TZA3013 [NXP]

SDH/SONET STM16/OC48 transimpedance amplifier; SDH / SONET STM16 / OC48互阻放大器
TZA3013
型号: TZA3013
厂家: NXP    NXP
描述:

SDH/SONET STM16/OC48 transimpedance amplifier
SDH / SONET STM16 / OC48互阻放大器

放大器
文件: 总16页 (文件大小:105K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
INTEGRATED CIRCUITS  
DATA SHEET  
TZA3013A; TZA3013B  
SDH/SONET STM16/OC48  
transimpedance amplifier  
Product specification  
2001 Feb 26  
Supersedes data of 2000 Jun 19  
File under Integrated Circuits, IC19  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48  
transimpedance amplifier  
TZA3013A; TZA3013B  
FEATURES  
APPLICATIONS  
Low equivalent input noise, typically 8 pA/Hz  
Wide dynamic range, typically 6 µA to 1.7 mA (p-p)  
Differential transimpedance of 4 kΩ  
Bandwidth from DC to 1.9 GHz  
Differential outputs  
Digital fibre optic receiver in short, medium and long  
haul optical telecommunications transmission systems  
or in high speed data networks  
Wide-band RF gain block.  
GENERAL DESCRIPTION  
On-chip Automatic Gain Control (AGC)  
No external components required  
Single supply voltage 3.3 V  
The TZA3013 is a transimpedance amplifier with AGC,  
designed to be used in STM16/OC48 fibre-optic links.  
It amplifies the current generated by a photo detector  
(PIN diode or avalanche photodiode) and converts it to a  
differential output voltage.  
Bias voltage for PIN diode  
Remains linear up to 1.7 mA (p-p) input current  
(unclipped)  
Switched output polarity available (types A and B).  
ORDERING INFORMATION  
TYPE  
PACKAGE  
NUMBER  
NAME  
DESCRIPTION  
VERSION  
TZA3013AU  
TZA3013BU  
bare die in waffle pack carriers; die dimensions 0.810 × 1.230 mm  
bare die in waffle pack carriers; die dimensions 0.810 × 1.230 mm  
2001 Feb 26  
2
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48  
transimpedance amplifier  
TZA3013A; TZA3013B  
BLOCK DIAGRAM  
AGC  
4
PILOT  
12  
V
CC  
15  
V
100 pF  
DREF  
V
CC  
CC  
270  
GAIN  
CONTROL  
PEAK  
DETECTOR  
1
2
50  
50  
TZA3013AU  
2 k  
14  
OUTSENSE  
IN  
13  
OUT  
6
OUTQ  
2 kΩ  
low noise  
amplifier  
5
single-ended to  
differential converter  
OUTQSENSE  
BIAS  
SOURCE  
7, 8  
GNDA  
10  
3
9
11  
MGT099  
GNDD  
INQ  
TESTC TESTD  
Fig.1 Block diagram of TZA3013AU (bare die only).  
AGC  
4
PILOT  
12  
V
CC  
15  
V
100 pF  
DREF  
V
CC  
CC  
270  
GAIN  
CONTROL  
PEAK  
DETECTOR  
1
2
50  
50  
TZA3013BU  
2 kΩ  
5
OUTSENSE  
IN  
6
OUT  
13  
OUTQ  
2 kΩ  
low noise  
amplifier  
14  
single-ended to  
differential converter  
OUTQSENSE  
BIAS  
SOURCE  
7, 8  
GNDA  
10  
3
9
11  
MGU137  
GNDD  
INQ  
TESTC TESTD  
Fig.2 Block diagram of TZA3013BU (bare die only).  
3
2001 Feb 26  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48  
transimpedance amplifier  
TZA3013A; TZA3013B  
PINNING  
PAD  
PAD  
SYMBOL  
DREF  
TYPE  
DESCRIPTION  
TZA3013AU TZA3013BU  
1
2
1
2
analog bias voltage output for PIN diode; connect cathode of  
output  
PIN diode to this pad  
IN  
input  
current input; anode of PIN diode should be connected to  
this pad; note 1  
INQ  
3
4
3
4
input  
decision level adjust input; note 1  
AGC  
analog AGC voltage  
output  
OUTQSENSE  
5
14  
analog data sense output for OUTQ; for test purposes  
output  
OUTQ  
GNDA  
GNDA  
TESTC  
GNDD  
TESTD  
PILOT  
6
7
13  
7
output  
data output; compliment of OUT  
ground analog ground  
ground analog ground  
8
8
9
9
input  
test input; not used in the application  
10  
11  
12  
10  
11  
12  
ground digital ground  
input  
test input; not used in the application  
analog pilot tone detection current output  
output  
OUT  
13  
14  
6
5
output  
data output; compliment of OUTQ; note 2  
OUTSENSE  
analog data sense output for OUT; for test purposes  
output  
VCC  
15  
15  
supply  
supply voltage  
Notes  
1. DC bias voltage = 0.86 V.  
2. This pad goes HIGH when current flows into pad IN.  
2001 Feb 26  
4
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48  
transimpedance amplifier  
TZA3013A; TZA3013B  
FUNCTIONAL DESCRIPTION  
The TZA3013 has a wide dynamic range to handle the  
signal current generated by the PIN diode which can vary  
from 6 µA to 1.7 mA (p-p). This is implemented by an AGC  
loop which reduces the preamplifier feedback resistance  
so that the amplifier remains linear over the whole input  
range. The AGC loop hold capacitor is integrated on-chip,  
so an external capacitor is not required.  
The TZA3013 is a transimpedance amplifier intended for  
use in fibre optic links for signal recovery in STM16/OC48  
applications. It amplifies the current generated by a photo  
detector (PIN diode or avalanche photodiode) and  
converts it to a differential output voltage.  
The most important characteristics of the TZA3013 are  
high receiver sensitivity and wide dynamic range. High  
receiver sensitivity is achieved by minimizing  
transimpedance amplifier noise.  
A differential amplifier converts the output of the  
preamplifier to a differential voltage. The data output circuit  
is shown in Fig.3.  
The logic level symbol definitions are shown in Fig.4.  
V
CC  
50  
50 Ω  
2 kΩ  
2 kΩ  
OUTSENSE  
OUTQSENSE  
OUTQ  
OUT  
16 Ω  
16 Ω  
MGT102  
Fig.3 Data output circuit.  
V
V
CC  
V
O(max)  
V
OQH  
V
OH  
o(p-p)  
V
OQL  
V
OO  
V
OL  
V
O(min)  
MGR243  
Fig.4 Logic level symbol definitions for data outputs OUT and OUTQ.  
5
2001 Feb 26  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48  
transimpedance amplifier  
TZA3013A; TZA3013B  
PIN diode bias voltage DREF  
Pad DREF provides an easy bias voltage for the  
PIN diode. The voltage at DREF is derived from VCC by a  
low-pass filter comprising internal resistor R1 and external  
capacitor C2 which decouples any supply voltage noise.  
The value of external capacitor C2 affects the value of  
PSRR and should have a minimum value of 100 pF.  
Increasing this value increases the value of PSRR.  
The performance of an optical receiver is largely  
determined by the combined effect of the transimpedance  
amplifier and the PIN diode. In particular, the method used  
to connect the PIN diode to the input and the layout around  
the input pad strongly influences the main parameters of a  
transimpedance amplifier, such as sensitivity, bandwidth,  
and PSRR. Sensitivity is most affected by the value of the  
total capacitance at the input pad. Therefore, to obtain the  
highest possible sensitivity requires the value of total  
capacitance to be as low as possible by reducing the  
capacitance of the PIN diode and the parasitics around the  
input pad. To minimize parasitics, the PIN diode should be  
placed as close as physically possible to the IC. The  
capacitance of the PIN diode can be reduced by making  
the value of reverse voltage across it as high as possible.  
For a supply voltage of 3.3 V, the reverse voltage across  
the PIN diode is 2.438 V (3.3 V 0.862 V). It is preferable  
to connect the cathode of the PIN diode to a voltage higher  
than VCC if there is one available on the PCB, leaving  
pad DREF unconnected. If a negative supply voltage is  
available, the configuration shown in Fig.6 can be used.  
It should be noted that in this configuration, the direction of  
the signal current is reversed to that shown in Fig.5. It is  
essential that the PIN diode bias voltage is correctly  
filtered to achieve the highest possible level of sensitivity.  
The PIN diode can be connected to the input in two ways.  
Figure 5 shows the PIN diode connected between  
pads DREF and IN.  
V
CC  
V
handbook, halfpage  
CC  
handbook, halfpage  
30  
30  
1
2
DREF  
IN  
R1  
1
2
DREF  
IN  
270 Ω  
270 Ω  
C2  
100 pF  
I
i
I
i
TZA3013  
TZA3013  
MGT103  
MGU120  
negative supply  
Fig.5 The PIN diode connected between the input  
and pad DREF.  
Fig.6 The PIN diode connected between the input  
and a negative supply voltage.  
2001 Feb 26  
6
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48  
transimpedance amplifier  
TZA3013A; TZA3013B  
AGC  
When the AGC is inactive, the transimpedance is at its  
maximum value of 4 kdifferential. When the AGC is  
active, the feedback resistor value of the transimpedance  
amplifier is reduced, reducing its transimpedance, to keep  
the output voltage constant. The transimpedance is  
regulated from 4 kat low currents (Ii < 50 µA) to 80 at  
high currents (Ii = 1.7mA). The AGC allows the amplifier to  
remain linear over the whole input current range compared  
to other configurations which clip the large signals, such as  
those using Schottky diodes, for example.  
The TZA3013 transimpedance amplifier can handle input  
currents from 6 µA to 1.7 mA which is equivalent to a  
dynamic range of 49 dB. At low input currents, the  
transimpedance must be high to obtain enough output  
voltage, and the noise should be low enough to guarantee  
a minimum bit error rate. At high input currents however,  
the transimpedance should be low to avoid pulse width  
distortion. To achieve the wide dynamic range requires the  
gain of the amplifier to depend on the level of the input  
signal. This is achieved in the TZA3013 by an AGC loop.  
The top half of Fig.7 shows the output voltage at pads OUT  
and OUTQ (VOUT and VOUTQ) as a function of DC input  
current (II) at a supply voltage of 3.3 V. The bottom half of  
Fig.7 shows the difference between VOUT and VOUTQ. The  
output voltage changes linearly up to an input current of  
50 µA. At this point and above, the AGC becomes active  
and tries to keep the differential output voltage constant,  
which is about 220 mV for a large range input current of  
<1.7 mA.  
The AGC loop comprises a peak detector, a hold capacitor  
and a gain control circuit. The peak detector detects the  
amplitude of the signal and the hold capacitor stores it. The  
hold capacitor voltage is compared to a threshold voltage  
which corresponds to an input current of 50 µA (p-p). The  
AGC is only active when the input signal level is larger than  
the threshold level and is inactive when the input signal is  
smaller than the threshold level.  
MGT104  
3.2  
V
o
V
(V)  
3.1  
OUT  
3.0  
2.9  
V
= 3.3 V  
CC  
V
OUTQ  
2.8  
300  
V
o(dif)  
(mV)  
200  
100  
0
2
3
4
1
10  
10  
10  
10  
I (µA)  
i
Vo(dif) = VOUT VOUTQ  
Fig.7 AGC characteristics.  
7
2001 Feb 26  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48  
transimpedance amplifier  
TZA3013A; TZA3013B  
LIMITING VALUES  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
SYMBOL  
PARAMETER  
MIN.  
0.5  
MAX.  
+3.8  
UNIT  
VCC  
Vn  
supply voltage  
V
DC voltage  
pads IN and INQ  
pads OUT and OUTQ  
0.5  
0.5  
0.5  
0.5  
0.5  
+2.0  
V
V
V
V
V
V
CC + 0.5  
CC + 0.5  
pads OUTSENSE and OUTQSENSE  
pad PILOT  
V
VCC + 0.5  
VCC + 0.5  
pad DREF  
In  
DC current  
pads IN and INQ  
pads OUT and OUTQ  
pad PILOT  
4.0  
10  
0.2  
4.0  
+4.0  
+10  
+0.2  
+4.0  
300  
mA  
mA  
mA  
mA  
mW  
°C  
pad DREF  
Ptot  
Tstg  
Tj  
total power dissipation  
storage temperature  
junction temperature  
ambient temperature  
65  
+150  
150  
°C  
Tamb  
40  
+85  
°C  
HANDLING  
Inputs and outputs are protected against electrostatic discharge in normal handling. However it is good practice to take  
normal precautions appropriate to handling MOS devices (see “Handling MOS devices”).  
CHARACTERISTICS  
Typical values at Tj = 25 °C and VCC = 3.3 V; minimum and maximum values are valid over the entire ambient  
temperature range and supply range; all voltages are measured with respect to ground; unless otherwise specified.  
SYMBOL  
PARAMETER  
supply voltage  
CONDITIONS  
MIN.  
3.0  
TYP.  
MAX.  
3.6  
UNIT  
VCC  
ICC  
3.3  
26  
V
supply current  
AC-coupled; RL = 50 ;  
38  
mA  
without input signal  
Ptot  
Tj  
total power dissipation  
junction temperature  
ambient temperature  
VCC = 3.3 V  
85.8  
134  
mW  
°C  
40  
40  
+125  
+85  
Tamb  
Rtr  
+25  
°C  
small-signaltransresistance measured differentially;  
of the receiver  
AC-coupled  
RL = ∞  
3.6  
1.8  
1.7  
7
10  
5.0  
kΩ  
RL = 50 Ω  
3.5  
1.9  
425  
kΩ  
f3dB(h)  
high frequency 3 dB point Ci = 0.5 pF  
GHz  
nA  
In(tot)(rms)  
total integrated RMS noise referenced to input;  
current over bandwidth  
fi = 1.8 GHz third-order  
Bessel filter; note 1  
2001 Feb 26  
8
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48  
transimpedance amplifier  
TZA3013A; TZA3013B  
SYMBOL  
PARAMETER  
CONDITIONS  
MIN.  
TYP.  
MAX.  
UNIT  
PSRR  
power supply rejection ratio measured differentially;  
note 2  
fi = 100 kHz to 100 MHz  
fi = 3 GHz  
38  
µA/V  
3.2  
mA/V  
Automatic gain control loop: AGC  
tatt  
AGC attack time  
AGC decay time  
10  
10  
50  
µs  
µs  
µA  
tdecay  
Ith(AGC)(p-p) AGC threshold current  
(peak-to-peak value)  
referenced to input  
tested at DC level  
Bias voltage: DREF  
RDREF  
resistance between DREF  
and VCC  
240  
270  
340  
Inputs: IN and INQ  
Ii(p-p)  
input current  
1700  
+1700  
µA  
(peak-to-peak value)  
VI(bias)  
Ri  
input bias voltage  
700  
860  
53  
1100  
mV  
small-signal input  
resistance  
tested at 1 MHz;  
Ii < 20 µA (p-p)  
Data outputs: OUT and OUTQ  
Vo(cm)  
common mode output  
voltage  
AC-coupled; RL = 50 Ω  
VCC 0.5 VCC 0.25 VCC 0.1  
V
Vo(se)(p-p)  
single-ended load output  
voltage (peak-to-peak  
value)  
AC-coupled; RL = 50 ;  
Ii = 100 µA (p-p)  
45  
110  
0
200  
mV  
VOO  
differential output offset  
voltage  
100  
+100  
mV  
Ro  
tr  
output resistance  
rise time  
single-ended; DC tested  
20% to 80%  
40  
53  
65  
200  
200  
ps  
ps  
tf  
fall time  
80% to 20%  
Notes  
1. Measurement performed with Ci = 0.5 pF comprising 0.4 pF (photodiode) and 0.1 pF (allowed for PCB layout).  
2. PSRR is defined as the ratio of change in input current (Ii) corresponding to change in supply voltage (VCC):  
Ii  
PSRR =  
--------------  
VCC  
For example, a 4 mV disturbance on VCC at 10 MHz will typically add an extra 120 nA to Ii (photodiode output  
current). The value of the external capacitor connected between pads DREF and GND has a significant effect on the  
value of PSRR. The specification is valid with an external capacitor of 1 nF.  
2001 Feb 26  
9
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48  
transimpedance amplifier  
TZA3013A; TZA3013B  
TYPICAL PERFORMANCE CHARACTERISTICS  
MGT105  
MGT106  
33  
CC  
(mA)  
31  
31  
handbook, halfpage  
handbook, halfpage  
(1)  
I
I
CC  
(mA)  
29  
29  
27  
25  
23  
(2)  
27  
25  
23  
(3)  
21  
40  
21  
3.0  
0
40  
80  
120  
T (°C)  
160  
3.2  
3.4  
3.6  
V
(V)  
CC  
j
(1) VCC = 3.6 V.  
(2) VCC = 3.3 V.  
(3) VCC = 3.0 V.  
Tj = 25 °C.  
Fig.8 Supply current as a function of the junction  
temperature.  
Fig.9 Supply current as a function of the supply  
voltage.  
MGT108  
MGT107  
965  
I(bias)  
866  
handbook, halfpage  
V
handbook, halfpage  
V
(mV)  
925  
I(bias)  
(mV)  
864  
885  
845  
805  
862  
860  
858  
765  
(1)  
(2)  
(3)  
725  
40  
0
40  
80  
120  
T (°C)  
160  
3.0  
3.2  
3.4  
3.6  
V
(V)  
CC  
j
(1) VCC = 3.6 V.  
(2) VCC = 3.3 V.  
(3) VCC = 3.0 V.  
Tj = 25 °C.  
Fig.10 Input bias voltage as a function of the  
supply voltage.  
Fig.11 Input bias voltage as a function of the  
junction temperature.  
2001 Feb 26  
10  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48  
transimpedance amplifier  
TZA3013A; TZA3013B  
MGT110  
(1)  
MGT109  
340  
290  
handbook, halfpage  
handbook, halfpage  
V
V
o(cm)  
(mV)  
o(cm)  
(mV)  
270  
(1)  
(2)  
300  
250  
230  
210  
(2)  
(3)  
260  
220  
180  
40  
190  
3.0  
0
40  
80  
120  
T (°C)  
160  
3.2  
3.4  
3.6  
V
(V)  
CC  
j
(1) VCC = 3.6 V.  
(2)  
VCC = 3.3 V.  
Tj = 25 °C.  
(3) VCC = 3.0 V.  
(1)  
(2)  
V
CC VOUT  
.
VCC VOUTQ  
.
Fig.13 Common mode output voltage as a function  
of the junction temperature referenced to  
Fig.12 Common mode output voltage as a function  
of the supply voltage referenced to VCC  
.
VCC.  
2001 Feb 26  
11  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48  
transimpedance amplifier  
TZA3013A; TZA3013B  
APPLICATION AND TEST INFORMATION  
10 µH  
V
P
1 nF  
680 nF  
V
CC  
15  
transmission  
DREF  
IN  
line  
1
2
100 nF  
100 nF  
OUT  
Z
Z
= 50 Ω  
13  
o
o
TZA3013A  
100  
pF  
OUTQ  
= 50 Ω  
6
R3  
R4  
50 Ω  
50 Ω  
7, 8, 10  
GND  
MGT112  
Fig.14 Application diagram.  
NETWORK ANALYZER  
S-PARAMETER TEST SET  
PORT 1  
PORT 2  
Z
= 50 Ω  
Z
= 50 Ω  
o
o
V
CC  
100 nF  
100 nF  
PATTERN  
GENERATOR  
OUT  
10 nF  
330 Ω  
SAMPLING OSC  
IN  
TZA3013  
OUTQ  
GND  
R
1
2
trigger  
input  
23  
2
1 PRBS  
60 Ω  
DATA  
Z
= 50 Ω  
o
23  
2
1 PRBS CLOCK  
MGT113  
Total impedance of the test circuit = ZT and is calculated by the equation ZT = s21 × (R + ZIN) × 2  
where s21 is the insertion loss of ports 1 and 2.  
Typical values: R = 330 , ZIN = 73 .  
Fig.15 Test circuit.  
2001 Feb 26  
12  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48  
transimpedance amplifier  
TZA3013A; TZA3013B  
BONDING PAD LOCATIONS  
COORDINATES(1)  
y
SYMBOL  
DREF  
PAD TZA3013AU  
PAD TZA3013BU  
x
1
2
1
2
440  
440  
440  
266  
40  
+155  
+10  
IN  
INQ  
3
3
157  
255  
255  
+255  
255  
+255  
255  
255  
79  
AGC  
4
4
OUTQSENSE  
5
14  
40  
OUTQ  
6
+116  
+110  
+256  
+398  
+448  
+448  
+410  
+260  
+110  
+116  
40  
13  
7
GNDA  
GNDA  
TESTC  
GNDD  
TESTD  
PILOT  
OUT  
7
8
8
9
9
10  
11  
12  
13  
10  
11  
12  
+70  
+255  
+255  
+255  
255  
+255  
255  
+255  
6
OUTSENSE  
14  
5
40  
VCC  
15  
15  
266  
Note  
1. All coordinates are referenced, in µm, to the centre of the die.  
2001 Feb 26  
13  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48  
transimpedance amplifier  
TZA3013A; TZA3013B  
handbook, halfpage  
handbook, halfpage  
15  
14 13 12 11  
15  
14 13 12 11  
DREF  
IN  
1
2
3
TZA3013AU  
DREF  
10  
GNDD  
1
2
3
TZA3013BU  
x
810  
µm  
10  
GNDD  
x
0
810  
IN  
9
TESTC  
0
5
µm  
0
INQ  
9
TESTC  
y
0
5
INQ  
y
4
6
7
8
4
6
7
8
1230 µm  
MGT101  
1230 µm  
MGT167  
Fig.16 Bonding pad locations of the TZA3013AU.  
Fig.17 Bonding pad locations of the TZA3013BU.  
Physical characteristics of the bare die  
PARAMETER  
VALUE  
Glass passivation  
0.3 µm PSG (PhosphoSilicate Glass) on top of 0.8 µm silicon nitride  
Bonding pad dimension  
minimum dimension of exposed metallization is 90 × 90 µm (pad size = 100 × 100 µm)  
except pads 2 and 3 which have exposed metallization of 80 × 80 µm  
(pad size = 90 × 90 µm)  
Metallization  
Thickness  
Size  
2.8 µm AlCu  
380 µm nominal  
0.810 × 1.230 mm (0.996 mm2)  
Backing  
silicon; electrically connected to GND potential through substrate contacts  
<440 °C; recommended die attach is glue  
<15 s  
Attach temperature  
Attach time  
2001 Feb 26  
14  
Philips Semiconductors  
Product specification  
SDH/SONET STM16/OC48  
transimpedance amplifier  
TZA3013A; TZA3013B  
DATA SHEET STATUS  
PRODUCT  
DATA SHEET STATUS  
STATUS  
DEFINITIONS (1)  
Objective specification  
Development This data sheet contains the design target or goal specifications for  
product development. Specification may change in any manner without  
notice.  
Preliminary specification Qualification  
This data sheet contains preliminary data, and supplementary data will be  
published at a later date. Philips Semiconductors reserves the right to  
make changes at any time without notice in order to improve design and  
supply the best possible product.  
Product specification  
Production  
This data sheet contains final specifications. Philips Semiconductors  
reserves the right to make changes at any time without notice in order to  
improve design and supply the best possible product.  
Note  
1. Please consult the most recently issued data sheet before initiating or completing a design.  
DEFINITIONS  
Right to make changes  
Philips Semiconductors  
reserves the right to make changes, without notice, in the  
products, including circuits, standard cells, and/or  
software, described or contained herein in order to  
improve design and/or performance. Philips  
Semiconductors assumes no responsibility or liability for  
the use of any of these products, conveys no licence or title  
under any patent, copyright, or mask work right to these  
products, and makes no representations or warranties that  
these products are free from patent, copyright, or mask  
work right infringement, unless otherwise specified.  
Short-form specification  
The data in a short-form  
specification is extracted from a full data sheet with the  
same type number and title. For detailed information see  
the relevant data sheet or data handbook.  
Limiting values definition Limiting values given are in  
accordance with the Absolute Maximum Rating System  
(IEC 60134). Stress above one or more of the limiting  
values may cause permanent damage to the device.  
These are stress ratings only and operation of the device  
at these or at any other conditions above those given in the  
Characteristics sections of the specification is not implied.  
Exposure to limiting values for extended periods may  
affect device reliability.  
BARE DIE DISCLAIMER  
All die are tested and are guaranteed to comply with all  
data sheet limits up to the point of wafer sawing for a  
period of ninety (90) days from the date of Philips' delivery.  
If there are data sheet limits not guaranteed, these will be  
separately indicated in the data sheet. There is no post  
waffle pack testing performed on individual die. Although  
the most modern processes are utilized for wafer sawing  
and die pick and place into waffle pack carriers, Philips  
Semiconductors has no control of third party procedures in  
the handling, packing or assembly of the die. Accordingly,  
Philips Semiconductors assumes no liability for device  
functionality or performance of the die or systems after  
handling, packing or assembly of the die. It is the  
responsibility of the customer to test and qualify their  
application in which the die is used.  
Application information  
Applications that are  
described herein for any of these products are for  
illustrative purposes only. Philips Semiconductors make  
no representation or warranty that such applications will be  
suitable for the specified use without further testing or  
modification.  
DISCLAIMERS  
Life support applications  
These products are not  
designed for use in life support appliances, devices, or  
systems where malfunction of these products can  
reasonably be expected to result in personal injury. Philips  
Semiconductors customers using or selling these products  
for use in such applications do so at their own risk and  
agree to fully indemnify Philips Semiconductors for any  
damages resulting from such application.  
2001 Feb 26  
15  
Philips Semiconductors – a worldwide company  
Argentina: see South America  
Netherlands: Postbus 90050, 5600 PB EINDHOVEN, Bldg. VB,  
Tel. +31 40 27 82785, Fax. +31 40 27 88399  
Australia: 3 Figtree Drive, HOMEBUSH, NSW 2140,  
Tel. +61 2 9704 8141, Fax. +61 2 9704 8139  
New Zealand: 2 Wagener Place, C.P.O. Box 1041, AUCKLAND,  
Tel. +64 9 849 4160, Fax. +64 9 849 7811  
Austria: Computerstr. 6, A-1101 WIEN, P.O. Box 213,  
Tel. +43 1 60 101 1248, Fax. +43 1 60 101 1210  
Norway: Box 1, Manglerud 0612, OSLO,  
Tel. +47 22 74 8000, Fax. +47 22 74 8341  
Belarus: Hotel Minsk Business Center, Bld. 3, r. 1211, Volodarski Str. 6,  
220050 MINSK, Tel. +375 172 20 0733, Fax. +375 172 20 0773  
Pakistan: see Singapore  
Belgium: see The Netherlands  
Brazil: see South America  
Philippines: Philips Semiconductors Philippines Inc.,  
106 Valero St. Salcedo Village, P.O. Box 2108 MCC, MAKATI,  
Metro MANILA, Tel. +63 2 816 6380, Fax. +63 2 817 3474  
Bulgaria: Philips Bulgaria Ltd., Energoproject, 15th floor,  
51 James Bourchier Blvd., 1407 SOFIA,  
Tel. +359 2 68 9211, Fax. +359 2 68 9102  
Poland: Al.Jerozolimskie 195 B, 02-222 WARSAW,  
Tel. +48 22 5710 000, Fax. +48 22 5710 001  
Portugal: see Spain  
Romania: see Italy  
Canada: PHILIPS SEMICONDUCTORS/COMPONENTS,  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
China/Hong Kong: 501 Hong Kong Industrial Technology Centre,  
72 Tat Chee Avenue, Kowloon Tong, HONG KONG,  
Tel. +852 2319 7888, Fax. +852 2319 7700  
Russia: Philips Russia, Ul. Usatcheva 35A, 119048 MOSCOW,  
Tel. +7 095 755 6918, Fax. +7 095 755 6919  
Singapore: Lorong 1, Toa Payoh, SINGAPORE 319762,  
Colombia: see South America  
Czech Republic: see Austria  
Tel. +65 350 2538, Fax. +65 251 6500  
Slovakia: see Austria  
Slovenia: see Italy  
Denmark: Sydhavnsgade 23, 1780 COPENHAGEN V,  
Tel. +45 33 29 3333, Fax. +45 33 29 3905  
South Africa: S.A. PHILIPS Pty Ltd., 195-215 Main Road Martindale,  
2092 JOHANNESBURG, P.O. Box 58088 Newville 2114,  
Tel. +27 11 471 5401, Fax. +27 11 471 5398  
Finland: Sinikalliontie 3, FIN-02630 ESPOO,  
Tel. +358 9 615 800, Fax. +358 9 6158 0920  
France: 51 Rue Carnot, BP317, 92156 SURESNES Cedex,  
Tel. +33 1 4099 6161, Fax. +33 1 4099 6427  
South America: Al. Vicente Pinzon, 173, 6th floor,  
04547-130 SÃO PAULO, SP, Brazil,  
Tel. +55 11 821 2333, Fax. +55 11 821 2382  
Germany: Hammerbrookstraße 69, D-20097 HAMBURG,  
Tel. +49 40 2353 60, Fax. +49 40 2353 6300  
Spain: Balmes 22, 08007 BARCELONA,  
Tel. +34 93 301 6312, Fax. +34 93 301 4107  
Hungary: Philips Hungary Ltd., H-1119 Budapest, Fehervari ut 84/A,  
Tel: +36 1 382 1700, Fax: +36 1 382 1800  
Sweden: Kottbygatan 7, Akalla, S-16485 STOCKHOLM,  
Tel. +46 8 5985 2000, Fax. +46 8 5985 2745  
India: Philips INDIA Ltd, Band Box Building, 2nd floor,  
254-D, Dr. Annie Besant Road, Worli, MUMBAI 400 025,  
Tel. +91 22 493 8541, Fax. +91 22 493 0966  
Switzerland: Allmendstrasse 140, CH-8027 ZÜRICH,  
Tel. +41 1 488 2741 Fax. +41 1 488 3263  
Indonesia: PT Philips Development Corporation, Semiconductors Division,  
Gedung Philips, Jl. Buncit Raya Kav.99-100, JAKARTA 12510,  
Tel. +62 21 794 0040 ext. 2501, Fax. +62 21 794 0080  
Taiwan: Philips Semiconductors, 5F, No. 96, Chien Kuo N. Rd., Sec. 1,  
TAIPEI, Taiwan Tel. +886 2 2134 2451, Fax. +886 2 2134 2874  
Thailand: PHILIPS ELECTRONICS (THAILAND) Ltd.,  
60/14 MOO 11, Bangna Trad Road KM. 3, Bagna, BANGKOK 10260,  
Tel. +66 2 361 7910, Fax. +66 2 398 3447  
Ireland: Newstead, Clonskeagh, DUBLIN 14,  
Tel. +353 1 7640 000, Fax. +353 1 7640 200  
Israel: RAPAC Electronics, 7 Kehilat Saloniki St, PO Box 18053,  
Turkey: Yukari Dudullu, Org. San. Blg., 2.Cad. Nr. 28 81260 Umraniye,  
TEL AVIV 61180, Tel. +972 3 645 0444, Fax. +972 3 649 1007  
ISTANBUL, Tel. +90 216 522 1500, Fax. +90 216 522 1813  
Italy: PHILIPS SEMICONDUCTORS, Via Casati, 23 - 20052 MONZA (MI),  
Ukraine: PHILIPS UKRAINE, 4 Patrice Lumumba str., Building B, Floor 7,  
Tel. +39 039 203 6838, Fax +39 039 203 6800  
252042 KIEV, Tel. +380 44 264 2776, Fax. +380 44 268 0461  
Japan: Philips Bldg 13-37, Kohnan 2-chome, Minato-ku,  
United Kingdom: Philips Semiconductors Ltd., 276 Bath Road, Hayes,  
TOKYO 108-8507, Tel. +81 3 3740 5130, Fax. +81 3 3740 5057  
MIDDLESEX UB3 5BX, Tel. +44 208 730 5000, Fax. +44 208 754 8421  
Korea: Philips House, 260-199 Itaewon-dong, Yongsan-ku, SEOUL,  
United States: 811 East Arques Avenue, SUNNYVALE, CA 94088-3409,  
Tel. +82 2 709 1412, Fax. +82 2 709 1415  
Tel. +1 800 234 7381, Fax. +1 800 943 0087  
Malaysia: No. 76 Jalan Universiti, 46200 PETALING JAYA, SELANGOR,  
Tel. +60 3 750 5214, Fax. +60 3 757 4880  
Uruguay: see South America  
Vietnam: see Singapore  
Mexico: 5900 Gateway East, Suite 200, EL PASO, TEXAS 79905,  
Tel. +9-5 800 234 7381, Fax +9-5 800 943 0087  
Yugoslavia: PHILIPS, Trg N. Pasica 5/v, 11000 BEOGRAD,  
Tel. +381 11 3341 299, Fax.+381 11 3342 553  
Middle East: see Italy  
For all other countries apply to: Philips Semiconductors,  
Marketing Communications, Building BE-p, P.O. Box 218, 5600 MD EINDHOVEN,  
The Netherlands, Fax. +31 40 27 24825  
Internet: http://www.semiconductors.philips.com  
71  
SCA  
© Philips Electronics N.V. 2001  
All rights are reserved. Reproduction in whole or in part is prohibited without the prior written consent of the copyright owner.  
The information presented in this document does not form part of any quotation or contract, is believed to be accurate and reliable and may be changed  
without notice. No liability will be accepted by the publisher for any consequence of its use. Publication thereof does not convey nor imply any license  
under patent- or other industrial or intellectual property rights.  
Printed in The Netherlands  
403510/300/02/pp16  
Date of release: 2001 Feb 26  
Document order number: 9397 750 08038  

相关型号:

TZA3013A

SDH/SONET STM16/OC48 transimpedance amplifier
NXP

TZA3013AU

SDH/SONET STM16/OC48 transimpedance amplifier
NXP

TZA3013B

SDH/SONET STM16/OC48 transimpedance amplifier
NXP

TZA3013BU

SDH/SONET STM16/OC48 transimpedance amplifier
NXP

TZA3014

2.5 Gbits/s postamplifier with level detector
NXP

TZA3014HT

2.5 Gbits/s postamplifier with level detector
NXP

TZA3014U

2.5 Gbits/s postamplifier with level detector
NXP

TZA3014V

ATM/SONET/SDH IC, 1-Func, PQCC32,
PHILIPS

TZA3014VH

2.5 Gbits/s postamplifier with level detector
NXP

TZA3015HW

30 Mbit/s to 3.2 Gbit/s A-rate 4-bit fibre optic transceiver
NXP

TZA3017HW

30 Mbits/s up to 3.2 Gbits/s A-rate fibre optic transmitter
NXP

TZA3019

2.5 Gbits/s dual postamplifier with level detectors and 2 x 2 switch
NXP