FlexRay transceiver  
The wake flag is set if one of the following events occurs:  
The local or remote wake-up source flag is set (edge sensitive)  
A positive edge is detected on pin STBN if VIO is present  
Recovery of the UVVBAT flag (only in node configuration)  
By recognizing activity on pins TRXD0 and TRXD1 (only in star configuration)  
In node configuration the wake flag is reset by entering Normal mode, a low power mode  
or setting one of the undervoltage flags. In star configuration the wake flag is reset by  
entering a low power mode or by recovery of the UVVCC signal (without trec(uv)(VCC)).  
7.7.4 Power-on flag  
The PWON flag is set if the internal supply voltage for the digital part becomes higher than  
the lowest value it needs to operate. In node configuration, entering Normal mode resets  
the PWON flag. In star configuration the PWON flag is reset when the UVVCC signal goes  
LOW (no undervoltage detected).  
7.7.5 Node or star configuration flag  
Configuration flag set means node configuration.  
7.7.6 Temperature medium flag  
The temperature medium flag is set if the junction temperature exceeds Tj(warn)(medium) in a  
normal power mode. The temperature medium flag is reset when the junction temperature  
becomes lower than Tj(warn)(medium) in a normal power mode. No action will be taken if this  
flag is set.  
7.7.7 Temperature high flag  
The temperature high flag is set if the junction temperature exceeds Tj(dis)(high) in a normal  
power mode.  
In node configuration the temperature high flag is reset if a negative edge is applied to pin  
TXEN while the junction temperature is lower than Tj(dis)(high) in a normal power mode. In  
star configuration mode the temperature high flag is reset by any activity detection (edge)  
while the junction temperature is lower than Tj(dis)(high) in a normal power mode.  
If the temperature high flag is set the transmitter is disabled and pins TRXD0 and TRXD1  
are switched off.  
7.7.8 TXEN_BGE clamped flag  
The TXEN_BGE clamped flag is set if pin TXEN is LOW and pin BGE is HIGH for longer  
than tdetCL(TXEN_BGE). The TXEN_BGE clamped flag is reset if pin TXEN is HIGH or pin  
BGE is LOW. If the TXEN_BGE flag is set, the transmitter is disabled.  
7.7.9 Bus error flag  
The bus error flag is set if pin TXEN is LOW and pin BGE is HIGH and the data received  
from the bus lines (pins BP and BM) is different to that received on pin TXD. The TJA1080  
also expects that a data frame begins with a bit value other than the last bit of the previous  
data frame.  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
22 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
This is the case for a valid data frame which begins with the DATA_0 period of the  
Transmission Start Sequence (TSS) and ends with the DATA_1 bit of the Frame End  
Sequence (FES). Any violation of this frame format will be detected by the TJA1080.  
Consequently, when transmitting a wake-up pattern, a bus error will be signalled. This  
error indication should be ignored and the status register should be cleared by reading the  
vector.  
No action will be taken if the bus error flag is set.  
7.7.10 UVVBAT flag  
The UVVBAT flag is set if the voltage on pin VBAT is lower than Vuvd(VBAT). The UVVBAT flag  
is reset if the voltage is higher than Vuvd(VBAT) or by setting the wake flag; see  
Section 7.6.1.  
7.7.11 UVVCC flag  
The UVVCC flag is set if the voltage on pin VCC is lower than Vuvd(VCC) for longer than  
det(uv)(VCC). The flag is reset if the voltage on pin VCC is higher than Vuvd(VCC) for longer  
than trec(uv)(VCC) or the wake flag is set; see Section 7.6.2.  
t
7.7.12 UVVIO flag  
The UVVIO flag is set if the voltage on pin VIO is lower than Vuvd(VIO) for longer than  
tdet(uv)(VIO). The flag is reset if the voltage on pin VIO is higher than Vuvd(VIO) or the wake  
flag is set; see Section 7.6.3.  
7.7.13 Error flag  
The error flag is set if one of the status bits S4 to S12 is set. The error flag is reset if none  
of the S4 to S12 status bits are set; see Table 11.  
7.8 TRXD collision  
A TRXD collision is detected when two or more TJA1080s in star configuration enter star  
Receive mode.  
7.9 Status register  
The status register can be read out on pin ERRN by using pin EN as clock; the status bits  
are given in Table 11. The timing diagram is illustrated in Figure 9.  
The status register is accessible if the UVVIO flag is not set in node or star configuration. A  
negative edge on pin EN starts the read out. Within the period td(EN-ERRN) after the first  
edge on pin EN, pin ERRN will go HIGH if it was previously LOW. On the second negative  
edge on pin EN the first status bit (S0) will be shifted out. The status bits are valid after  
td(EN-ERRN). If no edge is detected on pin EN for longer than tdet(EN), the transceiver will  
enter the state selected on pins EN and STBN (node configuration) and status bit S4 to  
S12 will be reset if the corresponding flag has been reset.  
Pin ERRN is LOW if the corresponding status bit is set.  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
23 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
Table 11. Status bits  
Bit number Status bit  
Description  
S0  
LOCAL WAKEUP  
REMOTE WAKEUP  
NODE CONFIG  
PWON  
local wake-up source flag is redirected to this bit  
remote wake-up source flag is redirected to this bit  
node configuration flag is redirected to this bit  
status bit set means PWON flag has been set previously  
S1  
S2  
S3  
S4  
BUS ERROR  
TEMP HIGH  
status bit set means bus error flag has been set previously  
status bit set means temperature high flag has been set previously  
status bit set means temperature medium flag has been set previously  
status bit set means TXEN_BGE clamped flag has been set previously  
status bit set means UVVBAT flag has been set previously  
S5  
S6  
TEMP MEDIUM  
TXEN_BGE CLAMPED  
UVVBAT  
S7  
S8  
S9  
UVVCC  
status bit set means UVVCC flag has been set previously  
S10  
S11  
S12  
UVVIO  
status bit set means UVVIO flag has been set previously  
STAR LOCKED  
TRXD COLLISION  
status bit is set if star Locked mode has been entered previously  
status bit is set if a TRXD collision has been detected previously  
receive  
only  
receive  
only  
normal  
standby  
normal  
0.7V  
IO  
STBN  
EN  
0.3V  
IO  
t
t
det(EN)  
det(EN)  
IO  
t
d(stb)  
t
d(stb)  
0.7V  
IO  
0.3V  
T
EN  
t
d(EN-ERRN)  
S0  
0.7V  
IO  
S1  
S2  
ERRN  
0.3V  
IO  
001aae444  
Fig 9. Timing diagram for status bits  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
24 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
8. Limiting values  
Table 12. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages are referenced to GND.  
Symbol  
Parameter  
Conditions  
Min  
0.3  
6.5  
Max  
Unit  
V
VBAT  
supply voltage on pin VBAT  
no time limit  
+60  
operating range  
no time limit  
60  
V
VCC  
VBUF  
VIO  
supply voltage  
0.3  
4.75  
0.3  
4.75  
0.3  
2.2  
+5.5  
V
operating range  
no time limit  
5.25  
V
supply voltage on pin VBUF  
supply voltage on pin VIO  
+5.5  
V
operating range  
no time limit  
5.25  
V
+5.5  
V
operating range  
5.25  
V
VINH1  
VINH2  
VWAKE  
Io(WAKE)  
VBGE  
VTXEN  
VTXD  
voltage on pin INH1  
voltage on pin INH2  
voltage on pin WAKE  
output current on pin WAKE  
voltage on pin BGE  
voltage on pin TXEN  
voltage on pin TXD  
voltage on pin ERRN  
voltage on pin RXD  
voltage on pin RXEN  
voltage on pin EN  
0.3  
0.3  
0.3  
15  
VBAT + 0.3  
VBAT + 0.3  
VBAT + 0.3  
-
V
V
V
pin GND not connected  
no time limit  
no time limit  
no time limit  
no time limit  
no time limit  
no time limit  
no time limit  
no time limit  
no time limit  
no time limit  
mA  
V
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
0.3  
60  
VIO + 0.3  
VIO + 0.3  
VIO + 0.3  
VIO + 0.3  
VIO + 0.3  
VIO + 0.3  
+5.5  
V
V
VERRN  
VRXD  
VRXEN  
VEN  
V
V
V
V
VSTBN  
VTRXD0  
VTRXD1  
VBP  
voltage on pin STBN  
voltage on pin TRXD0  
voltage on pin TRXD1  
voltage on pin BP  
+5.5  
V
+5.5  
V
+5.5  
V
+60  
V
VBM  
voltage on pin BM  
60  
+60  
V
[1]  
[2]  
[3]  
[4]  
Vtrt  
transient voltage  
on pins BP and BM  
on pin VBAT  
200  
200  
6.5  
+200  
+200  
60  
V
V
on pin VBAT  
V
on pin VBAT  
-
60  
V
Tstg  
Tvj  
storage temperature  
55  
+150  
+150  
+8.0  
°C  
°C  
kV  
kV  
V
[5]  
[6]  
[7]  
[8]  
[9]  
virtual junction temperature  
electrostatic discharge voltage  
40  
VESD  
HBM on pins BP and BM to ground  
HBM at any other pin  
MM on all pins  
8.0  
4.0  
200  
1000  
+4.0  
+200  
+1000  
CDM on all pins  
V
[1] According to ISO 7637, part 3 test pulses a and b; Class C; see Figure 13; RL = 45 ; CL = 100 pF.  
[2] According to ISO 7637, part 2 test pulses 1, 2, 3a and 3b; Class C; see Figure 13; RL = 45 ; CL = 100 pF.  
[3] According to ISO 7637, part 2 test pulse 4; Class C; see Figure 13; RL = 45 ; CL = 100 pF.  
[4] According to ISO 7637, part 2 test pulse 5b; Class C; see Figure 13; RL = 45 ; CL = 100 pF.  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
25 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
[5] In accordance with IEC 60747-1. An alternative definition of virtual junction temperature Tvj is: Tvj = Tamb + TD x Rth(j-a), where Rth(j-a) is  
a fixed value to be used for the calculation of Tvj. The rating for Tvj limits the allowable combinations of power dissipation (P) and  
ambient temperature (Tamb).  
[6] HBM: C = 100 pF; R = 1.5 k.  
[7] HBM: C = 100 pF; R = 1.5 k.  
[8] MM: C = 200 pF; L = 0.75 µH; R = 10 .  
[9] CDM: C = 330 pF; R = 150 .  
9. Thermal characteristics  
Table 13. Thermal characteristics  
Symbol  
Rth(j-a)  
Parameter  
Conditions  
in free air  
in free air  
Typ  
126  
-
Unit  
K/W  
K/W  
thermal resistance from junction to ambient  
thermal resistance from junction to substrate  
Rth(j-s)  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
26 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
10. Static characteristics  
Table 14. Static characteristics  
All parameters are guaranteed for VBAT = 6.5 V to 60 V; VCC = 4.75 V to 5.25 V; VBUF = 4.75 V to 5.25 V; VIO = 2.2 V to 5.25 V;  
Tvj = 40 °C to + 150 °C; Rbus = 45 ; RTRXD = 200 unless otherwise specified. All voltages are defined with respect to  
ground; positive currents flow into the IC.[1][2]  
Symbol  
Pin VBAT  
IBAT  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
supply current on pin VBAT low power modes in node  
configuration  
-
35  
50  
µA  
star Sleep mode  
-
40  
50  
150  
1
µA  
µA  
mA  
V
star Standby mode  
normal power modes  
-
75  
-
0.075  
3.8  
Vuvd(VBAT)  
undervoltage detection  
voltage on pin VBAT  
2.75  
4,5  
Pin VCC  
ICC  
supply current  
low power modes  
1  
0
+5  
15  
µA  
Normal mode; VBGE = 0 V;  
-
10  
mA  
VTXEN = VIO; Receive only  
mode; star Idle mode  
[3]  
Normal mode; VBGE = VIO;  
-
-
28.5  
10  
35  
15  
mA  
mA  
V
TXEN = 0 V; VBUF open  
Normal mode; VBGE = VIO;  
TXEN = 0 V; Rbus = ∞ Ω  
V
star Transmit mode  
star Receive mode  
-
50  
38  
3.8  
62  
42  
4.5  
mA  
mA  
V
-
Vuvd(VCC)  
undervoltage detection  
voltage on pin VCC  
2.75  
Pin VIO  
IIO  
supply current on pin VIO low power modes  
Normal and Receive only  
mode; VTXD = VIO  
1  
+1  
30  
+5  
µA  
µA  
-
1000  
Vuvd(VIO)  
Vuvr(VIO)  
undervoltage detection  
voltage on pin VIO  
1
1.5  
2
V
undervoltage recovery  
voltage on pin VIO  
1
1.6  
2.2  
<tbd>  
V
Vuvhys(VIO)  
undervoltage hysteresis  
voltage on pin VIO  
25  
<tbd>  
mV  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
27 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
Table 14. Static characteristics …continued  
All parameters are guaranteed for VBAT = 6.5 V to 60 V; VCC = 4.75 V to 5.25 V; VBUF = 4.75 V to 5.25 V; VIO = 2.2 V to 5.25 V;  
Tvj = 40 °C to + 150 °C; Rbus = 45 ; RTRXD = 200 unless otherwise specified. All voltages are defined with respect to  
ground; positive currents flow into the IC.[1][2]  
Symbol  
Pin VBUF  
IBUF  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
supply current on pin  
VBUF  
low power modes in node  
configuration  
1  
0
+5  
µA  
low power modes in star  
configuration  
VBUF = 0 V; VCC = 0 V  
VBUF = 5.25 V  
40  
1  
-
20  
0
+1  
+5  
35  
µA  
µA  
mA  
[3]  
Normal mode; VBGE = VIO;  
26.5  
VTXEN = 0 V; VBUF = VCC  
star Transmit mode  
-
-
-
47  
35  
10  
62  
42  
15  
mA  
mA  
mA  
star Receive mode  
Normal mode; VBGE = 0 V;  
VTXEN = VIO; Receive only  
mode; star Idle mode  
VBUF(on)  
on-state voltage on pin  
VBUF  
VCC switch is switched on;  
Normal mode; VBGE = VIO;  
V
CC 0.25 VCC 0.05 VCC  
V
V
VTXEN = 0 V; VCC > maximum  
value of Vuvd(VCC)  
VBUF(off)  
off-state voltage on pin  
VBUF  
VCC switch is switched off; low  
power modes in star  
4.5  
4.9  
5.25  
configuration; VCC < minimum  
value of Vuvd(VCC)  
Pin EN  
VIH(EN)  
HIGH-level input voltage  
on pin EN  
0.7VIO  
0.3  
3
0.5VIO  
5.5  
V
VIL(EN)  
IIH(EN)  
IIL(EN)  
LOW-level input voltage  
on pin EN  
0.5VIO  
0.3VIO  
11  
V
HIGH-level input current  
on pin EN  
VEN = 0.7VIO  
VEN = 0 V  
8
0
µA  
µA  
LOW-level input current  
on pin EN  
1  
+1  
Pin STBN  
VIH(STBN)  
HIGH-level input voltage  
on pin STBN  
0.7VIO  
0.3  
3
0.5VIO  
5.5  
V
VIL(STBN)  
IIH(STBN)  
IIL(STBN)  
LOW-level input voltage  
on pin STBN  
0.5VIO  
0.3VIO  
11  
V
HIGH-level input current  
on pin STBN  
VSTBN = 0.7VIO  
VSTBN = 0 V  
8
0
µA  
µA  
LOW-level input current  
on pin STBN  
1  
+1  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
28 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
Table 14. Static characteristics …continued  
All parameters are guaranteed for VBAT = 6.5 V to 60 V; VCC = 4.75 V to 5.25 V; VBUF = 4.75 V to 5.25 V; VIO = 2.2 V to 5.25 V;  
Tvj = 40 °C to + 150 °C; Rbus = 45 ; RTRXD = 200 unless otherwise specified. All voltages are defined with respect to  
ground; positive currents flow into the IC.[1][2]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Pin TXEN  
VIH(TXEN)  
HIGH-level input voltage  
on pin TXEN  
0.7VIO  
0.3  
1  
0.5VIO  
VIO + 0.3  
0.3VIO  
+1  
V
VIL(TXEN)  
IIH(TXEN)  
IIL(TXEN)  
IL(TXEN)  
LOW-level input voltage  
on pin TXEN  
0.5VIO  
V
HIGH-level input current  
on pin TXEN  
VTXEN = VIO  
0
µA  
µA  
µA  
LOW-level input current  
on pin TXEN  
VTXEN = 0.3VIO  
12  
1  
9  
0
3  
leakage current on pin  
TXEN  
VTXEN = 5.25 V; VIO = 0 V  
+1  
Pin BGE  
VIH(BGE)  
HIGH-level input voltage  
on pin BGE  
0.7VIO  
0.3  
3
0.5VIO  
VIO + 0.3  
0.3VIO  
11  
V
VIL(BGE)  
IIH(BGE)  
IIL(BGE)  
LOW-level input voltage  
on pin BGE  
0.5VIO  
V
HIGH-level input current  
on pin BGE  
VBGE = 0.7VIO  
VBGE = 0 V  
8
0
µA  
µA  
LOW-level input current  
on pin BGE  
1  
+1  
Pin TXD  
VIH(TXD)  
HIGH-level input voltage normal power modes  
on pin TXD  
0.7VIO  
0.3  
70  
0.5VIO  
0.5VIO  
300  
VIO + 0.3  
0.3VIO  
650  
V
VIL(TXD)  
IIH(TXD)  
IIL(TXD)  
LOW-level input voltage  
on pin TXD  
normal power modes  
V
HIGH-level input current  
on pin TXD  
VTXD = VIO  
µA  
µA  
LOW-level input current  
on pin TXD  
normal power modes;  
5  
0
+5  
VTXD = 0 V  
low power modes  
1  
1  
0
0
+1  
+1  
µA  
µA  
ILI(TXD)  
input leakage current on VTXD = 5.25 V; VIO = 0 V  
pin TXD  
Pin RXD  
IOH(RXD)  
HIGH-level output current VRXD = VIO 0.4 V; VIO = VCC  
on pin RXD  
2  
4  
15  
mA  
mA  
IOL(RXD)  
LOW-level output current VRXD = 0.4 V  
on pin RXD  
2
7
20  
Pin ERRN  
IOH(ERRN)  
HIGH-level output current node configuration;  
1500  
1  
550  
100  
µA  
µA  
on pin ERRN  
VERRN = VIO 0.4 V;  
VIO = VCC  
star configuration;  
0
+1  
VERRN = VIO 0.4 V;  
VIO = VCC  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
29 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
Table 14. Static characteristics …continued  
All parameters are guaranteed for VBAT = 6.5 V to 60 V; VCC = 4.75 V to 5.25 V; VBUF = 4.75 V to 5.25 V; VIO = 2.2 V to 5.25 V;  
Tvj = 40 °C to + 150 °C; Rbus = 45 ; RTRXD = 200 unless otherwise specified. All voltages are defined with respect to  
ground; positive currents flow into the IC.[1][2]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
IOL(ERRN)  
LOW-level output current VERRN = 0.4 V  
on pin ERRN  
300  
700  
1500  
µA  
Pin RXEN  
IOH(RXEN)  
HIGH-level output current VRXEN = VIO 0.4 V;  
4  
1.5  
0.5  
mA  
mA  
on pin RXEN  
VIO = VCC  
IOL(RXEN)  
LOW-level output current VRXEN = 0.4 V  
on pin RXEN  
1
3
8
Pins TRXD0 and TRXD1  
VIH(TRXD0)  
VIL(TRXD0)  
VOL(TRXD0)  
VIH(TRXD1)  
VIL(TRXD1)  
VOL(TRXD1)  
HIGH-level input voltage star Idle and star Transmit  
0.7VBUF  
0.3  
0.5VBUF  
0.5VBUF  
+0.3  
VBUF + 0.3 V  
on pin TRXD0  
mode  
LOW-level input voltage  
on pin TRXD0  
star Idle and star Transmit  
mode  
0.3VBUF  
+0.8  
V
V
LOW-level output voltage Rpu = 200 Ω  
on pin TRXD0  
0.3  
HIGH-level input voltage star Idle and star Transmit  
0.7VBUF  
0.3  
0.5VBUF  
0.5VBUF  
+0.3  
VBUF + 0.3 V  
on pin TRXD1  
mode  
LOW-level input voltage  
on pin TRXD1  
star Idle and star Transmit  
mode  
0.3VBUF  
+0.8  
V
V
LOW-level output voltage Rpu = 200 Ω  
0.3  
on pin TRXD1  
Pins BP and BM  
Vo(idle)(BP) idle output voltage on pin Normal, Receive only, star  
0.4VBUF  
0.1  
0.5VBUF  
0.6VBUF  
+0.1  
V
V
V
V
BP  
Idle, star Transmit and star  
Receive mode; VTXEN = VIO  
Standby, go-to-sleep, Sleep,  
star Standby and star Sleep  
mode  
0
Vo(idle)(BM)  
idle output voltage on pin Normal, receive only, star  
0.4VBUF  
0.1  
0.5VBUF  
0.6VBUF  
+0.1  
BM  
Idle, star Transmit and star  
Receive mode; VTXEN = VIO  
Standby, go to sleep, Sleep,  
star Standby and star Sleep  
mode  
0
Io(idle)BP  
Io(idle)BM  
Vo(idle)(dif)  
VOH(dif)  
VOL(dif)  
idle output current on pin 60 V < |VBP| < +60 V  
BP  
1
3
7.5  
mA  
mA  
mV  
mV  
mV  
idle output current on pin 60 V < |VBM| < +60 V  
BM  
1
3
7.5  
differential idle output  
voltage  
25  
600  
1200  
0
+25  
1200  
600  
differential HIGH-level  
output voltage  
40 < Rbus < 55 ;  
CC = VBUF = 5 V  
800  
800  
V
differential LOW-level  
output voltage  
40 < Rbus < 55 ;  
CC = VBUF = 5 V  
V
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
30 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
Table 14. Static characteristics …continued  
All parameters are guaranteed for VBAT = 6.5 V to 60 V; VCC = 4.75 V to 5.25 V; VBUF = 4.75 V to 5.25 V; VIO = 2.2 V to 5.25 V;  
Tvj = 40 °C to + 150 °C; Rbus = 45 ; RTRXD = 200 unless otherwise specified. All voltages are defined with respect to  
ground; positive currents flow into the IC.[1][2]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VIH(dif)  
differential HIGH-level  
input voltage  
normal power modes;  
10 V < VBP < +15 V;  
10 V < VBM < +15 V  
150  
225  
300  
mV  
VIL(dif)  
differential LOW-level  
input voltage  
normal power modes;  
10 V < VBP < +15 V;  
10 V < VBM < +15 V  
300  
400  
150  
10  
225  
225  
225  
20  
150  
125  
300  
30  
mV  
mV  
mV  
mA  
mA  
low power modes;  
10 V < VBP < +15 V;  
10 V < VBM < +15 V  
|Vi(dif)det(act)  
|
activity detection  
differential input voltage  
(absolute value)  
normal power modes  
|Io(sc)(BP)  
|
short-circuit output  
current on pin BP  
(absolute value)  
V
BP = 0 V, 60 V  
BM = 0 V, 60 V  
|Io(sc)(BM)  
|
short-circuit output  
current on pin BM  
(absolute value)  
V
10  
20  
30  
Ri(BP)  
Ri(BM)  
input resistance on pin BP Idle level; Rbus = ∞ Ω  
10  
10  
20  
20  
40  
40  
kΩ  
kΩ  
input resistance on pin  
BM  
Idle level; Rbus = ∞ Ω  
Ri(dif)(BP-BM)  
differential input  
Idle level; Rbus = ∞ Ω  
20  
40  
80  
kΩ  
resistance between pin  
BP and pin BM  
ILI(BP)  
ILI(BM)  
input leakage current on VBP = 5 V;  
pin BP BAT = VCC = VIO = 0 V  
10  
0
+10  
µA  
µA  
V
V
input leakage current on VBM = 5 V;  
pin BM BAT = VCC = VIO = 0 V  
10  
0
+10  
V
Vcm(bus)(DATA_0) DATA_0 bus common  
mode voltage  
Rbus = 45 Ω  
Rbus = 45 Ω  
Rbus = 45 Ω  
0.4VBUF  
0.4VBUF  
25  
0.5VBUF  
0.5VBUF  
0
0.6VBUF  
0.6VBUF  
+25  
Vcm(bus)(DATA_1) DATA_1 bus common  
mode voltage  
V
Vcm(bus)  
bus common mode  
voltage difference  
mV  
Pin INH1  
VOH(INH1)  
HIGH-level output voltage IINH1 = 0.2 mA  
VBAT 0.8  
V
BAT 0.3 VBAT  
V
on pin INH1  
IL(INH1)  
leakage current on pin  
INH1  
Sleep mode  
5  
0
+5  
-
µA  
mA  
IOL(INH1)  
LOW-level output current VINH1 = 0 V  
on pin INH1  
15  
8  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
31 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
Table 14. Static characteristics …continued  
All parameters are guaranteed for VBAT = 6.5 V to 60 V; VCC = 4.75 V to 5.25 V; VBUF = 4.75 V to 5.25 V; VIO = 2.2 V to 5.25 V;  
Tvj = 40 °C to + 150 °C; Rbus = 45 ; RTRXD = 200 unless otherwise specified. All voltages are defined with respect to  
ground; positive currents flow into the IC.[1][2]  
Symbol  
Pin INH2  
VOH(INH2)  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
HIGH-level output voltage IINH2 = 0.2 mA  
on pin INH2  
VBAT 0.8  
V
0
BAT 0.3 VBAT  
V
IL(INH2)  
leakage current on pin  
INH2  
Sleep mode  
5  
15  
+5  
µA  
mA  
IOL(INH2)  
LOW-level output current VINH2 = 0 V  
on pin INH2  
8  
-
Pin WAKE  
Vth(det)(WAKE)  
detection threshold  
voltage on pin WAKE  
low power mode  
2.5  
3
3.7  
4.5  
11  
3  
V
IIL(WAKE)  
IIH(WAKE)  
LOW-level input current  
on pin WAKE  
VWAKE = 2.4 V for  
t > twake(WAKE)  
6.5  
µA  
µA  
HIGH-level input current  
on pin WAKE  
VWAKE = 4.6 V for  
t > twake(WAKE)  
11  
6.5  
Temperature protection  
Tj(warn)(medium) medium warning junction  
temperature  
155  
180  
165  
190  
175  
200  
°C  
°C  
Tj(dis)(high)  
high disable junction  
temperature  
[1] All parameters are guaranteed over the virtual junction temperature range by design, but only 100 % are tested at 125 °C for dies on  
wafer level (pre-testing) and above this for cased products 100 % are tested at Tamb = 40 °C and +25 °C (final testing) unless otherwise  
specified. Both pre-testing and final testing use correlated test conditions to cover the specified temperature and power supply voltage  
range. For bare dies all parameters are only guaranteed with the backside of the bare die connected to ground.  
[2] At power-up VBAT should be supplied first. When VBAT reaches 6.5 V, VCC and VIO may be switched on with a delay of at least 60 µs with  
respect to VBAT  
.
[3] Current flows from VCC to VBUF. This means that the maximum sum current ICC + IBUF is 35 mA.  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
32 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
11. Dynamic characteristics  
Table 15. Dynamic characteristics  
All parameters are guaranteed for VBAT = 6.5 V to 60 V; VCC = 4.75 V to 5.25 V; VBUF = 4.75 V to 5.25 V; VIO = 2.2 V to 5.25 V;  
Tvj = 40 °C to + 150 °C; Rbus = 45 ; RTRXD = 200 unless otherwise specified. All voltages are defined with respect to  
ground; positive currents flow into the IC[1].  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Pins BP and BM  
td(TXD-bus)  
[2]  
delay time from TXD to bus  
Normal or star Transmit  
mode  
DATA_0  
DATA_1  
-
-
-
31  
32  
1
50  
50  
4
ns  
ns  
ns  
[2]  
[3]  
td(TXD-bus)  
delay time difference from TXD Normal or star Transmit  
to bus  
mode; between DATA_0  
and DATA_1  
td(TRXD-bus)  
delay time from TRXD to bus  
star Transmit mode  
DATA_0  
-
-
-
27  
28  
1
50  
50  
5
ns  
ns  
ns  
DATA_1  
[3][4]  
td(TRXD-bus)  
delay time difference from TRXD star Transmit mode;  
to bus  
between DATA_0 and  
DATA_1  
td(bus-RXD)  
delay time from bus to RXD  
normal or star Transmit  
mode; CRXD = 15 pF; see  
Figure 11  
DATA_0  
DATA_1  
-
-
-
28  
30  
2
50  
50  
5
ns  
ns  
ns  
td(bus-RXD)  
delay time difference from bus to normal or star Transmit  
RXD  
mode; CRXD = 15 pF;  
between DATA_0 and  
DATA_1; see Figure 11  
td(bus-TRXD)  
delay time from bus to TRXD  
star Receive mode; see  
Figure 11  
DATA_0  
DATA_1  
-
-
-
28  
28  
0
50  
50  
5
ns  
ns  
ns  
[4]  
td(bus-TRXD)  
delay time difference from bus to star Receive mode;  
TRXD  
between DATA_0 and  
DATA_1; see Figure 11  
td(TXEN-busidle)  
td(TXEN-busact)  
delay time from TXEN to bus  
idle  
Normal mode  
-
-
28  
22  
50  
50  
ns  
ns  
delay time from TXEN to bus  
active  
Normal mode  
td(BGE-busidle)  
td(BGE-busact)  
delay time from BGE to bus idle Normal mode  
-
-
30  
22  
50  
50  
ns  
ns  
delay time from BGE to bus  
active  
Normal mode  
tr(dif)(bus)  
tf(dif)(bus)  
bus differential rise time  
10 % to 90 %; RL = 45 ;  
CL = 100 pF  
8
8
12  
12  
23  
23  
ns  
ns  
bus differential fall time  
90 % to 10 %; RL = 45 ;  
CL = 100 pF  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
33 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
Table 15. Dynamic characteristics …continued  
All parameters are guaranteed for VBAT = 6.5 V to 60 V; VCC = 4.75 V to 5.25 V; VBUF = 4.75 V to 5.25 V; VIO = 2.2 V to 5.25 V;  
Tvj = 40 °C to + 150 °C; Rbus = 45 ; RTRXD = 200 unless otherwise specified. All voltages are defined with respect to  
ground; positive currents flow into the IC[1].  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
WAKE symbol detection  
tdet(wake)DATA_0  
tdet(wake)idle  
tdet(wake)tot  
DATA_0 wake-up detection time Standby, Sleep,  
1
2.2  
2.5  
-
4
µs  
µs  
µs  
star Standby or star Sleep  
idle wake-up detection time  
total wake-up detection time  
1
4
mode;  
50  
115  
10 V < VBP < +15 V;  
10 V < VBM < +15 V  
Undervoltage  
tdet(uv)(VCC)  
undervoltage detection time on  
pin VCC  
100  
1
-
-
-
-
670  
5.2  
ms  
ms  
ms  
µs  
trec(uv)(VCC)  
tdet(uv)(VIO)  
tto(uv)(VCC)  
undervoltage recovery time on  
pin VCC  
undervoltage detection time on  
pin VIO  
100  
432  
670  
900  
undervoltage time-out time on  
pin VCC for entering Standby  
mode  
star configuration; wake  
flag is set  
Activity detection  
tdet(act)(TXEN)  
tdet(act)(TRXD)  
tdet(act)(bus)  
activity detection time on pin  
TXEN  
star configuration  
star configuration  
Vdif: 0 400 mV  
100  
100  
100  
140  
140  
150  
200  
200  
250  
ns  
ns  
ns  
activity detection time on pin  
TRXD  
activity detection time on bus  
pins  
tdet(idle)(TXEN)  
tdet(idle)(TRXD)  
tdet(idle)(bus)  
Star modes  
tto(idle-sleep)  
tto(tx-locked)  
idle detection time on pin TXEN star configuration  
idle detection time on pin TRXD star configuration  
100  
50  
140  
75  
200  
100  
250  
ns  
ns  
ns  
idle detection time on bus pins  
Vdif: 400 mV 0  
100  
150  
idle to sleep time-out time  
640  
2600  
2600  
64  
-
-
-
-
-
2660  
10400  
10400  
333  
ms  
µs  
µs  
ms  
µs  
transmit to locked time-out time  
receive to locked time-out time  
locked to sleep time-out time  
locked to idle time-out time  
tto(rx-locked)  
tto(locked-sleep)  
tto(locked-idle)  
Node modes  
td(STBN-RXD)  
td(STBN-INH2)  
th(gotosleep)  
Status register  
tdet(EN)  
1.4  
5.1  
STBN to RXD delay time  
STBN to INH2 delay time  
go-to-sleep hold time  
wake flag set  
-
1
2
µs  
µs  
µs  
-
3
10  
50  
20  
35  
detection time on pin EN  
time period on pin EN  
for mode control  
20  
4
-
80  
20  
2
µs  
µs  
µs  
TEN  
for reading status bits  
for reading status bits  
-
td(EN-ERRN)  
delay time from EN to ERRN  
-
0.8  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
34 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
Table 15. Dynamic characteristics …continued  
All parameters are guaranteed for VBAT = 6.5 V to 60 V; VCC = 4.75 V to 5.25 V; VBUF = 4.75 V to 5.25 V; VIO = 2.2 V to 5.25 V;  
Tvj = 40 °C to + 150 °C; Rbus = 45 ; RTRXD = 200 unless otherwise specified. All voltages are defined with respect to  
ground; positive currents flow into the IC[1].  
Symbol  
WAKE  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
twake(WAKE)  
wake-up time on pin WAKE  
low power mode; falling  
edge on pin WAKE;  
6.5 V < VBAT < 27 V  
5
25  
100  
µs  
low power mode; falling  
edge on pin WAKE;  
27 V < VBAT < 60 V  
25  
75  
-
175  
µs  
µs  
Miscellaneous  
tdetCL(TXEN_BGE) TXEN_BGE clamp detection  
time  
2600  
10400  
[1] At power-up VBAT should be supplied first. When VBAT reaches 6.5 V, VCC and VIO may be switched on with a delay of at least 60 µs with  
respect to VBAT  
.
[2] Rise and fall time (10 % to 90 %) of tr(TXD) and tf(TXD) = 5 ns.  
[3] Rise and fall time (10 % to 90 %) of tr(TRXD) and tf(TRXD) = 5 ns.  
[4] The worst case asymmetry from one branch to another is the sum of the delay difference from TRXD0 and TRXD1 to DATA_0 and  
DATA_1 plus the delay difference from DATA_0 and DATA_1 to TRXD0 and TRXD1. The TJA1080 should not be used in topologies with  
cascaded stars.  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
35 of 44  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx  
xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
t
t
t
d(BGE-busact)  
d(TXD-bus)  
d(TXEN-busact)  
t
t
t
d(TXD-bus)  
d(TXEN-busidle)  
d(BGE-busidle)  
0.7V  
0.3V  
IO  
IO  
TXD  
TXEN  
0.7V  
0.3V  
IO  
IO  
0.7V  
0.3V  
IO  
IO  
BGE  
90 %  
10 %  
+300 mV  
0 V  
300 mV  
BP and BM  
RXEN  
150 mV  
300 mV  
150 mV  
300 mV  
0.7V  
0.3V  
IO  
IO  
0.7V  
0.3V  
IO  
IO  
RXD  
t
t
t
t
t
t
t
t
f(dif)(bus)  
d(bus-RXD)  
d(bus-RXD)  
det(idle)(bus)  
det(act)(bus)  
det(idle)(bus)  
det(act)(bus)  
r(dif)(bus)  
001aae445  
Fig 10. Detailed timing diagram in node configuration  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
V
(mV)  
dif  
22.5 ns  
22.5 ns  
600  
300  
57.5 ns  
300  
600  
80 ns  
t  
t  
d(bus-RXD)  
d(bus-RXD)  
RXD  
V
(mV)  
dif  
22.5 ns  
22.5 ns  
600  
300  
57.5 ns  
300  
600  
80 ns  
t  
t  
d(bus-RXD)  
d(bus-RXD)  
RXD  
001aae446  
Vdif is the receiver test signal.  
Fig 11. Receiver test signal  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
37 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
12. Test information  
+12 V  
+5 V  
100  
nF  
10 µF  
22 µF  
4
19  
14  
20  
V
V
V
V
BUF  
IO  
CC  
BAT  
18  
BP  
R
L
C
L
17  
7
TJA1080  
BM  
RXD  
15 pF  
001aae447  
Fig 12. Test circuit for dynamic characteristics  
ISO 7637  
PULSE  
GENERATOR  
12 V or 42 V  
+5 V  
100  
nF  
10 µF  
10 µF  
4
19  
14  
20  
V
V
V
V
BUF  
IO  
CC  
BAT  
1 nF  
18  
17  
BP  
ISO 7637  
PULSE  
GENERATOR  
R
L
C
L
TJA1080  
BM  
1 nF  
001aae448  
The waveforms of the applied transients are in accordance with ISO 7637, test pulses 1, 2, 3a,  
3b, 4 and 5.  
Test conditions:  
Normal mode: bus idle  
Normal mode: bus active; TXD at 5 MHz and TXEN at 1 kHz  
Fig 13. Test circuit for automotive transients  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
38 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
13. Package outline  
SSOP20: plastic shrink small outline package; 20 leads; body width 5.3 mm  
SOT339-1  
D
E
A
X
c
H
v
M
A
y
E
Z
20  
11  
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
10  
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
max.  
8o  
0o  
0.21  
0.05  
1.80  
1.65  
0.38  
0.25  
0.20  
0.09  
7.4  
7.0  
5.4  
5.2  
7.9  
7.6  
1.03  
0.63  
0.9  
0.7  
0.9  
0.5  
mm  
2
0.65  
0.25  
1.25  
0.2  
0.13  
0.1  
Note  
1. Plastic or metal protrusions of 0.2 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT339-1  
MO-150  
Fig 14. Package outline SOT339-1 (SSOP20)  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
39 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
14. Soldering  
14.1 Introduction to soldering surface mount packages  
There is no soldering method that is ideal for all surface mount IC packages. Wave  
soldering can still be used for certain surface mount ICs, but it is not suitable for fine pitch  
SMDs. In these situations reflow soldering is recommended.  
14.2 Reflow soldering  
Reflow soldering requires solder paste (a suspension of fine solder particles, flux and  
binding agent) to be applied to the printed-circuit board by screen printing, stencilling or  
pressure-syringe dispensing before package placement. Driven by legislation and  
environmental forces the worldwide use of lead-free solder pastes is increasing.  
Several methods exist for reflowing; for example, convection or convection/infrared  
heating in a conveyor type oven. Throughput times (preheating, soldering and cooling)  
vary between 100 seconds and 200 seconds depending on heating method.  
Typical reflow temperatures range from 215 °C to 260 °C depending on solder paste  
material. The peak top-surface temperature of the packages should be kept below:  
Table 16. SnPb eutectic process - package peak reflow temperatures (from J-STD-020C  
July 2004)  
Package thickness  
< 2.5 mm  
Volume mm3 < 350  
240 °C + 0/5 °C  
225 °C + 0/5 °C  
Volume mm3 350  
225 °C + 0/5 °C  
225 °C + 0/5 °C  
2.5 mm  
Table 17. Pb-free process - package peak reflow temperatures (from J-STD-020C July  
2004)  
Package thickness  
Volume mm3 < 350  
Volume mm3 350 to  
2000  
Volume mm3 > 2000  
< 1.6 mm  
260 °C + 0 °C  
260 °C + 0 °C  
250 °C + 0 °C  
260 °C + 0 °C  
250 °C + 0 °C  
245 °C + 0 °C  
260 °C + 0 °C  
245 °C + 0 °C  
245 °C + 0 °C  
1.6 mm to 2.5 mm  
2.5 mm  
Moisture sensitivity precautions, as indicated on packing, must be respected at all times.  
14.3 Wave soldering  
Conventional single wave soldering is not recommended for surface mount devices  
(SMDs) or printed-circuit boards with a high component density, as solder bridging and  
non-wetting can present major problems.  
To overcome these problems the double-wave soldering method was specifically  
developed.  
If wave soldering is used the following conditions must be observed for optimal results:  
Use a double-wave soldering method comprising a turbulent wave with high upward  
pressure followed by a smooth laminar wave.  
For packages with leads on two sides and a pitch (e):  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
40 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
larger than or equal to 1.27 mm, the footprint longitudinal axis is preferred to be  
parallel to the transport direction of the printed-circuit board;  
smaller than 1.27 mm, the footprint longitudinal axis must be parallel to the  
transport direction of the printed-circuit board.  
The footprint must incorporate solder thieves at the downstream end.  
For packages with leads on four sides, the footprint must be placed at a 45° angle to  
the transport direction of the printed-circuit board. The footprint must incorporate  
solder thieves downstream and at the side corners.  
During placement and before soldering, the package must be fixed with a droplet of  
adhesive. The adhesive can be applied by screen printing, pin transfer or syringe  
dispensing. The package can be soldered after the adhesive is cured.  
Typical dwell time of the leads in the wave ranges from 3 seconds to 4 seconds at 250 °C  
or 265 °C, depending on solder material applied, SnPb or Pb-free respectively.  
A mildly-activated flux will eliminate the need for removal of corrosive residues in most  
applications.  
14.4 Manual soldering  
Fix the component by first soldering two diagonally-opposite end leads. Use a low voltage  
(24 V or less) soldering iron applied to the flat part of the lead. Contact time must be  
limited to 10 seconds at up to 300 °C.  
When using a dedicated tool, all other leads can be soldered in one operation within  
2 seconds to 5 seconds between 270 °C and 320 °C.  
14.5 Package related soldering information  
Table 18. Suitability of surface mount IC packages for wave and reflow soldering methods  
Package[1]  
Soldering method  
Wave  
Reflow[2]  
BGA, HTSSON..T[3], LBGA, LFBGA, SQFP,  
SSOP..T[3], TFBGA, VFBGA, XSON  
not suitable  
suitable  
DHVQFN, HBCC, HBGA, HLQFP, HSO, HSOP,  
HSQFP, HSSON, HTQFP, HTSSOP, HVQFN,  
HVSON, SMS  
not suitable[4]  
suitable  
PLCC[5], SO, SOJ  
suitable  
suitable  
LQFP, QFP, TQFP  
not recommended[5][6]  
not recommended[7]  
not suitable  
suitable  
SSOP, TSSOP, VSO, VSSOP  
CWQCCN..L[8], PMFP[9], WQCCN..L[8]  
suitable  
not suitable  
[1] For more detailed information on the BGA packages refer to the (LF)BGA Application Note (AN01026);  
order a copy from your Philips Semiconductors sales office.  
[2] All surface mount (SMD) packages are moisture sensitive. Depending upon the moisture content, the  
maximum temperature (with respect to time) and body size of the package, there is a risk that internal or  
external package cracks may occur due to vaporization of the moisture in them (the so called popcorn  
effect). For details, refer to the Drypack information in the Data Handbook IC26; Integrated Circuit  
Packages; Section: Packing Methods.  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
41 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
[3] These transparent plastic packages are extremely sensitive to reflow soldering conditions and must on no  
account be processed through more than one soldering cycle or subjected to infrared reflow soldering with  
peak temperature exceeding 217 °C ± 10 °C measured in the atmosphere of the reflow oven. The package  
body peak temperature must be kept as low as possible.  
[4] These packages are not suitable for wave soldering. On versions with the heatsink on the bottom side, the  
solder cannot penetrate between the printed-circuit board and the heatsink. On versions with the heatsink  
on the top side, the solder might be deposited on the heatsink surface.  
[5] If wave soldering is considered, then the package must be placed at a 45° angle to the solder wave  
direction. The package footprint must incorporate solder thieves downstream and at the side corners.  
[6] Wave soldering is suitable for LQFP, QFP and TQFP packages with a pitch (e) larger than 0.8 mm; it is  
definitely not suitable for packages with a pitch (e) equal to or smaller than 0.65 mm.  
[7] Wave soldering is suitable for SSOP, TSSOP, VSO and VSSOP packages with a pitch (e) equal to or larger  
than 0.65 mm; it is definitely not suitable for packages with a pitch (e) equal to or smaller than 0.5 mm.  
[8] Image sensor packages in principle should not be soldered. They are mounted in sockets or delivered  
pre-mounted on flex foil. However, the image sensor package can be mounted by the client on a flex foil by  
using a hot bar soldering process. The appropriate soldering profile can be provided on request.  
[9] Hot bar soldering or manual soldering is suitable for PMFP packages.  
15. Abbreviations  
Table 19. Abbreviations  
Abbreviation  
CAN  
Description  
Communications Area Network  
Charge Device Model  
ElectroMagnetic Compatibility  
ElectroMagnetic Emission  
ElectroMagnetic Interference  
ElectroStatic Discharge  
Human Body Model  
CDM  
EMC  
EME  
EMI  
ESD  
HBM  
MM  
Machine Model  
PWON  
Power-on  
16. References  
[1] EPL FlexRay Communications System Electrical Physical Layer Specification  
Version 2.1 Rev. A, FlexRay Consortium, Dec 2005  
[2] PS41 Product Specification: TJA1041; High speed CAN transceiver,  
www.semiconductors.philips.com  
[3] PS54 Product Specification: TJA1054; Fault-tolerant CAN transceiver,  
www.semiconductors.philips.com  
17. Revision history  
Table 20. Revision history  
Document ID  
Release date  
20060720  
Data sheet status  
Change notice  
Supersedes  
TJA1080_1  
Objective data sheet  
-
-
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
42 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
18. Legal information  
18.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.semiconductors.philips.com.  
malfunction of a Philips Semiconductors product can reasonably be expected  
18.2 Definitions  
to result in personal injury, death or severe property or environmental  
damage. Philips Semiconductors accepts no liability for inclusion and/or use  
of Philips Semiconductors products in such equipment or applications and  
therefore such inclusion and/or use is at the customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. Philips Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. Philips Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local Philips Semiconductors  
sales office. In case of any inconsistency or conflict with the short data sheet,  
the full data sheet shall prevail.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) may cause permanent  
damage to the device. Limiting values are stress ratings only and operation of  
the device at these or any other conditions above those given in the  
Characteristics sections of this document is not implied. Exposure to limiting  
values for extended periods may affect device reliability.  
Terms and conditions of sale — Philips Semiconductors products are sold  
subject to the general terms and conditions of commercial sale, as published  
at http://www.semiconductors.philips.com/profile/terms, including those  
pertaining to warranty, intellectual property rights infringement and limitation  
of liability, unless explicitly otherwise agreed to in writing by Philips  
18.3 Disclaimers  
General — Information in this document is believed to be accurate and  
reliable. However, Philips Semiconductors does not give any representations  
or warranties, expressed or implied, as to the accuracy or completeness of  
such information and shall have no liability for the consequences of use of  
such information.  
Semiconductors. In case of any inconsistency or conflict between information  
in this document and such terms and conditions, the latter will prevail.  
No offer to sell or license — Nothing in this document may be interpreted  
or construed as an offer to sell products that is open for acceptance or the  
grant, conveyance or implication of any license under any copyrights, patents  
or other industrial or intellectual property rights.  
Right to make changes — Philips Semiconductors reserves the right to  
make changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
18.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Suitability for use — Philips Semiconductors products are not designed,  
authorized or warranted to be suitable for use in medical, military, aircraft,  
space or life support equipment, nor in applications where failure or  
19. Contact information  
For additional information, please visit: http://www.semiconductors.philips.com  
For sales office addresses, send an email to: sales.addresses@www.semiconductors.philips.com  
TJA1080_1  
© Koninklijke Philips Electronics N.V. 2006. All rights reserved.  
Preliminary data sheet  
Rev. 01 — 20 July 2006  
43 of 44  
TJA1080  
Philips Semiconductors  
FlexRay transceiver  
20. Contents  
1
General description . . . . . . . . . . . . . . . . . . . . . . 1  
7.7.4  
7.7.5  
7.7.6  
7.7.7  
7.7.8  
7.7.9  
7.7.10  
7.7.11  
7.7.12  
7.7.13  
7.8  
Power-on flag . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Node or star configuration flag. . . . . . . . . . . . 22  
Temperature medium flag . . . . . . . . . . . . . . . 22  
Temperature high flag . . . . . . . . . . . . . . . . . . 22  
TXEN_BGE clamped flag. . . . . . . . . . . . . . . . 22  
Bus error flag . . . . . . . . . . . . . . . . . . . . . . . . . 22  
UVVBAT flag. . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
UVVCC flag . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
UVVIO flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Error flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
TRXD collision . . . . . . . . . . . . . . . . . . . . . . . . 23  
Status register . . . . . . . . . . . . . . . . . . . . . . . . 23  
2
2.1  
Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Optimized for time triggered communication  
systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Low power management . . . . . . . . . . . . . . . . . 2  
Diagnosis (detection and signalling). . . . . . . . . 2  
Protections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
2.2  
2.3  
2.4  
3
4
5
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
7.9  
8
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 25  
Thermal characteristics . . . . . . . . . . . . . . . . . 26  
Static characteristics . . . . . . . . . . . . . . . . . . . 27  
Dynamic characteristics. . . . . . . . . . . . . . . . . 33  
Test information. . . . . . . . . . . . . . . . . . . . . . . . 38  
Package outline . . . . . . . . . . . . . . . . . . . . . . . . 39  
9
7
7.1  
Functional description . . . . . . . . . . . . . . . . . . . 6  
Operating configurations. . . . . . . . . . . . . . . . . . 6  
Node configuration . . . . . . . . . . . . . . . . . . . . . . 6  
Star configuration . . . . . . . . . . . . . . . . . . . . . . . 6  
Bus activity and idle detection . . . . . . . . . . . . . 7  
Operating modes in node configuration . . . . . . 7  
Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Receive only mode . . . . . . . . . . . . . . . . . . . . . 14  
Standby mode. . . . . . . . . . . . . . . . . . . . . . . . . 14  
Go-to-sleep mode. . . . . . . . . . . . . . . . . . . . . . 14  
Sleep mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Operating modes in star configuration . . . . . . 15  
Star Idle mode . . . . . . . . . . . . . . . . . . . . . . . . 17  
Star Transmit mode. . . . . . . . . . . . . . . . . . . . . 18  
Star Receive mode . . . . . . . . . . . . . . . . . . . . . 18  
Star Standby mode. . . . . . . . . . . . . . . . . . . . . 18  
Star Sleep mode. . . . . . . . . . . . . . . . . . . . . . . 18  
Star Locked mode. . . . . . . . . . . . . . . . . . . . . . 19  
Start-up. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Node configuration . . . . . . . . . . . . . . . . . . . . . 19  
Star configuration . . . . . . . . . . . . . . . . . . . . . . 19  
Wake-up mechanism . . . . . . . . . . . . . . . . . . . 19  
Node configuration . . . . . . . . . . . . . . . . . . . . . 19  
Star configuration . . . . . . . . . . . . . . . . . . . . . . 19  
Bus wake-up. . . . . . . . . . . . . . . . . . . . . . . . . . 20  
Local wake-up via pin WAKE . . . . . . . . . . . . . 20  
Fail silent behavior . . . . . . . . . . . . . . . . . . . . . 20  
10  
11  
12  
13  
14  
14.1  
7.1.1  
7.1.2  
7.1.3  
7.2  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.3  
7.3.1  
7.3.2  
7.3.3  
7.3.4  
7.3.5  
7.3.6  
7.4  
7.4.1  
7.4.2  
7.5  
Soldering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Introduction to soldering surface mount  
packages . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . . 40  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . . 40  
Manual soldering . . . . . . . . . . . . . . . . . . . . . . 41  
Package related soldering information. . . . . . 41  
14.2  
14.3  
14.4  
14.5  
15  
16  
17  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 42  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 42  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 42  
18  
Legal information . . . . . . . . . . . . . . . . . . . . . . 43  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 43  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 43  
18.1  
18.2  
18.3  
18.4  
19  
20  
Contact information . . . . . . . . . . . . . . . . . . . . 43  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
7.5.1  
7.5.2  
7.5.3  
7.5.4  
7.6  
7.6.1  
7.6.2  
7.6.3  
7.7  
7.7.1  
7.7.2  
7.7.3  
V
V
V
BAT undervoltage. . . . . . . . . . . . . . . . . . . . . . 21  
CC undervoltage . . . . . . . . . . . . . . . . . . . . . . 21  
IO undervoltage. . . . . . . . . . . . . . . . . . . . . . . 21  
Flags. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21  
Local wake-up source flag . . . . . . . . . . . . . . . 21  
Remote wake-up source flag . . . . . . . . . . . . . 21  
Wake flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© Koninklijke Philips Electronics N.V. 2006.  
All rights reserved.  
For more information, please visit: http://www.semiconductors.philips.com.  
For sales office addresses, email to: sales.addresses@www.semiconductors.philips.com.  
Date of release: 20 July 2006  
Document identifier: TJA1080_1  

相关型号:

TJA1080A

FlexRay transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080ATS/1

FlexRay transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080ATS/2/T

IC SPECIALTY INTERFACE CIRCUIT, PDSO20, 5.30 MM, PLASTIC, MO-150, SOT339-1, SSOP-20, Interface IC:Other

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080ATS2

FlexRay transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080A_11

FlexRay transceiver Support of 60 ns minimum bit time

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080TS

FlexRay transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080TS,118

TJA1080 - FlexRay transceiver SSOP2 20-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080TS,512

TJA1080 - FlexRay transceiver SSOP2 20-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080TS,518

TJA1080 - FlexRay transceiver SSOP2 20-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080TS/N

FlexRay transceiver

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080TS/N,118

TJA1080 - FlexRay transceiver SSOP2 20-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

TJA1080TS/N/C,512

TJA1080 - FlexRay transceiver SSOP2 20-Pin

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP