Typenumber [NXP]

Real-Time Clock (RTC) and calendar; 实时时钟(RTC)和日历
Typenumber
型号: Typenumber
厂家: NXP    NXP
描述:

Real-Time Clock (RTC) and calendar
实时时钟(RTC)和日历

时钟
文件: 总75页 (文件大小:700K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
PCF8523  
Real-Time Clock (RTC) and calendar  
Rev. 4 — 5 July 2012  
Product data sheet  
1. General description  
The PCF8523 is a CMOS1 Real-Time Clock (RTC) and calendar optimized for low power  
consumption. Data is transferred serially via an I2C-bus with a maximum data rate of  
1000 kbit/s. Alarm and timer functions are available with the possibility to generate a  
wake-up signal on an interrupt pin. An offset register allows fine-tuning of the clock. The  
PCF8523 has a backup battery switch-over circuit, which detects power failures and  
automatically switches to the battery supply when a power failure occurs.  
2. Features and benefits  
Provides year, month, day, weekday, hours, minutes, and seconds based on a  
32.768 kHz quartz crystal  
Resolution: seconds to years  
Clock operating voltage: 1.0 V to 5.5 V  
Low backup current: typical 150 nA at VDD = 3.0 V and Tamb = 25 C  
2 line bidirectional 1 MHz Fast-mode Plus (Fm+) I2C interface, read D1h, write D0h2  
Battery backup input pin and switch-over circuit  
Freely programmable timer and alarm with interrupt capability  
Selectable integrated oscillator load capacitors for CL = 7 pF or CL = 12.5 pF  
Internal Power-On Reset (POR)  
Open-drain interrupt or clock output pins  
Programmable offset register for frequency adjustment  
3. Applications  
Time keeping application  
Battery powered devices  
Metering  
1. The definition of the abbreviations and acronyms used in this data sheet can be found in Section 20.  
2. Devices with other I2C-bus slave addresses can be produced on request.  
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
4. Ordering information  
Table 1.  
Ordering information  
Type number  
Package  
Name  
SO8  
Description  
Version  
PCF8523T  
plastic small outline package; 8 leads;  
body width 3.9 mm  
SOT96-1  
PCF8523TK  
HVSON8  
plastic thermal enhanced very thin small outline  
package; no leads; 8 terminals;  
body 4 4 0.85 mm  
SOT909-1  
PCF8523TS  
PCF8523U  
TSSOP14 plastic thin shrink small outline package; 14 leads; SOT402-1  
body width 4.4 mm  
bare die  
12 bumps (6-6)  
PCF8523U  
4.1 Ordering options  
Table 2.  
Ordering options  
Type number  
IC  
Sales item  
Bump type  
Delivery form  
revision (12NC)  
PCF8523T/1  
PCF8523TK/1  
PCF8523TS/1  
1
1
1
935293581118  
-
tape and reel, 13 inch  
tape and reel, 13 inch  
tube  
935293573118  
935291196112  
935291196118  
935293887005  
-
-
-
tape and reel, 13 inch  
PCF8523U/12AA/1  
1
soft gold bumps[1]  
sawn wafer on Film Frame Carrier (FFC)  
[1] Bump hardness see Table 53.  
Table 3.  
PCF8523U wafer information  
Type number  
PCF8523U/12AA/1  
Wafer thickness  
Wafer diameter  
6 inch  
FFC for wafer size  
Marking of bad die  
200 m  
8 inch  
wafer mapping  
5. Marking  
Table 4.  
Marking codes  
Type number  
PCF8523T/1  
Marking code  
8523T  
PCF8523TK/1  
PCF8523TS/1  
PCF8523U/12AA/1  
8523  
8523TS  
PC8523-1  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
2 of 74  
 
 
 
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
6. Block diagram  
OSCI  
C
CLKOUT  
OSCILLATOR  
32.768 kHz  
OSCI  
DIVIDER  
CLOCK OUT  
OSCO  
C
OSCO  
&
INT1/CLKOUT  
V
DD  
BATTERY  
BACKUP  
SWITCH-OVER  
CIRCUTRY  
CLOCK  
CALIBRATION  
OFFSET  
INTERRUPT  
V
BAT  
V
SS  
SYSTEM  
CONTROL  
POWER-ON  
RESET  
REAL-TIME  
CLOCK  
2
I C-BUS  
SDA  
SCL  
INTERFACE  
ALARM  
TIMER  
INT2  
PCF8523  
013aaa305  
Fig 1. Block diagram of PCF8523  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
3 of 74  
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
7. Pinning information  
7.1 Pinning  
1
2
3
4
8
7
6
5
OSCI  
V
DD  
OSCO  
INT1/CLKOUT  
SCL  
PCF8523T  
V
BAT  
V
SS  
SDA  
013aaa306  
Top view. For mechanical details, see Figure 37 on page 54.  
Fig 2. Pin configuration for SO8 (PCF8523T)  
terminal 1  
index area  
OSCI  
1
2
3
4
8
7
6
5
V
DD  
OSCO  
INT1/CLKOUT  
SCL  
PCF8523TK  
V
BAT  
V
SS  
SDA  
013aaa308  
Transparent top view  
For mechanical details, see Figure 38 on page 55.  
Fig 3. Pin configuration for HVSON8 (PCF8523TK)  
1
2
3
4
5
6
7
14  
13  
12  
11  
10  
9
OSCI  
OSCO  
n.c.  
V
DD  
INT1/CLKOUT  
n.c.  
V
BAT  
PCF8523TS  
SCL  
V
SS  
SDA  
n.c.  
n.c.  
INT2  
8
CLKOUT  
013aaa307  
Top view. For mechanical details, see Figure 39 on page 56.  
Fig 4. Pin configuration for TSSOP14 (PCF8523TS)  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
4 of 74  
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
OSCI  
2
3
1
V
DD  
12  
11  
INT1/CLKOUT  
n.c.  
OSCO  
PCF8523U  
10  
9
SCL  
V
BAT  
4
V
5
6
SS  
SDA  
n.c.  
INT2  
7
CLKOUT  
8
013aaa317  
Viewed from active side. For mechanical details, see Figure 40 on page 57.  
Fig 5. Pin configuration for PCF8523U  
7.2 Pin description  
Table 5.  
Symbol  
Pin description  
Pin  
Type  
Description  
SO8  
HVSON8  
TSSOP14  
PCF8523U  
(PCF8523T)  
(PCF8523TK) (PCF8523TS)  
OSCI  
OSCO  
n.c.  
1
2
-
1
2
-
1
2
input  
output  
-
oscillator input;  
high-impedance node[1]  
2
3
oscillator output;  
high-impedance node[1]  
3, 6, 9, 12[2]  
6 and 11[2]  
not connected; do not connect  
and do not use it as feed through  
VBAT  
VSS  
3
4
-
3
4[3]  
4
5
7
4
5[4]  
supply  
supply  
output  
battery supply voltage  
ground supply voltage  
INT2  
-
7
interrupt 2 (open-drain, active  
LOW)  
CLKOUT  
SDA  
-
-
8
8
output  
clock output (open-drain)  
5
6
5
6
7
10  
11  
13  
9
input/output serial data input/output  
SCL  
10  
12  
input  
serial clock input  
INT1/CLKOUT 7  
output  
interrupt 1/clock output  
(open-drain)  
VDD  
8
8
14  
1
supply  
supply voltage  
[1] Wire length between quartz and package should be minimized.  
[2] For manufacturing tests only; do not connect it and do not use it.  
[3] The die paddle (exposed pad) is connected to VSS and should be electrically isolated.  
[4] The substrate (rear side of the die) is connected to VSS and should be electrically isolated.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
5 of 74  
 
 
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8. Functional description  
The PCF8523 contains:  
20 8-bit registers with an auto-incrementing address register  
An on-chip 32.768 kHz oscillator with two integrated load capacitors  
A frequency divider, which provides the source clock for the Real-Time Clock (RTC)  
A programmable clock output  
A 1 Mbit/s I2C-bus interface  
An offset register, which allows fine-tuning of the clock  
All 20 registers are designed as addressable 8-bit registers although not all bits are  
implemented.  
The first three registers (memory address 00h, 01h, and 02h) are used as control and  
status registers  
The addresses 03h through 09h are used as counters for the clock function (seconds  
up to years)  
Addresses 0Ah through 0Dh define the alarm condition  
Address 0Eh defines the offset calibration  
Address 0Fh defines the clock-out mode and the addresses 10h and 12h the timer  
mode  
Addresses 11h and 13h are used for the timers  
The registers Seconds, Minutes, Hours, Days, Weekdays, Months, and Years are all  
coded in Binary Coded Decimal (BCD) format. Other registers are either bit-wise or  
standard binary. When one of the RTC registers is read, the contents of all counters are  
frozen. Therefore, faulty reading of the clock and calendar during a carry condition is  
prevented.  
The PCF8523 has a battery backup input pin and battery switch-over circuit. The battery  
switch-over circuit monitors the main power supply and switches automatically to the  
backup battery when a power failure condition is detected. Accurate timekeeping is  
maintained even when the main power supply is interrupted.  
A battery low detection circuit monitors the status of the battery. When the battery voltage  
goes below a certain threshold value, a flag is set to indicate that the battery must be  
replaced soon. This ensures the integrity of the data during periods of battery backup.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
6 of 74  
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.1 Registers overview  
The 20 registers of the PCF8523 are auto-incrementing after each read or write data byte  
up to register 13h. After register 13h, the auto-incrementing will wrap around to address  
00h (see Figure 6).  
address register  
00h  
01h  
02h  
03h  
...  
auto-increment  
11h  
12h  
13h  
wrap around  
013aaa309  
Fig 6. Auto-incrementing of the registers  
Table 6.  
Registers overview  
Bit positions labeled as - are not implemented and will return a 0 when read. Bit T must always be written with logic 0.  
Address Register name  
Bit  
7
6
5
4
3
2
1
0
Control registers  
00h  
01h  
02h  
Control_1  
Control_2  
Control_3  
CAP_SEL T  
STOP  
CTBF  
SR  
SF  
-
12_24  
AF  
SIE  
AIE  
CIE  
WTAF  
CTAF  
WTAIE  
BLF  
CTAIE  
BSIE  
CTBIE  
BLIE  
PM[2:0]  
BSF  
Time and date registers  
03h  
04h  
05h  
Seconds  
Minutes  
Hours  
OS  
SECONDS (0 to 59)  
MINUTES (0 to 59)  
-
-
-
AMPM  
HOURS (1 to 12 in 12 hour mode)  
HOURS (0 to 23 in 24 hour mode)  
DAYS (1 to 31)  
06h  
07h  
08h  
09h  
Days  
-
-
-
-
-
-
Weekdays  
Months  
Years  
-
-
-
-
WEEKDAYS (0 to 6)  
MONTHS (1 to 12)  
YEARS (0 to 99)  
Alarm registers  
0Ah  
0Bh  
Minute_alarm  
AE_M  
AE_H  
MINUTE_ALARM (0 to 59)  
Hour_alarm  
-
-
-
-
AMPM  
HOUR_ALARM (1 to 12 in 12 hour mode)  
HOUR_ALARM (0 to 23 in 24 hour mode)  
DAY_ALARM (1 to 31)  
0Ch  
0Dh  
Day_alarm  
AE_D  
AE_W  
Weekday_alarm  
-
-
-
WEEKDAY_ALARM (0 to 6)  
Offset register  
0Eh  
Offset  
MODE  
OFFSET[6:0]  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
7 of 74  
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
Table 6.  
Registers overview …continued  
Bit positions labeled as - are not implemented and will return a 0 when read. Bit T must always be written with logic 0.  
Address Register name  
Bit  
7
6
5
4
3
2
1
0
CLOCKOUT and timer registers  
0Fh  
10h  
11h  
12h  
13h  
Tmr_CLKOUT_ctrl  
Tmr_A_freq_ctrl  
Tmr_A_reg  
TAM  
-
TBM  
-
COF[2:0]  
-
TAC[1:0]  
TAQ[2:0]  
TBC  
-
-
-
TIMER_A_VALUE[7:0]  
TBW[2:0]  
TIMER_B_VALUE[7:0]  
Tmr_B_freq_ctrl  
Tmr_B_reg  
-
TBQ[2:0]  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
8 of 74  
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.2 Control and status registers  
8.2.1 Register Control_1  
Table 7.  
Control_1 - control and status register 1 (address 00h) bit description  
Bit  
Symbol  
Value  
Description  
7
CAP_SEL  
internal oscillator capacitor selection for quartz  
crystals with a corresponding load capacitance  
0[1]  
1
7 pF  
12.5 pF  
6
5
T
0[1][2]  
0[1]  
1
unused  
STOP  
RTC time circuits running  
RTC time circuits frozen;  
RTC divider chain flip-flops are  
asynchronously set logic 0;  
CLKOUT at 32.768 kHz, 16.384 kHz, or  
8.192 kHz is still available  
4
3
2
1
0
SR  
0[1][3]  
1
0[1]  
no software reset  
initiate software reset  
12_24  
SIE  
24 hour mode is selected  
12 hour mode is selected  
second interrupt disabled  
second interrupt enabled  
alarm interrupt disabled  
alarm interrupt enabled  
no correction interrupt generated  
1
0[1]  
1
0[1]  
AIE  
1
CIE  
0[1]  
1
interrupt pulses are generated at every  
correction cycle (see Section 8.8)  
[1] Default value.  
[2] Must always be written with logic 0.  
[3] For a software reset, 01011000 (58h) must be sent to register Control_1 (see Section 8.3). Bit SR always  
returns 0 when read.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
9 of 74  
 
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.2.2 Register Control_2  
Table 8.  
Control_2 - control and status register 2 (address 01h) bit description  
Bit  
Symbol  
Value  
0[1]  
1
Description  
7
WTAF  
no watchdog timer A interrupt generated  
flag set when watchdog timer A interrupt  
generated; flag is read-only and cleared by  
reading register Control_2  
6
5
CTAF  
CTBF  
0[1]  
1
no countdown timer A interrupt generated  
flag set when countdown timer A interrupt  
generated; flag must be cleared to clear  
interrupt  
0[1]  
1
no countdown timer B interrupt generated  
flag set when countdown timer B interrupt  
generated; flag must be cleared to clear  
interrupt  
4
3
SF  
AF  
0[1]  
1
no second interrupt generated  
flag set when second interrupt generated; flag  
must be cleared to clear interrupt  
0[1]  
1
no alarm interrupt generated  
flag set when alarm triggered; flag must be  
cleared to clear interrupt  
2
1
0
WTAIE  
CTAIE  
CTBIE  
0[1]  
1
0[1]  
watchdog timer A interrupt is disabled  
watchdog timer A interrupt is enabled  
countdown timer A interrupt is disabled  
countdown timer A interrupt is enabled  
countdown timer B interrupt is disabled  
countdown timer B interrupt is enabled  
1
0[1]  
1
[1] Default value.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
10 of 74  
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.2.3 Register Control_3  
Table 9.  
Bit  
Control_3 - control and status register 3 (address 02h) bit description  
Symbol Value Description  
7 to 5 PM[2:0]  
see Table 11[1] battery switch-over and battery low detection  
control  
4
3
-
-
unused  
BSF  
0[2]  
no battery switch-over interrupt generated  
1
flag set when battery switch-over occurs; flag  
must be cleared to clear interrupt  
2
1
BLF  
0[2]  
1
0[2]  
battery status ok  
battery status low; flag is read-only  
BSIE  
no interrupt generated from battery switch-over  
flag, BSF  
1
interrupt generated when BSF is set  
0
BLIE  
0[2]  
no interrupt generated from battery low  
flag, BLF  
1
interrupt generated when BLF is set  
[1] Default value is 111.  
[2] Default value.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
11 of 74  
 
 
 
 
PCF8523  
NXP Semiconductors  
8.3 Reset  
Real-Time Clock (RTC) and calendar  
A reset is automatically generated at power-on. A reset can also be initiated with the  
software reset command. Software reset command means setting bits 6, 4, and 3 in  
register Control_1 (00h) logic 1 and all other bits logic 0 by sending the bit sequence  
01011000 (58h), see Figure 7.  
slave address byte  
R/W  
0
address 00h  
software reset 58h  
SDA  
SCL  
s
1
1
0
1
0
0
0
A
0
0
0
0
0
0
0
0
A
0
1
0
1
1
0
0
0
A P/S  
internal  
reset signal  
013aaa320  
Fig 7. Software reset command  
Table 10. Register reset values  
Bits labeled X are undefined at power-on and unchanged by subsequent resets. Bits labeled - are  
not implemented.  
Address Register name  
Bit  
7
0
0
1
1
-
6
0
0
1
X
X
-
5
0
0
1
X
X
X
X
-
4
0
0
-
3
0
0
0
X
X
X
X
-
2
1
0
00h  
01h  
02h  
03h  
04h  
05h  
06h  
07h  
08h  
09h  
0Ah  
0Bh  
0Ch  
0Dh  
0Eh  
0Fh  
10h  
11h  
12h  
13h  
Control_1  
Control_2  
Control_3  
Seconds  
0
0
0
0
0
0
0
0
0
X
X
X
X
-
X
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
X
0
X
X
X
X
X
X
X
X
X
X
X
0
Minutes  
Hours  
-
Days  
-
-
Weekdays  
Months  
-
-
-
-
-
X
X
X
X
X
-
X
X
X
X
X
-
Years  
X
1
1
1
1
0
0
-
X
X
-
X
X
X
X
-
Minute_alarm  
Hour_alarm  
Day_alarm  
Weekday_alarm  
Offset  
-
-
0
0
-
0
0
-
0
0
-
0
0
-
Tmr_CLKOUT_ctrl  
Tmr_A_freq_ctrl  
Tmr_A_reg  
Tmr_B_freq_ctrl  
Tmr_B_reg  
0
0
0
1
1
1
X
-
X
0
X
X
0
X
X
0
X
X
-
X
1
X
1
X
1
X
X
X
X
X
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
12 of 74  
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
After reset, the following mode is entered:  
32.768 kHz CLKOUT active  
24 hour mode is selected  
Register Offset is set logic 0  
No alarms set  
Timers disabled  
No interrupts enabled  
Battery switch-over is disabled  
Battery low detection is disabled  
7 pF of internal oscillator capacitor selected  
8.4 Interrupt function  
Active low interrupt signals are available at pin INT1/CLKOUT and INT2. Pin  
INT1/CLKOUT has both functions of INT1 and CLKOUT combined.  
INT1 Interrupt output may be sourced from different places:  
Second timer  
Timer A  
Timer B  
Alarm  
Battery switch-over  
Battery low detection  
Clock offset correction pulse  
INT2 interrupt output is sourced only from timer B:  
The control bit TAM (register Tmr_CLKOUT_ctrl) is used to configure whether the  
interrupts generated from the second interrupt timer and timer A are pulsed signals or a  
permanently active signal. The control bit TBM (register Tmr_CLKOUT_ctrl) is used to  
configure whether the interrupt generated from timer B is a pulsed signal or a permanently  
active signal. All the other interrupt sources generate a permanently active interrupt  
signal, which follows the status of the corresponding flags.  
The flags SF, CTAF, CTBF, AF, and BSF can be cleared by using the interface  
WTAF is read only. Reading of the register Control_2 (01h) automatically resets  
WTAF (WTAF = 0) and clears the interrupt  
The flag BLF is read only. It is cleared automatically from the battery low detection  
circuit when the battery is replaced  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
13 of 74  
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
to interface:  
read SF  
SF:  
SIE  
SIE  
0
1
SECOND FLAG  
SECONDS COUNTER  
SET  
CLEAR  
PULSE  
GENERATOR 1  
TRIGGER  
CLEAR  
TAM  
TAM  
INT1  
from interface:  
clear SF  
INT1/CLKOUT  
to interface:  
read CTAF  
CTAF:  
CLKOUT  
CTAIE  
COUNTDOWN  
TIMER A FLAG  
0
1
COUNTDOWN  
COUNTER A  
CLEAR  
SET  
TAC = 01  
PULSE  
ENABLE  
GENERATOR 2  
TRIGGER  
CLEAR  
from interface:  
clear CTAF  
to interface:  
read WTAF  
WTAF:  
WATCH DOG  
TIMER FLAG  
TAM  
0
1
WTAIE  
WATCHDOG  
COUNTER A  
TAC = 10  
CLEAR  
SET  
ENABLE  
PULSE  
GENERATOR 3  
MCU loading  
watchdog counter  
or reading WTAF  
CLEAR  
TRIGGER  
to interface:  
CTBF:  
TBM  
read CTBF  
COUNTDOWN  
TIMER B FLAG  
CTBIE  
INT2  
0
1
COUNTDOWN  
COUNTER B  
CLEAR  
SET  
TBC = 1  
PULSE  
ENABLE  
GENERATOR 4  
TRIGGER  
CLEAR  
from interface:  
clear CTBF  
to interface:  
AIE  
CIE  
AF: ALARM  
FLAG  
CLEAR  
read AF  
set alarm  
flag, AF  
SET  
from interface:  
clear AF  
PULSE  
GENERATOR 5  
CLEAR  
offset circuit:  
add/subtract pulse  
SET  
from interface:  
clear CIE  
to interface:  
read BSF  
BSIE  
BLIE  
BSF: BATTERY  
FLAG  
set battery  
flag, BSF  
SET  
CLEAR  
from interface:  
clear BSF  
to interface:  
read BLF  
BLF: BATTERY  
LOW FLAG  
set battery  
low flag, BLF  
SET  
CLEAR  
from battery  
low detection  
013aaa330  
circuit: clear BLF  
When SIE, CTAIE, WTAIE, CTBIE, AIE, CIE, BSIE, BLIE, and clock-out are disabled, then INT1 remains high-impedance.  
When CTBIE is disabled, then INT2 remains high-impedance.  
Fig 8. Interrupt block diagram  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
14 of 74  
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.5 Power management functions  
The PCF8523 has two power supply pins:  
VDD - the main power supply input pin  
VBAT - the battery backup input pin  
The PCF8523 has two power management functions implemented:  
Battery switch-over function  
Battery low detection function  
The power management functions are controlled by the control bits PM[2:0] in register  
Control_3 (02h):  
Table 11. Power management function control bits  
PM[2:0]  
Function  
000  
battery switch-over function is enabled in standard mode;  
battery low detection function is enabled  
001  
battery switch-over function is enabled in direct switching mode;  
battery low detection function is enabled  
010,011[1]  
100  
battery switch-over function is disabled - only one power supply (VDD);  
battery low detection function is enabled  
battery switch-over function is enabled in standard mode;  
battery low detection function is disabled  
101  
battery switch-over function is enabled in direct switching mode;  
battery low detection function is disabled  
110  
not allowed  
111[2][3]  
battery switch-over function is disabled - only one power supply (VDD);  
battery low detection function is disabled  
[1] When the battery switch-over function is disabled, the PCF8523 works only with the power supply VDD  
.
[2] When the battery switch-over function is disabled, the PCF8523 works only with the power supply VDD  
VBAT must be put to ground and the battery low detection function is disabled.  
.
[3] Default value.  
8.5.1 Standby mode  
When the device is first powered up from the battery (VBAT) but without a main supply  
(VDD), the PCF8523 automatically enters the standby mode. In standby mode, the  
PCF8523 does not draw any power from the backup battery until the device is powered up  
from the main power supply VDD. Thereafter, the device switches over to battery backup  
mode whenever the main power supply VDD is lost.  
It is also possible to enter into standby mode when the chip is already supplied by the  
main power supply VDD and a backup battery is connected. To enter the standby mode,  
the power management control bits PM[2:0] have to be set logic 111. Then the main  
power supply VDD must be removed. As a result of it, the PCF8523 enters the standby  
mode and does not draw any current from the backup battery before it is powered up  
again from main supply VDD  
.
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
15 of 74  
 
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.5.2 Battery switch-over function  
The PCF8523 has a backup battery switch-over circuit. It monitors the main power supply  
DD and switches automatically to the backup battery when a power failure condition is  
V
detected.  
One of two operation modes can be selected:  
Standard mode: the power failure condition happens when:  
VDD < VBAT AND VDD < Vth(sw)bat  
Direct switching mode: the power failure condition happens when VDD < VBAT  
.
Direct switching from VDD to VBAT without requiring VDD to drop below Vth(sw)bat  
Vth(sw)bat is the battery switch threshold voltage. Typical value is 2.5 V.  
Generation of interrupts from the battery switch-over is controlled via the BSIE bit (see  
register Control_2). If BSIE is enabled, the INT1 follows the status of bit BLF (register  
Control_3). Clearing BLF immediately clears INT1.  
When a power failure condition occurs and the power supply switches to the battery, the  
following sequence occurs:  
1. The battery switch flag BSF (register Control_3) is set logic 1  
2. An interrupt is generated if the control bit BSIE (register Control_3) is enabled  
The battery switch flag BSF can be cleared by using the interface after the power supply  
has switched to VDD. It must be cleared to clear the interrupt.  
The interface is disabled in battery backup operation:  
Interface inputs are not recognized, preventing extraneous data being written to the  
device  
Interface outputs are high-impedance  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
16 of 74  
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.5.2.1 Standard mode  
If VDD > VBAT OR VDD > Vth(sw)bat, the internal power supply is VDD  
.
If VDD < VBAT AND VDD < Vth(sw)bat, the internal power supply is VBAT  
.
backup battery operation  
V
DD  
V
V
BBS  
BBS  
V
BAT  
internal power supply (= V  
)
BBS  
V
th(sw)bat  
(= 2.5 V)  
V
(= 0 V)  
DD  
BSF  
INT1  
cleared via interface  
013aaa321  
Fig 9. Battery switch-over behavior in standard mode and with bit BSIE set logic 1  
(enabled)  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
17 of 74  
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.5.2.2 Direct switching mode  
If VDD > VBAT the internal power supply is VDD  
.
If VDD < VBAT the internal power supply is VBAT  
.
The direct switching mode is useful in systems where VDD is higher than VBAT at all times  
(for example, VDD = 5 V, VBAT = 3.5 V). If the VDD and VBAT values are similar (for  
example, VDD = 3.3 V, VBAT 3.0 V), the direct switching mode is not recommended. In  
direct switching mode, the power consumption is reduced compared to the standard mode  
because the monitoring of VDD and Vth(sw)bat is not performed.  
backup battery operation  
V
DD  
V
V
BBS  
BBS  
V
BAT  
internal power supply (= V  
)
BBS  
V
th(sw)bat  
(= 2.5 V)  
V
(= 0 V)  
DD  
BSF  
INT1  
cleared via interface  
013aaa322  
Fig 10. Battery switch-over behavior in direct switching mode and with bit BSIE set  
logic 1 (enabled)  
8.5.2.3 Battery switch-over disabled, only one power supply (VDD  
)
When the battery switch-over function is disabled:  
The power supply is applied on the VDD pin  
The VBAT pin must be connected to ground  
The battery flag (BSF) is always logic 0  
8.5.3 Battery low detection function  
The PCF8523 has a battery low detection circuit, which monitors the status of the battery  
VBAT  
.
Generation of interrupts from the battery low detection is controlled via bit BLIE (register  
Control_3). If BLIE is enabled, the INT1 follows the status of bit BLF (register Control_3).  
When VBAT drops below the threshold value Vth(bat)low (typically 2.5 V), the BLF flag  
(register Control_3) is set to indicate that the battery is low and that it must be replaced.  
Monitoring of the battery voltage also occurs during battery operation.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
18 of 74  
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
An unreliable battery does not ensure data integrity during periods of backup battery  
operation.  
When VBAT drops below the threshold value Vth(bat)low, the following sequence occurs (see  
Figure 11):  
1. The battery low flag BLF is set logic 1  
2. An interrupt is generated if the control bit BLIE (register Control_3) is enabled. The  
interrupt remains active until the battery is replaced (BLF set logic 0) or when bit BLIE  
is disabled (BLIE set logic 0)  
3. The flag BLF (register Control_3) remains logic 1 until the battery is replaced. BLF  
cannot be cleared using the interface. It is cleared automatically by the battery low  
detection circuit when the battery is replaced  
V
= V  
BBS  
DD  
internal power supply (= V  
)
BBS  
V
BAT  
V
th(bat)low  
(= 2.5 V)  
V
BAT  
BLF  
INT1  
013aaa323  
Fig 11. Battery low detection behavior with bit BLIE set logic 1 (enabled)  
8.6 Time and date registers  
Most of these registers are coded in the Binary Coded Decimal (BCD) format. BCD is  
used to simplify application use. An example is shown for the array SECONDS in  
Table 13.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
19 of 74  
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.6.1 Register Seconds  
Table 12. Seconds - seconds and clock integrity status register (address 03h) bit  
description  
Bit  
Symbol  
OS  
Value  
Place value Description  
7
0
1[1]  
-
-
clock integrity is guaranteed  
clock integrity is not guaranteed;  
oscillator has stopped or been  
interrupted  
6 to 4 SECONDS  
3 to 0  
0 to 5  
0 to 9  
ten’s place actual seconds coded in BCD  
format  
unit place  
[1] Start-up value.  
Table 13. SECONDS coded in BCD format  
Seconds value in Upper-digit (ten’s place)  
Digit (unit place)  
Bit  
decimal  
Bit  
6
0
0
0
:
5
0
0
0
:
4
0
0
0
:
3
0
0
0
:
2
0
0
0
:
1
0
0
1
:
0
0
1
0
:
00  
01  
02  
:
09  
10  
:
0
0
:
0
0
:
0
1
:
1
0
:
0
0
:
0
0
:
1
0
:
58  
59  
1
1
0
0
1
1
1
1
0
0
0
0
0
1
8.6.1.1 Oscillator STOP flag  
The OS flag is set whenever the oscillator is stopped (see Figure 12). The flag remains  
set until cleared by using the interface. When the oscillator is not running, then the OS flag  
cannot be cleared. This method can be used to monitor the oscillator.  
The oscillator may be stopped, for example, by grounding one of the oscillator pins, OSCI  
or OSCO. The oscillator is also considered to be stopped during the time between  
power-on and stable crystal resonance. This time may be in a range of 200 ms to 2 s,  
depending on crystal type, temperature, and supply voltage. At power-on, the OS flag is  
always set.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
20 of 74  
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
OS = 1 and flag can not be cleared  
OS = 1 and flag can be cleared  
V
DD  
oscillation  
OS flag  
OS flag set when  
oscillation stops  
OS flag cleared  
by software  
oscillation now stable  
t
013aaa319  
Fig 12. OS flag  
8.6.2 Register Minutes  
Table 14. Minutes - minutes register (address 04h) bit description  
Bit  
Symbol  
Value  
-
Place value Description  
- unused  
7
-
6 to 4 MINUTES  
3 to 0  
0 to 5  
0 to 9  
ten’s place actual minutes coded in BCD  
format  
unit place  
8.6.3 Register Hours  
Table 15. Hours - hours register (address 05h) bit description  
Bit  
Symbol  
Value  
Place value Description  
7 to 6  
-
-
-
unused  
12 hour mode[1]  
5
AMPM  
0
-
-
indicates AM  
indicates PM  
1
4
HOURS  
0 to 1  
0 to 9  
ten’s place actual hours in 12 hour mode  
coded in BCD format  
3 to 0  
unit place  
24 hour mode[1]  
5 to 4 HOURS  
3 to 0  
0 to 2  
0 to 9  
ten’s place actual hours in 24 hour mode  
coded in BCD format  
unit place  
[1] Hour mode is set by bit 12_24 in register Control_1 (see Table 7).  
8.6.4 Register Days  
Table 16. Days - days register (address 06h) bit description  
Bit  
Symbol  
Value  
-
Place value Description  
- unused  
7 to 6  
-
5 to 4 DAYS[1]  
0 to 3  
0 to 9  
ten’s place actual day coded in BCD format  
unit place  
3 to 0  
[1] If the year counter contains a value, which is exactly divisible by 4 (including the year 00), the PCF8523  
compensates for leap years by adding a 29th day to February.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
21 of 74  
 
 
 
 
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.6.5 Register Weekdays  
Table 17. Weekdays - weekdays register (address 07h) bit description  
Bit  
Symbol  
Value  
-
Description  
7 to 3  
-
unused  
2 to 0 WEEKDAYS  
0 to 6  
actual weekday, values see Table 18  
Table 18. Weekday assignments  
Day[1]  
Bit  
2
1
0
0
1
1
0
0
1
0
0
1
0
1
0
1
0
Sunday  
0
Monday  
Tuesday  
Wednesday  
Thursday  
Friday  
0
0
0
1
1
Saturday  
1
[1] Definition may be reassigned by the user.  
8.6.6 Register Months  
Table 19. Months - months register (address 08h) bit description  
Bit  
Symbol  
-
Value  
-
Place value Description  
- unused  
7 to 5  
4
MONTHS  
0 to 1  
0 to 9  
ten’s place actual month coded in BCD  
format; assignments see Table 20  
3 to 0  
unit place  
Table 20. Month assignments in BCD format  
Month  
Upper-digit  
(ten’s place)  
Digit (unit place)  
Bit  
4
0
0
0
0
0
0
0
0
0
1
1
1
Bit  
3
0
0
0
0
0
0
0
1
1
0
0
0
2
0
0
0
1
1
1
1
0
0
0
0
0
1
0
1
1
0
0
1
1
0
0
0
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
January  
February  
March  
April  
May  
June  
July  
August  
September  
October  
November  
December  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
22 of 74  
 
 
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.6.7 Register Years  
Table 21. Years - years register (09h) bit description  
Bit  
Symbol  
Value  
0 to 9  
0 to 9  
Place value Description  
ten’s place actual year coded in BCD format  
unit place  
7 to 4 YEARS  
3 to 0  
8.6.8 Data flow of the time function  
Figure 13 shows the data flow and data dependencies starting from the 1 Hz clock tick.  
1 Hz tick  
SECONDS  
MINUTES  
12/24 hour mode  
HOURS  
DAYS  
LEAP YEAR  
CALCULATION  
WEEKDAYS  
MONTHS  
YEARS  
013aaa324  
Fig 13. Data flow diagram of the time function  
During read/write operations, the time counting circuits (memory locations 03h through  
09h) are blocked.  
The blocking prevents:  
Faulty reading of the clock and calendar during a carry condition  
Incrementing the time registers during the read cycle  
After the read/write-access is completed, the time circuit is released again and any  
pending request to increment the time counters that occurred during the read/write access  
is serviced. A maximum of one request can be stored; therefore, all accesses must be  
completed within 1 second (see Figure 14).  
t < 1 s  
SLAVE ADDRESS  
DATA  
DATA  
STOP  
START  
013aaa215  
Fig 14. Access time for read/write operations  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
23 of 74  
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
Because of this method, it is very important to make a read or write access in one go, that  
is, setting or reading seconds through to years should be made in one single access.  
Failing to comply with this method could result in the time becoming corrupted.  
As an example, if the time (seconds through to hours) is set in one access and then in a  
second access the date is set, it is possible that the time will increment between the two  
accesses. A similar problem exists when reading. A rollover may occur between reads  
thus giving the minutes from one moment and the hours from the next.  
8.7 Alarm registers  
The registers at addresses 0Ah through 0Dh contain the alarm information.  
8.7.1 Register Minute_alarm  
Table 22. Minute_alarm - minute alarm register (address 0Ah) bit description  
Bit  
Symbol  
Value  
Place value Description  
7
AE_M  
0
1[1]  
-
-
minute alarm is enabled  
minute alarm is disabled  
6 to 4 MINUTE_ALARM  
3 to 0  
0 to 5  
0 to 9  
ten’s place minute alarm information coded in  
BCD format  
unit place  
[1] Default value.  
8.7.2 Register Hour_alarm  
Table 23. Hour_alarm - hour alarm register (address 0Bh) bit description  
Bit  
Symbol  
Value  
Place value Description  
7
AE_H  
0
1[1]  
-
-
-
hour alarm is enabled  
hour alarm is disabled  
unused  
6
-
-
12 hour mode[2]  
5
AMPM  
0
-
-
indicates AM  
indicates PM  
1
4
HOUR_ALARM  
0 to 1  
0 to 9  
ten’s place hour alarm information in 12 hour  
mode coded in BCD format  
3 to 0  
unit place  
24 hour mode[2]  
5 to 4 HOURS  
3 to 0  
0 to 2  
0 to 9  
ten’s place hour alarm information in 24 hour  
mode coded in BCD format  
unit place  
[1] Default value.  
[2] Hour mode is set by bit 12_24 in register Control_1 (see Table 7).  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
24 of 74  
 
 
 
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.7.3 Register Day_alarm  
Table 24. Day_alarm - day alarm register (address 0Ch) bit description  
Bit  
Symbol  
Value  
Place value Description  
7
AE_D  
0
1[1]  
-
-
-
day alarm is enabled  
day alarm is disabled  
unused  
6
-
-
5 to 4 DAY_ALARM  
3 to 0  
0 to 3  
0 to 9  
ten’s place day alarm information coded in  
BCD format  
unit place  
[1] Default value.  
8.7.4 Register Weekday_alarm  
Table 25. Weekday_alarm - weekday alarm register (address 0Dh) bit description  
Bit  
Symbol  
Value  
Description  
7
AE_W  
0
weekday alarm is enabled  
weekday alarm is disabled  
unused  
1[1]  
-
6 to 3  
-
2 to 0 WEEKDAY_ALARM  
[1] Default value.  
0 to 6  
weekday alarm information  
8.7.5 Alarm flag  
check now signal  
MINUTE ALARM  
MINUTE TIME  
example  
AE_M  
AE_M = 1  
=
=
=
=
1
0
AE_H  
AE_D  
AE_W  
HOUR ALARM  
HOUR TIME  
(1)  
set alarm flag AF  
DAY ALARM  
DAY TIME  
WEEKDAY ALARM  
WEEKDAY TIME  
013aaa088  
(1) Only when all enabled alarm settings are matching.  
It is only on increment to a matched case that the alarm flag is set, see Section 8.7.5.  
Fig 15. Alarm function block diagram  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
25 of 74  
 
 
 
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
When one or several alarm registers are loaded with a valid minute, hour, day, or weekday  
value and its corresponding alarm enable bit (AE_x) is logic 0, then that information is  
compared with the current minute, hour, day, and weekday value. When all enabled  
comparisons first match, the alarm flag, AF (register Control_2), is set logic 1.  
The generation of interrupts from the alarm function is controlled via bit AIE (register  
Control_1). If bit AIE is enabled, then the INT1 pin follows the condition of bit AF. AF  
remains set until cleared by the interface. Once AF has been cleared, it will only be set  
again when the time increments to match the alarm condition once more. Alarm registers,  
which have their AE_x bit logic 1 are ignored. The generation of interrupts from the alarm  
function is described more detailed in Section 8.4.  
Table 26 and Table 27 show an example for clearing bit AF. Clearing the flag is made by a  
write command, therefore bits 2, 1, and 0 must be re-written with their previous values.  
Repeatedly re-writing these bits has no influence on the functional behavior.  
minutes counter  
minute alarm  
AF  
44  
45  
45  
46  
INT when AIE = 1  
001aaf903  
Example where only the minute alarm is used and no other interrupts are enabled.  
Fig 16. Alarm flag timing  
To prevent the timer flags being overwritten while clearing bit AF, logic AND is performed  
during a write access. A flag is cleared by writing logic 0 while a flag is not cleared by  
writing logic 1. Writing logic 1 results in the flag value remaining unchanged.  
Table 26. Flag location in register Control_2  
Register  
Bit  
7
6
5
4
3
2
1
0
Control_2  
WTAF  
CTAF  
CTBF  
SF  
AF  
-
-
-
Table 27 shows what instruction must be sent to clear bit AF. In this example, bit CTAF,  
CTBF, and bit SF are unaffected.  
Table 27. Example to clear only AF (bit 3)  
Register  
Bit[1]  
7
6
5
4
3
2
1
0
Control_2  
0
1
1
1
0
-
-
-
[1] The bits labeled as - have to be rewritten with the previous values.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
26 of 74  
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.7.6 Alarm interrupts  
Generation of interrupts from the alarm function is controlled via the bit AIE (register  
Control_1). If AIE is enabled, the INT1 follows the status of bit AF (register Control_2).  
Clearing AF immediately clears INT1. No pulse generation is possible for alarm interrupts.  
minute counter  
minute alarm  
AF  
44  
45  
45  
INT1  
SCL  
instruction  
CLEAR INSTRUCTION  
013aaa335  
Example where only the minute alarm is used and no other interrupts are enabled.  
Fig 17. AF timing  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
27 of 74  
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.8 Register Offset  
The PCF8523 incorporates an offset register (address 0Eh), which can be used to  
implement several functions, like:  
Aging adjustment  
Temperature compensation  
Accuracy tuning  
Table 28. Offset - offset register (address 0Eh) bit description  
Bit  
Symbol  
Value  
Description  
7
MODE  
0[1]  
offset is made once every two hours  
offset is made once every minute  
offset value  
1
6 to 0 OFFSET[6:0]  
[1] Default value.  
see Table 29  
For MODE = 0, each LSB introduces an offset of 4.34 ppm. For MODE = 1, each LSB  
introduces an offset of 4.069 ppm. The values of 4.34 ppm and 4.069 ppm are based on a  
nominal 32.768 kHz clock. The offset value is coded in two’s complement giving a range  
of +63 LSB to 64 LSB.  
Table 29. Offset values  
OFFSET[6:0]  
Offset value in  
decimal  
Offset value in ppm  
Every two hours  
(MODE = 0)  
Every minute  
(MODE = 1)  
0111111  
0111110  
:
+63  
+62  
:
+273.420  
+269.080  
:
+256.347  
+252.278  
:
0000010  
0000001  
0000000  
1111111  
1111110  
:
+2  
+1  
0[1]  
1  
2  
:
+8.680  
+4.340  
0[1]  
+8.138  
+4.069  
0[1]  
4.340  
8.680  
:
4.069  
8.138  
:
1000001  
1000000  
63  
64  
273.420  
277.760  
256.347  
260.416  
[1] Default mode.  
The correction is made by adding or subtracting clock correction pulses, thereby changing  
the period of a single second.  
It is possible to monitor when correction pulses are applied. To enable correction interrupt  
generation, bit CIE (register Control_1) has to be set logic 1. At every correction cycle a  
1
4096 s pulse is generated on pin INTx. If multiple correction pulses are applied, a 14096  
s
interrupt pulse is generated for each correction pulse applied.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
28 of 74  
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.8.1 Correction when MODE = 0  
The correction is triggered once per two hours and then correction pulses are applied  
once per minute until the programmed correction values have been implemented.  
Table 30. Correction pulses for MODE = 0  
Correction value  
Hour  
Minute  
Correction pulses on  
INT1 per minute[1]  
+1 or 1  
+2 or 2  
+3 or 3  
:
02  
02  
02  
:
00  
1
1
1
:
00 and 01  
00, 01, and 02  
:
+59 or 59  
+60 or 60  
+61 or 61  
02  
02  
02  
03  
02  
03  
02  
03  
02  
03  
00 to 58  
00 to 59  
00 to 59  
00  
1
1
1
1
1
1
1
1
1
1
+62 or 62  
+63 or 63  
64  
00 to 59  
00 and 01  
00 to 59  
00, 01, and 02  
00 to 59  
00, 01, 02, and 03  
[1] The correction pulses on pin INT1 are 1  
64 s wide.  
In MODE = 0, any timer or clock output using a frequency below 64 Hz is affected by the  
clock correction (see Table 31).  
Table 31. Effect of clock correction for MODE = 0  
CLKOUT frequency (Hz) Effect of correction Timer source clock  
frequency (Hz)  
Effect of  
correction  
32768  
16384  
8192  
4096  
1024  
32  
no effect  
no effect  
no effect  
no effect  
no effect  
affected  
affected  
4096  
64  
no effect  
no effect  
affected  
affected  
affected  
-
1
1
60  
1
3600  
-
-
1
-
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
29 of 74  
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.8.2 Correction when MODE = 1  
The correction is triggered once per minute and then correction pulses are applied once  
per second up to a maximum of 60 pulses. When correction values greater than 60 pulses  
are used, additional correction pulses are made in the 59th second.  
Clock correction is made more frequently in MODE = 1; however, this can result in higher  
power consumption.  
Table 32. Correction pulses for MODE = 1  
Correction value  
Minute  
Second  
Correction pulses on  
INT1 per second[1]  
+1 or 1  
+2 or 2  
+3 or 3  
:
02  
02  
02  
:
00  
1
1
1
:
00 and 01  
00, 01, and 02  
:
+59 or 59  
+60 or 60  
+61 or 61  
02  
02  
02  
02  
02  
02  
02  
02  
02  
02  
00 to 58  
00 to 59  
00 to 58  
59  
1
1
1
2
1
2
1
4
1
5
+62 or 62  
+63 or 63  
64  
00 to 58  
59  
00 to 58  
59  
00 to 58  
59  
[1] The correction pulses on pin INTx are 14096 s wide. For multiple pulses, they are repeated at an interval of  
1
2048 s.  
In MODE = 1, any timer source clock using a frequency below 4.096 kHz is also affected  
by the clock correction (see Table 33).  
Table 33. Effect of clock correction for MODE = 1  
CLKOUT frequency (Hz) Effect of correction Timer source clock  
frequency (Hz)  
Effect of  
correction  
32768  
16384  
8192  
4096  
1024  
32  
no effect  
no effect  
no effect  
no effect  
no effect  
affected  
affected  
4096  
64  
no effect  
affected  
affected  
affected  
affected  
-
1
1
60  
1
3600  
-
-
1
-
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
30 of 74  
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.8.3 Offset calibration workflow  
The calibration offset has to be calculated based on the time. Figure 18 shows the  
workflow how the offset register values can be calculated:  
Example  
Measure the frequency on pin CLKOUT:  
f
32768.48 Hz  
30.5171 µs  
meas  
Convert to time:  
= 1 / f  
t
meas  
meas  
Calculate the difference to the ideal  
period of 1 / 32768.00:  
0.000447 µs  
14.6484 ppm  
D
= 1 / 32768 - t  
meas  
meas  
Calculate the ppm deviation compared  
to the measured value:  
E
= 1000000 × D  
/ t  
meas meas  
ppm  
Calculate the offset register value:  
Mode = 0 (low power):  
Offset value = E  
/ 4.34  
3.375  
3.600  
3 correction pulses  
are needed  
ppm  
Mode = 1 (fast correction)  
Offset value = E / 4.069  
4 correction pulses  
are needed  
ppm  
013aaa683  
Fig 18. Offset calibration calculation workflow  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
31 of 74  
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.9 Timer function  
The PCF8523 has three timers:  
Timer A can be used as a watchdog timer or a countdown timer (see Section 8.9.2). It  
can be configured by using TAC[1:0] in the Tmr_CLKOUT_ctrl register (0Fh)  
Timer B can be used as a countdown timer (see Section 8.9.3). It can be configured  
by using TBC in the Tmr_CLKOUT_ctrl register (0Fh)  
Second interrupt timer is used to generate an interrupt once per second (see  
Section 8.9.4)  
Timer A and timer B both have five selectable source clocks allowing for countdown  
periods from less than 1 ms to 255 h. To control the timer functions and timer output, the  
registers 01h, 0Fh, 10h, 11h, 12h, and 13h are used.  
8.9.1 Timer registers  
8.9.1.1 Register Tmr_CLKOUT_ctrl and clock output  
Table 34. Tmr_CLKOUT_ctrl - timer and CLKOUT control register (address 0Fh) bit  
description  
Bit  
Symbol  
Value  
Description  
7
TAM  
0[1]  
permanent active interrupt for timer A and for  
the second interrupt timer  
1
pulsed interrupt for timer A and the second  
interrupt timer  
6
TBM  
0[1]  
permanent active interrupt for timer B  
pulsed interrupt for timer B  
1
5 to 3 COF[2:0]  
2 to 1 TAC[1:0]  
see Table 35  
00[1] to 11  
01  
CLKOUT frequency selection  
timer A is disabled  
timer A is configured as countdown timer  
if CTAIE (register Control_2) is set logic 1, the  
interrupt is activated when the countdown  
timed out  
10  
timer A is configured as watchdog timer  
if WTAIE (register Control_2) is set logic 1,  
the interrupt is activated when timed out  
0
TBC  
0[1]  
1
timer B is disabled  
timer B is enabled  
if CTBIE (register Control_2) is set logic 1, the  
interrupt is activated when the countdown  
timed out  
[1] Default value.  
8.9.1.2 CLKOUT frequency selection  
Clock output operation is controlled by the COF[2:0] in the Tmr_CLKOUT_ctrl register.  
Frequencies of 32.768 kHz (default) down to 1 Hz can be generated (see Table 35) for  
use as a system clock, microcontroller clock, input to a charge pump, or for calibration of  
the oscillator.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
32 of 74  
 
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
A programmable square wave is available at pin INT1/CLKOUT and pin CLKOUT, which  
are both open-drain outputs. Pin INT1/CLKOUT has both functions of INT1 and CLKOUT  
combined.  
The duty cycle of the selected clock is not controlled but due to the nature of the clock  
generation, all clock frequencies except 32.768 kHz have a duty cycle of 50 : 50.  
The STOP bit function can also affect the CLKOUT signal, depending on the selected  
frequency. When STOP is active, the INT1/CLKOUT and CLKOUT pins are  
high-impedance for all frequencies except of 32.768 kHz, 16.384 kHz and 8.192 kHz. For  
more details, see Section 8.10.  
Table 35. CLKOUT frequency selection  
COF[2:0] CLKOUT frequency (Hz)  
Typical duty cycle[1]  
60 : 40 to 40 : 60  
50 : 50  
Effect of STOP bit  
no effect  
000[2]  
001  
010  
011  
100  
101  
110  
111  
32768  
16384  
no effect  
8192  
50 : 50  
no effect  
4096  
50 : 50  
CLKOUT = high-Z  
CLKOUT = high-Z  
CLKOUT = high-Z  
CLKOUT = high-Z  
1024  
50 : 50  
50 : 50[3]  
50 : 50[3]  
32  
1
CLKOUT disabled (high-Z)  
[1] Duty cycle definition: % HIGH-level time : % LOW-level time.  
[2] Default value.  
[3] Clock frequencies may be affected by offset correction.  
8.9.1.3 Register Tmr_A_freq_ctrl  
Table 36. Tmr_A_freq_ctrl - timer A frequency control register (address 10h) bit  
description  
Bit  
Symbol  
Value  
Description  
7 to 3  
-
-
unused  
2 to 0 TAQ[2:0]  
source clock for timer A (see Table 40)  
000  
001  
010  
011  
4.096 kHz  
64 Hz  
1 Hz  
1
60 Hz  
1
111[1]  
110  
3600 Hz  
100  
[1] Default value.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
33 of 74  
 
 
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.9.1.4 Register Tmr_A_reg  
Table 37. Tmr_A_reg - timer A value register (address 11h) bit description  
Bit Symbol Value Description  
7 to 0 TIMER_A_VALUE[7:0] 00 to FF timer-period in seconds  
n
timerperiod =  
----------------------------------------------------------  
sourceclockfrequency  
where n is the countdown value  
8.9.1.5 Register Tmr_B_freq_ctrl  
Table 38. Tmr_B_freq_ctrl - timer B frequency control register (address 12h) bit  
description  
Bit  
Symbol  
Value  
Description  
7
-
-
unused  
6 to 4 TBW[2:0]  
low pulse width for pulsed timer B interrupt  
000[1]  
001  
010  
011  
100  
101  
110  
111  
-
46.875 ms  
62.500 ms  
78.125 ms  
93.750 ms  
125.000 ms  
156.250 ms  
187.500 ms  
218.750 ms  
unused  
3
-
2 to 0 TBQ[2:0]  
source clock for timer B (see Table 40)  
4.096 kHz  
000  
001  
010  
011  
64 Hz  
1 Hz  
1
60 Hz  
1
111[1]  
110  
3600 Hz  
100  
[1] Default value.  
8.9.1.6 Register Tmr_B_reg  
Table 39. Tmr_B_reg - timer B value register (address 13h) bit description  
Bit  
Symbol  
Value  
Description  
7 to 0 TIMER_B_VALUE[7:0] 00 to FF  
timer-period in seconds  
n
timerperiod =  
----------------------------------------------------------  
sourceclockfrequency  
where n is the countdown value  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
34 of 74  
 
 
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.9.1.7 Programmable timer characteristics  
Table 40. Programmable timer characteristics  
TAQ[2:0] Timer source  
TBQ[2:0] clock frequency  
Units Minimum  
timer-period  
(n = 1)  
Units Maximum  
timer-period  
(n = 255)  
Units  
000  
001  
010  
011  
4.096  
64  
kHz  
Hz  
Hz  
Hz  
Hz  
244  
s  
62.256  
3.984  
255  
ms  
s
15.625  
ms  
s
1
1
1
1
s
1
min  
hour  
255  
min  
hour  
60  
1
111  
110  
100  
255  
3600  
8.9.2 Timer A  
With the bit field TAC[1:0] in register Tmr_CLKOUT_ctrl (0Fh) Timer A can be configured  
as a countdown timer (TAC[1:0] = 01) or watchdog timer (TAC[1:0] = 10).  
8.9.2.1 Watchdog timer function  
The 3 bits TAQ[2:0] in register Tmr_A_freq_ctrl (10h) determine one of the five source  
clock frequencies for the watchdog timer: 4.096 kHz, 64 Hz, 1 Hz, 160 Hz or 13600 Hz (see  
Table 36).  
The generation of interrupts from the watchdog timer is controlled by using WTAIE bit  
(register Control_2).  
When configured as a watchdog timer (TAC[1:0] = 10), the 8-bit timer value in register  
Tmr_A_reg (11h) determines the watchdog timer-period.  
The watchdog timer counts down from value n in register Tmr_A_reg (11h). When the  
counter reaches 1, the watchdog timer flag WTAF (register Control_2) is set logic 1 on the  
next rising edge of the timer clock (see Figure 19). In that case:  
If WTAIE = 1, an interrupt will be generated  
If WTAIE = 0, no interrupt will be generated  
The interrupt generated by the watchdog timer function of timer A may be generated as  
pulsed signal or a permanentiy active signal. The TAM bit (register Tmr_CLKOUT_ctrl) is  
used to control the interrupt generation mode.  
The counter does not automatically reload. When loading the counter with any valid value  
of n, except 0:  
The flag WTAF is reset (WTAF = 0)  
Interrupt is cleared  
The watchdog timer starts  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
35 of 74  
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
When loading the counter with 0:  
The flag WTAF is reset (WTAF = 0)  
Interrupt is cleared  
The watchdog timer stops  
WTAF is read only. A read of the register Control_2 (01h) automatically resets WTAF  
(WTAF = 0) and clears the interrupt.  
MCU  
watchdog  
timer value  
n = 1  
n = 0  
n
WTAF  
INT1  
013aaa327  
TAC[1:0] = 10, WTAIE = 1, WTAF = 1, an interrupt is generated.  
Fig 19. Watchdog activates an interrupt when timed out  
8.9.2.2 Countdown timer function  
When configured as a countdown timer (TAC[1:0] = 01), timer A counts down from the  
software programmed 8-bit binary value n in register Tmr_A_reg (11h). When the counter  
reaches 1, the following events occur on the next rising edge of the timer clock (see  
Figure 20):  
The countdown timer flag CTAF (register Control_2) is set logic 1  
When the interrupt generation is enabled (CTAIE = 1), an interrupt signal on INT1 is  
generated  
The counter automatically reloads  
The next timer-period starts  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
36 of 74  
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
countdown value, n  
XX  
03  
03  
timer source clock  
countdown counter  
WD/CD [1:0]  
CTAF  
XX  
00  
02  
01  
03  
02  
01  
03  
02  
01  
03  
01  
INT1  
n
n
duration of first timer period after  
enable may range from n1 to n+1  
013aaa328  
In this example, it is assumed that the countdown timer flag (CTAF) is cleared before the next  
countdown period expires and that the interrupt output is set to pulse mode.  
Fig 20. General countdown timer behavior  
At the end of every countdown, the timer sets the countdown timer flag CTAF (register  
Control_2). CTAF may only be cleared by using the interface. Instructions, how to clear a  
flag, is given in Section 8.7.5.  
When reading the timer, the current countdown value is returned and not the initial  
value n. Since it is not possible to freeze the countdown timer counter during read back, it  
is recommended to read the register twice and check for consistent results.  
If a new value of n is written before the end of the actual timer-period, this value takes  
immediate effect. It is not recommended to change n without first disabling the counter by  
setting TAC[1:0] = 00 (register Tmr_CLKOUT_ctrl). The update of n is asynchronous to  
the timer clock. Therefore changing it on the fly could result in a corrupted value loaded  
into the countdown counter. This can result in an undetermined countdown period for the  
first period. The countdown value n will be correctly stored and correctly loaded on  
subsequent timer-periods.  
Loading the counter with 0 effectively stops the timer.  
When starting the countdown timer for the first time, only the first period does not have a  
fixed duration. The amount of inaccuracy for the first timer-period depends on the chosen  
source clock, see Table 41.  
Table 41. First period delay for timer counter value n  
Timer source clock  
4.096 kHz  
Minimum timer-period  
Maximum timer-period  
n + 1  
n
64 Hz  
n
n + 1  
1 Hz  
(n 1) + 164 Hz  
(n 1) + 164 Hz  
(n 1) + 164 Hz  
n + 164 Hz  
n + 164 Hz  
n + 164 Hz  
1
60 Hz  
1
3600 Hz  
The generation of interrupts from the countdown timer is controlled via the CTAIE bit  
(register Control_2).  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
37 of 74  
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
When the interrupt generation is enabled (CTAIE = 1) and the countdown timer flag CTAF  
is set logic 1, an interrupt signal on INT1 is generated. The interrupt may be generated as  
a pulsed signal every countdown period or as a permanently active signal, which follows  
the condition of CTAF (register Control_2). The TAM bit (register Tmr_CLKOUT_ctrl) is  
used to control this mode selection. The interrupt output may be disabled with the CTAIE  
bit (register Control_2).  
8.9.3 Timer B  
Timer B can only be used as a countdown timer and can be switched on and off by the  
TBC bit in register Tmr_CLKOUT_ctrl (0Fh).  
The generation of interrupts from the countdown timer is controlled via the CTBIE bit  
(register Control_2).  
When enabled, it counts down from the software programmed 8 bit binary value n in  
register Tmr_B_reg (13h). When the counter reaches 1 on the next rising edge of the  
timer clock, the following events occur (see Figure 21):  
The countdown timer flag CTBF (register Control_2) is set logic 1  
When the interrupt generation is enabled (CTBIE = 1), interrupt signals on INT1 and  
INT2 are generated  
The counter automatically reloads  
The next timer-period starts  
countdown value, n  
timer source clock  
countdown counter  
WD/CD [1:0]  
XX  
03  
XX  
00  
03  
02  
01  
03  
02  
01  
03  
02  
01  
03  
01  
CTBF  
INT1/INT2  
n
n
duration of first timer period after  
enable may range from n1 to n+1  
013aaa329  
In this example, it is assumed that the countdown timer flag (CTBF) is cleared before the next  
countdown period expires and that interrupt output is set to pulse mode.  
Fig 21. General countdown timer behavior  
At the end of every countdown, the timer sets the countdown timer flag CTBF (register  
Control_2). CTBF may only be cleared by using the interface. Instructions, how to clear a  
flag, is given in Section 8.7.5.  
When reading the timer, the current countdown value is returned and not the initial  
value n. Since it is not possible to freeze the countdown timer counter during read back, it  
is recommended to read the register twice and check for consistent results.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
38 of 74  
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
If a new value of n is written before the end of the actual timer-period, this value will take  
immediate effect. It is not recommended to change n without first disabling the counter by  
setting TBC logic 0 (register Tmr_CLKOUT_ctrl). The update of n is asynchronous to the  
timer clock. Therefore changing it on the fly could result in a corrupted value loaded into  
the countdown counter. This can result in an undetermined countdown period for the first  
period. The countdown value n will be correctly stored and correctly loaded on  
subsequent timer-periods.  
Loading the counter with 0 effectively stops the timer.  
When starting the countdown timer for the first time, only the first period does not have a  
fixed duration. The amount of inaccuracy for the first timer-period depends on the chosen  
source clock; see Table 41.  
When the interrupt generation is enabled (CTBIE = 1) and the countdown timer flag CTAF  
is set logic 1, interrupt signals on INT1 and INT2 are generated. The interrupt may be  
generated as a pulsed signal every countdown period or as a permanently active signal,  
which follows the condition of CTBF (register Control_2). The TBM bit (register  
Tmr_CLKOUT_ctrl) is used to control this mode selection. Interrupt output may be  
disabled with the CTBIE bit (register Control_2).  
8.9.4 Second interrupt timer  
PCF8523 has a pre-defined timer, which is used to generate an interrupt once per second.  
The pulse generator for the second interrupt timer operates from an internal 64 Hz clock  
and generates a pulse of 164 s in duration. It is independent of the watchdog or countdown  
timer and can be switched on and off by the SIE bit in register Control_1 (00h).  
The interrupt generated by the second interrupt timer may be generated as pulsed signal  
every second or as a permanently active signal. The TAM bit (register Tmr_CLKOUT_ctrl)  
is used to control the interrupt generation mode.  
When the second interrupt timer is enabled (SIE = 1), then the timer sets the flag SF  
(register Control_2) every second (see Table 42). SF may only be cleared by using the  
interface. Instructions, how to clear a flag, are given in Section 8.7.5.  
Table 42. Effect of bit SIE on INT1 and bit SF  
SIE  
0
Result on INT1  
Result on SF  
no interrupt generated  
an interrupt once per second  
SF never set  
1
SF set when seconds counter increments  
When SF is logic 1:  
If TAM (register Tmr_CLKOUT_ctrl) is logic 1, the interrupt is generated as a pulsed  
signal every second  
If TAM is logic 0, the interrupt is a permanently active signal that remains, until SF is  
cleared  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
39 of 74  
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
seconds counter  
minutes counter  
58  
59  
59  
11  
00  
12  
00  
01  
INT1 when SIE enabled  
SF when SIE enabled  
013aaa331  
In this example, bit TAM is set logic 1 and the SF flag is not cleared after an interrupt.  
Fig 22. Example for second interrupt when TAM = 1  
seconds counter  
minutes counter  
58 59  
59 00  
11 12  
00 01  
INT1 when SIE enabled  
SF when SIE enabled  
013aaa332  
In this example, bit TAM is set logic 0 and the SF flag is cleared after an interrupt.  
Fig 23. Example for second interrupt when TAM = 0  
8.9.5 Timer interrupt pulse  
The timer interrupt is generated as a pulsed signal when TAM or TBM are set logic 1. The  
pulse generator for the timer interrupt also uses an internal clock, but this time it is  
dependent on the selected source clock for the timer and on the timer register value n. So,  
the width of the interrupt pulse varies; see Table 43 and Table 44.  
Table 43. Interrupt low pulse width for timer A  
Pulse mode, bit TAM set logic 1.  
Source clock (Hz)  
Interrupt pulse width  
n = 1[1]  
n > 1[1]  
4096  
64  
122 s  
244 s  
7.812 ms  
15.625 ms  
15.625 ms  
15.625 ms  
15.625 ms  
1
15.625 ms  
15.625 ms  
15.625 ms  
1
60  
1
3600  
[1] n = loaded timer register value. Timer stops when n = 0.  
For timer B, interrupt pulse width is programmable via bit TBM (register  
Tmr_CLKOUT_ctrl).  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
40 of 74  
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
Table 44. Interrupt low pulse width for timer B  
Pulse mode, bit TBM set logic 1.  
Source clock (Hz).  
Interrupt pulse width  
n = 1[1]  
n > 1[1]  
4096  
64  
122 s  
244 s  
see Table 38[2]  
7.812 ms  
1
see Table 38  
:
:
:
1
:
:
60  
1
3600  
[1] n = loaded timer register value. Timer stops when n = 0.  
[2] If pulse period is shorter than the setting via bit TBW[2:0], the interrupt pulse width is set to 15.625 ms.  
When flags like SF, CTAF, WTAF, and CTBF are cleared before the end of the interrupt  
pulse, then the interrupt pulse is shortened. This allows the source of a system interrupt to  
be cleared immediately when it is serviced, that is, the system does not have to wait for  
the completion of the pulse before continuing; see Figure 24 and Figure 25. Instructions  
for clearing flags can be found in Section 8.7.5. Instructions for clearing the bit WTAF can  
be found in Section 8.9.2.1.  
seconds counter  
SF  
58  
59  
INT1  
(1)  
SCL  
instruction  
CLEAR INSTRUCTION  
013aaa333  
(1) Indicates normal duration of INT1 pulse.  
The timing shown for clearing bit SF is also valid for the non-pulsed interrupt mode, that is, when  
TAM set logic 0, where the INT1 pulse may be shortened by setting SIE logic 0.  
Fig 24. Example of shortening the INT1 pulse by clearing the SF flag  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
41 of 74  
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
countdown counter  
CDTF  
01  
n
INT1  
(1)  
SCL  
instruction  
CLEAR INSTRUCTION  
013aaa334  
(1) Indicates normal duration of INT1 pulse.  
The timing shown for clearing CTAF is also valid for the non-pulsed interrupt mode, that is, when  
TAM set logic 0, where the INT1 pulse may be shortened by setting CTAIE logic 0.  
Fig 25. Example of shortening the INT1 pulse by clearing the CTAF flag  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
42 of 74  
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.10 STOP bit function  
The STOP bit function allows the accurate starting of the time circuits. The STOP bit  
function causes the upper part of the prescaler (F2 to F14) to be held in reset and thus no  
1 Hz ticks are generated. The time circuits can then be set and do not increment until the  
STOP bit is released (see Figure 26).  
OSC STOP  
DETECTOR  
oscillator stop flag  
F
F
F
F
F
14  
0
1
2
13  
OSC  
1 Hz tick  
stop  
RES  
RES  
RES  
512 Hz  
CLKOUT source  
8192 Hz  
16384 Hz  
013aaa336  
Fig 26. STOP bit  
STOP does not affect the output of 32.768 kHz, 16.384 kHz or 8.192 kHz (see  
Section 8.9.1.1).  
The lower two stages of the prescaler (F0 and F1) are not reset. And because the I2C-bus  
interface is asynchronous to the crystal oscillator, the accuracy of re-starting the time  
circuits will be between 0 and one 8.192 kHz cycle (see Figure 27).  
8192 Hz  
stop released  
0 μs to 122 μs  
001aaf912  
Fig 27. STOP bit release timing  
The first increment of the time circuits is between 0.499878 s and 0.500000 s after STOP  
is released. The uncertainty is caused by the prescaler bits F0 and F1 not being reset (see  
Table 45).  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
43 of 74  
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
Table 45. First increment of time circuits after STOP release  
Bit  
Prescaler bits[1]  
1 Hz tick  
Time  
Comment  
STOP  
F0F1-F2 to F14  
hh:mm:ss  
Clock is running normally  
0
12:45:12  
prescaler counting normally  
01-0000111010100  
STOP is activated by user; F0F1 are not reset and values cannot be predicted externally  
1
12:45:12  
08:00:00  
prescaler is reset; time circuits are frozen  
prescaler is reset; time circuits are frozen  
XX-0000000000000  
New time is set by user  
1
XX-0000000000000  
STOP is released by user  
0
0
0
0
:
08:00:00  
08:00:00  
08:00:00  
08:00:00  
:
prescaler is now running  
XX-0000000000000  
XX-1000000000000  
XX-0100000000000  
XX-1100000000000  
:
-
-
-
:
0
0
0
:
08:00:00  
08:00:01  
08:00:01  
:
-
11-1111111111110  
00-0000000000001  
10-0000000000001  
:
0 to 1 transition of F14 increments the time circuits  
-
:
0
0
:
08:00:01  
08:00:01  
:
-
11-1111111111111  
00-0000000000000  
:
-
:
0
0
08:00:01  
08:00:02  
-
11-1111111111110  
00-0000000000001  
0 to 1 transition of F14 increments the time circuits  
013aaa337  
[1] F0 is clocked at 32.768 kHz.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
44 of 74  
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
8.11 I2C-bus interface  
The I2C-bus is for bidirectional, two-line communication between different ICs or modules.  
The two lines are a Serial DAta line (SDA) and a Serial CLock line (SCL). Both lines are  
connected to a positive supply via a pull-up resistor. Data transfer is initiated only when  
the bus is not busy.  
8.11.1 Bit transfer  
One data bit is transferred during each clock pulse. The data on the SDA line remains  
stable during the HIGH period of the clock pulse as changes in the data line at this time  
are interpreted as control signals (see Figure 28).  
SDA  
SCL  
data line  
stable;  
data valid  
change  
of data  
allowed  
mbc621  
Fig 28. Bit transfer  
8.11.2 START and STOP conditions  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW  
transition of the data line, while the clock is HIGH, is defined as the START condition (S).  
A LOW-to-HIGH transition of the data line, while the clock is HIGH, is defined as the  
STOP condition (P) (see Figure 29).  
SDA  
SCL  
SDA  
SCL  
S
P
START condition  
STOP condition  
mbc622  
Fig 29. Definition of START and STOP conditions  
For this device, a repeated START is not allowed. Therefore, a STOP has to be released  
before the next START.  
8.11.3 System configuration  
A device generating a message is a transmitter; a device receiving a message is the  
receiver. The device that controls the message is the master and the devices, which are  
controlled by the master, are the slaves.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
45 of 74  
 
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
SDA  
SCL  
MASTER  
TRANSMITTER  
RECEIVER  
SLAVE  
TRANSMITTER  
RECEIVER  
MASTER  
MASTER  
SLAVE  
RECEIVER  
TRANSMITTER  
TRANSMITTER  
RECEIVER  
mba605  
Fig 30. System configuration  
The PCF8523 can act as a slave transmitter and a slave receiver.  
8.11.4 Acknowledge  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of 8 bits is followed by an acknowledge  
cycle.  
A slave receiver, which is addressed, must generate an acknowledge cycle after the  
reception of each byte  
Also a master receiver must generate an acknowledge cycle after the reception of  
each byte that has been clocked out of the slave transmitter  
The device that acknowledges must pull-down the SDA line during the acknowledge  
clock pulse, so that the SDA line is stable LOW during the HIGH period of the related  
acknowledge clock pulse (set-up and hold times must be considered)  
A master receiver must signal an end of data to the transmitter by not generating an  
acknowledge cycle on the last byte that has been clocked out of the slave. In this  
event, the transmitter must leave the data line HIGH to enable the master to generate  
a STOP condition  
Acknowledgement on the I2C-bus is shown in Figure 31.  
data output  
by transmitter  
not acknowledge  
data output  
by receiver  
acknowledge  
SCL from  
master  
1
2
8
9
S
clock pulse for  
acknowledgement  
START  
condition  
mbc602  
Fig 31. Acknowledgement on the I2C-bus  
8.11.5 I2C-bus protocol  
One I2C-bus slave address (1101000) is reserved for the PCF8523. The entire I2C-bus  
slave address byte is shown in Table 46.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
46 of 74  
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
Table 46. I2C slave address byte  
Slave address[1]  
Bit  
7
6
5
4
3
2
1
0
MSB  
LSB  
R/W  
1
1
0
1
0
0
0
[1] Devices with other I2C-bus slave addresses can be produced on request.  
After a START condition, the I2C slave address has to be sent to the PCF8523 device.  
The R/W bit defines the direction of the following single or multiple byte data transfer. For  
the format and the timing of the START condition (S), the STOP condition (P) and the  
acknowledge bit (A) refer to the I2C-bus characteristics (see Ref. 12 on page 67). In the  
write mode, a data transfer is terminated by sending either the STOP condition or the  
START condition of the next data transfer.  
acknowledge  
acknowledge  
acknowledge  
from PCF8523  
from PCF8523  
from PCF8523  
S
1
1
0
1
0
0
0
0
A
A
A
P/S  
slave address  
register address  
00h to 13h  
0 to n  
data bytes  
write bit  
START/  
STOP  
013aaa338  
Fig 32. Bus protocol for write mode  
acknowledge  
from PCF8523  
acknowledge  
from PCF8523  
set register  
address  
S
1
1
0
1
0
0
0
0
A
A
P
slave address  
register address  
00h to 13h  
write bit  
STOP  
acknowledge  
from PCF8523  
acknowledge  
from master  
no acknowledge  
LAST DATA BYTE  
read register  
data  
S
1
1
0
1
0
0
0
1
A
DATA BYTE  
A
A
P
slave address  
0 to n data bytes  
read bit  
013aaa339  
Fig 33. Bus protocol for read mode  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
47 of 74  
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
9. Internal circuitry  
PCF8523  
V
DD  
OSCI  
INT1/CLKOUT  
SCL  
OSCO  
V
BAT  
SDA  
V
SS  
CLKOUT  
INT2  
013aaa340  
Fig 34. Device diode protection diagram of PCF8523  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
48 of 74  
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
10. Limiting values  
Table 47. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol Parameter Conditions  
Min  
0.5  
50  
0.5  
0.5  
10  
10  
0.5  
-
Max  
+6.5  
+50  
Unit  
V
VDD  
IDD  
VI  
supply voltage  
supply current  
mA  
V
input voltage  
+6.5  
+6.5  
+10  
VO  
output voltage  
V
II  
input current  
mA  
mA  
V
IO  
output current  
+10  
VBAT  
Ptot  
VESD  
battery supply voltage  
total power dissipation  
+6.5  
300  
mW  
V
[1]  
[2]  
electrostatic discharge voltage HBM for all PCF8523  
-
2000  
1500  
CDM for all  
-
V
packaged PCF8523  
[3]  
[4]  
Ilu  
latch-up current  
-
100  
mA  
C  
Tstg  
Tamb  
storage temperature  
65  
40  
+150  
+85  
ambient temperature  
operating device  
C  
[1] Pass level; Human Body Model (HBM), according to Ref. 7 “JESD22-A114”.  
[2] Pass level; Charged-Device Model (CDM), according to Ref. 8 “JESD22-C101”.  
[3] Pass level; latch-up testing according to Ref. 9 “JESD78” at maximum ambient temperature (Tamb(max)).  
[4] According to the store and transport requirements (see Ref. 13 “UM10569”) the devices have to be stored  
at a temperature of +8 C to +45 C and a humidity of 25 % to 75 %.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
49 of 74  
 
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
11. Static characteristics  
Table 48. Static characteristics  
VDD = 1.2 V to 5.5 V; VSS = 0 V; Tamb = 40 C to +85 C; fosc = 32.768 kHz; quartz Rs = 40 k; CL = 7 pF; unless otherwise  
specified.  
Symbol Parameter  
Supplies  
Conditions  
Min  
Typ  
Max  
Unit  
VDD  
supply voltage  
I2C-bus inactive;  
for clock data integrity  
[1]  
[2]  
Tamb = 40 C to +85 C  
Tamb = +10 C to +85 C  
I2C-bus active  
1.2  
1.0  
1.6  
1.8  
-
-
-
-
-
-
-
-
5.5  
5.5  
5.5  
5.5  
0.5  
5.5  
200  
V
V
V
power management function active  
of VDD  
V
SR  
slew rate  
V/ms  
V
VBAT  
IDD  
battery supply voltage  
supply current  
power management function active  
I2C-bus active;  
fSCL = 1000 kHz  
1.8  
-
A  
I2C-bus inactive (fSCL = 0 Hz);  
interrupts disabled  
clock-out disabled;  
power management function disabled  
(PM[2:0] = 111)  
[3]  
[3]  
Tamb = 25 C;  
VDD = 3.0 V  
-
-
150  
-
-
nA  
nA  
Tamb = 40 C to +85 C;  
500  
VDD = 2.0 V to 5.0 V  
clock-out enabled at 32 kHz;  
power management function enabled  
(PM[2:0] = 000)  
[4]  
[4]  
Tamb = 25 C;  
VBAT or VDD = 3.0 V  
-
-
-
1200  
-
-
nA  
nA  
nA  
Tamb = 40 C to +85 C;  
VBAT or VDD = 2.0 V to 5.0 V  
3600  
100  
IL(bat)  
battery leakage current VDD active; VBAT = 3.0 V  
50  
Power management  
Vth(sw)bat battery switch threshold  
voltage  
2.28  
2.5  
2.7  
V
Inputs[5]  
VIL  
VIH  
LOW-level input voltage  
-
-
-
0.3VDD  
-
V
V
HIGH-level input  
voltage  
0.7VDD  
VI  
ILI  
input voltage  
0.5  
-
VDD + 0.5 V  
input leakage current  
VI = VSS or VDD  
post ESD event  
-
0
-
-
nA  
1  
-
+1  
7
A  
[6]  
CI  
input capacitance  
-
pF  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
50 of 74  
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
Table 48. Static characteristics …continued  
VDD = 1.2 V to 5.5 V; VSS = 0 V; Tamb = 40 C to +85 C; fosc = 32.768 kHz; quartz Rs = 40 k; CL = 7 pF; unless otherwise  
specified.  
Symbol Parameter  
Outputs  
Conditions  
Min  
Typ  
Max  
Unit  
VO  
output voltage  
on pins INT1/CLKOUT, CLKOUT, INT2,  
SDA (refers to external pull-up voltage)  
0.5  
VSS  
1.5  
-
-
-
5.5  
0.4  
-
V
VOL  
IOL  
LOW-level output  
voltage  
V
[7]  
[7]  
LOW-level output  
current  
output sink current;  
on pins INT1/CLKOUT, CLKOUT, INT2;  
mA  
VOL = 0.4 V; VDD = 5 V  
on pin SDA  
20  
-
-
mA  
VOL = 0.4 V; VDD = 3.0 V  
ILO  
output leakage current VO = VSS or VDD  
post ESD event  
-
0
-
-
nA  
1  
+1  
A  
[8][9]  
[10]  
CL(itg)  
integrated load  
capacitance  
on pins OSCO, OSCI  
CL = 7 pF  
3.3  
6
7
14  
pF  
pF  
k  
CL = 12.5 pF  
12.5  
-
25  
RS  
series resistance  
-
100  
[1] For reliable oscillator start at power-up: VDD = VDD(min) + 0.3 V.  
[2] For reliable oscillator start at power-up: VDD = VDD(min) + 0.5 V.  
[3] Timer source clock = 1  
3600 Hz, level of pins SCL and SDA is VDD or VSS.  
[4] When the device is supplied via the VBAT pin instead of the VDD pin, the current values for IBAT will be as specified for IDD under the same  
conditions.  
[5] The I2C-bus is 5 V tolerant.  
[6] Implicit by design.  
[7] Tested on sample basis.  
COSCI COSCO  
[8] Integrated load capacitance, CL(itg), is a calculation of COSCI and COSCO in series: CLitg  
[9] Tested at 25 C.  
=
.
-------------------------------------------  
COSCI + COSCO  
[10] Crystal characteristic specification.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
51 of 74  
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
12. Dynamic characteristics  
Table 49. I2C-bus interface timing  
All timing characteristics are valid within the operating supply voltage and ambient temperature range and reference to 30 %  
and 70 % with an input voltage swing of VSS to VDD (see Figure 35).  
Symbol Parameter  
Conditions Standard mode Fast mode (FM) Fast mode plus (Fm+)[1] Unit  
Min  
Max  
Min  
Max Min  
Max  
Pin SCL  
[2]  
fSCL  
SCL clock frequency  
LOW period of the SCL clock  
-
100  
-
400  
-
1000  
kHz  
s  
tLOW  
-
4.7  
4.0  
-
-
1.3  
0.6  
-
-
0.5  
0.26  
-
-
tHIGH  
HIGH period of the SCL clock -  
s  
Pin SDA  
tSU;DAT data set-up time  
tHD;DAT data hold time  
Pins SCL and SDA  
-
-
250  
0
-
-
100  
0
-
-
50  
0
-
-
ns  
ns  
tBUF  
bus free time between a  
STOP and START condition  
-
-
-
4.7  
4.0  
4.0  
4.7  
-
-
1.3  
0.6  
0.6  
0.6  
-
-
-
-
0.5  
0.26  
0.26  
0.26  
-
-
s  
s  
s  
s  
ns  
ns  
pF  
tSU;STO set-up time for STOP  
condition  
-
-
tHD;STA hold time (repeated) START  
condition  
-
-
tSU;STA set-up time for a repeated  
START condition  
-
-
-
[3][4]  
tr  
rise time of both SDA and  
SCL signals  
1000  
300  
400  
20 + 0.1Cb 300  
20 + 0.1Cb 300  
120  
120  
550  
[3][4]  
tf  
fall time of both SDA and SCL  
signals  
-
-
Cb  
capacitive load for each bus  
line  
-
-
400  
-
[5]  
[6]  
[7]  
tVD;ACK data valid acknowledge time  
tVD;DAT data valid time  
-
-
-
3.45  
3.45  
50  
-
-
-
0.9  
0.9  
50  
-
-
-
0.45  
0.45  
50  
s  
s  
ns  
tSP  
pulse width of spikes that  
must be suppressed by the  
input filter  
[1] Fast mode plus guaranteed at 3.0 V < VDD < 5.5 V.  
[2] The minimum SCL clock frequency is limited by the bus time-out feature, which resets the serial bus interface if either the SDA or SCL  
is held LOW for a minimum of 25 ms. The bus time-out feature must be disabled for DC operation.  
[3] A master device must internally provide a hold time of at least 300 ns for the SDA signal (refer to the VIL of the SCL signal) in order to  
bridge the undefined region of the falling edge of SCL.  
[4] The maximum tf for the SDA and SCL bus lines is 300 ns. The maximum fall time for the SDA output stage, tf is 250 ns. This allows  
series protection resistors to be connected between the SDA pin, the SCL pin and the SDA/SCL bus lines without exceeding the  
maximum tf.  
[5] tVD;ACK = time for acknowledgement signal from SCL LOW to SDA output LOW.  
[6] tVD;DAT = minimum time for valid SDA output following SCL LOW.  
[7] Input filters on the SDA and SCL inputs suppress noise spikes of less than 50 ns.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
52 of 74  
 
 
 
 
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
START  
condition  
(S)  
bit 7  
MSB  
(A7)  
STOP  
bit 0 acknowledge  
condition  
bit 6  
(A6)  
protocol  
(R/W)  
(A)  
(P)  
t
t
t
HIGH  
SU;STA  
LOW  
1
/f  
SCL  
SCL  
SDA  
t
t
BUF  
f
t
r
t
t
t
t
t
t
HD;DAT  
VD;DAT  
VD;ACK  
SU;STO  
013aaa417  
HD;STA  
SU;DAT  
Fig 35. I2C-bus timing diagram; rise and fall times refer to 30 % and 70 %  
13. Application information  
V
DD  
R
C
1
SCL  
SDA  
MASTER  
TRANSMITTER  
RECEIVER  
1
V
SS  
V
DD  
INT1/  
CLKOUT  
CLKOUT  
INT2  
SCL  
OSCI  
V
DD  
OSCO  
PCF8523  
R
R
SDA  
R: pull-up resistor  
V
V
SS  
BAT  
t
r
R =  
C
b
013aaa341  
R1 and C1 are recommended to limit the Slew Rate (SR, see Table 48) of VDD. If VDD drops too  
fast, the internal supply switch to the battery is not guaranteed.  
Fig 36. Application diagram  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
53 of 74  
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
14. Package outline  
SO8: plastic small outline package; 8 leads; body width 3.9 mm  
SOT96-1  
D
E
A
X
c
y
H
v
M
A
E
Z
5
8
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
4
e
w
M
detail X  
b
p
0
2.5  
5 mm  
scale  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(2)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
5.0  
4.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.27  
0.05  
1.05  
0.041  
1.75  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.20  
0.014 0.0075 0.19  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.024  
0.028  
0.012  
inches 0.069  
0.01 0.004  
Notes  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
2. Plastic or metal protrusions of 0.25 mm (0.01 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-18  
SOT96-1  
076E03  
MS-012  
Fig 37. Package outline SOT96-1 (SO8) of PCF8523T  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
54 of 74  
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
HVSON8: plastic thermal enhanced very thin small outline package; no leads;  
8 terminals; body 4 x 4 x 0.85 mm  
SOT909-1  
0
1
2 mm  
scale  
X
B
A
D
E
A
A
1
c
detail X  
terminal 1  
index area  
e
1
C
y
terminal 1  
index area  
M
v
C
C
A
B
e
b
y
M
w
C
1
1
4
L
exposed tie bar (4×)  
E
h
8
5
D
h
DIMENSIONS (mm are the original dimensions)  
(1)  
A
max.  
(1)  
(1)  
UNIT  
A
b
E
e
e
y
c
D
D
E
L
v
w
y
1
1
h
1
h
0.05  
0.00  
0.4  
0.3  
4.1  
3.9  
3.25  
2.95  
4.1  
3.9  
2.35  
2.05  
0.65  
0.40  
mm  
0.05  
0.1  
1
0.2  
0.8  
2.4  
0.1  
0.05  
Note  
1. Plastic or metal protrusions of 0.075 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
05-09-26  
05-09-28  
SOT909-1  
MO-229  
Fig 38. Package outline SOT909-1 (HVSON8) of PCF8523TK  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
55 of 74  
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
TSSOP14: plastic thin shrink small outline package; 14 leads; body width 4.4 mm  
SOT402-1  
D
E
A
X
c
y
H
v
M
A
E
Z
8
14  
Q
(A )  
3
A
2
A
A
1
pin 1 index  
θ
L
p
L
1
7
detail X  
w
M
b
p
e
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions)  
A
(1)  
(2)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
Q
v
w
y
Z
θ
1
2
3
p
E
p
max.  
8o  
0o  
0.15  
0.05  
0.95  
0.80  
0.30  
0.19  
0.2  
0.1  
5.1  
4.9  
4.5  
4.3  
6.6  
6.2  
0.75  
0.50  
0.4  
0.3  
0.72  
0.38  
mm  
1.1  
0.65  
0.25  
1
0.2  
0.13  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-18  
SOT402-1  
MO-153  
Fig 39. Package outline SOT402-1 (TSSOP14) of PCF8523TS  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
56 of 74  
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
15. Bare die outline  
Bare die; 12 bumps (6-6)  
PCF8523U  
D
Y
X
2
3
1
PC8523-1  
12  
11  
x
E
0
10  
0
y
4
5
6
9
8
7
A
A
2
A
1
P
4
P
3
P
2
P
1
European  
projection  
detail Y  
detail X  
pcf8523u_do  
Fig 40. Bare die outline of PCF8523U  
Table 50. Dimensions of PCF8523U  
Original dimensions are in mm.  
[2]  
[3]  
[2]  
[3]  
Unit (mm)  
max  
A
A1  
A2  
D[1]  
E[1]  
P1  
P2  
P3  
P4  
0.059  
Bump pitch  
-
0.018  
-
-
-
-
0.059  
-
-
-
nom  
0.22  
-
0.015 0.2  
0.012  
1.58  
-
2.15  
-
0.065 0.056 0.065 0.056  
0.053  
min  
-
-
-
0.053 0.149  
[1] Dimension includes saw lane.  
[2] P1 and P3: pad size.  
[3] P2 and P4: bump size.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
57 of 74  
 
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
Table 51. Bump locations  
All x/y coordinates represent the position of the center of each bump with respect to the center  
(x/y = 0) of the chip; see Figure 40.  
Symbol  
Bump  
Coordinates (m)  
X
Y
VDD  
1
714.4  
911.7  
988.3  
707.3  
199.3  
459.1  
616.7  
895.4  
922.0  
528.8  
101.1  
607.6  
763.2  
OSCI  
OSCO  
VBAT  
2
714.4  
714.4  
714.4  
714.4  
714.4  
714.4  
714.4  
3
4
VSS  
5
n.c.  
6
INT2  
7
CLKOUT  
SDA  
8
9
714.4  
SCL  
10  
11  
12  
714.4  
n.c.  
714.4  
INT1/CLKOUT  
714.4  
Table 52. Alignment mark dimension and location  
Coordinates  
Location[1]  
X
Y
631.3 m  
44.25 m  
891.7 m  
36.5 m  
Dimension[2]  
[1] The x/y coordinates of the alignment mark location represent the position of the REF point (see Figure 41)  
with respect to the center (x/y = 0) of the chip; see Figure 40.  
[2] The x/y values of the dimensions represent the extensions of the alignment mark in direction of the  
coordinate axis (see Figure 41).  
REF  
x
y
013aaa318  
Fig 41. Alignment mark  
Table 53. Gold bump hardness of PCF8523U  
Gold bump type  
Min  
Max  
80  
Unit[1]  
soft gold bump  
35  
HV  
[1] Pressure of diamond head: 10 g to 50 g.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
58 of 74  
 
 
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
16. Handling information  
All input and output pins are protected against ElectroStatic Discharge (ESD) under  
normal handling. When handling Metal-Oxide Semiconductor (MOS) devices ensure that  
all normal precautions are taken as described in JESD625-A, IEC 61340-5 or equivalent  
standards.  
17. Packing information  
17.1 Tape and reel information  
TOP VIEW  
4.0  
Ø 1.5  
W
B0  
A0  
K0  
P1  
direction of feed  
Ø 1.5  
Original dimensions are in mm.  
Figure not drawn to scale.  
013aaa698  
Fig 42. Tape and reel details for PCF8523  
Table 54. Carrier tape dimensions of PCF8523  
Symbol  
Description  
Value  
Unit  
SOT96-1 (SO8) of PCF8523T  
A0  
B0  
K0  
P1  
W
pocket width in x direction  
6.30 to 6.65  
5.40  
mm  
mm  
mm  
mm  
mm  
pocket width in y direction  
pocket depth  
2.05 to 2.10  
8.0  
pocket hole pitch  
tape width in y direction  
12.0  
SOT909-1 (HVSON8) of PCF8523TK  
A0  
B0  
K0  
P1  
W
pocket width in x direction  
pocket width in y direction  
pocket depth  
4.25 to 4.30  
4.25 to 4.30  
1.1  
mm  
mm  
mm  
mm  
mm  
pocket hole pitch  
8.0  
tape width in y direction  
12.0  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
59 of 74  
 
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
Table 54. Carrier tape dimensions of PCF8523 …continued  
Symbol Description  
SOT402-1 (TSSOP14) of PCF8523TS  
Value  
Unit  
A0  
B0  
K0  
P1  
W
pocket width in x direction  
pocket width in y direction  
pocket depth  
6.95  
5.6  
mm  
mm  
mm  
mm  
mm  
1.6  
pocket hole pitch  
8.0  
tape width in y direction  
12.0  
17.2 Wafer and Film Frame Carrier (FFC) information  
1.492 mm  
(1)  
~18 μm  
1
1
1.449 mm  
45 μm  
~18 μm  
Saw lane  
X
1
1
70 μm  
detail X  
straight edge  
of the wafer  
013aaa232  
(1) Die marking code.  
Seal ring plus gap to active circuit ~18 m. Wafer thickness 200 m.  
PCF8523U: bad die are marked in wafer mapping.  
Fig 43. PCF8523U wafer information  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
60 of 74  
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
276 mm  
60.2 mm  
63.5 mm  
2.6 mm  
plastic frame  
0.3  
straight edge  
of the wafer  
276 mm  
250 mm  
plastic film  
013aaa351  
Fig 44. Film Frame Carrier (FFC) (for PCF8523U)  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
61 of 74  
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
18. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
18.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
18.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
18.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
62 of 74  
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
18.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 45) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 55 and 56  
Table 55. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 56. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 45.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
63 of 74  
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 45. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
19. Footprint information  
5.50  
0.60 (8×)  
1.30  
4.00 6.60 7.00  
1.27 (6×)  
solder lands  
sot096-1_fr  
placement accuracy 0.25  
Dimensions in mm  
occupied area  
Fig 46. Footprint information for reflow soldering of SOT96-1 (SO8) of PCF8523T  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
64 of 74  
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
Footprint information for reflow soldering of TSSOP14 package  
SOT402-1  
Hx  
Gx  
P2  
(0.125)  
(0.125)  
By  
Ay  
Hy Gy  
C
D2 (4x)  
P1  
D1  
Generic footprint pattern  
Refer to the package outline drawing for actual layout  
solder land  
occupied area  
DIMENSIONS in mm  
P1 P2 Ay  
By  
C
D1  
D2  
Gx  
Gy  
Hx  
Hy  
0.650 0.750 7.200 4.500 1.350 0.400 0.600 4.950 5.300 5.800 7.450  
sot402-1_fr  
Fig 47. Footprint information for reflow soldering of SOT402-1 (TSSOP14) of PCF8523TS  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
65 of 74  
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
20. Abbreviations  
Table 57. Abbreviations  
Acronym  
AM  
Description  
Ante Meridiem  
BCD  
CDM  
CMOS  
DC  
Binary Coded Decimal  
Charged-Device Model  
Complementary Metal-Oxide Semiconductor  
Direct Current  
FFC  
HBM  
I2C  
Film Frame Carrier  
Human Body Model  
Inter-Integrated Circuit bus  
Integrated Circuit  
IC  
LSB  
MCU  
MSB  
MSL  
PCB  
PM  
Least Significant Bit  
Microcontroller Unit  
Most Significant Bit  
Moisture Sensitivity Level  
Printed-Circuit Board  
Post Meridiem  
POR  
RTC  
SCL  
SDA  
SMD  
SR  
Power-On Reset  
Real-Time Clock  
Serial CLock line  
Serial DAta line  
Surface Mount Device  
Slew Rate  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
66 of 74  
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
21. References  
[1] AN10365 Surface mount reflow soldering description  
[2] AN10706 Handling bare die  
[3] AN10853 ESD and EMC sensitivity of IC  
[4] IEC 60134 — Rating systems for electronic tubes and valves and analogous  
semiconductor devices  
[5] IEC 61340-5 — Protection of electronic devices from electrostatic phenomena  
[6] IPC/JEDEC J-STD-020D — Moisture/Reflow Sensitivity Classification for  
Nonhermetic Solid State Surface Mount Devices  
[7] JESD22-A114 Electrostatic Discharge (ESD) Sensitivity Testing Human Body  
Model (HBM)  
[8] JESD22-C101 Field-Induced Charged-Device Model Test Method for  
Electrostatic-Discharge-Withstand Thresholds of Microelectronic Components  
[9] JESD78 IC Latch-Up Test  
[10] JESD625-A Requirements for Handling Electrostatic-Discharge-Sensitive  
(ESDS) Devices  
[11] SNV-FA-01-02 Marking Formats Integrated Circuits  
[12] UM10204 I2C-bus specification and user manual  
[13] UM10569 Store and transport requirements  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
67 of 74  
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
22. Revision history  
Table 58. Revision history  
Document ID  
PCF8523 v.4  
Modifications:  
Release date  
20120705  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
PCF8523 v.3  
Added Section 4.1, Section 17.1, Section 8.8.3, and Section 19  
Added I2C read and write address to feature list  
Fixed Figure 33  
Fixed typos  
PCF8523 v.3  
PCF8523 v.2  
PCF8523 v.1  
20110330  
20110127  
20101123  
Product data sheet  
Product data sheet  
Product data sheet  
-
-
-
PCF8523 v.2  
PCF8523 v.1  
-
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
68 of 74  
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
23. Legal information  
23.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use — NXP Semiconductors products are not designed,  
23.2 Definitions  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer’s own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
23.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
69 of 74  
 
 
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
Bare die — All die are tested on compliance with their related technical  
specifications as stated in this data sheet up to the point of wafer sawing and  
are handled in accordance with the NXP Semiconductors storage and  
transportation conditions. If there are data sheet limits not guaranteed, these  
will be separately indicated in the data sheet. There are no post-packing tests  
performed on individual die or wafers.  
Non-automotive qualified products — Unless this data sheet expressly  
states that this specific NXP Semiconductors product is automotive qualified,  
the product is not suitable for automotive use. It is neither qualified nor tested  
in accordance with automotive testing or application requirements. NXP  
Semiconductors accepts no liability for inclusion and/or use of  
NXP Semiconductors has no control of third party procedures in the sawing,  
handling, packing or assembly of the die. Accordingly, NXP Semiconductors  
assumes no liability for device functionality or performance of the die or  
systems after third party sawing, handling, packing or assembly of the die. It  
is the responsibility of the customer to test and qualify their application in  
which the die is used.  
non-automotive qualified products in automotive equipment or applications.  
In the event that customer uses the product for design-in and use in  
automotive applications to automotive specifications and standards, customer  
(a) shall use the product without NXP Semiconductors’ warranty of the  
product for such automotive applications, use and specifications, and (b)  
whenever customer uses the product for automotive applications beyond  
NXP Semiconductors’ specifications such use shall be solely at customer’s  
own risk, and (c) customer fully indemnifies NXP Semiconductors for any  
liability, damages or failed product claims resulting from customer design and  
use of the product for automotive applications beyond NXP Semiconductors’  
standard warranty and NXP Semiconductors’ product specifications.  
All die sales are conditioned upon and subject to the customer entering into a  
written die sale agreement with NXP Semiconductors through its legal  
department.  
23.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
I2C-bus — logo is a trademark of NXP B.V.  
24. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
70 of 74  
 
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
25. Tables  
Table 1. Ordering information . . . . . . . . . . . . . . . . . . . . .2  
Table 2. Ordering options. . . . . . . . . . . . . . . . . . . . . . . . .2  
Table 3. PCF8523U wafer information . . . . . . . . . . . . . . .2  
Table 4. Marking codes . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Table 5. Pin description . . . . . . . . . . . . . . . . . . . . . . . . . .5  
Table 6. Registers overview . . . . . . . . . . . . . . . . . . . . . .7  
Table 7. Control_1 - control and status register 1  
(address 00h) bit description . . . . . . . . . . . . . . .9  
Table 8. Control_2 - control and status register 2  
(address 01h) bit description . . . . . . . . . . . . . .10  
Table 9. Control_3 - control and status register 3  
(address 02h) bit description . . . . . . . . . . . . . .11  
Table 10. Register reset values . . . . . . . . . . . . . . . . . . . .12  
Table 11. Power management function control bits . . . . .15  
Table 12. Seconds - seconds and clock integrity status  
register (address 03h) bit description . . . . . . . .20  
Table 13. SECONDS coded in BCD format . . . . . . . . . . .20  
Table 14. Minutes - minutes register (address 04h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .21  
Table 15. Hours - hours register (address 05h)  
Table 27. Example to clear only AF (bit 3). . . . . . . . . . . . 26  
Table 28. Offset - offset register (address 0Eh)  
bit description. . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 29. Offset values . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
Table 30. Correction pulses for MODE = 0 . . . . . . . . . . . 29  
Table 31. Effect of clock correction for MODE = 0. . . . . . 29  
Table 32. Correction pulses for MODE = 1 . . . . . . . . . . . 30  
Table 33. Effect of clock correction for MODE = 1 . . . . . 30  
Table 34. Tmr_CLKOUT_ctrl - timer and CLKOUT control  
register (address 0Fh) bit description . . . . . . . 32  
Table 35. CLKOUT frequency selection . . . . . . . . . . . . . 33  
Table 36. Tmr_A_freq_ctrl - timer A frequency control  
register (address 10h) bit description . . . . . . . 33  
Table 37. Tmr_A_reg - timer A value register (address 11h)  
bit description. . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 38. Tmr_B_freq_ctrl - timer B frequency control  
register (address 12h) bit description . . . . . . . 34  
Table 39. Tmr_B_reg - timer B value register (address 13h)  
bit description. . . . . . . . . . . . . . . . . . . . . . . . . . 34  
Table 40. Programmable timer characteristics . . . . . . . . 35  
Table 41. First period delay for timer counter value n . . . 37  
Table 42. Effect of bit SIE on INT1 and bit SF . . . . . . . . . 39  
Table 43. Interrupt low pulse width for timer A. . . . . . . . . 40  
Table 44. Interrupt low pulse width for timer B. . . . . . . . . 41  
Table 45. First increment of time circuits after STOP  
release . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44  
Table 46. I2C slave address byte. . . . . . . . . . . . . . . . . . . 47  
Table 47. Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 49  
Table 48. Static characteristics . . . . . . . . . . . . . . . . . . . . 50  
Table 49. I2C-bus interface timing . . . . . . . . . . . . . . . . . . 52  
Table 50. Dimensions of PCF8523U . . . . . . . . . . . . . . . . 57  
Table 51. Bump locations . . . . . . . . . . . . . . . . . . . . . . . . 58  
Table 52. Alignment mark dimension and location . . . . . 58  
Table 53. Gold bump hardness of PCF8523U. . . . . . . . . 58  
Table 54. Carrier tape dimensions of PCF8523 . . . . . . . 59  
Table 55. SnPb eutectic process (from J-STD-020C) . . . 63  
Table 56. Lead-free process (from J-STD-020C) . . . . . . 63  
Table 57. Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 66  
Table 58. Revision history . . . . . . . . . . . . . . . . . . . . . . . . 68  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .21  
Table 16. Days - days register (address 06h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .21  
Table 17. Weekdays - weekdays register (address 07h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .22  
Table 18. Weekday assignments . . . . . . . . . . . . . . . . . . .22  
Table 19. Months - months register (address 08h)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .22  
Table 20. Month assignments in BCD format. . . . . . . . . .22  
Table 21. Years - years register (09h) bit description. . . .23  
Table 22. Minute_alarm - minute alarm register  
(address 0Ah) bit description . . . . . . . . . . . . . .24  
Table 23. Hour_alarm - hour alarm register (address 0Bh)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .24  
Table 24. Day_alarm - day alarm register (address 0Ch)  
bit description . . . . . . . . . . . . . . . . . . . . . . . . .25  
Table 25. Weekday_alarm - weekday alarm register  
(address 0Dh) bit description . . . . . . . . . . . . . .25  
Table 26. Flag location in register Control_2 . . . . . . . . . .26  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
71 of 74  
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
26. Figures  
Fig 1. Block diagram of PCF8523 . . . . . . . . . . . . . . . . . .3  
Fig 2. Pin configuration for SO8 (PCF8523T) . . . . . . . . .4  
Fig 3. Pin configuration for HVSON8 (PCF8523TK) . . . .4  
Fig 4. Pin configuration for TSSOP14 (PCF8523TS). . . .4  
Fig 5. Pin configuration for PCF8523U . . . . . . . . . . . . . .5  
Fig 6. Auto-incrementing of the registers. . . . . . . . . . . . .7  
Fig 7. Software reset command. . . . . . . . . . . . . . . . . . .12  
Fig 8. Interrupt block diagram . . . . . . . . . . . . . . . . . . . .14  
Fig 9. Battery switch-over behavior in standard mode  
and with bit BSIE set logic 1 (enabled) . . . . . . . .17  
Fig 47. Footprint information for reflow soldering of  
SOT402-1 (TSSOP14) of PCF8523TS . . . . . . . . 65  
Fig 10. Battery switch-over behavior in direct switching  
mode and with bit BSIE set logic 1 (enabled) . . .18  
Fig 11. Battery low detection behavior with bit BLIE  
set logic 1 (enabled) . . . . . . . . . . . . . . . . . . . . . .19  
Fig 12. OS flag. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .21  
Fig 13. Data flow diagram of the time function. . . . . . . . .23  
Fig 14. Access time for read/write operations . . . . . . . . .23  
Fig 15. Alarm function block diagram. . . . . . . . . . . . . . . .25  
Fig 16. Alarm flag timing . . . . . . . . . . . . . . . . . . . . . . . . .26  
Fig 17. AF timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27  
Fig 18. Offset calibration calculation workflow. . . . . . . . .31  
Fig 19. Watchdog activates an interrupt when timed out.36  
Fig 20. General countdown timer behavior . . . . . . . . . . .37  
Fig 21. General countdown timer behavior . . . . . . . . . . .38  
Fig 22. Example for second interrupt when TAM = 1. . . .40  
Fig 23. Example for second interrupt when TAM = 0. . . .40  
Fig 24. Example of shortening the INT1 pulse by  
clearing the SF flag . . . . . . . . . . . . . . . . . . . . . . .41  
Fig 25. Example of shortening the INT1 pulse by  
clearing the CTAF flag . . . . . . . . . . . . . . . . . . . . .42  
Fig 26. STOP bit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Fig 27. STOP bit release timing. . . . . . . . . . . . . . . . . . . .43  
Fig 28. Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Fig 29. Definition of START and STOP conditions. . . . . .45  
Fig 30. System configuration . . . . . . . . . . . . . . . . . . . . . .46  
Fig 31. Acknowledgement on the I2C-bus . . . . . . . . . . . .46  
Fig 32. Bus protocol for write mode. . . . . . . . . . . . . . . . .47  
Fig 33. Bus protocol for read mode . . . . . . . . . . . . . . . . .47  
Fig 34. Device diode protection diagram of PCF8523 . .48  
Fig 35. I2C-bus timing diagram; rise and fall times refer  
to 30 % and 70 % . . . . . . . . . . . . . . . . . . . . . . . .53  
Fig 36. Application diagram . . . . . . . . . . . . . . . . . . . . . . .53  
Fig 37. Package outline SOT96-1 (SO8) of PCF8523T. .54  
Fig 38. Package outline SOT909-1 (HVSON8) of  
PCF8523TK. . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Fig 39. Package outline SOT402-1 (TSSOP14) of  
PCF8523TS. . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Fig 40. Bare die outline of PCF8523U. . . . . . . . . . . . . . .57  
Fig 41. Alignment mark . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Fig 42. Tape and reel details for PCF8523 . . . . . . . . . . .59  
Fig 43. PCF8523U wafer information. . . . . . . . . . . . . . . .60  
Fig 44. Film Frame Carrier (FFC) (for PCF8523U) . . . . .61  
Fig 45. Temperature profiles for large and small  
components . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Fig 46. Footprint information for reflow soldering of  
SOT96-1 (SO8) of PCF8523T . . . . . . . . . . . . . . .64  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
72 of 74  
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
27. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
8.8.3  
8.9  
8.9.1  
Offset calibration workflow. . . . . . . . . . . . . . . 31  
Timer function . . . . . . . . . . . . . . . . . . . . . . . . 32  
Timer registers . . . . . . . . . . . . . . . . . . . . . . . . 32  
Register Tmr_CLKOUT_ctrl and clock output 32  
CLKOUT frequency selection . . . . . . . . . . . . 32  
Register Tmr_A_freq_ctrl. . . . . . . . . . . . . . . . 33  
Register Tmr_A_reg. . . . . . . . . . . . . . . . . . . . 34  
Register Tmr_B_freq_ctrl. . . . . . . . . . . . . . . . 34  
Register Tmr_B_reg . . . . . . . . . . . . . . . . . . . 34  
Programmable timer characteristics . . . . . . . 35  
Timer A. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35  
Watchdog timer function . . . . . . . . . . . . . . . . 35  
Countdown timer function . . . . . . . . . . . . . . . 36  
Timer B. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38  
Second interrupt timer . . . . . . . . . . . . . . . . . . 39  
Timer interrupt pulse . . . . . . . . . . . . . . . . . . . 40  
STOP bit function. . . . . . . . . . . . . . . . . . . . . . 43  
I2C-bus interface . . . . . . . . . . . . . . . . . . . . . . 45  
Bit transfer . . . . . . . . . . . . . . . . . . . . . . . . . . . 45  
START and STOP conditions. . . . . . . . . . . . . 45  
System configuration . . . . . . . . . . . . . . . . . . . 45  
Acknowledge . . . . . . . . . . . . . . . . . . . . . . . . . 46  
I2C-bus protocol . . . . . . . . . . . . . . . . . . . . . . . 46  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1  
Ordering information. . . . . . . . . . . . . . . . . . . . . 2  
Ordering options. . . . . . . . . . . . . . . . . . . . . . . . 2  
Marking. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
3
8.9.1.1  
8.9.1.2  
8.9.1.3  
8.9.1.4  
8.9.1.5  
8.9.1.6  
8.9.1.7  
8.9.2  
8.9.2.1  
8.9.2.2  
8.9.3  
8.9.4  
8.9.5  
4
4.1  
5
6
7
7.1  
7.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
8
8.1  
8.2  
8.2.1  
8.2.2  
8.2.3  
8.3  
8.4  
8.5  
8.5.1  
8.5.2  
8.5.2.1  
8.5.2.2  
8.5.2.3  
Functional description . . . . . . . . . . . . . . . . . . . 6  
Registers overview . . . . . . . . . . . . . . . . . . . . . . 7  
Control and status registers . . . . . . . . . . . . . . . 9  
Register Control_1 . . . . . . . . . . . . . . . . . . . . . . 9  
Register Control_2 . . . . . . . . . . . . . . . . . . . . . 10  
Register Control_3 . . . . . . . . . . . . . . . . . . . . . 11  
Reset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Interrupt function. . . . . . . . . . . . . . . . . . . . . . . 13  
Power management functions . . . . . . . . . . . . 15  
Standby mode. . . . . . . . . . . . . . . . . . . . . . . . . 15  
Battery switch-over function . . . . . . . . . . . . . . 16  
Standard mode . . . . . . . . . . . . . . . . . . . . . . . . 17  
Direct switching mode . . . . . . . . . . . . . . . . . . 18  
Battery switch-over disabled, only one power  
supply (VDD) . . . . . . . . . . . . . . . . . . . . . . . . . . 18  
Battery low detection function. . . . . . . . . . . . . 18  
Time and date registers . . . . . . . . . . . . . . . . . 19  
Register Seconds . . . . . . . . . . . . . . . . . . . . . . 20  
Oscillator STOP flag . . . . . . . . . . . . . . . . . . . . 20  
Register Minutes. . . . . . . . . . . . . . . . . . . . . . . 21  
Register Hours . . . . . . . . . . . . . . . . . . . . . . . . 21  
Register Days. . . . . . . . . . . . . . . . . . . . . . . . . 21  
Register Weekdays. . . . . . . . . . . . . . . . . . . . . 22  
Register Months . . . . . . . . . . . . . . . . . . . . . . . 22  
Register Years . . . . . . . . . . . . . . . . . . . . . . . . 23  
Data flow of the time function . . . . . . . . . . . . . 23  
Alarm registers . . . . . . . . . . . . . . . . . . . . . . . . 24  
Register Minute_alarm . . . . . . . . . . . . . . . . . . 24  
Register Hour_alarm . . . . . . . . . . . . . . . . . . . 24  
Register Day_alarm . . . . . . . . . . . . . . . . . . . . 25  
Register Weekday_alarm . . . . . . . . . . . . . . . . 25  
Alarm flag . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Alarm interrupts . . . . . . . . . . . . . . . . . . . . . . . 27  
Register Offset . . . . . . . . . . . . . . . . . . . . . . . . 28  
Correction when MODE = 0 . . . . . . . . . . . . . . 29  
Correction when MODE = 1 . . . . . . . . . . . . . . 30  
8.10  
8.11  
8.11.1  
8.11.2  
8.11.3  
8.11.4  
8.11.5  
9
Internal circuitry . . . . . . . . . . . . . . . . . . . . . . . 48  
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 49  
Static characteristics . . . . . . . . . . . . . . . . . . . 50  
Dynamic characteristics. . . . . . . . . . . . . . . . . 52  
Application information . . . . . . . . . . . . . . . . . 53  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 54  
Bare die outline . . . . . . . . . . . . . . . . . . . . . . . . 57  
Handling information . . . . . . . . . . . . . . . . . . . 59  
10  
11  
12  
13  
14  
15  
16  
8.5.3  
8.6  
8.6.1  
8.6.1.1  
8.6.2  
8.6.3  
8.6.4  
8.6.5  
8.6.6  
8.6.7  
8.6.8  
8.7  
8.7.1  
8.7.2  
8.7.3  
8.7.4  
8.7.5  
8.7.6  
8.8  
17  
17.1  
17.2  
Packing information . . . . . . . . . . . . . . . . . . . . 59  
Tape and reel information . . . . . . . . . . . . . . . 59  
Wafer and Film Frame Carrier (FFC)  
information . . . . . . . . . . . . . . . . . . . . . . . . . . . 60  
18  
Soldering of SMD packages. . . . . . . . . . . . . . 62  
Introduction to soldering. . . . . . . . . . . . . . . . . 62  
Wave and reflow soldering. . . . . . . . . . . . . . . 62  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . 62  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . 63  
18.1  
18.2  
18.3  
18.4  
19  
20  
21  
22  
23  
Footprint information . . . . . . . . . . . . . . . . . . . 64  
Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . 66  
References. . . . . . . . . . . . . . . . . . . . . . . . . . . . 67  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 68  
Legal information . . . . . . . . . . . . . . . . . . . . . . 69  
8.8.1  
8.8.2  
continued >>  
PCF8523  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2012. All rights reserved.  
Product data sheet  
Rev. 4 — 5 July 2012  
73 of 74  
 
PCF8523  
NXP Semiconductors  
Real-Time Clock (RTC) and calendar  
23.1  
23.2  
23.3  
23.4  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 69  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . . 69  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . . 70  
24  
25  
26  
27  
Contact information. . . . . . . . . . . . . . . . . . . . . 70  
Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71  
Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2012.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 5 July 2012  
Document identifier: PCF8523  
Mouser Electronics  
Authorized Distributor  
Click to View Pricing, Inventory, Delivery & Lifecycle Information:  
NXP:  
PCF8523T/1,118 PCF8523TK/1,118 PCF8523TS/1,112 PCF8523TS/1,118  

相关型号:

TYPEQSERIES

2.54mm(0.1”), 5.08mm(0.2” Half loaded) Pitch
DUBILIER

TYPES

TRANSZORB Transient Voltage Suppressors
VISHAY

TYPESP3220EBCA

+3.0V to +5.5V RS-232 Driver/Receiver Pair
SIPEX

TYPET1794

Type T1794 Custom Low Temperature Coeffi cient Precision SIP Resistor Networks
ETC

TYPET912

Type T912 and T914 Precision Resistor Networks
ETC

TYPET912_T914

Type T912 and T914 Precision Resistor Networks
ETC

TYPET914

Type T912 and T914 Precision Resistor Networks
ETC

TYS3012100M-10

FIXED IND 10UH 830MA 265 MOHM
ETC

TYS3012220M-10

FIXED IND 22UH 530MA 645 MOHM
ETC

TYS30123R3M-10

FIXED IND 3.3UH 1.36A 100 MOHM
ETC

TYS30124R7M-10

FIXED IND 4.7UH 1.24A 120 MOHM
ETC

TYS4018151M-10

FIXED IND 150UH 220MA 2.5 OHM
ETC