UJA1023T [NXP]

LIN-I/O slave;
UJA1023T
型号: UJA1023T
厂家: NXP    NXP
描述:

LIN-I/O slave

文件: 总49页 (文件大小:1378K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UJA1023  
LIN-I/O slave  
Rev. 5 — 17 August 2010  
Product data sheet  
1. General description  
The UJA1023 is a stand-alone Local Interconnect Network (LIN) I/O slave that replaces  
basic components commonly used in electronic control units for input and output handling.  
The UJA1023 contains a LIN 2.0 controller, an integrated LIN transceiver which is  
LIN 2.0 / SAE J2602 compliant and LIN 1.3 compatible, a 30 kΩ termination resistor  
necessary for LIN-slaves, and eight I/O ports which are configurable via the LIN bus.  
An automatic bit rate synchronization circuit adapts to any (master) bit rate between  
1 kbit/s and 20 kbit/s. For this, an oscillator is integrated.  
The LIN protocol will be handled autonomously and both Node Address (NAD) and LIN  
frame Identifier (ID) programming will be done by a master request and an optional slave  
response message in combination with a daisy chain or plug coding function.  
The eight bidirectional I/O pins are configurable via LIN bus messages and can have the  
following functions:  
Input:  
Standard input pin  
Local wake-up  
Edge capturing on falling, rising or both edges  
Analog input pin  
Switch matrix (in combination with output pins)  
Output:  
Standard output pin as high-side driver, low-side driver or push-pull driver  
Cyclic sense mode for local wake-up  
Pulse Width Modulation (PWM) mode; for example, for back light illumination  
Switch matrix (in combination with input pins)  
On entering a low-power mode it is possible to hold the last output state or to change over  
to a user programmable output state. In case of a failure (e.g. LIN bus short to ground) the  
output changes over to a user programmable limp home output state and the low-power  
Limp home mode will be entered.  
Due to the advanced low-power behavior the power consumption of the UJA1023 in  
low-power mode is minimal.  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
2. Features and benefits  
„ Automatic bit rate synchronization to any (master) bit rate between 1 kbit/s  
and 20 kbit/s  
„ Integrated LIN 2.0 / SAE J2602 transceiver (including 30 kΩ termination resistor)  
„ Eight bidirectional I/O pins  
„ 4 × 2, 4 × 3, or 4 × 4 switch matrix to support reading and supplying a maximum  
number of 16 switches  
„ Outputs configurable as high-side and/or low-side driver and as cyclic or PWM driver  
„ 8-bit ADC  
„ Advanced low-power behavior  
„ On-chip oscillator  
„ Node Address (NAD) configuration via daisy chain or plug coding  
„ Inputs supporting local wake-up and edge capturing  
„ Configurable Sleep mode  
„ Limp home configuration in case of error conditions  
„ Extremely low electromagnetic emission  
„ High immunity against electromagnetic interference  
„ Bus line protected in accordance with ISO 7637  
„ Extended ambient temperature range (40 °C to +125 °C)  
3. Quick reference data  
Table 1.  
Symbol Parameter  
VBAT supply voltage on pin BAT  
IBAT  
Quick reference data  
Conditions  
Min Typ Max Unit  
[1]  
[2]  
all operating modes  
5.5  
-
-
27  
65  
V
supply current on pin BAT  
LH sleep, Sleep and  
Limp home mode;  
VBAT = 8.1 V to 27 V  
45  
μA  
VLIN  
Tvj  
voltage on pin LIN  
DC value  
27  
40  
8  
-
-
-
+40  
V
[3]  
virtual junction temperature  
electrostatic discharge voltage  
+150 °C  
+8 kV  
VESD  
human body model;  
on pins LIN, BAT, C1, C2 and C3 C = 100 pF; R = 1.5 kΩ  
[1] Valid for the UJA1023T/2R04/C; for the UJA1023T/2R04, VBAT = 6.5 V to 27 V.  
[2] All outputs turned off, LIN recessive, Vth1 selected.  
[3] Junction temperature in accordance with IEC60747-1. An alternative definition of Tvj = Tamb + P × Rth(j-a)  
where Rth(j-a) is a fixed value to be used for calculating Tvj. The rating for Tvj limits the allowable  
combinations of power dissipation (P) and ambient temperature (Tamb).  
,
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
2 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
4. Ordering information  
Table 2.  
Ordering information  
Type number  
Package  
Name  
SO16  
Description  
Version  
UJA1023T/2R04/C[1]  
UJA1023T/2R04[1]  
plastic small outline package; 16 leads; body width 3.9 mm  
plastic small outline package; 16 leads; body width 3.9 mm  
SOT109-1  
SOT109-1  
SO16  
[1] VBAT = 5.5 V to 27 V for the UJA1023T/2R04/C; VBAT = 6.5 V to 27 V for the UJA1023T/2R04 (see Table 32).  
5. Block diagram  
3
5
VOLTAGE  
REGULATOR  
1
BAT  
VIO  
GND  
UJA1023  
2
INH  
TERMINATION  
INH  
ADC  
4
LIN  
LIN  
TRANSCEIVER  
AUTO  
BIT RATE  
DETECTION  
LIN  
9 to 16  
CONTROLLER  
I/O BLOCK  
P0 to P7  
OSCILLATOR  
PWM  
6 to 8  
CYCLIC  
SENSE  
C1 to C3  
CONFIGURATION  
mdb488  
Fig 1. Block diagram  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
3 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
6. Pinning information  
6.1 Pinning  
1
2
3
4
5
6
7
8
16  
15  
14  
13  
12  
11  
10  
9
VIO  
INH  
BAT  
LIN  
GND  
C1  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
UJA1023T  
C2  
C3  
001aab877  
Fig 2. Pin configuration  
6.2 Pin description  
Table 3.  
Symbol  
VIO  
Pin description  
Pin  
1
Type[1] Description  
I
reference input for level adaptation of the I/O pins P0 to P7  
INH  
2
O
inhibit output for controlling an external voltage regulator or internal  
ADC  
BAT  
LIN  
GND  
C1  
C2  
C3  
P0  
3
I
battery supply  
4
I/O  
I
LIN bus line  
5
ground  
6
I
configuration input 1 for LIN slave NAD assignment  
configuration input 2 for LIN slave NAD assignment  
configuration input / output 3 for LIN slave NAD assignment  
bidirectional I/O pin 0  
7
I
8
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
9
P1  
10  
11  
12  
13  
14  
15  
16  
bidirectional I/O pin 1  
P2  
bidirectional I/O pin 2  
P3  
bidirectional I/O pin 3  
P4  
bidirectional I/O pin 4  
P5  
bidirectional I/O pin 5  
P6  
bidirectional I/O pin 6  
P7  
bidirectional I/O pin 7  
[1] I = input;  
O = output;  
I/O = input or output.  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
4 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
7. Functional description  
The UJA1023 combines all blocks necessary to work as a stand-alone LIN slave. Various  
I/O functions typically used in a car are supported. For a more detailed description refer to  
Section 7.2 to Section 7.6. The block diagram is shown in Figure 1.  
7.1 Short description of the UJA1023  
7.1.1 LIN controller  
The LIN 2.0 controller monitors and evaluates the LIN messages in order to process the  
LIN commands. It supervises and executes the NAD assignment, ID assignment and  
I/O-configuration and controls the operating modes of the UJA1023.  
The NAD configuration is done by a combination of a LIN master request frame and a  
setting done by either a daisy chain or plug ID code.  
7.1.2 LIN transceiver (including termination)  
The LIN transceiver, which is LIN 2.0 / SAE J2602 compliant, is the interface between the  
internal LIN controller and the physical LIN bus. The transmit data stream of the LIN  
controller is converted into a bus signal with an optimized wave shape to minimize  
electromagnetic emission. The required LIN slave termination of 30 kΩ is already  
integrated. In case of LIN bus faults the UJA1023 switches to the low-power Limp home  
mode.  
7.1.3 Automatic bit rate detection  
The automatic bit rate detection adapts to the LIN master’s bit rate. Any bit rate between  
1 kbit/s and 20 kbit/s can be handled. This block checks whether the synchronization  
break and synchronization field are valid. If not, the message will be rejected.  
7.1.4 Oscillator  
The on-chip oscillator provides the internal clock signal for some digital functions and is  
the time reference for the automatic bit rate detection.  
7.1.5 I/O block  
The I/O block controls the configuration of the I/O pins. The LIN master configures the I/O  
pin functionality by means of a master request frame and an optional slave response  
frame.  
Besides the standard level input and output behavior the following functions are also  
handled by the UJA1023: local wake-up, cyclic input, edge capture, PWM output, switch  
matrix I/O and AD conversion.  
7.1.6 ADC  
With three external components an 8-bit ADC function can be implemented. Each of the  
eight bidirectional I/O pins can be used as input for the ADC, one at a time.  
7.1.7 PWM  
Each pin can be configured with a Pulse Width Modulation (PWM) function. The resolution  
is 8-bit and the base frequency is approximately 2.7 kHz.  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
5 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
7.1.8 Cyclic sense  
To reduce current consumption, the cyclic sense function can be used to read a switch.  
The switch will be supplied and read back periodically.  
7.2 LIN controller  
7.2.1 Configuration  
In this data sheet basic knowledge of the “LIN diagnostic and configuration specification,  
Rev. 2.0” is expected.  
7.2.1.1 Message sequence  
The UJA1023 conforms to the “LIN diagnostic and configuration specification, Rev. 2.0”  
and is compatible with LIN 1.3.  
The UJA1023 can be configured via the LIN command frames ‘Master Request’  
(MasterReq) and ‘Slave Response’ (SlaveResp). Both frames consist of eight data bytes.  
The MasterReq is used to send configuration data from the master to the slaves, whereas  
the slave being addressed by the prior MasterReq will answer with the related data on  
demand.  
Depending on the usage of the MasterReq the meaning of the data bytes can be different.  
Thus each LIN slave evaluates these data bytes.  
Using MasterReq and SlaveResp for the UJA1023 configuration flow, as shown in  
Figure 3, is a so-called ‘handshake’ concept. The slave echoes its received MasterReq  
data in the SlaveResp, so the master can review slave configuration data. The use of the  
SlaveResp is optional.  
The configuration flow is not disturbed if LIN commands other than shown in Figure 3 are  
sent to other LIN slave nodes. Thus the LIN master can transmit other LIN messages  
while it (re)configures the UJA1023.  
Remarks:  
The I/O configuration will be enabled during the first usage of the UJA1023 message  
frames (see Section 7.2.5) of the PxResp or PxReq  
Notation Px is used in this document when referring to a function or property of any of  
the I/O pins P0 to P7  
For correct I/O configuration, the configuration requests must be sent in sequential  
order of first, second and third configuration data block  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
6 of 49  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
enable new I/O  
configuration  
slave I/O configuration  
via data dump  
assign NAD  
(optional)  
assign frame ID  
PxResp  
MasterReq  
MasterReq  
MasterReq  
configured  
SlaveResp  
SlaveResp  
SlaveResp  
RxReq  
ID: 3C  
ID: 3D  
ID: 3C  
ID: 3D  
ID: 3C  
ID: 3D  
mce653  
Fig 3. Typical configuration flow  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
7.2.1.2 LIN slave node address assignment  
The default slave Node Address (NAD) after power-on depends on the input levels of the  
configuration pins C1, C2 and C3. These pins will be sampled directly after the power-on  
event. The relation between the configuration pins and the NAD is shown in Table 4.  
Table 4.  
Default NAD after power-on  
Configuration pins  
Default NAD (hex)  
C3  
0
C2  
0
C1  
0
60  
61  
62  
63  
64  
65  
66  
67  
0
0
1
0
1
0
0
1
1
1
0
0
1
0
1
1
1
0
1
1
1
In case a different NAD is necessary the assign NAD command has to be used. The  
assign NAD request is carried out if the Service Identifier (SID) in the third data byte of the  
MasterReq is the assign NAD request and the fourth to seventh data bytes are the LIN  
supplier codes of Philips (0x0011) and UJA1023 function ID (0x0000).  
Table 5.  
Data bytes of assign NAD request[1]  
Data  
byte  
7
6
5
4
3
2
1
0
Default  
value  
(hex)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
d
d
d
d
d
d
d
d
08  
0
0
0
0
0
1
1
0
06  
1
0
1
1
0
0
0
0
B0  
11  
0
0
0
1
0
0
0
1
0
0
0
0
0
0
0
0
00  
0
0
0
0
0
0
0
0
00  
0
0
0
0
0
0
0
0
00  
NAD7  
NAD6  
NAD5  
NAD4  
NAD3  
NAD2  
NAD1  
NAD0  
NAD  
[1] d = different values possible; see Table 6.  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
8 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
Table 6.  
Bit description of assign NAD request  
Byte  
Bit  
Symbol  
Description  
D0  
7 to 0  
C[3:1]  
Initial NAD. This byte defines the initial NAD, refer to the  
related items topics  
0x08 to 0x0F (D0[0] = C1, D0[1] = C2 and  
D0[2] = C3) defines Plug ID; D0[3] = 1 for Plug ID  
configuration  
0x20 = daisy chain on; enable daisy chain pin drivers and  
receivers  
0x21 = assign NAD via daisy chain  
0x23 = daisy chain off; disable daisy chain pin drivers and  
receivers  
D1  
D2  
7 to 0  
7 to 0  
PCI  
Protocol control information.  
SID  
Service identifier. As SlaveResp the RSID code will be 0xF0.  
Supplier ID. Fixed code 0x0011 for Philips.  
D3 and D4 7 to 0  
D5 and D6 7 to 0  
-
-
Function ID. For the UJA1023 this code is fixed as 0x0000.  
D7  
7 to 0  
NAD[7:0]  
Slave Node Address (NAD). NAD values are in the range 1 to  
127, while 0 and 128 to 255 are reserved for other purposes.  
The format of the positive response is shown in Table 7.  
Table 7.  
Positive response assign NAD request[1]  
Data  
byte  
7
6
5
4
3
2
1
0
Default  
value  
(hex)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
d
0
1
1
1
1
1
1
d
0
1
1
1
1
1
1
d
0
1
1
1
1
1
1
d
0
1
1
1
1
1
1
d
0
0
1
1
1
1
1
d
0
0
1
1
1
1
1
d
0
0
1
1
1
1
1
d
1
0
1
1
1
1
1
08  
01  
F0  
FF  
FF  
FF  
FF  
FF  
[1] d = different values possible; see Table 6.  
The NAD assignment can be done via Daisy Chain (DC), (see Section “Daisy chain NAD  
assignment”) as well as via Plug ID (see Section “Plug ID NAD assignment”). The type of  
NAD assignment can be distinguished on the value of the initial NAD, which is the first  
data byte D0 of the MasterReq assign NAD request. For reliability reasons the  
assignment mode decision is valid only if the combination of D0 to D6 (see Table 5) is  
true. After power-on the UJA1023 message identifiers PxReq and PxResp (see  
Section 7.2.5) are disabled. This is also true for NAD reassignment. In this case the  
message identifiers PxReq, PxResp and I/O configuration are disabled.  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
9 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
Daisy chain NAD assignment: Once the UJA1023 receives the assign NAD MasterReq  
frame and the type of configuration is daisy chain, the following actions can take place,  
depending on the initial NAD value:  
Initial NAD 0x20: Daisy chain on, the C1 to C3 pin drivers are enabled  
Initial NAD 0x21: The input level on the configuration pin C1 and the status flag of the  
internal DC-switch is read. The UJA1023 will be configured if C1 is LOW and the  
DC-switch is open (see slave 2 in Figure 4). The UJA1023 under daisy chain  
configuration uses the data byte D7 as new NAD for its further LIN configuration  
requests (e.g. Assign Frame ID). After the NAD assignment the DC-switch at pin C3 is  
closed, which puts through the daisy chain signal to the next slave. The switch will be  
opened again as soon as an Assign NAD request with initial NAD daisy chain off has  
been received  
Initial NAD 0x23: Daisy chain off, the C1 to C3 pin drivers are disabled  
After the NAD assignment, for example, the ‘assign frame ID’ can be used to assign  
specific ID numbers.  
The internal pull-up resistors at pin C1 to C3 are active during the assign NAD process  
only. Thus it causes no permanent current (see also Section 7.4) and reduces power  
consumption especially in the low-power modes.  
Remark: There is no slave response to assign NAD requests using the initial NAD 0x20  
and NAD 0x23.  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
10 of 49  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
CONFIGURED  
IN CONFIGURATION  
UJA1023  
NOT CONFIGURED  
UJA1023  
UJA1023  
1
2
n
MASTER  
ASSIGN NAD  
ASSIGN NAD  
ASSIGN NAD  
INITIAL NAD = DAISY CHAIN  
INITIAL NAD = DAISY CHAIN  
INITIAL NAD = DAISY CHAIN  
BAT  
BAT  
BAT  
DC FLAG  
DC FLAG  
DC FLAG  
BAT  
BAT  
BAT  
&
&
&
GND  
GND  
GND  
GND  
BAT  
LIN  
BAT  
LIN  
C1  
C2  
C3  
BAT  
LIN  
C1  
C2  
C3  
BAT  
LIN  
C1  
C2  
C3  
PLUG  
PLUG  
PLUG  
PLUG  
BAT  
GND  
mdb492  
Fig 4. Daisy chain ID  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
Plug ID NAD assignment: Here the UJA1023 can be addressed via the pins C1, C2, and  
C3. Once the assign NAD MasterReq with the initial NAD ‘Plug ID configuration’ is  
received, the UJA1023 compares the values of the configuration pins C3, C2, and C1 with  
the values of the data bits D0[2:0]. If the values are equal and bits D0[7:4] are logic 0 and  
D0[3] is logic 1, the value of D7 is used as new NAD for the UJA1023.  
Next, for example, the ‘assign frame ID’ can be used to assign specific ID numbers.  
The internal pull-up resistors at pin C1 to C3 are active during the assign NAD process  
only. Thus it causes no permanent current (see also Section 7.4) and reduces power  
consumption especially in the low-power modes.  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
12 of 49  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxx x x x xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xx xx xxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxx xxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxx x x  
xxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxx xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxx  
xxxxxxxxxxxxxxxxxxxxxxxxx xxxxxxxxxxxxxxxxxxxx xxx  
UJA1023  
1
UJA1023  
2
UJA1023  
8
MASTER  
C1 = 1  
C2 = 1  
C3 = 1  
C1 = 0  
C2 = 1  
C3 = 1  
C1 = 0  
C2 = 0  
C3 = 0  
ASSIGN NAD  
ASSIGN NAD  
ASSIGN NAD  
INITIAL NAD = PLUG  
INITIAL NAD = PLUG  
INITIAL NAD = PLUG  
NAD  
NAD  
NAD  
DATA BYTE 7  
DATA BYTE 7  
DATA BYTE 7  
D0.0  
D0.1  
D0.2  
D0.0  
D0.1  
D0.2  
D0.0  
D0.1  
D0.2  
COMPARATOR  
COMPARATOR  
COMPARATOR  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
BAT  
GND  
GND  
GND  
GND  
BAT  
LIN  
BAT  
LIN  
C1  
C2  
C3  
BAT  
LIN  
C1  
C2  
C3  
BAT  
LIN  
C1  
C2  
C3  
PLUG  
PLUG  
PLUG  
PLUG  
BAT  
GND  
mdb493  
Fig 5. Plug ID  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
7.2.1.3 Assign frame ID  
By means of the assign frame ID command the LIN message identifier PxReq and  
PxResp can be changed to the desired values.  
Table 8.  
Assign frame ID request bit allocation  
Data  
byte  
7
6
5
4
3
2
1
0
Default  
value (hex)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
NAD7  
NAD6  
NAD5  
NAD4  
NAD3  
NAD2  
NAD1  
NAD0  
NAD  
0
0
0
0
0
1
1
0
06  
1
0
1
1
0
0
0
1
B1  
0
0
0
1
0
0
0
1
11  
0
0
0
0
0
0
0
0
00  
0
0
0
0
0
0
0
0
00  
0
0
0
0
0
0
0
0
00  
ID7  
ID6  
ID5  
ID4  
ID3  
ID2  
ID1  
ID0  
protected ID  
Table 9.  
Byte  
D0  
Assign frame ID request bit description  
Bit  
Symbol  
Description  
7 to 0  
NAD[7:0]  
Slave Node Address (NAD). NAD values are in the range  
from 1 to 127, while 0 and 128 to 255 are reserved for other  
purposes. The slave node address is assigned with the  
assign NAD command (see Table 5).  
D1  
D2  
7 to 0  
7 to 0  
PCI[7:0]  
Protocol control information.  
SID[7:0]  
Service identifier. As SlaveResp the RSID code will be 0xF1.  
Supplier ID. Fixed to 0x0011 for Philips.  
D3 and D4 7 to 0  
D5 and D6 7 to 0  
-
-
Message ID. Defines the assignment of the protected ID to  
PxResp and PxReq  
0x0000: PxReq = protected ID; PxResp = protected ID + 1  
0x0001: PxReq = unchanged; PxResp = protected ID  
0x0002: PxReq = protected ID; PxResp = unchanged  
Protected ID. Defines the protected ID.  
D7  
7 to 0  
ID[7:0]  
The format of the positive response is shown in Table 10.  
Table 10. Positive response assign frame ID  
Data  
byte  
7
6
5
4
3
2
1
0
Default  
value  
(hex)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
NAD7  
NAD6  
NAD5  
NAD4  
NAD3  
NAD2  
NAD1  
NAD0  
NAD  
01  
0
1
1
1
1
1
1
0
1
1
1
1
1
1
0
1
1
1
1
1
1
0
1
1
1
1
1
1
0
0
1
1
1
1
1
0
0
1
1
1
1
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
F1  
FF  
FF  
FF  
FF  
FF  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
14 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
7.2.1.4 Read by identifier  
It is possible to read the supplier identifier, function identifier and the variant of the  
UJA1023 by means of the read by identifier request. The format for this request is shown  
in Table 11. The positive response is shown in Table 13, the negative response is shown  
in Table 14.  
Table 11. Read by identifier (LIN product identification)  
Data  
byte  
7
6
5
4
3
2
1
0
Default  
value  
(hex)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
NAD7  
NAD6  
NAD5  
NAD4  
NAD3  
NAD2  
NAD1  
NAD0  
NAD  
06  
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
0
1
0
0
0
0
0
0
0
0
0
0
1
0
0
0
0
0
0
1
1
0
0
0
0
0
0
0
0
1
0
0
0
B2  
00  
11  
00  
00  
00  
Table 12. Read by identifier bit description  
Byte  
Bit  
Symbol  
Description  
D0  
7 to 0  
NAD[7:0]  
Slave Node Address (NAD). NAD values are in the range  
from 1 to 127, while 0 and 128 to 255 are reserved for other  
purposes. The slave node address is assigned with the  
assign NAD command (see Table 5).  
D1  
D2  
7 to 0  
7 to 0  
PCI[7:0]  
SID[7:0]  
Protocol control information.  
Service identifier. As SlaveResp the RSID code will be 0xF2  
for a positive response and 0x7F for a negative response.  
D3  
7 to 1  
-
-
-
Identifier. Only the LIN product identifier 0x00 is supported.  
Supplier ID. Fixed to 0x0011 for Philips.  
D4 and D5 7 to 0  
D6 and D7 7 to 0  
Function ID. For the UJA1023 this code is fixed to 0x0000.  
Table 13. Read by identifier positive response[1]  
Data  
byte  
7
6
5
4
3
2
1
0
Default  
value  
(hex)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
NAD7  
NAD6  
NAD5  
NAD4  
NAD3  
NAD2  
NAD1  
NAD0  
NAD  
06  
0
1
0
0
0
0
d
0
1
0
0
0
0
d
0
1
0
0
0
0
d
0
1
1
0
0
0
d
0
0
0
0
0
0
d
1
0
0
0
0
0
d
1
1
0
0
0
0
d
0
0
1
0
0
0
d
F2  
11  
00  
00  
00  
variant  
[1] d = different values possible; see Table 12.  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
15 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
Table 14. Read by identifier negative response  
Data  
byte  
7
6
5
4
3
2
1
0
Default  
value  
(hex)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
NAD7  
NAD6  
NAD5  
NAD4  
NAD3  
NAD2  
NAD1  
NAD0  
NAD  
03  
0
0
1
0
1
1
1
0
1
0
0
1
1
1
0
1
1
0
1
1
1
0
1
1
1
1
1
1
0
1
0
0
1
1
1
0
1
0
0
1
1
1
1
1
1
1
1
1
1
1
1
0
0
1
1
1
7F  
B2  
12  
FF  
FF  
FF  
7.2.1.5 I/O configuration  
The I/O configuration is done via the LIN configuration request ‘Data Dump’, where the  
first data byte of the MasterReq contains the slave node address NAD. The I/O-pin  
configuration process starts only, if the received slave node address matches the own  
UJA1023 node address and if data byte D2 (SID) is 0xB4.  
As with the other configuration commands, the master transmits the I/O-pin configuration  
data via the MasterReq message. Due to the limited amount of data bytes within the LIN  
configuration command ‘Data Dump’, the configuration and diagnosis is split-up into four  
blocks. The configuration and diagnosis blocks are distinguished on bits 6 and 7 of data  
byte D3. The master can review the new configuration data via the SlaveResp message.  
Finally if the master considers the received configuration data of the LIN-I/O to be correct,  
it can enable the slave I/O-configuration by using the UJA1023 message frames (see  
Section 7.2.5) PxResp or PxReq.  
It should be noted that for correct I/O configuration, the configuration requests must be  
sent in sequential order of: first, second and third configuration data block.  
Table 15. First I/O configuration data block bit allocation  
Data  
byte  
7
6
5
4
3
2
1
0
Default  
value  
(hex)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
NAD7  
0
NAD6  
0
NAD5  
0
NAD4  
0
NAD3  
0
NAD2  
NAD1  
NAD0  
NAD  
06  
1
1
1
0
0
0
1
0
1
1
0
B4  
0
0
IM1  
HSE5  
LSE5  
IM0  
HSE4  
LSE4  
RxDL  
HSE3  
LSE3  
ADCIN2 ADCIN1 ADCIN0 00  
HSE7  
LSE7  
HSE6  
LSE6  
HSE2  
LSE2  
HSE1  
LSE1  
HSE0  
LSE0  
00  
00  
OM0_7 OM0_6 OM0_5 OM0_4 OM0_3 OM0_2 OM0_1 OM0_0 00  
OM1_7 OM1_6 OM1_5 OM1_4 OM1_3 OM1_2 OM1_1 OM1_0 00  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
16 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
Table 16. First I/O configuration data block bit description  
Byte  
Bit  
Symbol  
Description  
D0  
7 to 0  
NAD[7:0]  
Slave node address (NAD). NAD values are in the range from  
1 to 127, while 0 and 128 to 255 are reserved for other  
purposes. The slave node address is assigned with the  
assign NAD command (see Table 5).  
D1  
D2  
D3  
7 to 0  
PCI[7:0]  
SID[7:0]  
-
Protocol control information.  
7 to 0  
Service identifier. As SlaveResp the RSID value will be 0xF4.  
00 for first configuration data block.  
7 and 6  
5 and 4 IM[1:0]  
Pin INH mode. Mode will be changed after PxReq or PxResp  
00 = external regulator (control of external voltage  
regulator)  
01 = ADC  
10 = reserved, if selected both bits will be logic 1  
11 = switch open  
3
RxDL  
Receive data length. Message PxReq contains two data  
bytes if RxDL = 0 and three data bytes if RxDL = 1.  
2 to 0  
ADCIN[2:0] Analog source channel selection. The number of ADCIN[2:0]  
determines which of the P7 to P0 input is used. For example  
if ADCIN[2:0] = 101 then P5 will be the input. ADCIN[2:0] is  
used only if ADC mode is selected (IM[1:0] = 01) and  
RxDL = 0 (No analog input selection at PxReq).  
D4  
D5  
7 to 0  
7 to 0  
HSE[7:0]  
LSE[7:0]  
High-side enable for I/O pin Px.  
Low-side enable for I/O pin Px.  
D6 and D7 7 to 0  
OM0_[7:0], Output mode for I/O pin Px.  
OM1_[7:0]  
OM1_x  
OM0_x  
0
0
1
1
0
1
0
1
level  
reserved  
cyclic sense  
PWM  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
17 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
The second configuration data block (shown in Table 17) is selected only if D3.7 = 0 and  
D3.6 = 1.  
Table 17. Second I/O configuration data block bit allocation  
Data  
byte  
7
6
5
4
3
2
1
0
Default  
value (hex)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
NAD7  
0
NAD6  
0
NAD5  
0
NAD4  
0
NAD3  
0
NAD2  
1
NAD1  
1
NAD0  
0
NAD  
06  
1
0
1
1
0
1
0
0
B4  
40  
0
1
LSLP  
CM0_5  
CM1_5  
TH2/TH1  
LWM5  
TxDL  
CM0_4  
CM1_4  
SMC  
CM0_3  
CM1_3  
SMW  
CM0_2  
CM1_2  
TH2/TH1  
LWM2  
SM1  
CM0_1  
CM1_1  
SM0  
CM0_0  
CM1_0  
CM0_7  
CM1_7  
TH2/TH1  
LWM7  
CM0_6  
CM1_6  
TH2/TH1  
LWM6  
00  
00  
TH2/TH1 TH2/TH1  
LWM4 LWM3  
TH2/TH1 TH2/TH1  
LWM1 LWM0  
00  
00  
Table 18. Second I/O configuration data block bit description  
Byte  
Bit  
Symbol  
Description  
D0  
7 to 0  
NAD[7:0]  
Slave node address (NAD). NAD values are in the range  
from 1 to 127, while 0 and 128 to 255 are reserved for other  
purposes. The slave node address is assigned with the  
assign NAD command (see Table 5).  
D1  
D2  
7 to 0  
7 to 0  
PCI[7:0]  
SID[7:0]  
Protocol control information.  
Service identifier. As SlaveResp the RSID value will be  
0xF4.  
D3  
7 and 6  
5
-
01 for the second configuration data block.  
LSLP  
Limp home sleep mode. If LSLP = 1, the Limp home sleep  
mode is enabled. In this case the Limp Home value (LH) is  
automatically used as output value if the Sleep mode is  
entered.  
4
3
2
TxDL  
SMC  
SMW  
Transmit data length. Message PxResp contains two data  
bytes if TxDL = 0 and four data bytes if TxDL = 1.  
Switch matrix capture. If SMC = 1, the Switch matrix  
capture mode is enabled.  
Switch matrix wake-up. If SMW = 1, the switch matrix  
wakes up upon changed input level.  
1 and 0 SM[1:0]  
Switch matrix enable  
00 = no switch matrix  
01 = 4 × 2: P3 to P0 input and P5 and P4 strong pull  
down  
10 = 4 × 3: P3 to P0 input and P6 to P4 strong pull down  
11 = 4 × 4: P3 to P0 input and P7 to P4 strong pull down  
Unassigned pins can be used as I/O. It should be noted,  
however, that for the unassigned pins, which are configured  
in Capture mode, the captured edge value will not be  
transferred.  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
18 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
Table 18. Second I/O configuration data block bit description …continued  
Byte  
Bit  
Symbol  
Description  
D4 and D5 7 to 0  
CM0_[7:0],  
CM1_[7:0]  
Capture mode for I/O pin Px.  
CM1_x  
CM0_x  
0
0
1
1
0
1
0
1
no capture  
falling edge  
rising edge  
both edges  
D6  
D7  
7 to 0  
7 to 0  
TH2 and TH1 Threshold select. If logic 0 (= TH1), selects Vth1 as input  
threshold. If logic 1 (= TH2) selects Vth2 as input threshold,  
except in Cyclic sense mode, then Vth3 is selected.  
LWM_[7:0]  
Local wake-up mask. If LWM_x = 1, the corresponding Px  
pin is configured as local wake-up pin. LWM_x is ignored if  
Px is configured as switch matrix.  
Table 19 shows the third configuration data block, that is used to define the slope of the  
transmitter, selection between classic or enhanced checksum model, limp home output  
value and PWM initial value. It is selected only if D3.7 = 1 and D3.6 = 0.  
Table 19. Third I/O configuration data block bit allocation  
Data  
byte  
7
6
5
4
3
2
1
0
Default  
value  
(hex)  
D0  
D1  
D2  
D3[1]  
D4  
D5  
D6  
D7  
NAD7  
NAD6  
NAD5  
NAD4  
NAD3  
NAD2  
NAD1  
0
NAD0  
0
NAD  
04  
0
0
0
0
0
1
1
0
1
1
0
1
0
0
B4  
80  
1
0
r
r
r
r
LSC  
LH1  
ECC  
LH0  
LH7  
LH6  
LH5  
LH4  
LH3  
LH2  
00  
PWM7 PWM6 PWM5 PWM4 PWM3 PWM2 PWM1 PWM0 00  
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
FF  
FF  
[1] r = reserved, must be ‘0’.  
Table 20. Third I/O configuration data block bit description  
Byte  
Bit  
Symbol  
Description  
D0  
7 to 0  
NAD[7:0]  
Slave node address (NAD). NAD values are in the range from  
1 to 127, while 0 and 128 to 255 are reserved for other  
purposes. The slave node address is assigned with the assign  
NAD command (see Table 5).  
D1  
D2  
7 to 0  
7 to 0  
PCI[7:0]  
SID[7:0]  
Protocol control information.  
Service identifier. As SlaveResp the RSID value will be 0xF4.  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
19 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
Table 20. Third I/O configuration data block bit description …continued  
Byte  
Bit  
Symbol  
Description  
D3  
7 and 6  
5 to 2  
1
-
10 for the third configuration data block.  
Reserved. Must be 0.  
-
LSC  
LIN slope control  
0 = up to 20 kbit/s (default)  
1 = up to 10.4 kbit/s  
0
ECC  
Enhanced checksum control  
0 = classic checksum (default)  
1 = enhanced checksum  
D4  
D5  
7
LH[7:0]  
Limp home value. Output value in Limp home and Limp home  
sleep mode.  
7 to 0  
PWM[7:0] PWM initial value.  
- Not used.  
D6 and D7 7 to 0  
Table 21 shows the fourth data block, that is selected if D3.6 = 1 and D3.7 = 1. It is not  
used for I/O-pin configuration but to provide the master with diagnosis data of the  
UJA1023. It is a read-only data block. If the slave node address matches and the fourth  
data block is selected, the UJA1023 transmits its diagnosis data via the SlaveResp  
message.  
Table 21. Fourth I/O diagnostic data block request frame bit allocation  
Data  
byte  
7
6
5
4
3
2
1
0
Default  
value  
(hex)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
NAD7  
NAD6  
NAD5  
NAD4  
NAD3  
NAD2  
NAD1  
NAD0  
NAD  
02  
0
1
1
1
1
1
1
0
0
1
1
1
1
1
0
1
0
1
1
1
1
0
1
0
1
1
1
1
0
0
0
1
1
1
1
0
1
0
1
1
1
1
1
0
0
1
1
1
1
0
0
0
1
1
1
1
B4  
C0  
FF  
FF  
FF  
FF  
Table 22. Fourth I/O diagnostic data block request frame bit description  
Byte  
Bit  
Symbol  
Description  
D0  
7 to 0  
NAD[7:0]  
Slave node address (NAD). NAD values are in the range from  
1 to 127, while 0 and 128 to 255 are reserved for other  
purposes. The slave node address is assigned with the  
assign NAD command (see Table 5).  
D1  
D2  
D3  
7 to 0  
7 to 0  
7 and 6  
5 to 0  
PCI[7:0]  
Protocol control information.  
Service identifier.  
SID[7:0]  
-
-
-
11 for the fourth configuration data block.  
Not used.  
D4 to D7 7 to 0  
Not used.  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
20 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
Table 23. Fourth I/O diagnostic data block response frame bit allocation  
Data  
byte  
7
6
5
4
3
2
1
0
Default  
value  
(hex)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
NAD7  
NAD6  
NAD5  
NAD4  
NAD3  
NAD2  
NAD1  
NAD0  
NAD  
04  
0
0
0
0
0
1
0
0
1
1
1
1
0
1
0
0
F4  
1
1
0
0
0
0
0
0
C0  
00  
P
RxB  
PL6  
1
CS  
PL5  
1
TxB  
PL4  
1
u[1]  
PL3  
1
NVM  
PL2  
1
LHE  
PL1  
1
ERR  
PL0  
1
PL7  
1
00  
FF  
FF  
1
1
1
1
1
1
1
1
[1] Undefined.  
Table 24. Fourth I/O diagnostic data block response frame bit description  
Byte  
Bit  
Symbol  
Description  
D0  
7 to 0  
NAD[7:0]  
Slave node address (NAD). NAD values are in the range  
from 1 to 127, while 0 and 128 to 255 are reserved for other  
purposes. The slave node address is assigned with the  
assign NAD command (see Table 5).  
D1  
D2  
D3  
7 to 0  
7 to 0  
7 and 6  
5 to 0  
7
PCI[7:0]  
Protocol control information.  
RSID[7:0] Response service identifier.  
-
11 for the fourth configuration data block.  
-
Not used.  
D4[1]  
P
Parity error. Set if identifier parity bits are erroneous.  
6
RxB  
Receive error. Set if start or stop bits are erroneous during  
reception.  
5
4
CS  
Checksum error. Set if checksum is erroneous.  
TxB  
Transmit error. Set if start, data or stop bits are erroneous  
during transmission.  
3
2
undefined  
NVM  
-
No valid message. Set if there is bus activity, but no valid  
message frame for longer than tto(idle)  
.
1
0
LHE  
ERR  
Set if Limp home mode is entered.  
Response error. Sets internal signal Response_Error if there  
is an RxB, CS or TxB during a response frame.  
D5  
7 to 0  
PL[7:0]  
-
PxOut latch value.  
Not used.  
D6 and D7 7 to 0  
[1] All diagnosis flags in byte D4 are reset after data access from master.  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
21 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
7.2.1.6 Configuration examples  
Example 1, UJA1023 configuration with eight low-side outputs.  
//  
//Example  
8 LSE and walking ‘1’ pattern  
//C1, C2 and C3 are GND  
//SB  
//  
= SyncBreak; SF = SyncField  
SB SF 3C 60 06 B1 11 00 00 00 04 D2  
// Assign frameID, default NAD used and  
// ID(PxReq) 04,ID(PxResp) 05  
// Positive response  
// Datadump1, LSE  
=
=
SB SF 7D 60 01 F1 FF FF FF FF FF AC  
SB SF 3C 60 06 B4 00 00 FF 00 00 E4  
SB SF 7D 60 06 F4 00 00 FF 00 00 A4  
SB SF 3C 60 06 B4 40 00 00 00 00 A4  
8
×
// Read back configuration sent  
// Datadump2, no capture and  
// threshold select (optional)  
// Read back configuration sent  
SB SF 7D 60 06 F4 40 00 00 00 00 64  
SB SF 3C 60 04 B4 80 55 10 FF FF 01  
// Data dump3, LH value  
=
0x55, default  
PWM 0x10 (optional)  
// Read back configuration sent  
=
SB SF 7D 60 04 F4 80 55 10 FF FF C0  
SB SF 3C 60 06 B2 00 11 00 00 00 D5  
SB SF 7D 60 06 F2 11 00 00 00 02 93  
SB SF C4 01 80 7E  
// Read by identifier request (optional)  
// Positive response  
// IO configuration enabled and low-side  
// switch P0 on  
SB SF C4 02 80 7D  
SB SF C4 04 80 7B  
SB SF C4 08 80 77  
SB SF C4 10 80 6F  
SB SF C4 20 80 5F  
SB SF C4 40 80 3F  
SB SF C4 80 80 FE  
// Low-sideswitch P1 on  
// Low-sideswitch P2 on  
// Low-sideswitch P3 on  
// Low-sideswitch P4 on  
// Low-sideswitch P5 on  
// Low-sideswitch P6 on  
// Low-sideswitch P7 on  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
22 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
Example 2, UJA1023 configuration with eight inputs and edge capture.  
//  
//Example  
8 inputs with capture  
//C1, C2 and C3 are GND  
//SB  
//  
= SyncBreak; SF = SyncField  
SB SF 3C 60 06 B1 11 00 00 00 04 D2  
// Assign frameID, default NAD used and  
// ID(PxReq) 04,ID(PxResp) 05  
// Positive response  
=
=
SB SF 7D 60 01 F1 FF FF FF FF FF AC  
SB SF 3C 60 06 B4 00 00 00 00 00 E4  
SB SF 7D 60 06 F4 00 00 00 00 00 A4  
SB SF 3C 60 06 B4 40 FF FF 00 FF A4  
// Datadump1, all outputs disabled (optional)  
// Read back configuration sent  
// Datadump2, all both edge capture and  
// inputs as wake-up  
SB SF 7D 60 06 F4 40 FF FF 00 FF 64  
SB SF 3C 60 04 B4 80 55 10 FF FF 01  
// Read back configuration sent  
// Data dump3, LH value  
=
0x55, default  
PWM 0x10 (optional)  
// Read back configuration sent  
=
SB SF 7D 60 04 F4 80 55 10 FF FF C0  
SB SF 3C 60 06 B2 00 11 00 00 00 D5  
SB SF 7D 60 06 F2 11 00 00 00 02 93  
SB SF 85 00 00 FF  
// Read by identifier request (optional)  
// Positive response  
// IO configuration enabled and read inputs  
// Dummy message  
SB SF 80  
SB SF 80  
// Dummy message and input 0 changes  
SB SF 85 01 01 FD  
// Input  
//  
0
set and edge detected  
SB SF 80  
SB SF 85 01 00 FE  
// Input  
0
still set  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
23 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
7.2.2 Operating modes  
power-on  
OR  
undervoltage  
Configuration  
Active mode  
HSE, LSE: 0x00  
PxO: 0x00  
(NAD not assigned  
OR not used)  
AND  
failure  
OR  
remote wake-up  
INH: HIGH  
LIN: active  
sleep mode command  
Standby  
Active mode  
HSE: as configured  
LSE: as configured  
PxO: limp home value  
INH: as configured  
LIN: active  
"Assign NAD"  
(NAD assigned  
OR default used)  
AND  
OR  
default NAD used  
oscillator  
fail  
NAD reconfiguration  
remote wake-up  
HSE, LSE: 0×00  
P×O: 0×00  
read DIAGNOSE data  
P×O limp home value  
failure  
OR  
sleep mode command  
Limp Home  
Low-power mode  
HSE: as configured  
LSE: as configured  
PxO: limp home value  
INH: high impedance  
LIN: off-line/failsilent  
Normal  
Active mode  
failure  
HSE: as configured  
LSE: as configured  
PxO: output data  
INH: as configured  
LIN: active  
remote wake-up  
OR local wake-up  
I/O  
P×O  
limp home value  
reconfiguration  
sleep mode command  
remote wake-up  
OR  
local wake-up  
AND  
LSLP = 0  
sleep mode command  
AND  
LH Sleep  
Low-power mode  
HSE: as configured  
LSE: as configured  
PxO: limp home value  
INH: high impedance  
LIN: off-line  
LSLP = 1  
Sleep  
Low-power mode  
HSE: as configured  
LSE: as configured  
PxO: output data  
INH: high impedance  
LIN: off-line  
mdb494  
HSE = High-Side Enable  
LSE = Low-Side Enable  
PxO = PxOut  
Failure: bus idle time-out or bus dominant time-out  
Local: [(LWM = 1) AND (t > twake(local); after edge  
capture) causes transmission of LIN wake-up request]  
AND [reception of LIN header]  
LSLP = Limp-home sleep  
LWM = Local Wake-up Mask  
Remote: [(t > twake(bus); after falling edge) AND recessive  
again] AND [reception of LIN header].  
Fig 6. Overview of operating modes  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
24 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
7.2.2.1 Configuration mode  
The Configuration mode can be seen as initial state after power-on or undervoltage  
detection. The UJA1023 configuration values are in the default settings. The I/O  
pins P0 to P7 (Px) are set to high-impedance behavior and the INH is in its External  
regulator mode, which outputs a HIGH-level in order to switch on an external voltage  
regulator.  
In Configuration mode the UJA1023 is not configured and it has no valid identifier and,  
depending on the configuration pins, a default NAD. Thus, with the exception of the  
MasterReq command, all LIN slave commands are disabled. Once the UJA1023 NAD is  
assigned, via the assign NAD request, or the default NAD is used for the first time, the  
Normal mode is entered. If a LIN bus failure is present (bus idle time-out or bus dominant  
time-out) or the sleep command has been received, the UJA1023 enters its low-power  
(Limp home) mode.  
7.2.2.2 Normal mode  
In Normal mode the UJA1023 receives and/or transmits input/output data as well as  
configuration data.  
A UJA1023 in Configuration mode enters the Normal mode only after its NAD assignment  
or the first usage of the default NAD. After a NAD reconfiguration, all ports that are  
configured in Output mode will be set to high-impedance.  
Coming from Sleep mode or Limp home sleep mode the Normal mode can be entered via  
local or remote wake-up. The output register of each I/O pin P0 to P7 (PxOut) keeps its  
values of the Sleep mode or Limp home sleep mode. If the INH is in External regulator  
mode, it outputs a HIGH-level to switch on an external voltage regulator.  
For a mode transition from Standby mode to Normal mode the diagnostic data must be  
read via a SlaveResp. With this request the master acknowledges the previous failure.  
The PxOut registers keep their limp home values.  
7.2.2.3 Sleep mode  
The UJA1023 enters its Sleep mode when the ‘Sleep mode command’ has been received  
and the limp home sleep bit LSLP is reset (LSLP = 0). In Sleep mode the UJA1023 keeps  
the current status on its Px. The INH will switch to high-impedance state.  
After a local wake-up event the UJA1023 sends a ‘wake-up signal’ to wake up the master.  
In Sleep mode the PWM and ADC are reset. The first LIN message will be lost due to  
waking up the UJA1023.  
7.2.2.4 Limp home sleep mode  
Some applications may need dedicated HIGH and/or LOW output levels during Sleep  
mode in order to achieve the lowest power dissipation of the application. Therefore the  
UJA1023 provides the Limp home sleep mode (LH sleep mode). By enabling the LSLP  
bit, the LH sleep mode output behavior can be configured. The LH sleep mode is enabled  
if the configuration bit LSLP (D3.5) is set (LSLP = 1, see Table 18).  
After a local wake-up event the UJA1023 sends a ‘wake-up signal’ to wake up the master.  
In the LH sleep mode the output registers (PxOut) of the UJA1023 are loaded with the  
limp home value. After a wake-up event (local or remote wake-up) the PxOut keep their  
limp home value.  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
25 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
In LH sleep mode the PWM and ADC are reset. The first LIN message will be lost due to  
waking up the UJA1023.  
7.2.2.5 Limp home mode and Standby mode  
Limp home mode and Standby mode differ in the output of pin INH if the INH is configured  
in External regulator mode. Where in Limp home mode pin INH is high-impedance and in  
Standby mode pin INH is HIGH. In contrast to the Standby mode the Limp home mode is  
a low-power mode.  
The limp home value specifies the PxOut values in case LIN bus communication fails. The  
Px configuration push-pull, open-drain or high-impedance keeps unchanged in Limp  
home mode.  
The Limp home mode will be entered from Normal mode if the LIN bus is short-circuited to  
ground for a time exceeding the bus dominant time-out (tto(dom)) or if the bus idle time-out  
(tto(idle)) expires.  
Coming from Limp home mode the Standby mode is entered after remote wake-up if the  
UJA1023 is configured. In case the UJA1023 is not configured, it enters the Configuration  
mode after remote wake-up.  
In Standby and Configuration mode the UJA1023 enters the Limp home mode again if the  
configuration fails or if the ‘Sleep mode command’ has been received.  
7.2.3 I/O pin modes  
7.2.3.1 Input  
Inputs can always be read via a PxResp frame (see Section 7.2.5). The input threshold is  
determined by the TH bits in the second I/O configuration block (see Table 17).  
7.2.3.2 Level mode  
In Level mode the PxOut register of the UJA1023 can be set or reset. Depending on the  
Px configuration the PxOut value is output.  
7.2.3.3 PWM mode  
The PWM mode provides a PWM signal with 8-bit resolution to the I/O-stage. The base  
frequency is typically 700 kHz divided by 256 (8-bit) and becomes approximately 2.7 kHz.  
The mode is entered via both mode configuration bits OM0 and OM1. The PWM signal is  
common for all assigned outputs.  
In the low-power modes (Sleep mode, LH sleep mode and Limp home mode) the PWM  
value is reset (PWM = 0x00) and the previous PWM value is lost.  
7.2.3.4 Cyclic sense mode  
The Cyclic sense mode is used to supply and read back external switches. In this mode  
the Px pin is configured as a switched supply to reduce the power consumption. It is  
primarily intended to supply wake-up switches.  
A Px pin in Cyclic sense mode has to be configured with the High-Side Enable register  
(HSE) in HIGH-state and the Low-Side Enable register (LSE) in LOW-state. The PxOut  
flip-flop is being cyclically switched (see Figure 7).  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
26 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
The Cyclic sense mode can be configured via the Output mode bits OM0 and OM1 in the  
configuration data bytes (see Table 16). In case threshold TH2 is selected then threshold  
TH3 will be used instead. This feature is used for diagnosis purposes to check the  
presence of a switch with an integrated parallel resistor (typical value is 2800 Ω ± 1 %).  
The switch can be detected by selecting first TH1 and then TH2.  
All Px pins in Cyclic sense mode are sampled simultaneously. The Cyclic sense mode  
timing is specified in Section 11. No wake-up will occur when the local wake-up mask is  
set and Sleep mode is entered when the Px pin is LOW. A wake-up will be issued when in  
Sleep mode and the Px input level changes.  
t
on  
PxOut  
T
cy  
V
Px  
external  
switch at Px  
OPEN  
sample  
CLOSE  
t
capture  
active  
edge  
capture  
mdb495  
Fig 7. Cyclic sense mode  
7.2.3.5 Switch matrix mode  
Figure 8 shows an application example of a 4 × 4 switch matrix with the UJA1023. The  
drive capability of the I/O-pins Px supports the use of a 4 × 4 switch matrix without extra  
components. The I/O pins from P0 to P3 provide a weak but sufficient pull-up for switch  
applications and the pins from P4 to P7 are used as strong pull-down in case a switch is  
pushed.  
The Switch matrix mode can be enabled for the I/O-pins Px via data byte D3 of the second  
configuration data block (see Table 18).  
The data bits SM0 and SM1 configure P0 to P3 as an input with a weak but sufficient  
pull-up for switch applications and P4 to P7 as strong pull-down in order to detect an  
activated switch (see Table 18).  
In Normal mode when a valid sync break and sync field is received, automatically a matrix  
scan starts:  
Immediately if the slave is not addressed  
When addressed, after the LIN message is handled  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
27 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
This means that the scan matrix value is determined directly after the previous LIN  
message.  
In case two or more switches are closed simultaneously, extra diodes have to be added to  
prevent the ‘short-circuit’ of neighbor switches.  
For the switch matrix inputs a ‘quasi’ capture mode can be configured via the data bit  
SMC (D3.3) of the second configuration block. If a matrix switch input value has been  
changed the changed value is captured until the master reads the switch matrix value via  
the UJA1023 command PxResp. Note that two readings are necessary for proper  
initialization.  
A switch matrix can be configured as local wake-up. If the data bit SMW (D3.2) of the  
second configuration block is set to logic 1, a change of a matrix switch input value  
causes a wake-up of the UJA1023. If in addition the Switch matrix capture mode is  
enabled via SMC the switch matrix value of PxResp represents the local wake-up source  
switch of the switch matrix.  
R
on(HS)  
1 kΩ  
V
V
V
V
P0  
P1  
P2  
P3  
th1  
th1  
th1  
th1  
SM40  
SM41  
R
on(HS)  
1 kΩ  
R
on(HS)  
1 kΩ  
SM72  
R
on(HS)  
1 kΩ  
SM73  
P4  
P5  
P6  
P7  
R
R
R
R
on(LS)  
50 Ω  
on(LS)  
50 Ω  
on(LS)  
50 Ω  
on(LS)  
50 Ω  
mdb496  
Fig 8. Switch matrix principle  
7.2.3.6 ADC mode  
The principle of the bit stream ADC is shown in Figure 9. Only three external components  
are needed per analog input, which should be dimensioned as: Ri = R1 = 100 kΩ;  
C1 = 10 nF. All eight inputs can be used as analog input, one at a time. ADC values are  
referenced to VVIO. A register/counter is used to count the ratio of HIGH and LOW phases  
of the bit stream. This ratio represents the analog voltage VA. The upper counter is used  
to define the measurement period, typically 1.5 ms.  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
28 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
The inverted bit stream of the ADC comparator generates the quasi-analog output voltage  
on pin INH, which can be used to control the analog voltage VA via a low-pass filter.  
An analog-to-digital conversion will have following steps:  
1. Select an input channel via PxReq, see Section 7.2.5. Not needed in case a fixed  
ADC-input is selected (see Table 16 for RxDL = 0 and ADCIN[2:0]).  
2. The internal multiplexer switches over to the selected input; note that some time is  
needed to stabilize the loop, due to the RC network time constant.  
3. In case a valid sync break and sync field is received, an analog-to-digital conversion  
starts. The data is available in the next LIN message, implying the ADC value is  
sampled during the previous LIN message.  
To reduce current consumption, the 0.5VVIO reference voltage is turned off in the  
low-power modes.  
7.2.4 INH pin mode  
The External regulator mode, IM0 = IM1 = 0 (see Table 16), can be used to control an  
external voltage regulator. In Configuration mode, Normal mode and Standby mode the  
INH outputs a HIGH level, and in the low-power modes (Sleep, LH sleep and Limp home)  
the INH pin becomes high-impedance.  
Switching between the INH modes ‘external regulator’ and ‘switch open’ the INH pin can  
be used as high-side switch.  
In ADC mode the INH pin is configured internally as follows: the high-side switch is put in  
high-impedance state and a special symmetrical push-pull output is activated. Next, the  
ADC mode enables an ADC control loop. The output level of the push-pull stage is  
defined via the VVIO voltage.  
7.2.5 LIN-I/O message frames  
The UJA1023 uses one LIN command to receive data PxReq and one to transmit data  
PxResp respectively. The IDs for PxReq and PxResp are configured by means of the  
‘assign frame ID’ command as described in Section 7.2.1.3.  
Please note that the I/O configuration will be enabled during the first usage of the PxResp  
or PxReq.  
The PxReq and PxResp data bytes are described in Table 25 to Table 28.  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
29 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
oscillator  
period  
COUNTER  
REGISTER/COUNTER  
ADC  
mode  
ADC  
V
VIO  
INH  
R
i
MUX  
100 kΩ  
oscillator  
0.5V  
up/down  
VIO  
Px  
FF  
R1  
V
T
A
FILTER  
100 kΩ  
C1  
10 nF  
mdb497  
Fig 9. Analog-to-digital converter  
Table 25. PxReq frame bit allocation  
Data  
byte  
7
6
5
4
3
2
1
0
Default  
value  
(hex)  
D0  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
00  
D1  
D2[1]  
PWM7 PWM6 PWM5 PWM4 PWM3 PWM2 PWM1 PWM0 00  
ADCIN2 ADCIN1 ADCIN0 00  
-
-
-
-
-
[1] The UJA1023 expects to receive data byte D2 only if bit RxDL = 1 (bit 3 of byte D3 in the first I/O  
configuration data block, see Table 15 and Table 16).  
Table 26. PxReq frame bit description  
Byte  
Bit  
Symbol  
Description  
D0  
7 to 0  
P[7:0]  
Px output value. The Px output value is ignored if Px is  
configured in cyclic sense or PWM mode.  
D1  
D2[1]  
7 to 0  
7 to 3  
2 to 0  
PWM[7:0]  
-
PWM value.  
Not used.  
ADCIN[2:0] ADC analog source channel selection. For example, 000  
selects input 0, 001 selects input 1 and 111 selects input 7. The  
ADC input source is observed only if the INH output is in ADC  
mode.  
[1] The UJA1023 expects to receive data byte D2 only if bit RxDL = 1 (bit 3 of byte D3 in the first I/O  
configuration data block, see Table 15 and Table 16).  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
30 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
Table 27. PxResp frame bit allocation  
Data byte  
7
6
5
4
3
2
1
0
D0  
D1  
P7  
P6  
P5  
P4  
P3  
P2  
P1  
P0  
EC7  
SM53  
PxL7  
SM73  
PWM7  
ADC7  
EC6  
SM52  
PxL6  
SM72  
PWM6  
ADC6  
EC5  
SM51  
PxL5  
SM71  
PWM5  
ADC5  
EC4  
SM50  
PxL4  
SM70  
PWM4  
ADC4  
EC3  
SM43  
PxL3  
SM63  
PWM3  
ADC3  
EC2  
SM42  
PxL2  
SM62  
PWM2  
ADC2  
EC1  
SM41  
PxL1  
SM61  
PWM1  
ADC1  
EC0  
SM40  
PxL0  
SM60  
PWM0  
ADC0  
D2  
D3  
Table 28. PxResp frame bit allocation  
Byte  
Bit  
Symbol  
Description  
D0  
7 to 0  
P[7:0]  
Px input value.  
Bytes D1 and D2 if switch matrix is not configured (default)[1]  
D1  
7 to 0  
EC[7:0]  
Edge capture value.  
D2  
7 to 0  
PxL[7:0]  
PxOut latch value.  
Bytes D1 and D2 if switch matrix is configured[1]  
D1  
7 to 0  
SMxx  
SMxx  
Switch matrix value 0. Refer to Figure 8.  
Switch matrix value 1.  
D2  
7 to 0  
Byte D3[1]  
D3  
7 to 0  
7 to 0  
PWM[7:0] PWM value.  
ADC[7:0]  
ADC value. The ADC value is transmitted only if the INH output  
is in ADC mode (IM0 = 1, IM1 = 0).  
[1] Data bytes D2 and D3 are transmitted only if bit TxDL = 1 (bit 4 of byte D3 in the second I/O configuration  
data block, see Table 17 and Table 18).  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
31 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
7.3 I/O block  
7.3.1 I/O pins P0 to P7  
The I/O-pin structure of the UJA1023 is shown in Figure 10.  
VIO  
VIO  
0
1
2
3
R
Y
on(HS)  
on(LS)  
PxOut  
FF  
S0 S1  
Px  
0
1
2
3
R
Y
S0 S1  
low-side  
enable  
FF  
FF  
V
V
th3  
th2  
high-side  
enable  
cyclic mode  
input  
threshold  
FF  
FF  
rise/fall/both  
2
edge  
capture  
T
FILTER  
V
th1  
PxIn  
to analog  
multiplexer  
mdb498  
Fig 10. I/O-pin structure  
The output is configurable as:  
Push-pull  
High-side switch  
Low-side switch  
High-impedance  
The input can be configured:  
To capture on falling, rising or both edges  
To provide an internal pull-up  
With respect to the required threshold Vth1, Vth2 or Vth3  
As analog multiplexer for the ADC  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
32 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
Table 29. I/O pin operation [1][2]  
Operation  
High-side  
enable  
Low-side  
enable  
PxOut  
Input  
threshold  
Edge  
capture  
Power-on condition  
(high-impedance)  
0
0
0
0
none  
High-impedance  
0
0
0
1
0
1
1
0
X
0
1
0
X
X
X
X
X
X
X
X
Low-side open-state  
Low-side close-state  
High-side open-state (Cyclic  
sense mode: off-state)  
High-side close-state (Cyclic  
sense mode: on-state)  
1
0
1
X[3]  
X
Push-pull HIGH-state  
Push-pull LOW-state  
Input with pull-up  
1
1
1
X
1
1
0
X
1
0
1
X
X
X
X
0
X
X
X
X
Input at threshold Vth1  
(typically 3 V)  
Input at threshold Vth2  
(typically 1.5 V)  
X
X
X
X
X
X
1
X
Capture edge at falling and  
rising edge  
X
both  
Capture edge at falling edge X  
X
X
X
X
X
X
fall  
Capture edge at rising edge  
[1] X = don’t care.  
X
rise  
[2] The Ron values of the high-side and the low-side switches can be found in Section 10. The Ron(HS) value is  
chosen to provide enough pull-up current for switches; thus no external pull-up resistor is needed. The  
Ron(LS) of the low-side driver is much smaller than the Ron(HS) of the high-side driver, which enables the low  
side driver to drive LEDs.  
[3] Refer to Table 17 where threshold TH3 is defined in Cyclic sense mode in case threshold TH2 is selected.  
This feature is used for diagnosis purposes to check the presence of a switch with integrated parallel  
resistor (a useful resistor value is 3000 Ω ± 1 %).  
7.3.2 INH pin  
The inhibit pin INH can be configured in three operation modes: ADC mode, Switch open  
mode and External regulator mode (see Section 7.2.4 and Figure 11). After power-on the  
INH is in External regulator mode (high-side switch is on).  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
33 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
BAT  
output  
FF  
&
&
&
R
on(INH1)  
VIO  
R
INH  
on(INH2)  
on(INH2)  
R
ADC mode  
FF  
mdb499  
Fig 11. INH structure  
7.4 Configuration pins C1 to C3  
The structure of the configuration pins C1 to C3 (Cx) is shown in Figure 12. Each pin has  
a pull-up to the battery. The pull-up is switched on during node address configuration only.  
In all other cases the Cx have high-impedance behavior.  
In order to have a safety margin against ground shift the input threshold of the  
configuration pins is about 0.5 × VBAT  
.
In addition the configuration pin C3 has a low-side driver to provide the output signal  
during daisy chain ID configuration.  
V
BAT  
configuration on/off  
Cx  
Cx input  
0.5V  
BAT  
Cx output  
001aad492  
Fig 12. Configuration pin structure  
7.5 LIN transceiver  
The integrated LIN transceiver of the UJA1023 is compliant with LIN 2.0 / SAE J2602 and  
provides:  
Integrated 30 kΩ termination resistor  
Internal LIN-termination switch (RTLIN)  
Disabling of termination switch during a short-circuit from LIN to GND  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
34 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
Figure 13 shows the states of the complete LIN transceiver including RTLIN for LIN  
termination.  
power-on  
or undervoltage  
Off-line  
TX: off  
RX: off  
LPRX: on  
RTLIN: 75 μA  
t
to(idle)  
or  
t
to(dom)  
sleep or LH sleep  
remote wake-up  
or  
t
to(rec)  
local wake-up  
t
to(dom)  
Active  
TX: on  
Fail silent  
TX: off  
RX: on  
RX: off  
LPRX: on  
RTLIN: 30 kΩ  
LPRX: on  
RTLIN: off  
local wake-up  
mce652  
TX = Transmitter.  
RX = Receiver.  
LPRX = Low-power receiver.  
RTLIN = LIN termination.  
Fig 13. LIN transceiver states  
The first mode after power-on is the Off-line mode. The transmitter and receiver are both  
switched off, but wake-up events will be recognized. Any LIN wake-up event will wake-up  
the UJA1023.  
Within Sleep mode any wake-up event is automatically forwarded to the LIN (protocol)  
controller, the Normal mode will be entered and the LIN-transceiver automatically enters  
the Active mode. It should be noted that the first message (wake-up message) will be lost  
when no wake-up signal has been received before.  
The differences between Active, Off-line and Fail silent mode are:  
In Off-line and Fail silent mode the transmitter is off, whereas in Active mode the  
transmitter is enabled  
During active state with no short-circuit between LIN and GND the internal termination  
switch RTLIN provides an internal 30 kΩ pull-up resistor to VBAT. In case the LIN wire  
is shorted to GND for longer than tto(dom), the RTLIN switch switches off in order to  
make sure that no current is discharging the battery unintentionally and Fail silent  
mode will be entered  
After failure recovery (in fail silent) when the LIN bus is recessive again the Off-line  
mode is entered and activates a weak termination of 75 μA  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
35 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
Entering Active mode out of Off-line mode results always in switching on the internal  
30 kΩ pull-up resistor to battery  
7.6 On-chip oscillator  
The on-chip oscillator is the time reference for all timers in the LIN controller, auto bit rate  
detector, ADC and LIN transceiver.  
A too-low frequency of the on-chip oscillator or a not-running on-chip oscillator results  
immediately in Limp home operating mode.  
8. Limiting values  
Table 30. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134). All voltages are referenced to GND.  
Symbol Parameter  
Conditions  
Min  
0.3  
0.3  
27  
0.3  
27  
0.3  
15  
150  
40  
55  
Max  
Unit  
V
VBAT  
VVIO  
VLIN  
VINH  
VCx  
VPx  
supply voltage on pin BAT  
+40  
supply voltage on pin VIO  
voltage on pin LIN  
VBAT + 0.3  
+40  
V
DC value  
V
voltage on pin INH  
DC value  
VBAT + 0.3  
+40  
V
voltage on pins C1 to C3  
voltage on pins P0 to P7  
current on pins P0 to P7  
DC value  
V
DC value  
VVIO + 0.3  
+15  
V
IPx  
DC value; VPx > VVIO + 0.3 V; VPx < 0.3 V  
mA  
V
Vtrt(LIN) transient voltages on pin LIN  
ISO 7637  
+100  
[1]  
Tvj  
virtual junction temperature  
storage temperature  
+150  
°C  
°C  
Tstg  
VESD  
+150  
electrostatic discharge voltage  
pins BAT, LIN, C1, C2 and C3 human body model; C = 100 pF; R = 1.5 kΩ  
8  
+8  
kV  
V
corner pins  
other pins  
charged device model  
750  
2  
+750  
+2  
human body model; C = 100 pF; R = 1.5 kΩ  
charged device model  
kV  
V
500  
+500  
[1] Junction temperature in accordance with IEC60747-1. An alternative definition of Tvj = Tamb + P × Rth(j-a), where Rth(j-a) is a fixed value to  
be used for calculating Tvj. The rating for Tvj limits the allowable combinations of power dissipation (P) and ambient temperature (Tamb).  
9. Thermal characteristics  
Table 31. Thermal characteristics  
Symbol Parameter  
Conditions  
Typ  
Unit  
Rth(j-a)  
thermal resistance from junction to ambient in free air  
106  
K/W  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
36 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
10. Static characteristics  
Table 32. Static characteristics  
V
BAT = 5.5 V to 27 V[1]; VVIO = 3 V to 27 V; Tvj = 40 °C to +150 °C; RL(LIN-BAT) = 500 Ω; all voltages are referenced to GND;  
positive current flows into the IC; unless otherwise specified.[2]  
Symbol  
Supply: pin BAT  
VBAT supply voltage on pin BAT  
IBAT  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
all operating modes  
5.5  
-
27  
V
supply current on pin BAT  
LH sleep, Sleep and Limp  
home mode  
[3]  
[3]  
VBAT = 5.5 V to 8.1 V  
VBAT = 8.1 V to 27 V  
-
-
75  
45  
100  
65  
μA  
μA  
Normal mode;  
LIN receiving recessive  
[4]  
[4]  
VBAT = 12 V  
VBAT = 27 V  
-
-
0.7  
1.0  
1.4  
2.0  
mA  
mA  
Normal mode;  
LIN receiving dominant  
[4]  
[4]  
VBAT = 12 V  
VBAT = 27 V  
-
-
1.1  
1.7  
2.2  
3.4  
mA  
mA  
Normal mode;  
LIN sending dominant  
[4]  
[4]  
VBAT = 12 V  
VBAT = 27 V  
-
-
-
2.2  
4.4  
mA  
mA  
μA  
3.6  
7.5  
Additional current if all  
high- and low-side  
1040  
1280  
switches are activated  
[5]  
VBAT(pf)  
VBAT power fail detection  
voltage  
4.45  
3
-
-
5.0  
V
V
I/O reference (Px operating range): pin VIO  
VVIO  
IVIO  
supply voltage on pin VIO  
supply current on pin VIO  
VBAT + 0.3  
LH sleep, Sleep and Limp  
home mode; no load at Px  
[6]  
[6]  
[6]  
high-side switches  
disabled  
-
-
-
1.6  
5.0  
μA  
μA  
μA  
high-side switches  
enabled and active  
230  
520  
280  
1000  
Normal mode; ADC  
enabled; no load at Px and  
INH; high-side switches  
enabled  
Configuration: pins C1, C2 and C3  
VIH  
VIL  
HIGH-level input voltage  
LOW-level input voltage  
leakage current  
0.6 × VBAT  
-
VBAT + 0.3  
V
0.3  
-
0.4 × VBAT  
V
IL⎪  
Rpu  
configuration pins disabled  
configuration pins enabled  
-
-
5
μA  
kΩ  
internal pull-up resistor  
5
11  
25  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
37 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
Table 32. Static characteristics …continued  
VBAT = 5.5 V to 27 V[1]; VVIO = 3 V to 27 V; Tvj = 40 °C to +150 °C; RL(LIN-BAT) = 500 Ω; all voltages are referenced to GND;  
positive current flows into the IC; unless otherwise specified.[2]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VOL(C3)  
LOW-level output voltage on external Rpu = 5 kΩ to  
-
-
0.25 × VBAT  
V
pin C3  
pin BAT; C3 enabled  
external Rpu = 5 kΩ to  
pin BAT; C3 enabled;  
VBAT = 6.5 V to 27 V  
-
-
-
-
0.2 × VBAT  
V
Isc(C3)  
short-circuit current on  
pin C3  
C3 = VBAT; C3 enabled  
50  
mA  
I/O: pins P0 to P7  
VIH(th1)  
VIL(th1)  
VIH(th2)  
VIL(th2)  
VIH(th3)  
VIL(th3)  
IL⎪  
HIGH-level input voltage Vth1 VVIO 3.7 V  
LOW-level input voltage Vth1 VVIO 3.7 V  
3.7  
-
VVIO + 0.3  
+2.1  
V
0.3  
2.0  
-
V
HIGH-level input voltage Vth2  
-
VVIO + 0.3  
+0.8  
V
LOW-level input voltage Vth2  
0.3  
VVIO 0.8  
0.3  
-
-
V
HIGH-level input voltage Vth3 VVIO 10 V  
LOW-level input voltage Vth3 VVIO 10 V  
-
VVIO + 0.3  
VVIO 2.5  
10  
V
-
V
leakage current  
VI = VVIO or GND  
-
μA  
Ω
Ron(HS)  
high-side on-state resistance VPx = VVIO 1 V;  
550  
1200  
3000  
per switch  
[7]  
[7]  
Isc(HS)  
Ron(LS)  
Isc(LS)  
high-side short-circuit current VPx = 0 V  
3.1  
25  
2.0  
50  
0.8  
83  
mA  
Ω
low-side on-state resistance VPx = 1 V; per switch  
low-side short-circuit current VPx = VVIO  
10  
23  
40  
mA  
Special function: pin INH  
VBAT-INH  
voltage drop  
INH mode; IINH = 1 mA  
-
-
1.2  
-
1.8  
5
V
IL⎪  
leakage current  
VINH = 0 V  
μA  
Bus line: pin LIN  
VO(dom) LIN dominant output voltage 7.0 V < VBAT < 18 V  
IL(H)  
0
-
-
0.2 × VBAT  
V
HIGH-level leakage current  
LOW-level leakage current  
LIN pull-up current  
7.0 V < VBAT < 18 V;  
VLIN = VBAT  
10  
+10  
μA  
IL(L)  
Ipu  
Fail silent mode;  
VLIN = 0 V; t > tto(dom)  
10  
0
+10  
μA  
μA  
Off-line mode; VLIN = 0 V;  
t < tto(dom)  
150  
60  
10  
Rpu(slave)  
IL  
slave termination pull-up  
leakage current  
Active mode  
20  
-
30  
0
47  
-
kΩ  
μA  
[8]  
VBAT = 0 V  
IO(sc)  
short-circuit output current  
LIN dominant; t < tto(dom)  
VLIN = 12 V; VBAT = 12 V  
VLIN = 18 V; VBAT = 18 V  
Active mode  
27  
40  
-
40  
60  
-
60  
mA  
mA  
V
86  
Vth(dom)  
Vth(rec)  
receiver dominant state  
voltage  
0.4 × VBAT  
receiver recessive state  
voltage  
Active mode  
0.6 × VBAT  
-
-
V
Vcen(RX)  
Vhys(RX)  
receiver center voltage  
Active mode  
Active mode  
0.475 × VBAT 0.5 × VBAT 0.525 × VBAT  
0.05 × VBAT 0.175 × VBAT  
V
V
receiver hysteresis voltage  
-
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
38 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
[1] Valid for the UJA1023T/2R04/C; for the UJA1023T/2R04, VBAT = 6.5 V to 27 V.  
[2] All parameters are guaranteed over the virtual junction temperature range by design. Products are 100 % tested at 125 °C ambient  
temperature on wafer level (pre-testing). Cased products are 100 % tested at 25 °C ambient temperature (final testing). Both pre-testing  
and final testing use correlated test conditions to cover the specified temperature and power supply voltage ranges.  
[3] All outputs turned off, LIN recessive, Vth1 selected.  
[4] All outputs turned off.  
[5] Configuration is lost when VBAT is below 5 V.  
[6] Vth1 on, Vth2 off, Vth3 off.  
[7] Outputs are not temperature protected.  
[8] Not tested in production.  
11. Dynamic characteristics  
Table 33. Dynamic characteristics  
VBAT = 5.5 V to 27 V; VVIO = 3 V to 27 V; Tvj = 40 °C to +150 °C; RL(LIN-BAT) = 500 Ω; all voltages are referenced to GND;  
unless otherwise specified.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
I/O processing  
[2]  
tprocess  
PxReq to output  
conversion time ADC  
after valid LIN message  
-
-
200  
1.5  
-
-
μs  
[2][3]  
tconv(ADC)  
ms  
LIN transceiver; see Figure 14[4]  
[4][5]  
[4][5]  
[4][6]  
[4][6]  
[4][5]  
[4][5]  
[4][6]  
[4][6]  
[7]  
δ1  
δ2  
δ3  
δ4  
duty cycle 1  
duty cycle 2  
duty cycle 3  
duty cycle 4  
Vth(rec)(max) = 0.744 × VBAT  
Vth(dom)(max) = 0.581 × VBAT  
tbit = 50 μs; VBAT = 7 V to 18 V  
0.396  
-
-
-
-
-
-
-
-
-
-
Vth(rec)(max) = 0.76 × VBAT  
0.396  
-
Vth(dom)(max) = 0.593 × VBAT  
tbit = 50 μs; VBAT = 5.5 V to 7.0 V  
V
th(rec)(min) = 0.422 × VBAT  
-
0.581  
0.581  
-
Vth(dom)(min) = 0.284 × VBAT  
tbit = 50 μs; VBAT = 7.6 V to 18 V  
Vth(rec)(min) = 0.41 × VBAT  
Vth(dom)(min) = 0.275 × VBAT  
tbit = 50 μs; VBAT = 6.1 V to 7.6 V  
-
V
V
th(rec)(max) = 0.778 × VBAT  
th(dom)(max) = 0.616 × VBAT  
0.417  
tbit = 96 μs; VBAT = 7 V to 18 V  
th(rec)(max) = 0.797 × VBAT  
Vth(dom)(max) = 0.630 × VBAT  
bit = 96 μs; VBAT = 5.5 V to 7 V  
V
0.417  
-
t
Vth(rec)(min) = 0.389 × VBAT  
Vth(dom)(min) = 0.251 × VBAT  
tbit = 96 μs; VBAT = 7.6 V to 18 V  
-
-
-
0.590  
0.590  
6
Vth(rec)(min) = 0.378 × VBAT  
Vth(dom)(min) = 0.242 × VBAT  
tbit = 96 μs; VBAT = 6.1 V to 7.6 V  
tPHL(RX)  
tPLH(RX)  
,
propagation delay of  
receiver  
μs  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
39 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
Table 33. Dynamic characteristics …continued  
VBAT = 5.5 V to 27 V; VVIO = 3 V to 27 V; Tvj = 40 °C to +150 °C; RL(LIN-BAT) = 500 Ω; all voltages are referenced to GND;  
unless otherwise specified.[1]  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[7]  
tP(RX)(sym)  
symmetry of receiver  
propagation delay rising  
edge with respect to falling  
edge  
2  
-
+2  
μs  
LIN protocol controller  
[2]  
[2]  
[2]  
[2]  
tto(idle)  
bus idle time-out  
4.1  
32  
-
-
-
-
18.0  
270  
65  
s
tto(dom)  
tto(rec)  
bus dominant time-out  
bus recessive time-out  
ms  
μs  
ms  
15  
twake(bus)  
network wake-up signal  
time  
after local wake-up, sent by slave  
Sleep mode, sent by master  
0.25  
5
[2]  
[4]  
twake(local)  
bus wake-up dominant  
time  
30  
100  
150  
μs  
Automatic bit rate detection  
tdet(syncbrk)  
sync break detection  
threshold  
-
-
10 × tbit  
-
μs  
ftol(sync)  
total tolerance slave  
synchronized  
complete message  
-
2
%
Cyclic function; see Figure 7  
[2]  
[2]  
[2]  
Tcy  
cycle period  
-
-
-
16  
-
-
-
ms  
μs  
μs  
ton(PxOut)  
PxOut pin turned on  
350  
262  
tsample(PxIn) PxIn sample time  
ADC function  
EADC  
total ADC error  
R = 100 kΩ; C = 10 nF  
[8]  
[8]  
VVIO = 6.5 V to 12 V;  
VBAT = 6.5 V to 12 V  
-
-
-
-
4
6
LSB  
LSB  
VVIO = 3 V to 27 V;  
VBAT = 6.5 V to 27 V  
[1] All parameters are guaranteed over the virtual junction temperature range by design. Products are 100 % tested at 125 °C ambient  
temperature on wafer level (pre-testing). Cased products are 100 % tested at 25 °C ambient temperature (final testing). Both pre-testing  
and final testing use correlated test conditions to cover the specified temperature and power supply voltage ranges.  
[2] Guaranteed by design.  
[3] Analog-to-digital conversion starts when valid sync break and sync field is received.  
[4]  
tbit = selected bit time 50 μs or 96 μs (20 kbit/s or 10.4 kbit/s), depends on LSC bit; bus load conditions are (C parallel to R): Cbus = 1 nF  
and Rbus = 1 kΩ, Cbus = 6.8 nF and Rbus = 660 Ω or Cbus = 10 nF and Rbus = 500 Ω.  
tbus(rec)(min)  
[5] δ1, δ3  
[6] δ2, δ4  
=
=
-------------------------------  
2 × tbit  
tbus(rec)(max)  
-------------------------------  
2 × tbit  
[7] RXD is an internal signal.  
[8] Not tested.  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
40 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
t
t
t
bit  
bit  
bit  
V
TXDL  
t
t
bus(rec)(min)  
bus(dom)(max)  
V
BAT  
V
V
th(rec)(max)  
thresholds of  
receiving node 1  
th(dom)(max)  
LIN BUS  
signal  
V
V
th(rec)(min)  
thresholds of  
receiving node 2  
th(dom)(min)  
t
t
bus(rec)(max)  
bus(dom)(min)  
V
V
RXDL1  
receiving  
node 1  
t
t
p(rx1)r  
p(rx1)f  
RXDL2  
receiving  
node 2  
t
t
p(rx2)f  
p(rx2)r  
001aae375  
Fig 14. Timing diagram LIN transceiver  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
41 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
12. Application information  
LIN MASTER NODE ECU  
V1  
V
DD  
BAT42  
BAT14  
SPI  
SPI  
INTERFACE  
INTERFACE  
C
BAT  
RTLIN  
RSTN  
INTN  
RSTN  
INTN  
R
MASTER  
LIN  
C
RXDL  
TXDL  
RXD  
TXD  
LIN  
GND  
FAIL-SAFE SBC  
UJA106x  
MICROCONTROLLER  
V
BAT  
LIN bus  
LIN SLAVE NODE ECU  
SWITCH BACKGROUND ILLUMINATION  
INH  
VIO  
P7  
4 × 3 SWITCH MATRIX  
P6  
P5  
P4  
BAT  
C
C
BAT  
LIN  
LIN  
GND  
C1  
P3  
P2  
P1  
P0  
C2  
C3  
LIN I/O SLAVE  
UJA1023  
001aad687  
Fig 15. Application Diagram  
13. Test information  
Immunity against automotive transients (malfunction and damage) in accordance with LIN  
EMC Test Specification / Version 1.0; August 1, 2004.  
13.1 Quality information  
This product has been qualified to the appropriate Automotive Electronics Council (AEC)  
standard Q100 or Q101 and is suitable for use in automotive applications.  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
42 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
14. Package outline  
SO16: plastic small outline package; 16 leads; body width 3.9 mm  
SOT109-1  
D
E
A
X
c
y
H
v
M
A
E
Z
16  
9
Q
A
2
A
(A )  
3
A
1
pin 1 index  
θ
L
p
L
1
8
e
w
M
detail X  
b
p
0
2.5  
scale  
5 mm  
DIMENSIONS (inch dimensions are derived from the original mm dimensions)  
A
(1)  
(1)  
(1)  
UNIT  
A
A
A
b
c
D
E
e
H
L
L
p
Q
v
w
y
Z
θ
1
2
3
p
E
max.  
0.25  
0.10  
1.45  
1.25  
0.49  
0.36  
0.25  
0.19  
10.0  
9.8  
4.0  
3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm  
1.27  
0.05  
1.05  
0.041  
1.75  
0.25  
0.01  
0.25  
0.01  
0.25  
0.1  
8o  
0o  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.39  
0.014 0.0075 0.38  
0.16  
0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.020  
0.028  
0.012  
inches  
0.069  
0.01 0.004  
Note  
1. Plastic or metal protrusions of 0.15 mm (0.006 inch) maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
99-12-27  
03-02-19  
SOT109-1  
076E07  
MS-012  
Fig 16. Package outline SOT109-1 (SO16)  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
43 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
15. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
15.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
15.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
15.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
44 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
15.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 17) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 34 and 35  
Table 34. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 35. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 17.  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
45 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 17. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
16. Revision history  
Table 36. Revision history  
Document ID  
UJA1023 v.5  
Modifications:  
Release date  
20100817  
Data sheet status  
Change notice  
Supersedes  
Product data sheet  
-
UJA1023 v.4  
The format of this data sheet has been redesigned to comply with the new identity  
guidelines of NXP Semiconductors.  
Legal texts have been adapted to the new company name where appropriate.  
VBAT (min) value changed to 5.5 V (Table 1, Table 32 and Table 33).  
Table 32 “Static characteristics”: updated:  
condition/value added for VOL(C3)  
table note 1 added  
Table 33 “Dynamic characteristics”: updated:  
δ1, δ2, δ3 and δ4: conditions changed (LSC = 0 deleted) and conditions/values added  
Table 2 “Ordering information” updated to indicate that two versions are now available:  
UJA1023T/2R04/C with VBAT = 5.5 V to 27 V  
UJA1023T/2R04 with VBAT = 6.5 V to 27 V  
UJA1023 v.4  
UJA1023 v.3  
20060705  
20060209  
20050203  
Product data sheet  
-
-
-
UJA1023 v.3  
UJA1023 v.2  
-
Preliminary data sheet  
Objective specification  
UJA1023 v.2  
(9397 750 12022)  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
46 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
17. Legal information  
17.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
suitable for use in medical, military, aircraft, space or life support equipment,  
17.2 Definitions  
nor in applications where failure or malfunction of an NXP Semiconductors  
product can reasonably be expected to result in personal injury, death or  
severe property or environmental damage. NXP Semiconductors accepts no  
liability for inclusion and/or use of NXP Semiconductors products in such  
equipment or applications and therefore such inclusion and/or use is at the  
customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
17.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Suitability for use in automotive applications — This NXP  
Semiconductors product has been qualified for use in automotive  
applications. The product is not designed, authorized or warranted to be  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
47 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
Quick reference data — The Quick reference data is an extract of the  
product data given in the Limiting values and Characteristics sections of this  
document, and as such is not complete, exhaustive or legally binding.  
17.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
18. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
UJA1023  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 5 — 17 August 2010  
48 of 49  
UJA1023  
NXP Semiconductors  
LIN-I/O slave  
19. Contents  
1
2
3
4
5
General description. . . . . . . . . . . . . . . . . . . . . . 1  
8
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 36  
Thermal characteristics . . . . . . . . . . . . . . . . . 36  
Static characteristics . . . . . . . . . . . . . . . . . . . 37  
Dynamic characteristics. . . . . . . . . . . . . . . . . 39  
Application information . . . . . . . . . . . . . . . . . 42  
Test information . . . . . . . . . . . . . . . . . . . . . . . 42  
Quality information. . . . . . . . . . . . . . . . . . . . . 42  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 43  
Features and benefits . . . . . . . . . . . . . . . . . . . . 2  
Quick reference data . . . . . . . . . . . . . . . . . . . . . 2  
Ordering information. . . . . . . . . . . . . . . . . . . . . 3  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 3  
9
10  
11  
12  
13  
13.1  
14  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 4  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 4  
7
7.1  
Functional description . . . . . . . . . . . . . . . . . . . 5  
Short description of the UJA1023. . . . . . . . . . . 5  
LIN controller . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
LIN transceiver (including termination) . . . . . . . 5  
Automatic bit rate detection . . . . . . . . . . . . . . . 5  
Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
I/O block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
ADC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
PWM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Cyclic sense . . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
LIN controller . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Configuration . . . . . . . . . . . . . . . . . . . . . . . . . . 6  
Message sequence . . . . . . . . . . . . . . . . . . . . . 6  
LIN slave node address assignment . . . . . . . . 8  
Assign frame ID . . . . . . . . . . . . . . . . . . . . . . . 14  
Read by identifier . . . . . . . . . . . . . . . . . . . . . . 15  
I/O configuration . . . . . . . . . . . . . . . . . . . . . . . 16  
Configuration examples . . . . . . . . . . . . . . . . . 22  
Operating modes . . . . . . . . . . . . . . . . . . . . . . 24  
Configuration mode . . . . . . . . . . . . . . . . . . . . 25  
Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Limp home sleep mode . . . . . . . . . . . . . . . . . 25  
Limp home mode and Standby mode. . . . . . . 26  
I/O pin modes . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Input . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Level mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
PWM mode. . . . . . . . . . . . . . . . . . . . . . . . . . . 26  
Cyclic sense mode . . . . . . . . . . . . . . . . . . . . . 26  
Switch matrix mode . . . . . . . . . . . . . . . . . . . . 27  
ADC mode . . . . . . . . . . . . . . . . . . . . . . . . . . . 28  
INH pin mode . . . . . . . . . . . . . . . . . . . . . . . . . 29  
LIN-I/O message frames . . . . . . . . . . . . . . . . 29  
I/O block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32  
I/O pins P0 to P7 . . . . . . . . . . . . . . . . . . . . . . 32  
INH pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Configuration pins C1 to C3 . . . . . . . . . . . . . . 34  
LIN transceiver . . . . . . . . . . . . . . . . . . . . . . . . 34  
On-chip oscillator . . . . . . . . . . . . . . . . . . . . . . 36  
15  
Soldering of SMD packages. . . . . . . . . . . . . . 44  
Introduction to soldering. . . . . . . . . . . . . . . . . 44  
Wave and reflow soldering. . . . . . . . . . . . . . . 44  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . 44  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . 45  
15.1  
15.2  
15.3  
15.4  
7.1.1  
7.1.2  
7.1.3  
7.1.4  
7.1.5  
7.1.6  
7.1.7  
7.1.8  
7.2  
16  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 46  
17  
Legal information . . . . . . . . . . . . . . . . . . . . . . 47  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 47  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 47  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 48  
17.1  
17.2  
17.3  
17.4  
7.2.1  
7.2.1.1  
7.2.1.2  
7.2.1.3  
7.2.1.4  
7.2.1.5  
7.2.1.6  
7.2.2  
7.2.2.1  
7.2.2.2  
7.2.2.3  
7.2.2.4  
7.2.2.5  
7.2.3  
7.2.3.1  
7.2.3.2  
7.2.3.3  
7.2.3.4  
7.2.3.5  
7.2.3.6  
7.2.4  
7.2.5  
7.3  
18  
19  
Contact information . . . . . . . . . . . . . . . . . . . . 48  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49  
7.3.1  
7.3.2  
7.4  
7.5  
7.6  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2010.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 17 August 2010  
Document identifier: UJA1023  

相关型号:

UJA1023T/2R04

LIN-I/O slave
NXP

UJA1023T/2R04/C

LIN-I/O slave
NXP

UJA1023T/2R04/C,512

Telecom Circuit, 1-Func, PDSO16
NXP

UJA1061

Low speed CAN/LIN system basis chip
NXP

UJA1061TW

Low speed CAN/LIN system basis chip
NXP

UJA1061TW,112

UJA1061 - Fault-tolerant CAN/LIN fail-safe system basis chip TSSOP 32-Pin
NXP

UJA1061TW,118

UJA1061 - Fault-tolerant CAN/LIN fail-safe system basis chip TSSOP 32-Pin
NXP

UJA1061TW,512

UJA1061 - Fault-tolerant CAN/LIN fail-safe system basis chip TSSOP 32-Pin
NXP

UJA1061TW/2V5

IC DATACOM, ETHERNET TRANSCEIVER, PDSO32, 6 X 11 MM, 0.65 MM PITCH, PLASTIC, MO-153, SOT-549-1, HTSSOP-32, Network Interface
NXP

UJA1061TW/3V0

IC DATACOM, ETHERNET TRANSCEIVER, PDSO32, 8 X 11 MM, 0.65 MM PITCH, PLASTIC, MO-153, SOT549-1, HTSSOP-32, Network Interface
NXP

UJA1061TW/3V0,512

UJA1061 - Fault-tolerant CAN/LIN fail-safe system basis chip TSSOP 32-Pin
NXP

UJA1061TW/3V0,518

UJA1061 - Fault-tolerant CAN/LIN fail-safe system basis chip TSSOP 32-Pin
NXP