UJA1078TW/5V0,512 [NXP]

UJA1078 - Hihg-speed CAN/dual LIN core system basis chip TSSOP 32-Pin;
UJA1078TW/5V0,512
型号: UJA1078TW/5V0,512
厂家: NXP    NXP
描述:

UJA1078 - Hihg-speed CAN/dual LIN core system basis chip TSSOP 32-Pin

文件: 总53页 (文件大小:349K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UJA1078  
High-speed CAN/dual LIN core system basis chip  
Rev. 02 — 27 May 2010  
Product data sheet  
1. General description  
The UJA1078 core System Basis Chip (SBC) replaces the basic discrete components  
commonly found in Electronic Control Units (ECU) with a high-speed Controller Area  
Network (CAN) and two Local Interconnect Network (LIN) interfaces.  
The UJA1078 supports the networking applications used to control power and sensor  
peripherals by using a high-speed CAN as the main network interface and the LIN  
interfaces as local sub-busses.  
The core SBC contains the following integrated devices:  
High-speed CAN transceiver, inter-operable and downward compatible with CAN  
transceiver TJA1042, and compatible with the ISO 11898-2 and ISO 11898-5  
standards  
LIN transceivers compliant with LIN 2.1, LIN 2.0 and SAE J2602, and compatible with  
LIN 1.3  
Advanced independent watchdog (UJA1078/xx/WD versions)  
250 mA voltage regulator for supplying a microcontroller; extendable with external  
PNP transistor for increased current capability and dissipation distribution  
Separate voltage regulator for supplying the on-board CAN transceiver  
Serial Peripheral Interface (SPI) (full duplex)  
2 local wake-up input ports  
Limp home output port  
In addition to the advantages gained from integrating these common ECU functions in a  
single package, the core SBC offers an intelligent combination of system-specific  
functions such as:  
Advanced low-power concept  
Safe and controlled system start-up behavior  
Detailed status reporting on system and sub-system levels  
The UJA1078 is designed to be used in combination with a microcontroller that  
incorporates a CAN controller. The SBC ensures that the microcontroller always starts up  
in a controlled manner.  
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
2. Features and benefits  
2.1 General  
„ Contains a full set of CAN and LIN ECU functions:  
‹ CAN transceiver and two LIN transceivers  
‹ Scalable 3.3 V or 5 V voltage regulator delivering up to 250 mA for a  
microcontroller and peripheral circuitry; an external PNP transistor can be  
connected for better heat distribution over the PCB  
‹ Separate voltage regulator for the CAN transceiver (5 V)  
‹ Watchdog with Window and Timeout modes and on-chip oscillator  
‹ Serial Peripheral Interface (SPI) for communicating with the microcontroller  
‹ ECU power management system  
„ Designed for automotive applications:  
‹ Excellent ElectroMagnetic Compatibility (EMC) performance  
‹ ±8 kV ElectroStatic Discharge (ESD) protection Human Body Model (HBM) on the  
CAN/LIN bus pins and the WAKE pins  
‹ ±6 kV ElectroStatic Discharge (ESD) protection IEC 61000-4-2 on the CAN/LIN bus  
pins and the WAKE pins  
‹ ±58 V short-circuit proof CAN/LIN bus pins  
‹ Battery and CAN/LIN bus pins are protected against transients in accordance with  
ISO 7637-3  
„ Supports remote flash programming via the CAN bus  
„ Small 6.1 mm × 11 mm HTSSOP32 package with low thermal resistance  
„ Pb-free; RoHS and dark green compliant  
2.2 CAN transceiver  
„ ISO 11898-2 and ISO 11898-5 compliant high-speed CAN transceiver  
„ Dedicated low dropout voltage regulator for the CAN bus:  
‹ Independent of the microcontroller supply  
‹ Significantly improves EMC performance  
„ Bus connections are truly floating when power is off  
„ SPLIT output pin for stabilizing the recessive bus level  
2.3 LIN transceivers  
„ 2 × LIN 2.1 compliant LIN transceivers  
„ Compliant with SAE J2602  
„ Downward compatible with LIN 2.0 and LIN 1.3  
„ Low slope mode for optimized EMC performance  
„ Integrated LIN termination diode at pin DLIN  
2.4 Power management  
„ Wake-up via CAN, LIN or local WAKE pins with wake-up source detection  
„ 2 WAKE pins:  
‹ WAKE1 and WAKE2 inputs can be switched off to reduce current flow  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
2 of 53  
 
 
 
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
‹ Output signal (WBIAS) to bias the WAKE pins, selectable sampling time of 16 ms  
or 64 ms  
„ Standby mode with very low standby current and full wake-up capability; V1 active to  
maintain supply to the microcontroller  
„ Sleep mode with very low sleep current and full wake-up capability  
2.5 Control and Diagnostic features  
„ Safe and predictable behavior under all conditions  
„ Programmable watchdog with independent clock source:  
‹ Window, Timeout (with optional cyclic wake-up) and Off modes supported (with  
automatic re-enable in the event of an interrupt)  
„ 16-bit Serial Peripheral Interface (SPI) for configuration, control and diagnosis  
„ Global enable output for controlling safety-critical hardware  
„ Limp home output (LIMP) for activating application-specific ‘limp home’ hardware in  
the event of a serious system malfunction  
„ Overtemperature shutdown  
„ Interrupt output pin; interrupts can be individually configured to signal V1/V2  
undervoltage, CAN/LIN/local wake-up and cyclic and power-on interrupt events  
„ Bidirectional reset pin with variable power-on reset length to support a variety of  
microcontrollers  
„ Software-initiated system reset  
2.6 Voltage regulators  
„ Main voltage regulator V1:  
‹ Scalable voltage regulator for the microcontroller, its peripherals and additional  
external transceivers  
‹ ±2 % accuracy for LIN master application  
‹ ±3 % accuracy for LIN slave application  
‹ 3.3 V and 5 V versions available  
‹ Delivers up to 250 mA and can be combined with an external PNP transistor for  
better heat distribution over the PCB  
‹ Selectable current threshold at which the external PNP transistor starts to deliver  
current  
‹ Undervoltage warning at 90 % of nominal output voltage and undervoltage reset at  
90 % or 70 % of nominal output voltage  
‹ Can operate at VBAT voltages down to 4.5 V (e.g. during cranking), in accordance  
with ISO 7637 pulse 4/4b and ISO16750-2  
‹ Stable output under all conditions  
„ Voltage regulator V2 for CAN transceiver:  
‹ Dedicated voltage regulator for on-chip high-speed CAN transceiver  
‹ Undervoltage warning at 90 % of nominal output voltage  
‹ Can be switched off; CAN transceiver can be supplied by V1 or by an external  
voltage regulator  
‹ Can operate at VBAT voltages down to 5.5 V (e.g. during cranking) in accordance  
with ISO 7637, pulse 4  
‹ Stable output under all conditions  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
3 of 53  
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
3. Ordering information  
Table 1.  
Ordering information  
Type number[1]  
Package  
Name  
Description  
Version  
UJA1078TW/5V0/WD  
UJA1078TW/3V3/WD  
UJA1078TW/5V0  
HTSSOP32  
plastic thermal enhanced thin shrink small outline package;  
32 leads; body width 6.1 mm; lead pitch 0.65 mm; exposed die  
pad  
SOT549-1  
UJA1078TW/3V3  
[1] UJA1078TW/5V0xx versions contain a 5 V regulator (V1); UJA1078TW/3V3xx versions contain a 3.3 V regulator (V1); WD versions  
contain a watchdog.  
4. Block diagram  
UJA1078  
V1  
V1  
V2  
BAT  
V2  
GND  
V1  
V2  
UV  
UV  
VEXCTRL  
VEXCC  
EXT. PNP  
CTRL  
SCK  
SDI  
WBIAS  
SDO  
SCSN  
WAKE1  
WAKE2  
WDOFF  
EN  
SYSTEM  
CONTROLLER  
INTN  
RSTN  
WAKE  
OSC  
TEMP  
BAT  
LIMP  
DLIN  
LIN1  
TXDL1  
RXDL1  
LIN1  
LIN2  
V2  
HS-CAN  
CANH  
CANL  
TXDC  
RXDC  
SPLIT  
LIN2  
TXDL2  
RXDL2  
BAT  
015aaa072  
Fig 1. Block diagram  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
4 of 53  
 
 
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
5. Pinning information  
5.1 Pinning  
1
2
32  
31  
30  
29  
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
TXDL2  
RXDL2  
TXDL1  
V1  
BAT  
VEXCTRL  
TEST2  
VEXCC  
WBIAS  
LIN2  
3
4
5
RXDL1  
RSTN  
INTN  
6
7
DLIN  
8
EN  
LIN1  
UJA1078  
9
SDI  
SPLIT  
GND  
10  
11  
12  
13  
14  
15  
16  
SDO  
SCK  
CANL  
CANH  
V2  
SCSN  
TXDC  
RXDC  
TEST1  
WDOFF  
WAKE2  
WAKE1  
LIMP  
015aaa046  
Fig 2. Pin configuration  
5.2 Pin description  
Table 2.  
Symbol  
TXDL2  
RXDL2  
TXDL1  
V1  
Pin description  
Pin  
1
Description  
LIN2 transmit data input  
LIN2 receive data output  
LIN1 transmit data input  
2
3
4
voltage regulator output for the microcontroller (5 V or 3.3 V depending on  
SBC version)  
RXDL1  
RSTN  
INTN  
EN  
5
LIN1 receive data output  
reset input/output to and from the microcontroller  
interrupt output to the microcontroller  
enable output  
6
7
8
SDI  
9
SPI data input  
SDO  
10  
11  
12  
13  
14  
15  
16  
17  
SPI data output  
SCK  
SPI clock input  
SCSN  
TXDC  
RXDC  
TEST1  
WDOFF  
LIMP  
SPI chip select input  
CAN transmit data input  
CAN receive data output  
test pin; pin should be connected to ground  
WDOFF pin for deactivating the watchdog  
limp home output  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
5 of 53  
 
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
Table 2.  
Pin description …continued  
Symbol  
WAKE1  
WAKE2  
V2  
Pin  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
28  
29  
Description  
local wake-up input 1  
local wake-up input 2  
5 V voltage regulator output for CAN  
CANH bus line  
CANH  
CANL  
GND  
CANL bus line  
ground  
SPLIT  
LIN1  
CAN bus common mode stabilization output  
LIN1 bus line  
DLIN  
LIN termination resistor connection  
LIN2 bus line  
LIN2  
WBIAS  
VEXCC  
control pin for external wake biasing transistor  
current measurement for external PNP transistor; this pin is connected to  
the collector of the external PNP transistor  
TEST2  
30  
31  
test pin; pin should be connected to ground  
VEXCTRL  
control pin of the external PNP transistor; this pin is connected to the base  
of the external PNP transistor  
BAT  
32  
battery supply for the SBC  
The exposed die pad at the bottom of the package allows for better heat dissipation from  
the SBC via the printed circuit board. The exposed die pad is not connected to any active  
part of the IC and can be left floating, or can be connected to GND.  
6. Functional description  
The UJA1078 combines the functionality of a high-speed CAN transceiver, two LIN  
transceivers, two voltage regulators and a watchdog (UJA1078/xx/WD versions) in a  
single, dedicated chip. It handles the power-up and power-down functionality of the ECU  
and ensures advanced system reliability. The SBC offers wake-up by bus activity, by  
cyclic wake-up and by the activation of external switches. Additionally, it provides a  
periodic control signal for pulsed testing of wake-up switches, allowing low-current  
operation even when the wake-up switches are closed in Standby mode.  
All transceivers are optimized to be highly flexible with regard to bus topologies. In  
particular, the high-speed CAN transceiver is optimized to reduce ringing (bus reflections).  
V1, the main voltage regulator, is designed to power the ECU's microcontroller, its  
peripherals and additional external transceivers. An external PNP transistor can be added  
to improve heat distribution. V2 supplies the integrated high-speed CAN transceiver. The  
watchdog is clocked directly by the on-chip oscillator and can be operated in Window,  
Timeout and Off modes.  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
6 of 53  
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
6.1 System Controller  
6.1.1 Introduction  
The system controller manages register configuration and controls the internal functions  
of the SBC. Detailed device status information is collected and presented to the  
microcontroller. The system controller also provides the reset and interrupt signals.  
The system controller is a state machine. The SBC operating modes, and how transitions  
between modes are triggered, are illustrated in Figure 3. These modes are discussed in  
more detail in the following sections.  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
7 of 53  
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
from Standby or Normal  
chip temperature above  
OTP activatrion threshold T  
th(act)otp  
Overtemp  
V
BAT  
below  
V1: OFF  
V2: OFF  
power-off threshold V  
th(det)poff  
(from all modes)  
limp home = LOW (active)  
CAN/LIN: Off and  
high resistance  
watchdog: OFF  
Off  
chip temperature below  
OTP release threshold T  
V1: OFF  
V2: OFF  
th(rel)otp  
CAN/LIN: Off and  
high resistance  
watchdog: OFF  
INTN: HIGH  
V
below  
BAT  
power-on threshold V  
th(det)pon  
V
BAT  
above  
power-on threshold V  
th(det)pon  
watchdog  
trigger  
watchdog overflow or  
V1 undervoltage  
Standby  
V1: ON  
V2: OFF  
CAN/LIN: Lowpower/Off  
watchdog: Timeout/Off  
MC = 00  
MC = 01 and  
INTN = HIGH and  
one wake-up enabled and  
no wake-up pending  
reset event or  
MC = 00  
MC = 10 or MC = 11  
wake-up event if enabled  
Sleep  
Normal  
V1: OFF  
V2: OFF  
CAN/LIN: Lowpower/Off  
watchdog: OFF  
RSTN: LOW  
V1: ON  
V2: ON/OFF  
CAN/LIN: Active/Lowpower  
watchdog: Window/  
Timeout/Off  
successful  
watchdog  
trigger  
MC = 01 and  
INTN = HIGH and  
one wake-up enabled and  
no wake-up pending  
MC = 01  
MC = 1x  
015aaa073  
Fig 3. UJA1078 system controller  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
8 of 53  
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
6.1.2 Off mode  
The SBC switches to Off mode from all other modes if the battery supply drops below the  
power-off detection threshold (Vth(det)poff). In Off mode, the voltage regulators are disabled  
and the bus systems are in a high-resistive state. The CAN bus pins are floating in this  
mode.  
As soon as the battery supply rises above the power-on detection threshold (Vth(det)on),  
the SBC goes to Standby mode, and a system reset is executed (reset pulse width of  
tw(rst), long or short; see Section 6.5.1 and Table 11).  
6.1.3 Standby mode  
The SBC will enter Standby mode:  
From Off mode if VBAT rises above the power-on detection threshold (Vth(det)on  
)
From Sleep mode on the occurrence of a CAN, LIN or local wake-up event  
From Overtemp mode if the chip temperature drops below the overtemperature  
protection release threshold, Tth(rel)otp  
From Normal mode if bit MC is set to 00 or a system reset is performed (see  
Section 6.5)  
In Standby mode, V1 is switched on. The CAN and LIN transceivers will either be in a  
low-power state (Lowpower mode; STBCC/STBCL1/STBCL2 = 1; see Table 6) with bus  
wake-up detection enabled or completely switched off (Off mode; STBCx = 0) - see  
Section 6.7.1 and Section 6.8.1. The watchdog can be running in Timeout mode or Off  
mode, depending on the state of the WDOFF pin and the setting of the watchdog mode  
control bit (WMC) in the WD_and_Status register (Table 4).  
The SBC will exit Standby mode if:  
Normal mode is selected by setting bits MC to 10 (V2 disabled) or 11 (V2 enabled)  
Sleep mode is selected by setting bits MC to 01  
The chip temperature rises above the OTP activation threshold, Tth(act)otp, causing the  
SBC to enter Overtemp mode  
6.1.4 Normal mode  
Normal mode is selected from Standby mode by setting bits MC in the Mode_Control  
register (Table 5) to 10 (V2 disabled) or 11 (V2 enabled).  
In Normal mode, the CAN physical layer will be enabled (Active mode; STBCC = 0; see  
Table 6) or in a low-power state (Lowpower mode; STBCC = 1) with bus wake-up  
detection active.  
In Normal mode, the LIN physical layers (LIN1 and LIN2) will be enabled (Active mode;  
STBCL1/STBCL2 = 0; see Table 6) or in a low-power state (Lowpower mode;  
STBCL1/STBCL2 = 1) with bus wake-up detection active.  
The SBC will exit Normal mode if:  
Standby mode is selected by setting bits MC to 00  
Sleep mode is selected by setting bits MC to 01  
A system reset is generated (see Section 6.1.3; the SBC will enter Standby mode)  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
9 of 53  
 
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
The chip temperature rises above the OTP activation threshold, Tth(act)otp, causing the  
SBC to switch to Overtemp mode  
6.1.5 Sleep mode  
Sleep mode is selected from Standby mode or Normal mode by setting bits MC in the  
Mode_Control register (Table 5) to 01. The SBC will enter Sleep mode providing there are  
no pending interrupts (INTN = HIGH) or wake-up events and at least one wake-up source  
is enabled (CAN, LIN or WAKE). Any attempt to enter Sleep mode while one of these  
conditions has not been satisfied will result in a short reset (3.6 ms minimum pulse width;  
see Section 6.5.1 and Table 11).  
In Sleep mode, V1 and V2 are off and the bus transceivers will be switched off (Off mode;  
STBCx = 0; see Table 6) or in a low-power state (Lowpower mode; STBCx = 1) with bus  
wake-up detection active - see Section 6.7.1 and Section 6.8.1). The watchdog is off and  
the reset pin is LOW.  
A CAN, LIN or local wake-up event will cause the SBC to switch from Sleep mode to  
Standby mode, generating a (short or long; see Section 6.5.1) system reset. The value of  
the mode control bits (MC) will be changed to 00 and V1 will be enabled.  
6.1.6 Overtemp mode  
The SBC will enter Overtemp mode from Normal mode or Standby mode when the chip  
temperature exceeds the overtemperature protection activation threshold, Tth(act)otp  
,
In Overtemp mode, the voltage regulators are switched off and the bus systems are in a  
high-resistive state. When the SBC enters Overtemp mode, the RSTN pin is driven LOW  
and the limp home control bit, LHC, is set so that the LIMP pin is driven LOW.  
The chip temperature must drop a hysteresis level below the overtemperature shutdown  
threshold before the SBC can exit Overtemp mode. After leaving Overtemp mode the  
SBC enters Standby mode and a system reset is generated (reset pulse width of tw(rst)  
,
long or short; see Section 6.5.1 and Table 11).  
6.2 SPI  
6.2.1 Introduction  
The Serial Peripheral Interface (SPI) provides the communication link with the  
microcontroller, supporting multi-slave operations. The SPI is configured for full duplex  
data transfer, so status information is returned when new control data is shifted in. The  
interface also offers a read-only access option, allowing registers to be read back by the  
application without changing the register content.  
The SPI uses four interface signals for synchronization and data transfer:  
SCSN: SPI chip select; active LOW  
SCK: SPI clock; default level is LOW due to low-power concept  
SDI: SPI data input  
SDO: SPI data output; floating when pin SCSN is HIGH  
Bit sampling is performed on the falling clock edge and data is shifted on the rising clock  
edge (see Figure 4).  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
10 of 53  
 
 
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
SCS  
SCK  
01  
sampled  
MSB  
02  
03  
04  
15  
16  
SDI  
X
14  
14  
13  
13  
12  
12  
01  
01  
LSB  
LSB  
X
MSB  
SDO  
X
floating  
floating  
mce634  
Fig 4. SPI timing protocol  
6.2.2 Register map  
The first three bits (A2, A1 and A0) of the message header define the register address.  
The fourth bit (RO) defines the selected register as read/write or read only.  
Table 3.  
Register map  
Address bits 15, 14 and 13  
Write access bit 12 = 0  
Read/Write access bits 11... 0  
WD_and_Status register  
Mode_Control register  
Int_Control register  
000  
001  
010  
011  
0 = read/write, 1 = read only  
0 = read/write, 1 = read only  
0 = read/write, 1 = read only  
0 = read/write, 1 = read only  
Int_Status register  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
11 of 53  
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
6.2.3 WD_and_Status register  
Table 4.  
WD_and_Status register  
Symbol Access Power-on Description  
Bit  
default  
15:13 A2, A1, A0  
R
000  
register address  
access status  
12  
RO  
R/W  
0
0: register set to read/write  
1: register set to read only  
watchdog mode control  
11  
WMC  
R/W  
R/W  
0
0: Normal mode: watchdog in Window mode; Standby mode: watchdog in  
Timeout mode  
1: Normal mode: watchdog in Timeout mode; Standby mode: watchdog in  
Off mode  
10:8 NWP[1]  
100  
nominal watchdog period  
000: 8 ms  
001: 16 ms  
010: 32 ms  
011: 64 ms  
100: 128 ms  
101: 256 ms  
110: 1024 ms  
111: 4096 ms  
7
6
WOS/SWR R/W  
-
-
watchdog off status/software reset  
0: WDOFF pin LOW; watchdog mode determined by bit WMC  
1: watchdog disabled due to HIGH level on pin WDOFF; results in software  
reset  
V1S  
V2S  
R
R
V1 status  
0: V1 output voltage above 90 % undervoltage recovery threshold  
(Vuvr; see Table 10)  
1: V1 output voltage below 90 % undervoltage detection threshold  
(Vuvd; see Table 10)  
5
-
V2 status  
0: V2 output voltage above undervoltage release threshold  
(Vuvr; see Table 10 )  
1: V2 output voltage below undervoltage detection threshold  
(Vuvd; see Table 10)  
4
WLS1  
R
R
R
-
wake-up 1 status  
0: WAKE1 input voltage below switching threshold (Vth(sw)  
)
1: WAKE1 input voltage above switching threshold (Vth(sw)  
)
)
3
WLS2  
-
wake-up 2 status  
0: WAKE2 input voltage below switching threshold (Vth(sw)  
)
1: WAKE2 input voltage above switching threshold (Vth(sw)  
2:0  
reserved  
000  
[1] Bit NWP is set to it’s default value (100) after a reset.  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
12 of 53  
 
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
6.2.4 Mode_Control register  
Table 5.  
Bit  
Mode_Control register  
Symbol  
Access Power-on Description  
default  
15:13 A2, A1, A0 R  
001  
0
register address  
access status  
12  
RO  
R/W  
0: register set to read/write  
1: register set to read only  
mode control  
11:10 MC  
R/W  
00  
00: Standby mode  
01: Sleep mode  
10: Normal mode; V2 off  
11: Normal mode; V2 on  
9
8
7
6
5
4
LHWC[1]  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
1
0
0
0
0
0
limp home warning control  
0: no limp home warning  
1: limp home warning is set; next reset will activate LIMP output  
limp home control  
LHC[2]  
ENC  
LSC  
0: LIMP pin set floating  
1: LIMP pin driven LOW  
enable control  
0: EN pin driven LOW  
1: EN pin driven HIGH in Normal mode  
LIN slope control  
0: normal slope, 20 kbit/s  
1: low slope, 10.4 kbit/s  
WBC  
PDC  
wake bias control  
0: WBIAS floating if WSEn = 0; 16 ms sampling if WSEn = 1  
1: WBIAS on if WSEn = 0; 64 ms sampling if WSEn = 1  
power distribution control  
0: V1 threshold current for activating the external PNP transistor; load current  
rising; Ith(act)PNP = 85 mA; V1 threshold current for deactivating the external  
PNP transistor; load current falling; Ith(deact)PNP = 50 mA; see Figure 7  
1: V1 threshold current for activating the external PNP transistor; load current  
rising; Ith(act)PNP = 50 mA; V1 threshold current for deactivating the external  
PNP transistor; load current falling; Ith(deact)PNP = 15 mA; see Figure 7  
3:0  
reserved  
R
0000  
[1] Bit LHWC is set to 1 after a reset.  
[2] Bit LHC is set to 1 after a reset, if LHWC was set to 1 prior to the reset.  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
13 of 53  
 
 
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
6.2.5 Int_Control register  
Table 6.  
Bit  
Int_Control register  
Symbol  
Access Power-on Description  
default  
15:13 A2, A1, A0 R  
010  
0
register address  
access status  
12  
11  
10  
9
RO  
R/W  
R/W  
R/W  
R/W  
0: register set to read/write  
1: register set to read only  
V1UIE  
V2UIE  
STBCL1  
0
0
0
V1 undervoltage interrupt enable  
0: V1 undervoltage warning interrupts cannot be requested  
1: V1 undervoltage warning interrupts can be requested  
V2 undervoltage interrupt enable  
0: V2 undervoltage warning interrupts cannot be requested  
1: V2 undervoltage warning interrupts can be requested  
LIN1 standby control  
0: When the SBC is in Normal mode (MC = 1x):  
LIN1 is in Active mode. The wake-up flag (visible on RXDL1) is cleared  
regardless of the value of VBAT  
.
When the SBC is in Standby/Sleep mode (MC = 0x):  
LIN1 is in Off mode. Bus wake-up detection is disabled. LIN1 wake-up  
interrupts cannot be requested.  
1: LIN1 is in Lowpower mode with bus wake-up detection enabled,  
regardless of the SBC mode (MC = xx). LIN1 wake-up interrupts can be  
requested.  
8
STBCL2  
R/W  
0
LIN2 standby control  
0: When the SBC is in Normal mode (MC = 1x):  
LIN2 is in Active mode. The wake-up flag (visible on RXDL2) is cleared  
regardless of the value of VBAT  
.
When the SBC is in Standby/Sleep mode (MC = 0x):  
LIN2 is in Off mode. Bus wake-up detection is disabled. LIN2 wake-up  
interrupts cannot be requested.  
1: LIN2 is in Lowpower mode with bus wake-up detection enabled,  
regardless of the SBC mode (MC = xx). LIN2 wake-up interrupts can be  
requested.  
7:6  
5:4  
WIC1  
WIC2  
R/W  
R/W  
00  
00  
wake-up interrupt 1 control  
00: wake-up interrupt 1 disabled  
01: wake-up interrupt 1 on rising edge  
10: wake-up interrupt 1 on falling edge  
11: wake-up interrupt 1 on both edges  
wake-up interrupt 2 control  
00: wake-up interrupt 2 disabled  
01: wake-up interrupt 2 on rising edge  
10: wake-up interrupt 2 on falling edge  
11: wake-up interrupt 2 on both edges  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
14 of 53  
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
Table 6.  
Bit  
Int_Control register  
Symbol  
Access Power-on Description  
default  
3
STBCC  
R/W  
0
CAN standby control  
0: When the SBC is in Normal mode (MC = 1x):  
CAN is in Active mode. The wake-up flag (visible on RXDC) is cleared  
regardless of V2 output voltage.  
When the SBC is in Standby/Sleep mode (MC = 0x):  
CAN is in Off mode. Bus wake-up detection is disabled. CAN wake-up  
interrupts cannot be requested.  
1: CAN is in Lowpower mode with bus wake-up detection enabled,  
regardless of the SBC mode (MC = xx). CAN wake-up interrupts can be  
requested.  
2
RTHC  
R/W  
0
reset threshold control  
0: The reset threshold is set to the 90 % V1 undervoltage detection voltage  
(Vuvd; see Table 10)  
1: The reset threshold is set to the 70 % V1 undervoltage detection voltage  
(Vuvd; see Table 10)  
1
0
WSE1  
WSE2  
R/W  
R/W  
0
0
WAKE1 sample enable  
0: sampling continuously  
1: sampling of WAKE1 is synchronized with WBIAS (sample rate controlled  
by WBC)  
WAKE2 sample enable  
0: sampling continuously  
1: sampling of WAKE1 is synchronized with WBIAS (sample rate controlled  
by WBC)  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
15 of 53  
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
6.2.6 Int_Status register  
Table 7.  
Bit  
Int_Status register[1]  
Symbol  
Access Power-on Description  
default  
15:13 A2, A1, A0 R  
011  
0
register address  
access status  
12  
11  
10  
9
RO  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R
0: register set to read/write  
1: register set to read only  
V1UI  
V2UI  
LWI1  
LWI2  
CI  
0
V1 undervoltage interrupts  
0: no V1 undervoltage warning interrupt pending  
1: V1 undervoltage warning interrupt pending  
V2 undervoltage interrupts  
0
0: no V2 undervoltage warning interrupt pending  
1: V2 undervoltage warning interrupt pending  
LIN wake-up interrupt 1  
0
0: no LIN1 wake-up interrupt pending  
1: LIN1 wake-up interrupt pending  
LIN wake-up interrupt 2  
8
0
0: no LIN2 wake-up interrupt pending  
1: LIN2 wake-up interrupt pending  
cyclic interrupt  
7
0
0: no cyclic interrupt pending  
1: cyclic interrupt pending  
6
WI1  
0
wake-up interrupt 1  
0: no wake-up interrupt 1 pending  
1: wake-up interrupt 1 pending  
power-on status interrupt  
5
POSI  
WI2  
1
0: no power-on interrupt pending  
1: power-on interrupt pending  
wake-up interrupt 2  
4
0
0: no wake-up interrupt 2 pending  
1: wake-up interrupt 2 pending  
CAN wake-up interrupt  
3
CWI  
0
0: no CAN wake-up interrupt pending  
1: CAN wake-up interrupt pending  
2:0  
reserved  
000  
[1] An interrupt can be cleared by writing 1 to the relevant bit in the Int_Status register.  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
16 of 53  
 
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
6.3 On-chip oscillator  
The on-chip oscillator provides the timing reference for the on-chip watchdog and the  
internal timers. The on-chip oscillator is supplied by an internal supply that is connected to  
V
BAT and is independent of V1/V2.  
6.4 Watchdog (UJA1078/xx/WD versions)  
Three watchdog modes are supported: Window, Timeout and Off. The watchdog period is  
programmed via the NWP control bits in the WD_and_Status register (see Table 4). The  
default watchdog period is 128 ms.  
A watchdog trigger event is any write access to the WD_and_Status register. When the  
watchdog is triggered, the watchdog timer is reset.  
In watchdog Window mode, a watchdog trigger event within a closed watchdog window  
(i.e. the first half of the window before ttrig(wd)1) will generate an SBC reset. If the watchdog  
is triggered before the watchdog timer overflows in Timeout or Window mode, or within  
the open watchdog window (after ttrig(wd)1 but before ttrig(wd)2), the timer restarts  
immediately.  
The following watchdog events result in an immediate system reset:  
the watchdog overflows in Window mode  
the watchdog is triggered in the first half of the watchdog period in Window mode  
the watchdog overflows in Timeout mode while a cyclic interrupt (CI) is pending  
the state of the WDOFF pin changes in Normal mode or Standby mode  
the watchdog mode control bit (WMC) changes state in Normal mode  
After a watchdog reset (short reset; see Section 6.5.1 and Table 11), the default watchdog  
period is selected (NWP = 100). The watchdog can be switched off completely by forcing  
pin WDOFF HIGH. The watchdog can also be switched off by setting bit WMC to 1 in  
Standby mode. If the watchdog was turned off by setting WMC, any pending interrupt will  
re-enable it.  
Note that the state of bit WMC cannot be changed in Standby mode if an interrupt is  
pending. Any attempt to change WMC when an interrupt is pending will be ignored.  
6.4.1 Watchdog Window behavior  
The watchdog runs continuously in Window mode.  
If the watchdog overflows, or is triggered in the first half of the watchdog period (less than  
ttrig(wd)1 after the start of the watchdog period), a system reset will be performed.  
Watchdog overflow occurs if the watchdog is not triggered within ttrig(wd)2 after the start of  
watchdog period.  
If the watchdog is triggered in the second half of the watchdog period (at least ttrig(wd)1, but  
not more than ttrig(wd)2, after the start of the watchdog period), the watchdog will be reset.  
The watchdog is in Window mode when pin WDOFF is LOW, the SBC is in Normal mode  
and the watchdog mode control bit (WMC) is set to 0.  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
17 of 53  
 
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
6.4.2 Watchdog Timeout behavior  
The watchdog runs continuously in Timeout mode. It can be reset at any time by a  
watchdog trigger. If the watchdog overflows, the cyclic interrupt (CI) bit is set. If a CI is  
already pending, a system reset is performed.  
The watchdog is in Timeout mode when pin WDOFF is LOW and:  
the SBC is in Standby mode and bit WMC = 0 or  
the SBC is in Normal mode and bit WMC = 1  
6.4.3 Watchdog Off behavior  
The watchdog is disabled in this state.  
The watchdog is in Off mode when:  
the SBC is in Off, Overtemp or Sleep modes  
the SBC is in Standby mode and bit WMC = 1  
the SBC is in any mode and the WDOFF pin is HIGH  
6.5 System reset  
The following events will cause the SBC to perform a system reset:  
V1 undervoltage (reset pulse length selected via external pull-up resistor on RSTN  
pin)  
An external reset (RSTN forced LOW)  
Watchdog overflow (Window mode)  
Watchdog overflow in Timeout mode with cyclic interrupt (CI) pending  
Watchdog triggered too early in Window mode  
WMC value changed in Normal mode  
WDOFF pin state changed  
SBC goes to Sleep mode (MC set to 01; see Table 5) while INTN is driven LOW  
SBC goes to Sleep mode (MC set to 01; see Table 5) while  
STBCC = STBCL1 = STBCL2 = WIC1 = WIC2 = 0  
SBC goes to Sleep mode (MC set to 01; see Table 5) while wake-up pending  
Software reset (SWR = 1)  
SBC leaves Overtemp mode (reset pulse length selected via external pull-up resistor  
on RSTN pin)  
A watchdog overflow in Timeout mode requests a cyclic interrupt (CI), if a CI is not already  
pending.  
The UJA1078 provides three signals for dealing with reset events:  
RSTN input/output for performing a global ECU system reset or forcing an external  
reset  
EN pin, a fail-safe global enable output  
LIMP pin, a fail-safe limp home output  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
18 of 53  
 
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
6.5.1 RSTN pin  
A system reset is triggered if the bidirectional RSTN pin is forced LOW for at least tfltr by  
the microcontroller (external reset). A reset pulse is output on RSTN by the SBC when a  
system reset is triggered internally.  
The reset pulse width (tw(rst)) is selectable (short or long) if the system reset was  
generated by a V1 undervoltage event (see Section 6.6.2) or by the SBC leaving Off  
(VBAT > Vth(det)on) or Overtemp (temperature < Tth(rel)otp) modes. A short reset pulse is  
selected by connecting a 900 Ω ±10 % resistor between pins RSTN and V1. If a resistor is  
not connected, the reset pulse will be long (see Table 11).  
In all other cases (e.g. watchdog-related reset events) the reset pulse length will be short.  
6.5.2 EN output  
The EN pin can be used to control external hardware, such as power components, or as a  
general-purpose output when the system is running properly.  
In Normal and Standby modes, the microcontroller can set the EN control bit (bit ENC in  
the Mode_Control register; see Table 5) via the SPI interface. Pin EN will be HIGH when  
ENC = 1 and MC = 10 or 11. A reset event will cause pin EN to go LOW. EN pin behavior  
is illustrated in Figure 5.  
STANDBY  
NORMAL  
STANDBY  
mode  
ENC  
EN  
RSTN  
015aaa074  
Fig 5. Behavior of EN pin  
6.5.3 LIMP output  
The LIMP pin can be used to enable the so called ‘limp home’ hardware in the event of an  
ECU failure. Detectable failure conditions include SBC overtemperature events, loss of  
watchdog service, RSTN or V1 clamped LOW and user-initiated or external reset events.  
The LIMP pin is a battery-related, active-LOW, open-drain output.  
A system reset will cause the limp home warning control bit (bit LHWC in the  
Mode_Control register; see Table 5) to be set. If LHWC is already set when the system  
reset is generated, bit LHC will be set which will force the LIMP pin LOW. The application  
should clear LHWC after each reset event to ensure the LIMP output is not activated  
during normal operation.  
In Overtemp mode, bit LHC is always set and, consequently, the LIMP output is always  
active. If the application manages to recover from the event that activated the LIMP  
output, LHC can be cleared to deactivate the LIMP output.  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
19 of 53  
 
 
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
6.6 Power supplies  
6.6.1 Battery pin (BAT)  
The SBC contains a single supply pin, BAT. An external diode is needed in series to  
protect the device against negative voltages. The operating range is from 4.5 V to 28 V.  
The SBC can handle maximum voltages up to 40 V.  
If the voltage on pin BAT falls below the power-off detection threshold (Vth(det)poff), the  
SBC immediately enters Off mode, which means that the voltage regulators and the  
internal logic are shut down. The SBC leaves Off mode for Standby mode as soon as the  
voltage rises above the power-on detection threshold, Vth(det)on. The POSI bit in the  
Int_Status register is set to 1 when the SBC leaves Off mode.  
6.6.2 Voltage regulator V1  
Voltage regulator V1 is intended to supply the microcontroller, its periphery and additional  
transceivers. V1 is supplied by pin BAT and delivers up to 250 mA at 3.3 V or 5 V  
(depending on the UJA1078 version).  
To prevent the device overheating at high ambient temperatures or high average currents,  
an external PNP transistor can be connected as illustrated in Figure 6. In this  
configuration, the power dissipation is distributed between the SBC and the PNP  
transistor. Bit PDC in the Mode_Control register (Table 5) is used to regulate how the  
power dissipation is distributed if PDC = 0, the PNP transistor will be activated when the  
load current reaches 85 mA (50 mA if PDC = 1) at Tvj = 150 °C. V1 will continue to deliver  
85 mA while the transistor delivers the additional load current (see Figure 7 and Figure 8).  
VEXCTRL  
battery  
VEXCC  
UJA107x  
BAT  
V1  
015aaa098  
Fig 6. External PNP transistor control circuit  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
20 of 53  
 
 
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
250 mA  
215 mA  
85 mA  
50 mA  
load  
current  
I
= 85 mA  
th(act)PNP  
(PDC = 0)  
I
= 50 mA  
th(deact)PNP  
I
(PDC = 0)  
V1  
165 mA  
PNP  
current  
015aaa111  
Fig 7. V1 and PNP currents at a slow ramping load current of 250 mA (PDC = 0)  
Figure 7 illustrates how V1 and the PNP transistor combine to supply a slow ramping load  
current of 250 mA with PDC = 0. Any additional load current requirement will be supplied  
by the PNP transistor, up to its current limit. If the load current continues to rise, IV1 will  
increase above the selected PDC threshold (to a maximum of 250 mA).  
For a fast ramping load current, V1 will deliver the required load current (to a maximum of  
250 mA) until the PNP transistor has switched on. Once the transistor has been activated,  
V1 will deliver 85 mA (PDC = 0) with the transistor contributing the balance of the load  
current (see Figure 8).  
250 mA  
load  
current  
250 mA  
I
= 85 mA  
th(act)PNP  
(PDC = 0)  
I
0 mA  
V1  
165 mA  
165 mA  
PNP  
current  
015aaa075  
Fig 8. V1 and PNP currents at a fast ramping load current of 250 mA (PDC = 0)  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
21 of 53  
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
For short-circuit protection, a resistor needs to be connected between pins V1 and  
VEXCC to allow the current to be monitored. This resistor limits the current delivered by  
the external transistor. If the voltage difference between pins VEXCC and V1 reaches  
V
th(act)Ilim, the PNP current limiting activation threshold voltage, the transistor current will  
not increase further.  
The thermal performance of the transistor needs to be considered when calculating the  
value of this resistor. A 3.3 Ω resistor was used with the BCP52-16 (NXP Semiconductors)  
employed during testing. Note that the selection of the transistor is not critical. In general,  
any PNP transistor with a current amplification factor (β) of between 60 and 500 can be  
used.  
If an external PNP transistor is not used, pin VEXCC must be connected to V1 while pin  
VEXCTRL can be left open.  
One advantage of this scalable voltage regulator concept is that there are no PCB layout  
restrictions when using the external PNP. The distance between the UJA1078 and the  
external PNP doesn’t affect the stability of the regulator loop because the loop is realized  
within the UJA1078. Therefore, it is recommended that the distance between the  
UJA1078 and PNP transistor be maximized for optimal thermal distribution.  
The output voltage on V1 is monitored continuously and a system reset signal is  
generated if an undervoltage event occurs. A system reset is generated if the voltage on  
V1 falls below the undervoltage detection voltage (Vuvd; see Table 10). The reset  
threshold (90 % or 70 % of the nominal value) is set via the Reset Threshold Control bit  
(RTHC) in the Int_Control register (Table 6). In addition, an undervoltage warning (a V1UI  
interrupt) will be generated at 90 % of the nominal output voltage. The status of V1 can be  
read via bit V1S in the WD_and_Status register (Table 4).  
6.6.3 Voltage regulator V2  
Voltage regulator V2 is reserved for the high-speed CAN transceiver, providing a 5 V  
supply.  
V2 can be activated and deactivated via the MC bits in the Mode_Control register  
(Table 5). An undervoltage warning (a V2UI interrupt) is generated when the output  
voltage drops below 90 % of its nominal value. The status of V2 can be read via bit V2S in  
the WD_and_Status register (Table 5) in Normal mode (V2S = 1 in all other modes).  
V2 can be deactivated (MC = 10) to allow the internal CAN transceiver to be supplied from  
an external source or from V1. The alternative voltage source must be connected to pin  
V2. All internal functions (e.g. undervoltage protection) will work normally.  
6.7 CAN transceiver  
The analog section of the UJA1078 CAN transceiver corresponds to that integrated into  
the TJA1042/TJA1043. The transceiver is designed for high-speed (up to 1 Mbit/s) CAN  
applications in the automotive industry, providing differential transmit and receive  
capability to a CAN protocol controller.  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
22 of 53  
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
6.7.1 CAN operating modes  
6.7.1.1 Active mode  
The CAN transceiver is in Active mode when:  
the SBC is in Normal mode (MC = 10 or 11)  
the transceiver is enabled (bit STBCC = 0; see Table 6)  
and  
V2 is enabled and its output voltage is above its undervoltage threshold, Vuvd  
or  
V2 is disabled but an external voltage source, or V1, connected to pin V2 is above its  
undervoltage threshold (see Section 6.6.3)  
In CAN Active mode, the transceiver can transmit and receive data via the CANH and  
CANL pins. The differential receiver converts the analog data on the bus lines into digital  
data which is output on pin RXDC. The transmitter converts digital data generated by a  
CAN controller, and input on pin TXDC, to signals suitable for transmission over the bus  
lines.  
6.7.1.2 Lowpower/Off modes  
The CAN transceiver will be in Lowpower mode with bus wake-up detection enabled if bit  
STBCC = 1 (see Table 6). The CAN transceiver can be woken up remotely via pins CANH  
and CANL in Lowpower mode.  
When the SBC is in Standby mode or Sleep mode (MC = 00 or 01), the CAN transceiver  
will be in Off mode if bit STBCC = 0. The CAN transceiver is powered down completely in  
Off mode to minimize quiescent current consumption.  
A filter at the receiver input prevents unwanted wake-up events occurring due to  
automotive transients or EMI.  
A recessive-dominant-recessive-dominant sequence must occur on the CAN bus within  
the wake-up timeout time (tto(wake)) to pass the wake-up filter and trigger a wake-up event  
(see Figure 9; note that additional pulses may occur between the recessive/dominant  
phases). The minimum recessive/dominant bus times for CAN transceiver wake-up  
(twake(busrec)min and twake(busdom)min) must be satisfied (see Table 11).  
recessive  
dominant  
recessive  
dominant  
wake-up  
t
< t  
to(wake)  
wake  
015aaa107  
Fig 9. CAN wake-up timing diagram  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
23 of 53  
 
 
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
6.7.2 Split circuit  
Pin SPLIT provides a DC stabilized voltage of 0.5VV2. It is activated in CAN Active mode  
only. Pin SPLIT is floating in CAN Lowpower and Off modes. The VSPLIT circuit can be  
used to stabilize the recessive common-mode voltage by connecting pin SPLIT to the  
center tap of the split termination (see Figure 10).  
A transceiver in the network that is not supplied and that generates a significant leakage  
current from the bus lines to ground, can result in a recessive bus voltage of < 0.5VV2. In  
this event, the split circuit will stabilize the recessive voltage at 0.5VV2. So a start of  
transmission will not generate a step in the common-mode signal which would lead to  
poor ElectroMagnetic Emission (EME) performance.  
V2  
UJA1078  
CANH  
R
R
60 Ω  
60 Ω  
V
= 0.5 V  
CC  
SPLIT  
CANL  
SPLIT  
in normal mode;  
otherwise floating  
GND  
015aaa077  
Fig 10. Stabilization circuitry and application using the SPLIT pin  
6.7.3 Fail-safe features  
6.7.3.1 TXDC dominant time-out function  
A TXDC dominant time-out timer is started when pin TXDC is forced LOW. If the LOW  
state on pin TXDC persists for longer than the TXDC dominant time-out time (tto(dom)TXDC),  
the transmitter will be disabled, releasing the bus lines to recessive state. This function  
prevents a hardware and/or software application failure from driving the bus lines to a  
permanent dominant state (blocking all network communications). The TXDC dominant  
time-out timer is reset when pin TXDC goes HIGH. The TXDC dominant time-out time  
also defines the minimum possible bit rate of 10 kbit/s.  
6.7.3.2 Pull-up on TXDC pin  
Pin TXDC has an internal pull-up towards VV1 to ensure a safe defined state in case the  
pin is left floating.  
6.8 LIN1/LIN2 transceivers  
The analog sections of the UJA1078 LIN transceivers are identical to those integrated into  
the TJA1021.  
The transceiver is the interface between the LIN master/slave protocol controller and the  
physical bus in a LIN. It is primarily intended for in-vehicle sub-networks using baud rates  
from 1 kBd up to 20 kBd and is LIN 2.0/LIN 2.1/SAE J2602 compliant.  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
24 of 53  
 
 
 
 
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
6.8.1 LIN operating modes  
6.8.1.1 Active mode  
The LIN transceivers will be in Active mode when:  
the SBC is in Normal mode (MC = 10 or 11) and  
the transceivers are enabled (STBCL1 = 0 and/or STBCL2 = 0; see Table 6) and  
the battery voltage (VBAT) is above the LIN undervoltage recovery threshold, Vuvr(LIN)  
.
In LIN Active mode, the transceivers can transmit and receive data via the LIN bus pins.  
The receiver detects data streams on the LIN bus pins (LIN1 and LIN2) and transfers  
them to the microcontroller via pins RXDL1 and RXDL2 (see Figure 1) - LIN recessive is  
represented by a HIGH level on RXDL1/RXDL2, LIN dominant by a LOW level.  
The transmit data streams of the protocol controller at the TXDL inputs (TXDL1 and  
TXDL2) are converted by the transmitter into bus signals with optimized slew rate and  
wave shaping to minimize EME.  
6.8.1.2 Lowpower/Off modes  
The LIN transceivers will be in Lowpower mode with bus wake-up detection enabled if bit  
STBCLx = 1 (see Table 6). The LIN transceivers can be woken up remotely via pins LIN1  
and LIN2 in Lowpower mode.  
When the SBC is in Standby mode or Sleep mode (MC = 00 or 01), the LIN transceivers  
will be in Off mode if bit STBCLx = 0. The LIN transceivers are powered down completely  
in Off mode to minimize quiescent current consumption.  
Filters at the receiver inputs prevent unwanted wake-up events due to automotive  
transients or EMI.  
The wake-up event must remain valid for at least the minimum dominant bus time for  
wake-up of the LIN transceivers, twake(busdom)min (see Table 11).  
6.8.2 Fail-safe features  
6.8.2.1 General fail-safe features  
The following fail-safe features have been implemented:  
Pins TXDL1 and TXDL2 have internal pull-ups towards VV1 to guarantee safe, defined  
states if these pins are left floating  
The current of the transmitter output stage is limited in order to protect the transmitter  
against short circuits to pin BAT  
A loss of power (pins BAT and GND) has no impact on the bus lines or on the  
microcontroller. There will be no reverse currents from the bus.  
6.8.2.2 TXDL dominant time-out function  
A TXDL dominant time-out timer circuit prevents the bus lines being driven to a permanent  
dominant state (blocking all network communications) if TXDL1 or TXDL2 is forced  
permanently LOW by a hardware and/or software application failure. The timer is  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
25 of 53  
 
 
 
 
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
triggered by a negative edge on the TXDL pin. If the pin remains LOW for longer than the  
TXDL dominant time-out time (tto(dom)TXDL), the transmitter is disabled, driving the bus  
lines to a recessive state. The timer is reset by a positive edge on the TXDL pin.  
6.9 Local wake-up input  
The SBC provides 2 local wake-up pins (WAKE1 and WAKE2). The edge sensitivity  
(falling, rising or both) of the wake-up pins can be configured independently via the WIC1  
and WIC2 bits in the Int_Control register Table 6). These bits can also be used to disable  
wake-up via the wake-up pins. When wake-up is enabled, a valid wake-up event on either  
of these pins will cause a wake-up interrupt to be generated in Standby mode or Normal  
mode. If the SBC is in Sleep mode when the wake-up event occurs, it will wake up and  
enter Standby mode. The status of the wake-up pins can be read via the wake-up level  
status bits (WLS1 and WLS2) in the WD_and_Status register (Table 4).  
Note that bits WLS1 and WLS2 are only active when at least one of the wake up interrupts  
is enabled (WIC1 00 or WIC2 00).  
enable bias  
disable bias  
WBIASI  
(internal)  
WBIAS pin  
WAKEx pin  
Wake-up int  
disable bias  
wake level latched  
015aaa078  
Fig 11. Wake-up pin sampling synchronized with WBIAS signal  
The sampling of the wake-up pins can be synchronized with the WBIAS signal by setting  
bits WSE1 and WSE2 in the Int_Control register to 1 (if WSEx = 0, wake-up pins are  
sampled continuously). The sampling will be performed on the rising edge of WBIAS (see  
Figure 11). The sampling time, 16 ms or 64 ms, is selected via the Wake Bias Control bit  
(WBC) in the Mode_Control register.  
Figure 12 shows typical circuit for implementing cyclic sampling of the wake-up inputs.  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
26 of 53  
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
UJA1078  
BAT  
47 kΩ  
47 kΩ  
PDTA144E  
WBIAS  
biasing of  
switches  
WAKE1  
WAKE2  
t
sample of  
WAKEx  
sample of  
WAKEx  
sample of  
WAKEx  
GND  
015aaa105  
Fig 12. Typical application for cyclic sampling of wake-up signals  
6.10 Interrupt output  
Pin INTN is an active-LOW, open-drain interrupt output. It is driven LOW when at least  
one interrupt is pending. An interrupt can be cleared by writing 1 to the corresponding bit  
in the Int_Status register (Table 7). Clearing bits LWI1, LWI2 and CWI in Standby mode  
only clears the interrupt status bits and not the pending wake-up. The pending wake-up is  
cleared on entering Normal mode and when the corresponding standby control bit  
(STBCC, STBCL1 or STBCL2) is 0.  
On devices that contain a watchdog, the Cyclic Interrupt (CI) is enabled when the  
watchdog switches to Timeout mode while the SBC is in Standby mode or Normal mode  
(provided WDOFF = LOW). A CI is generated if the watchdog overflows in Timeout mode.  
The CI is provided to alert the microcontroller when the watchdog overflows in Timeout  
mode. The CI will wake up the microcontroller from a μC standby mode. After polling the  
Int_Status register, the microcontroller will be aware that the application is in cyclic wake  
up mode. It can then perform some checks on CAN and LIN before returning to the μC  
standby mode.  
6.11 Temperature protection  
The temperature of the SBC chip is monitored in Normal and Standby modes. If the  
temperature is too high, the SBC will go to Overtemp mode, where the RSTN pin is driven  
LOW and limp home is activated. In addition, the voltage regulators and the CAN and LIN  
transmitters are switched off (see also Section 6.1.6 “Overtemp mode”). When the  
temperature falls below the temperature shutdown threshold, the SBC will go to Standby  
mode. The temperature shutdown threshold is between 165 °C and 200 °C.  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
27 of 53  
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
7. Limiting values  
Table 8.  
Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
Vx  
voltage on pin x  
DC value  
pins V1, V2 and INTN  
0.3  
0.3  
7
V
V
pins TXDC, RXDC, EN, SDI, SDO, SCK, SCSN,  
TXDL1, TXDL2, RXDL1, RXDL2, RSTN and  
WDOFF  
VV1 + 0.3  
pin VEXCC  
VV1 0.3  
58  
VV1 + 0.35  
+58  
V
V
pins WAKE1, WAKE2 and WBIAS; with respect to  
any other pin  
pin LIMP and BAT  
pin VEXCTRL  
0.3  
0.3  
58  
+40  
V
V
V
VBAT + 0.3  
+58  
pins CANH, CANL, SPLIT, LIN1 and LIN2; with  
respect to any other pin  
pin DLIN; with respect to any other pin  
VBAT 0.3 +58  
V
[1]  
[2]  
IR(V1-BAT) reverse current from VV1 5 V  
-
250  
mA  
pin V1 to pin BAT  
IDLIN  
Vtrt  
current on pin DLIN  
transient voltage  
65  
0
mA  
V
on pins  
BAT: via reverse polarity diode/capacitor  
150  
+100  
CANL, CANH, SPLIT: coupling with two capacitors  
on the bus lines  
LIN1, LIN2: coupling via 1 nF capacitor  
DLIN: via 1 kΩ resistor  
[3]  
[4]  
VESD  
electrostatic  
discharge voltage  
IEC 61000-4-2  
pins BAT with capacitor, CANH, CANL, LIN1 and  
LIN2; via a series resistor on pins SPLIT, DLIN,  
WAKE1 and WAKE2  
6  
8  
+6  
+8  
kV  
kV  
[5]  
[6]  
HBM  
pins CANH, CANL, LIN1, LIN2, SPLIT, DLIN,  
WAKE1, WAKE2  
pin BAT; referenced to ground  
4  
+4  
+2  
+2  
+2  
kV  
kV  
kV  
kV  
pin TEST2; referenced to pin BAT  
1.25  
2  
pin TEST2; referenced to other reference pins  
any other pin  
MM  
2  
[7]  
[8]  
any pin  
300  
+300  
V
CDM  
corner pins  
any other pin  
750  
500  
+750  
+500  
V
V
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
28 of 53  
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
Table 8.  
Limiting values …continued  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
[9]  
Tvj  
virtual junction  
temperature  
40  
+150  
°C  
Tstg  
storage temperature  
55  
40  
+150  
+125  
°C  
°C  
Tamb  
ambient  
temperature  
[1] A reverse diode connected between V1 (anode) and BAT (cathode) limits the voltage drop voltage from V1(+) to BAT (-).  
[2] Verified by an external test house to ensure pins can withstand ISO 7637 part 2 automotive transient test pulses 1, 2a, 3a and 3b.  
[3] IEC 61000-4-2 (150 pF, 330 Ω).  
[4] ESD performance according to IEC 61000-4-2 (150 pF, 330 Ω) has been verified by an external test house for pins BAT, CANH, CANL,  
LIN1, LIN2, WAKE1 and WAKE2. The result is equal to or better than ±6 kV.  
[5] Human Body Model (HBM): according to AEC-Q100-002 (100 pF, 1.5 kΩ).  
[6] V1, V2 and BAT connected to GND, emulating application circuit.  
[7] Machine Model (MM): according to AEC-Q100-003 (200 pF, 0.75 μH, 10 Ω).  
[8] Charged Device Model (CDM): according to AEC-Q100-011 (field Induced charge; 4 pF).  
[9] In accordance with IEC 60747-1. An alternative definition of virtual junction temperature is: Tvj = Tamb + P × Rth(vj-a), where Rth(vj-a) is a  
fixed value to be used for the calculation of Tvj. The rating for Tvj limits the allowable combinations of power dissipation (P) and ambient  
temperature (Tamb).  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
29 of 53  
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
8. Thermal characteristics  
optional heatsink top layer  
optional heatsink top layer  
PCB copper area:  
(bottom layer)  
2
2 cm  
optional heatsink top layer  
PCB copper area:  
(bottom layer)  
8 cm  
2
015aaa137  
Layout conditions for Rth(j-a) measurements: board finish thickness 1.6 mm ±10 %, double-layer  
board, board dimensions 129 mm × 60 mm, board Material FR4, Cu thickness 0.070 mm, thermal  
via separation 1.2 mm, thermal via diameter 0.3 mm ±0.08 mm, Cu thickness on vias 0.025 mm.  
Optional heat sink top layer of 3.5 mm × 25 mm will reduce thermal resistance (see Figure 14).  
Fig 13. HTSSOP PCB  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
30 of 53  
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
015aaa138  
90  
R
th(j-a)  
(K/W)  
70  
without heatsink top layer  
50  
30  
with heatsink top layer  
2
0
4
6
8
10  
2
PCB Cu heatsink area (cm )  
Fig 14. HTSSOP32 thermal resistance junction to ambient as a function of PCB copper  
area  
Table 9.  
Symbol Parameter  
Rth(j-a) thermal resistance from junction to  
ambient  
Thermal characteristics  
Conditions  
Typ Unit  
[1]  
[2]  
single-layer board  
four-layer board  
78  
39  
K/W  
K/W  
[1] According to JEDEC JESD51-2 and JESD51-3 at natural convection on 1s board.  
[2] According to JEDEC JESD51-2, JESD51-5 and JESD51-7 at natural convection on 2s2p board. Board with  
two inner copper layers (thickness: 35 μm) and thermal via array under the exposed pad connected to the  
first inner copper layer.  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
31 of 53  
 
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
9. Static characteristics  
Table 10. Static characteristics  
Tvj = 40 °C to +150 °C; VBAT = 4.5 V to 28 V; VBAT > VV1; VBAT > VV2; RLIN1 = RLIN2 = 500 Ω; R(CANH-CANL) = 45 Ω to 65 Ω; all  
voltages are defined with respect to ground; positive currents flow in the IC; typical values are given at VBAT = 14 V; unless  
otherwise specified.  
Symbol  
Supply; pin BAT  
VBAT battery supply voltage  
IBAT battery supply current  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
4.5  
-
28  
V
MC = 00 (Standby; V1 on, V2 off)  
STBCC = STBCL1 = STBCL2 = 1  
(CAN/LIN wake-up enabled)  
WIC1 = WIC2 = 11 (WAKE interrupts  
enabled)  
7.5 V < VBAT < 28 V; IV1 = 0 mA  
VRSTN = VSCSN = VV1  
VTXDL1 = VTXDL2 = VTXDC = VV1  
VSDI = VSCK = 0 V  
Tvj = 40 °C  
Tvj = 25 °C  
-
-
-
84  
77  
69  
99  
89  
81  
μA  
μA  
μA  
Tvj = 150 °C  
MC = 01 (Sleep; V1 off, V2 off)  
STBCC = STBCL1 = STBCL2 = 1  
(CAN/LIN wake-up enabled)  
WIC1 = WIC2 = 11 (WAKE interrupts  
enabled)  
7.5 V < VBAT < 28 V; VV1 = 0 V  
Tvj = 40 °C  
Tvj = 25 °C  
Tvj = 150 °C  
-
-
-
-
62  
57  
53  
1.1  
72  
66  
59  
2
μA  
μA  
μA  
μA  
contributed by LIN wake-up receiver  
STBCL1/STBCL2 = 1  
VLIN1 = VLIN2 = VBAT  
5.5 V < VBAT < 28 V  
contributed by CAN wake-up receiver  
STBCC = 1; VCANH = VCANL = 2.5 V  
5.5 V < VBAT < 28 V  
1
0
6
5
13  
10  
μA  
μA  
contributed by WAKE pin edge  
detectors;  
WIC1 = WIC2 = 11  
VWAKE1 = VWAKE2 = VBAT  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
32 of 53  
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
Table 10. Static characteristics …continued  
Tvj = 40 °C to +150 °C; VBAT = 4.5 V to 28 V; VBAT > VV1; VBAT > VV2; RLIN1 = RLIN2 = 500 Ω; R(CANH-CANL) = 45 Ω to 65 Ω; all  
voltages are defined with respect to ground; positive currents flow in the IC; typical values are given at VBAT = 14 V; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
50  
3
Unit  
μA  
IBAT(add)  
additional battery supply  
current  
5.1 V < VBAT < 7.5 V  
-
-
-
-
4.5 V < VBAT < 5.1 V  
V1 on (5 V version)  
mA  
V2 on; MC = 11  
V2UIE = 1; IV2 = 0 mA  
100  
-
-
-
950  
10  
μA  
CAN Active mode (recessive)  
STBCC = 0; MC = 1x; VTXDC = VV1  
ICANH = ICANL = 0 mA  
mA  
5.5 V < VBAT < 28 V  
CAN active (dominant)  
STBCC = 0; MC = 1x; VTXDC = 0 V  
R(CANH-CANL) = 45 Ω  
-
-
-
-
70  
mA  
5.5 V < VBAT < 28 V  
LINx Active mode (recessive)  
STBCLx = 0; MC = 1x  
1300  
μA  
VTXDL1= VTXDL2 = VV1  
IDLIN = ILIN1 = ILIN2 = 0 mA  
5.5 V < VBAT < 28 V  
LINx Active mode (dominant);  
STBCLx = 0; MC = 1x  
-
-
-
-
5
mA  
mA  
VTXDL1 = VTXDL2 = 0 V  
IDLIN = ILIN1 = ILIN2 = 0 mA; VBAT = 14 V  
LINx Active mode (dominant);  
STBCLx = 0; MC = 1x  
10  
VTXDL1= VTXDL2 = 0 V  
IDLIN = ILIN1 = ILIN2 = 0 mA; VBAT = 28 V  
Vth(det)pon  
Vth(det)poff  
Vhys(det)pon  
Vuvd(LIN)  
power-on detection  
threshold voltage  
4.5  
4.25  
200  
5
-
-
-
-
-
-
-
5.5  
4.5  
-
V
power-off detection  
threshold voltage  
V
power-on detection  
hysteresis voltage  
mV  
V
LIN undervoltage detection  
voltage  
5.3  
5.5  
300  
7.5  
Vuvr(LIN)  
LIN undervoltage recovery  
voltage  
5
V
Vhys(uvd)LIN  
Vuvd(ctrl)Iext  
LIN undervoltage detection  
hysteresis voltage  
25  
mV  
V
external current control  
undervoltage detection  
voltage  
5.9  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
33 of 53  
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
Table 10. Static characteristics …continued  
Tvj = 40 °C to +150 °C; VBAT = 4.5 V to 28 V; VBAT > VV1; VBAT > VV2; RLIN1 = RLIN2 = 500 Ω; R(CANH-CANL) = 45 Ω to 65 Ω; all  
voltages are defined with respect to ground; positive currents flow in the IC; typical values are given at VBAT = 14 V; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Voltage source; pin V1  
VO  
output voltage  
VO(V1)nom = 5 V; VBAT = 5.5 V to 28 V  
4.9  
5
5.1  
V
IV1 = 200 mA to 5 mA  
CLIN1/2 560 pF  
VO(V1)nom = 5 V; VBAT = 5.5 V to 28 V  
4.85  
5
5.15  
V
I
V1 = 200 mA to 5 mA  
CLIN1/2 220 pF  
VO(V1)nom = 5 V; VBAT = 5.5 V to 28 V  
4.75  
4.5  
5
5
5.1  
5.1  
V
V
I
V1 = 250 mA to 200 mA  
VO(V1)nom = 5 V; VBAT = 5.5 V to 5.75 V  
V1 = 250 mA to 5 mA  
I
150 °C < Tvj < 200 °C  
VO(V1)nom = 5 V; VBAT = 5.75 V to 28 V  
4.85  
5
5.1  
V
V
V
V
Ω
I
V1 = 250 mA to 5 mA  
150 °C < Tvj < 200 °C  
VO(V1)nom = 3.3 V; VBAT = 4.5 V to 28 V  
3.234 3.3  
3.201 3.3  
3.366  
3.399  
3.366  
3
IV1 = 250 mA to 5 mA  
CLIN1/2 560 pF  
VO(V1)nom = 3.3 V; VBAT = 4.5 V to 28 V  
IV1 = 250 mA to 5 mA  
CLIN1/2 220 pF  
VO(V1)nom = 3.3 V; VBAT = 4.5 V to 28 V  
2.97  
-
3.3  
-
I
V1 = 250 mA to 5 mA  
150 °C < Tvj < 200 °C  
R(BAT-V1)  
resistance between pin BAT VO(V1)nom = 5 V; VBAT = 4.5 V to 5.5 V  
and pin V1  
I
V1 = 250 mA to 5 mA  
regulator in saturation  
Vuvd  
undervoltage detection  
voltage  
90 %; VO(V1)nom = 5 V; RTHC = 0  
90 %; VO(V1)nom = 3.3 V; RTHC = 0  
70 %; VO(V1)nom = 5 V; RTHC = 1  
90 %; VO(V1)nom = 5 V  
4.5  
-
-
-
-
-
-
4.75  
3.135  
3.75  
4.9  
V
2.97  
3.5  
V
V
Vuvr  
undervoltage recovery  
voltage  
4.56  
3.025  
600  
V
90 %; VO(V1)nom = 3.3 V  
3.234  
250  
V
IO(sc)  
short-circuit output current  
IVEXCC = 0 mA  
mA  
Load regulation  
ΔVV1  
voltage variation on pin V1  
as a function of load current variation  
VBAT = 5.75 V to 28 V  
-
-
25  
mV  
IV1 = 250 mA to 5 mA  
Line regulation  
ΔVV1  
voltage variation on pin V1  
as a function of supply voltage variation  
VBAT = 5.5 V to 28 V; IV1 = 30 mA  
-
-
25  
8
mV  
mA  
PNP base; pin VEXCTRL  
IO(sc)  
short-circuit output current  
VVEXCTRL 4.5 V; VBAT = 6 V to 28 V  
3.5  
5.8  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
34 of 53  
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
Table 10. Static characteristics …continued  
Tvj = 40 °C to +150 °C; VBAT = 4.5 V to 28 V; VBAT > VV1; VBAT > VV2; RLIN1 = RLIN2 = 500 Ω; R(CANH-CANL) = 45 Ω to 65 Ω; all  
voltages are defined with respect to ground; positive currents flow in the IC; typical values are given at VBAT = 14 V; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Ith(act)PNP  
PNP activation threshold  
current  
load current increasing; external PNP  
transistor connected - see Section 6.6.2  
PDC 0  
74  
74  
44  
44  
130  
85  
191  
99  
mA  
mA  
mA  
mA  
PDC 0; Tvj = 150 °C  
PDC 1  
76  
114  
59  
PDC 1; Tvj = 150 °C  
50  
Ith(deact)PNP  
PNP deactivation threshold load current falling; external PNP  
current  
transistor connected - see Section 6.6.2  
PDC 0  
40  
44  
11  
12  
76  
50  
22  
15  
120  
59  
mA  
mA  
mA  
mA  
PDC 0; Tvj = 150 °C  
PDC 1  
36  
PDC 1; Tvj = 150 °C  
18  
PNP collector; pin VEXCC  
Vth(act)Ilim current limiting activation  
threshold voltage  
measured across resistor connected  
between pins VEXCC and V1 (see  
Section 6.6.2)  
240  
-
330  
mV  
2.97 V VV1 5.5 V  
6 V < VBAT < 28 V  
Voltage source; pin V2  
VO  
output voltage  
VBAT = 5.5 V to 28 V  
IV2 = 100 mA to 0 mA  
4.75  
4.75  
-
5
5
-
5.25  
5.25  
60  
V
VBAT = 6 V to 28 V  
IV2 = 120 mA to 0 mA  
V
ΔVV2  
voltage variation on pin V2  
as a function of supply voltage variation  
VBAT = 5.5 V to 28 V  
mV  
IV2 = 10 mA  
as a function of load current variation;  
6 V < VBAT < 28 V  
-
-
80  
mV  
IV2 = 100 mA to 5 mA  
Vuvd  
undervoltage detection  
voltage  
4.5  
-
-
-
-
4.70  
4.75  
80  
V
Vuvr  
undervoltage recovery  
voltage  
4.55  
20  
V
Vuvhys  
undervoltage hysteresis  
voltage  
mV  
mA  
IO(sc)  
short-circuit output current  
VV2 = 0 V to 5.5 V  
250  
100  
Serial peripheral interface inputs; pins SDI, SCK and SCSN  
Vth(sw) switching threshold voltage VV1 = 2.97 V to 5.5 V  
Vhys(i)  
0.3VV1  
100  
-
0.7VV1  
900  
V
input hysteresis voltage  
VV1 = 2.97 V to 5.5 V  
-
mV  
kΩ  
Rpd(SCK)  
pull-down resistance on pin  
SCK  
50  
130  
400  
Rpu(SCSN)  
pull-up resistance on pin  
SCSN  
50  
130  
400  
kΩ  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
35 of 53  
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
Table 10. Static characteristics …continued  
Tvj = 40 °C to +150 °C; VBAT = 4.5 V to 28 V; VBAT > VV1; VBAT > VV2; RLIN1 = RLIN2 = 500 Ω; R(CANH-CANL) = 45 Ω to 65 Ω; all  
voltages are defined with respect to ground; positive currents flow in the IC; typical values are given at VBAT = 14 V; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ILI(SDI)  
input leakage current on pin  
SDI  
5  
-
+5  
μA  
Serial peripheral interface data output; pin SDO  
IOH  
IOL  
ILO  
HIGH-level output current  
LOW-level output current  
output leakage current  
VSCSN = 0 V; VO = VV1 0.4 V  
VV1 = 2.97 V to 5.5 V  
30  
1.6  
5  
-
-
-
1.6  
30  
5
mA  
mA  
μA  
VSCSN = 0 V; VO = 0.4 V  
VV1 = 2.97 V to 5.5 V  
VSCSN = VV1; VO = 0 V to VV1  
VV1 = 2.97 V to 5.5 V  
Reset output with clamping detection; pin RSTN  
IOH  
HIGH-level output current  
VRSTN = 0.8VV1  
VV1 = 2.97 V to 5.5 V  
1500  
-
-
100  
μA  
IOL  
LOW-level output current  
strong; VRSTN = 0.2VV1  
VV1 = 2.97 V to 5.5 V  
40 °C < Tvj < 200 °C  
4.9  
40  
mA  
weak; VRSTN = 0.8VV1  
VV1 = 2.97 V to 5.5 V  
40 °C < Tvj < 200 °C  
200  
-
-
-
-
540  
μA  
V
VOL  
LOW-level output voltage  
HIGH-level output voltage  
VV1 = 1 V to 5.5 V  
pull-up resistor to VV1 900 Ω  
40 °C < Tvj < 200 °C; VBAT < 28 V  
0
0.2VV1  
0.5  
VV1 = 2.975 V to 5.5 V  
pull-up resistor to V1 900 Ω;  
40 °C < Tvj < 200 °C  
0
V
VOH  
-40 °C < Tvj < 200 °C  
0.8VV1  
VV1  
0.3  
+
V
Vth(sw)  
Vhys(i)  
Interrupt output; pin INTN  
switching threshold voltage VV1 = 2.97 V to 5.5 V  
0.3VV1  
100  
-
-
0.7VV1  
900  
V
input hysteresis voltage  
VV1 = 2.97 V to 5.5 V  
mV  
IOL  
LOW-level output current  
VOL = 0.4 V  
1.6  
-
-
15  
mA  
mA  
Enable output; pin EN  
IOH  
HIGH-level output current  
VOH = VV1 0. 4 V  
20  
1.6  
VV1 = 2.97 V to 5.5 V  
IOL  
LOW-level output current  
LOW-level output voltage  
VOL = 0.4 V; VV1 = 2.97 V to 5.5 V  
1.6  
-
-
-
20  
mA  
V
VOL  
IOL = 20 μA; VV1 = 1.5 V  
0.4  
Watchdog off input; pin WDOFF  
Vth(sw)  
Vhys(i)  
Rpupd  
switching threshold voltage VV1 = 2.97 V to 5.5 V  
0.3VV1  
100  
5
-
0.7VV1  
900  
V
input hysteresis voltage  
VV1 = 2.97 V to 5.5 V  
-
mV  
kΩ  
pull-up/pull-down resistance VV1 = 2.97 V to 5.5 V  
10  
20  
Wake input; pin WAKE1, WAKE2  
Vth(sw)  
Vhys(i)  
Ipu  
switching threshold voltage  
2
-
-
-
3.75  
1000  
0
V
input hysteresis voltage  
pull-up current  
100  
2  
mV  
μA  
VWAKE = 0 V for t < twake  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
36 of 53  
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
Table 10. Static characteristics …continued  
Tvj = 40 °C to +150 °C; VBAT = 4.5 V to 28 V; VBAT > VV1; VBAT > VV2; RLIN1 = RLIN2 = 500 Ω; R(CANH-CANL) = 45 Ω to 65 Ω; all  
voltages are defined with respect to ground; positive currents flow in the IC; typical values are given at VBAT = 14 V; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Ipd  
pull-down current  
VWAKE = VBAT for t < twake  
0
-
2
μA  
Limp home output; pin LIMP  
IO output current  
VLIMP = 0.4 V; LHC = 1  
Tvj = 40 °C to 200 °C  
0.8  
1
-
-
8
7
mA  
mA  
Wake bias output; pin WBIAS  
IO output current  
CAN transmit data input; pin TXDC  
VWBIAS = 1.4 V  
Vth(sw)  
Vhys(i)  
Rpu  
switching threshold voltage VV1 = 2.97 V to 5.5 V  
0.3VV1  
100  
4
-
0.7VV1  
900  
V
input hysteresis voltage  
pull-up resistance  
VV1 = 2.97 V to 5.5 V  
-
mV  
kΩ  
12  
25  
CAN receive data output; pin RXDC  
IOH  
HIGH-level output current  
CAN Active mode  
20  
-
1.5  
mA  
VRXDC = VV1 0.4 V  
IOL  
LOW-level output current  
pull-up resistance  
VRXDC = 0.4 V  
1.6  
4
-
20  
25  
mA  
Rpu  
MC = 00; Standby mode  
12  
kΩ  
High-speed CAN bus lines; pins CANH and CANL  
VO(dom)  
dominant output voltage  
CAN Active mode  
VV2 = 4.5 V to 5.5 V; VTXDC = 0 V  
R(CANH-CANL) = 60 Ω  
pin CANH  
pin CANL  
2.75  
0.5  
3.5  
1.5  
-
4.5  
V
2.25  
400  
V
Vdom(TX)sym  
VO(dif)bus  
transmitter dominant voltage Vdom(TX)sym = VV2 VCANH VCANL  
400  
mV  
symmetry  
R(CANH-CANL) = 60 Ω  
bus differential output  
voltage  
CAN Active mode (dominant)  
VV2 = 4.75 V to 5.25 V; VTXDC = 0 V  
R(CANH-CANL) = 45 Ω to 65 Ω  
1.5  
50  
2
-
3.0  
+50  
3
V
CAN Active mode (recessive)  
0
mV  
V
VV2 = 4.5 V to 5.5 V; VTXDC = VV1  
R(CANH-CANL) = no load  
VO(rec)  
recessive output voltage  
CAN Active mode; VV2 = 4.5 V to 5.5 V  
VTXDC = VV1  
0.5VV2  
R(CANH-CANL) = no load  
CAN Lowpower/Off mode  
R(CANH-CANL) = no load  
0.1  
-
+0.1  
V
IO(dom)  
dominant output current  
recessive output current  
CAN Active mode  
VTXDC = 0 V; VV2 = 5 V  
pin CANH; VCANH = 0 V  
pin CANL; VCANL = 40 V  
100  
40  
70  
70  
-
40  
100  
3
mA  
mA  
mA  
IO(rec)  
VCANL = VCANH = 27 V to +32 V  
3  
VTXDC = VV1; VV2 = 4.5 V to 5.5 V  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
37 of 53  
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
Table 10. Static characteristics …continued  
Tvj = 40 °C to +150 °C; VBAT = 4.5 V to 28 V; VBAT > VV1; VBAT > VV2; RLIN1 = RLIN2 = 500 Ω; R(CANH-CANL) = 45 Ω to 65 Ω; all  
voltages are defined with respect to ground; positive currents flow in the IC; typical values are given at VBAT = 14 V; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vth(RX)dif  
differential receiver  
threshold voltage  
CAN Active mode  
0.5  
0.7  
0.9  
V
VV2 = 4.5 V to 5.5 V  
30 V < VCANH < +30 V  
30 V < VCANL < +30 V  
CAN Lowpower mode  
12 V < VCANH < +12 V  
12 V < VCANL < +12 V  
0.4  
40  
0.7  
1.15  
400  
V
Vhys(RX)dif  
differential receiver  
hysteresis voltage  
CAN Active mode  
120  
mV  
VV2 = 4.5 V to 5.5 V  
30 V < VCANH < +30 V  
30 V < VCANL < +30 V  
Ri(cm)  
ΔRi  
common-mode input  
resistance  
CAN Active mode; VV2 = 5 V  
VCANH = VCANL = 5 V  
9
15  
-
28  
+1  
52  
20  
kΩ  
%
input resistance deviation  
CAN Active mode; VV2 = 5 V  
VCANH = VCANL = 5 V  
1  
19  
-
Ri(dif)  
Ci(cm)  
differential input resistance CAN Active mode; VV2 = 5.5 V  
30  
-
kΩ  
pF  
VCANH = VCANL = 35 V to +35 V  
common-mode input  
capacitance  
CAN Active mode; not tested  
Ci(dif)  
ILI  
differential input capacitance CAN Active mode; not tested  
-
-
-
10  
+5  
pF  
input leakage current  
VBAT = 0 V; VV2 = 0 V  
VCANH = VCANL = 5 V  
5  
μA  
CAN bus common mode stabilization output; pin SPLIT  
VO  
output voltage  
leakage current  
CAN Active mode  
VV2 = 4.5 V to 5.5 V  
ISPLIT = 500 μA to 500 μA  
0.3VV2 0.5VV2 0.7VV2  
V
CAN Active mode  
0.45 × 0.5 ×  
0.55 ×  
VV2  
V
VV2 = 4.5 V to 5.5 V; RL 1 MΩ  
VV2  
VV2  
IL  
CAN Lowpower/Off mode or Active  
mode with VV2 < 4.5 V  
5  
-
+5  
μA  
VSPLIT = 30 V to + 30 V  
LIN transmit data input; pin TXDL1, TXDL2  
Vth(sw)  
Vhys(i)  
Rpu  
switching threshold voltage VV1 = 2.97 V to 5.5 V  
0.3VV1  
100  
4
-
0.7VV1  
900  
V
input hysteresis voltage  
pull-up resistance  
VV1 = 2.97 V to 5.5 V  
-
mV  
kΩ  
12  
25  
LIN receive data output; pin RXDL1, RXDL2  
IOH  
HIGH-level output current  
LIN Active mode  
20  
-
1.5  
mA  
VRXDL1 = VRXDL2 = VV1 0.4 V  
IOL  
LOW-level output current  
pull-up resistance  
VRXDL1 = VRXDL2 = 0.4 V  
MC = 00; Standby mode  
1.6  
4
-
20  
25  
mA  
Rpu  
12  
kΩ  
LIN bus line; pin LIN1, LIN2  
IBUS_LIM  
current limitation for driver  
dominant state  
LIN Active mode  
VBAT = VLIN1 = VLIN2 = 18 V  
VTXDL1 = VTXDL2 = 0 V  
40  
-
100  
mA  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
38 of 53  
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
Table 10. Static characteristics …continued  
Tvj = 40 °C to +150 °C; VBAT = 4.5 V to 28 V; VBAT > VV1; VBAT > VV2; RLIN1 = RLIN2 = 500 Ω; R(CANH-CANL) = 45 Ω to 65 Ω; all  
voltages are defined with respect to ground; positive currents flow in the IC; typical values are given at VBAT = 14 V; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[1]  
IBUS_PAS_rec  
receiver recessive input  
leakage current  
VLIN1 = VLIN2 = 28 V  
VBAT = 5.5 V; VTXDL1 = VTXDL2 = VV1  
-
-
2
μA  
IBUS_PAS_dom receiver dominant input  
leakage current including  
pull-up resistor  
V
TXDL1 = VTXDL2 = VV1  
10  
-
+10  
μA  
VLIN1 = VLIN2 = 0 V; VBAT = 14 V  
VBAT = VGND = 28 V; VLIN1 = VLIN2 = 0 V  
VBAT = 0 V; VLIN1 = VLIN2 = 28 V  
VBAT = 5.5 V to 18 V  
IL(log)  
loss of ground leakage  
current  
100  
-
-
-
-
10  
μA  
μA  
V
[1]  
IL(lob)  
loss of battery leakage  
current  
-
2
Vrec(RX)  
receiver recessive voltage  
0.6 ×  
VBAT  
-
Vdom(RX)  
receiver dominant voltage  
VBAT = 5.5 V to 18 V  
-
0.4VBAT  
V
V
Vth(cntr)RX  
receiver center threshold  
voltage  
Vth(cntr)RX = (Vth(rec)RX + Vth(dom)RX)/2  
VBAT = 5.5 V to 18 V; LIN Active mode  
0.475 0.5 ×  
× VBAT VBAT  
0.525 ×  
VBAT  
Vth(hys)RX  
receiver hysteresis threshold Vth(hys)RX = Vth(rec)RX Vth(dom)RX  
0.05 × 0.15 × 0.175 ×  
V
voltage  
VBAT = 5.5 V to 18 V; LIN Active mode  
VBAT  
VBAT  
VBAT  
Cext  
external capacitance  
dominant output voltage  
on pins LIN1 and LIN2  
-
-
-
-
30  
pF  
V
VO(dom)  
VTXDL1 = VTXDL2 = 0 V; VBAT = 7 V  
LIN Active mode  
1.4  
V
TXDL1 = VTXDL2 = 0 V; VBAT = 18 V  
-
-
2.0  
1
V
V
LIN Active mode  
LIN bus termination; pin DLIN  
ΔV(DLIN-BAT)  
voltage difference between 5 mA < IDLIN < 20 mA  
pin DLIN and pin BAT  
0.4  
0.65  
Temperature protection  
Tth(act)otp overtemperature protection  
165  
126  
180  
138  
200  
150  
°C  
°C  
activation threshold  
temperature  
Tth(rel)otp  
overtemperature protection  
release threshold  
temperature  
[1] Guaranteed by design.  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
39 of 53  
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
10. Dynamic characteristics  
Table 11. Dynamic characteristics  
Tvj = 40 °C to +150 °C; VBAT = 4.5 V to 28 V; VBAT > VV1; VBAT > VV2; RLIN1 = RLIN2 = 500 Ω; R(CANH-CANL) = 45 Ω to 65 Ω; all  
voltages are defined with respect to ground; positive currents flow in the IC; typical values are given at VBAT = 14 V; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
Voltage source; pin V1  
td(uvd)  
undervoltage detection  
delay time  
VV1 falling; dVV1/dt = 0.1 V/μs  
7
-
-
23  
μs  
tdet(CL)L  
LOW-level clamping  
detection time  
VV1 < 0.9VO(V1)nom; V1 active  
95  
140  
ms  
Voltage source; pin V2  
td(uvd) undervoltage detection  
delay time  
Serial peripheral interface timing; pins SCSN, SCK, SDI and SDO  
VV2 falling, dVV2/dt = 0.1 V/us  
7
-
23  
μs  
tcy(clk)  
clock cycle time  
VV1 = 2.97 V to 5.5 V  
320  
110  
-
-
-
-
ns  
ns  
tSPILEAD  
SPI enable lead time  
VV1 = 2.97 V to 5.5 V; clock is LOW  
when SPI select falls  
tSPILAG  
SPI enable lag time  
VV1 = 2.97 V to 5.5 V; clock is LOW  
when SPI select rises  
140  
-
-
ns  
tclk(H)  
tclk(L)  
tsu(D)  
th(D)  
clock HIGH time  
VV1 = 2.97 V to 5.5 V  
VV1 = 2.97 V to 5.5 V  
VV1 = 2.97 V to 5.5 V  
VV1 = 2.97 V to 5.5 V  
160  
160  
0
-
-
-
-
-
-
ns  
ns  
ns  
ns  
ns  
clock LOW time  
-
data input set-up time  
data input hold time  
data output valid time  
-
80  
-
-
tv(Q)  
pin SDO; VV1 = 2.97 V to 5.5 V  
CL = 100 pF  
110  
tWH(S)  
chip select pulse width HIGH VV1 = 2.97 V to 5.5 V  
20  
-
-
ns  
Reset output; pin RSTN  
tw(rst)  
reset pulse width  
long; Ipu(RSTN) < 100 μA; no pull-up  
short; Rpu(RSTN) = 900 Ω to 1100 Ω  
20  
3.6  
95  
-
-
-
25  
5
ms  
ms  
ms  
tdet(CL)L  
tfltr  
LOW-level clamping  
detection time  
RSTN driven HIGH internally but RSTN  
remains LOW  
140  
filter time  
7
-
-
18  
μs  
Watchdog off input; pin WDOFF  
tfltr filter time  
Wake input; pin WAKE1, WAKE2  
0.9  
2.3  
ms  
twake  
td(po)  
wake-up time  
10  
-
-
40  
μs  
μs  
power-on delay time  
113  
278  
CAN transceiver timing; pins CANH, CANL, TXDC and RXDC  
td(TXDCH-RXDCH) delay time from TXDC HIGH 50 % VTXDC to 50 % VRXDC  
60  
-
235  
ns  
to RXDC HIGH  
VV2 = 4.5 V to 5.5 V  
R(CANH-CANL) = 60 Ω  
C(CANH-CANL) = 100 pF; CRXDC = 15 pF  
fTXDC = 250 kHz  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
40 of 53  
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
Table 11. Dynamic characteristics …continued  
Tvj = 40 °C to +150 °C; VBAT = 4.5 V to 28 V; VBAT > VV1; VBAT > VV2; RLIN1 = RLIN2 = 500 Ω; R(CANH-CANL) = 45 Ω to 65 Ω; all  
voltages are defined with respect to ground; positive currents flow in the IC; typical values are given at VBAT = 14 V; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
td(TXDCL-RXDCL) delay time from TXDC LOW 50 % VTXDC to 50 % VRXDC  
60  
-
235  
ns  
to RXDC LOW  
VV2 = 4.5 V to 5.5 V  
R(CANH-CANL) = 60 Ω  
C(CANH-CANL) = 100 pF; CRXDC = 15 pF  
fTXDC = 250 kHz  
td(TXDC-busdom)  
td(TXDC-busrec)  
td(busdom-RXDC)  
delay time from TXDC to  
bus dominant  
VV2 = 4.5 V to 5. 5 V  
-
-
-
70  
90  
75  
-
-
-
ns  
ns  
ns  
R(CANH-CANL) = 60 Ω  
C(CANH-CANL) = 100 pF  
delay time from TXDC to  
bus recessive  
VV2 = 4.5 V to 5.5 V  
R(CANH-CANL) = 60 Ω  
C(CANH-CANL) = 100 pF  
delay time from bus  
dominant to RXDC  
VV2 = 4.5 V to 5.5 V  
R(CANH-CANL) = 60 Ω  
C(CANH-CANL) = 100 pF  
CRXDC = 15 pF  
td(busrec-RXDC)  
delay time from bus  
recessive to RXDC  
VV2 = 4.5 V to 5.5 V  
R(CANH-CANL) = 60 Ω  
C(CANH-CANL) = 100 pF  
CRXDC = 15 pF  
-
95  
-
-
ns  
twake(busdom)min minimum bus dominant  
wake-up time  
first pulse (after first recessive) for  
wake-up on pins CANH and CANL  
Sleep mode  
0.5  
3
μs  
second pulse for wake-up on pins  
CANH and CANL  
0.5  
0.5  
0.5  
0.4  
1.8  
-
-
-
-
-
3
μs  
μs  
μs  
ms  
ms  
twake(busrec)min  
minimum bus recessive  
wake-up time  
first pulse for wake-up on pins CANH  
and CANL; Sleep mode  
3
second pulse (after first dominant) for  
wake-up on pins CANH and CANL  
3
tto(wake)  
wake-up time-out time  
between wake-up and confirm  
messages; Sleep mode  
1.2  
4.5  
tto(dom)TXDC  
TXDC dominant time-out  
time  
CAN online; VV2 = 4.5 V to 5.5 V  
VTXDC = 0 V  
LIN transceivers; pins LIN1, LIN2, TXDL1, TXDL2, RXDL1, RXDL2  
[1]  
[2]  
δ1  
duty cycle 1  
V
th(rec)RX(max) = 0.744VBAT  
Vth(dom)RX(max) = 0.581VBAT; tbit = 50 μs  
BAT = 7 V to 18 V; LSC = 0  
0.396  
-
-
-
-
-
V
[1]  
[2]  
Vth(rec)RX(max) = 0.76VBAT  
Vth(dom)RX(max) = 0.593VBAT; tbit = 50 μs  
VBAT = 5.5 V to 7 V; LSC = 0  
0.396  
-
[2]  
[3]  
δ2  
duty cycle 2  
V
th(rec)RX(min) = 0.422VBAT  
-
-
0.581  
0.581  
Vth(dom)RX(min) = 0.284VBAT; tbit = 50 μs  
VBAT = 7.6 V to 18 V; LSC = 0  
[2]  
[3]  
V
th(rec)RX(min) = 0.41VBAT  
Vth(dom)RX(min) = 0.275VBAT; tbit = 50 μs  
VBAT = 6.1 V to 7.6 V; LSC = 0  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
41 of 53  
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
Table 11. Dynamic characteristics …continued  
Tvj = 40 °C to +150 °C; VBAT = 4.5 V to 28 V; VBAT > VV1; VBAT > VV2; RLIN1 = RLIN2 = 500 Ω; R(CANH-CANL) = 45 Ω to 65 Ω; all  
voltages are defined with respect to ground; positive currents flow in the IC; typical values are given at VBAT = 14 V; unless  
otherwise specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ Max  
Unit  
[1]  
[2]  
δ3  
duty cycle 3  
Vth(rec)RX(max) = 0.778VBAT  
Vth(dom)RX(max) = 0.616VBAT  
tbit = 96 μs; VBAT = 7 V to 18 V; LSC = 1  
0.417  
-
-
-
-
-
-
-
-
[1]  
[2]  
V
V
th(rec)RX(max) = 0.797VBAT  
th(dom)RX(max) = 0.630VBAT  
0.417  
-
tbit = 96 μs; VBAT = 5.5 V to 7 V; LSC = 1  
[2]  
[3]  
δ4  
duty cycle 4  
V
V
V
th(rec)RX(min) = 0.389VBAT  
th(dom)RX(min) = 0.251VBAT; tbit = 96 μs  
BAT = 7.6 V to 18 V; LSC = 1  
-
0.590  
0.590  
6
[2]  
[3]  
Vth(rec)RX(min) = 0.378VBAT  
Vth(dom)RX(min) = 0.242VBAT; tbit = 96 μs  
VBAT = 6.1 V to 7.6V; LSC = 1  
-
tPD(RX)r  
rising receiver propagation  
delay  
VBAT = 5.5 V to 18 V  
RRXDL1 = RRXDL2 = 2.4 kΩ  
CRXDL1 = CRXDL2 = 20 pF  
-
μs  
μs  
μs  
tPD(RX)f  
falling receiver propagation VBAT = 5.5 V to 18 V  
delay  
-
6
RRXDL1 = RRXDL2 = 2.4 kΩ  
CRXDL1 = CRXDL2 = 20 pF  
[4]  
tPD(RX)sym  
receiver propagation delay  
symmetry  
VBAT = 5.5 V to 18 V  
RRXDL1 = RRXDL2 = 2.4 kΩ  
CRXDL1 = CRXDL2 = 20 pF  
2  
+2  
twake(busdom)min minimum bus dominant  
wake-up time  
28  
20  
-
-
104  
80  
μs  
tto(dom)TXDL  
TXDL dominant time-out  
time  
LIN online mode; VTXDL = 0 V  
ms  
Wake bias output; pin WBIAS  
tWBIASL  
tcy  
WBIAS LOW time  
cycle time  
227  
-
-
-
278  
μs  
WBC = 1  
WBC = 0  
58.1  
14.5  
71.2  
17.8  
ms  
ms  
Watchdog  
[5]  
[7]  
ttrig(wd)1  
watchdog trigger time 1  
watchdog trigger time 2  
Normal mode  
watchdog Window mode only  
0.45 ×  
-
-
0.555 × ms  
NWP[6]  
NWP[6]  
ttrig(wd)2  
Normal, Standby and Sleep modes  
watchdog Window mode only  
0.9 ×  
1.11 ×  
ms  
NWP[6]  
NWP[6]  
Oscillator  
fosc  
oscillator frequency  
460.8 512 563.2  
kHz  
tbus(rec)(min)  
-------------------------------  
[1] δ1, δ3 =  
. Variable tbus(rec)(min) is illustrated in the LIN timing diagram in Figure 18.  
2 × tbit  
[2] Bus load conditions are: CL = 1 nF and RL = 1 kΩ; CL = 6.8 nF and RL = 660 Ω; CL = 10 nF and RL = 500 Ω.  
tbus(rec)(max)  
-------------------------------  
[3] δ2, δ4 =  
. Variable tbus(rec)(max) is illustrated in the LIN timing diagram in Figure 18.  
2 × tbit  
[4] tPD(RX)sym = tPD(RX)r tPD(RX)f  
.
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
42 of 53  
 
 
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
[5] A system reset will be performed if the watchdog is in Window mode and is triggered less than ttrig(wd)1 after the start of the watchdog  
period (or in the first half of the watchdog period).  
[6] The nominal watchdog period is programmed via the NWP control bits in the WD_and_Status register (see Table 4); valid in watchdog  
Window mode only.  
[7] The watchdog will be reset if it is in window mode and is triggered at least ttrig(wd)1, but not more than ttrig(wd)2, after the start of the  
watchdog period (or in the second half of the watchdog period). A system reset will be performed if the watchdog is triggered more than  
t
trig(wd)2 after the start of the watchdog period (watchdog overflows).  
BAT  
RXDC  
CANH  
CANL  
R
R  
C
C  
CANL  
CANH  
CANL  
CANH  
SBC  
C
RXDC  
TXDC  
GND  
015aaa079  
Fig 15. Timing test circuit for CAN transceiver  
HIGH  
LOW  
TXDC  
CANH  
CANL  
dominant  
0.9 V  
0.5 V  
V
O(dif)bus  
recessive  
HIGH  
RXDC  
LOW  
t
t
d(TXDC-busrec)  
d(TXDC-busdom)  
t
t
d(busrec-RXDC)  
d(busdom-RXDC)  
t
t
d(TXDCH-RXDCH)  
d(TXDCL-RXDCL)  
015aaa151  
Fig 16. CAN transceiver timing diagram  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
43 of 53  
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
BAT  
RXDL1  
TXDL1  
RXDL2  
TXDL2  
DLIN  
R
LIN1  
C
C
RXDL1  
RXDL2  
LIN1  
LIN2  
C
LIN1  
SBC  
R
LIN2  
C
LIN2  
GND  
015aaa081  
Fig 17. Timing test circuit for LIN transceivers  
t
t
t
bit  
bit  
bit  
V
/V  
TXDL1 TXDL2  
t
t
bus(rec)(min)  
bus(dom)(max)  
V
BAT  
V
V
th(rec)RX(max)  
thresholds of  
receiving node A  
th(dom)RX(max)  
LIN1/LIN2  
bus signal  
V
V
th(rec)RX(min)  
thresholds of  
receiving node B  
th(dom)RX(min)  
t
t
bus(rec)(max)  
bus(dom)(min)  
output of receiving  
node A  
V
V
/
RXDL1  
RXDL2  
t
t
PD(RX)r  
PD(RX)f  
output of receiving  
node B  
V
V
/
RXDL1  
RXDL2  
t
t
PD(RX)f  
PD(RX)r  
015aaa131  
Fig 18. Timing diagram LIN transceivers  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
44 of 53  
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
SCS  
SCK  
t
t
WH(S)  
t
T
SPILAG  
SPILEAD  
cy(clk)  
t
t
clk(L)  
clk(H)  
t
t
h(D)  
su(D)  
SDI  
MSB  
LSB  
X
X
t
v(Q)  
floating  
floating  
SDO  
X
MSB  
LSB  
015aaa045  
Fig 19. SPI timing diagram  
11. Test information  
11.1 Quality information  
This product has been qualified in accordance with the Automotive Electronics Council  
(AEC) standard Q100 - Failure mechanism based stress test qualification for integrated  
circuits, and is suitable for use in automotive applications.  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
45 of 53  
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
12. Package outline  
HTSSOP32: plastic thermal enhanced thin shrink small outline package; 32 leads;  
body width 6.1 mm; lead pitch 0.65 mm; exposed die pad  
SOT549-1  
E
A
D
X
c
H
v
M
A
y
exposed die pad side  
E
D
h
Z
32  
17  
A
(A )  
3
2
E
A
h
A
1
pin 1 index  
θ
L
p
L
detail X  
1
16  
w
M
b
e
p
0
2.5  
5 mm  
scale  
DIMENSIONS (mm are the original dimensions).  
A
(1)  
(2)  
UNIT  
A
A
A
b
c
D
D
E
E
e
H
L
L
p
v
w
y
Z
θ
1
2
3
p
h
h
E
max.  
8o  
0o  
0.15 0.95  
0.05 0.85  
0.30 0.20 11.1  
0.19 0.09 10.9  
5.1  
4.9  
6.2  
6.0  
3.6  
3.4  
8.3  
7.9  
0.75  
0.50  
0.78  
0.48  
mm  
1.1  
0.65  
1
0.2  
0.25  
0.1  
0.1  
Notes  
1. Plastic or metal protrusions of 0.15 mm maximum per side are not included.  
2. Plastic interlead protrusions of 0.25 mm maximum per side are not included.  
REFERENCES  
OUTLINE  
EUROPEAN  
PROJECTION  
ISSUE DATE  
VERSION  
IEC  
JEDEC  
JEITA  
03-04-07  
05-11-02  
SOT549-1  
MO-153  
Fig 20. Package outline SOT549-1 (HTSSOP32)  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
46 of 53  
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
13. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
13.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
13.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
13.3 Wave soldering  
Key characteristics in wave soldering are:  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
47 of 53  
 
 
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
13.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 21) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 12 and 13  
Table 12. SnPb eutectic process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 13. Lead-free process (from J-STD-020C)  
Package thickness (mm) Package reflow temperature (°C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 21.  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
48 of 53  
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 21. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
49 of 53  
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
14. Revision history  
Table 14. Revision history  
Document ID  
UJA1078_2  
Release date  
Data sheet status  
Change notice  
Supersedes  
20100527  
Product specification  
-
UJA1078_1  
Modifications:  
Template upgraded to Rev. 2.11 including revised legal information  
Figure 16, Figure 18: revised  
Table 4: bit 7: WOS revised  
Table 8: revised values/conditions - VESD, IR(V1-BAT)  
Table 9: added  
Table 10: revised parameter values/conditions - Vth(cntr)RX, Vth(hys)RX, VOL for RSTN pin, IO for  
LIMP pin; R(BAT-V1); Vuvr for pin V1  
Table 11: revised parameter values/conditions - tdet(CL)L for RSTN pin  
Section 6.7.1.2, Section 6.8.1.2, Table 11: parameters renamed to twake(busdom)min, twake(busrec)min  
UJA1078_1  
20091118  
Product specification  
-
-
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
50 of 53  
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
15. Legal information  
15.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
suitable for use in medical, military, aircraft, space or life support equipment,  
15.2 Definitions  
nor in applications where failure or malfunction of an NXP Semiconductors  
product can reasonably be expected to result in personal injury, death or  
severe property or environmental damage. NXP Semiconductors accepts no  
liability for inclusion and/or use of NXP Semiconductors products in such  
equipment or applications and therefore such inclusion and/or use is at the  
customer’s own risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
15.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Suitability for use in automotive applications — This NXP  
Semiconductors product has been qualified for use in automotive  
applications. The product is not designed, authorized or warranted to be  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
51 of 53  
 
 
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from national authorities.  
15.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
16. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
UJA1078_2  
All information provided in this document is subject to legal disclaimers.  
© NXP B.V. 2010. All rights reserved.  
Product data sheet  
Rev. 02 — 27 May 2010  
52 of 53  
 
 
UJA1078  
NXP Semiconductors  
High-speed CAN/dual LIN core system basis chip  
17. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
6.7.3.1  
6.7.3.2  
6.8  
TXDC dominant time-out function . . . . . . . . . 24  
Pull-up on TXDC pin . . . . . . . . . . . . . . . . . . . 24  
LIN1/LIN2 transceivers . . . . . . . . . . . . . . . . . 24  
LIN operating modes . . . . . . . . . . . . . . . . . . . 25  
Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . 25  
Lowpower/Off modes. . . . . . . . . . . . . . . . . . . 25  
Fail-safe features . . . . . . . . . . . . . . . . . . . . . . 25  
General fail-safe features. . . . . . . . . . . . . . . . 25  
TXDL dominant time-out function . . . . . . . . . 25  
Local wake-up input. . . . . . . . . . . . . . . . . . . . 26  
Interrupt output. . . . . . . . . . . . . . . . . . . . . . . . 27  
Temperature protection . . . . . . . . . . . . . . . . . 27  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 2  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
CAN transceiver . . . . . . . . . . . . . . . . . . . . . . . . 2  
LIN transceivers . . . . . . . . . . . . . . . . . . . . . . . . 2  
Power management . . . . . . . . . . . . . . . . . . . . . 2  
Control and Diagnostic features . . . . . . . . . . . . 3  
Voltage regulators. . . . . . . . . . . . . . . . . . . . . . . 3  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
6.8.1  
6.8.1.1  
6.8.1.2  
6.8.2  
6.8.2.1  
6.8.2.2  
6.9  
3
4
Ordering information. . . . . . . . . . . . . . . . . . . . . 4  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
6.10  
6.11  
5
5.1  
5.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . . 5  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . . 5  
7
Limiting values . . . . . . . . . . . . . . . . . . . . . . . . 28  
Thermal characteristics . . . . . . . . . . . . . . . . . 30  
Static characteristics . . . . . . . . . . . . . . . . . . . 32  
Dynamic characteristics. . . . . . . . . . . . . . . . . 40  
Test information . . . . . . . . . . . . . . . . . . . . . . . 45  
Quality information. . . . . . . . . . . . . . . . . . . . . 45  
Package outline. . . . . . . . . . . . . . . . . . . . . . . . 46  
8
6
6.1  
Functional description . . . . . . . . . . . . . . . . . . . 6  
System Controller . . . . . . . . . . . . . . . . . . . . . . 7  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . 7  
Off mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Standby mode. . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . . 9  
Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Overtemp mode . . . . . . . . . . . . . . . . . . . . . . . 10  
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Register map . . . . . . . . . . . . . . . . . . . . . . . . . 11  
WD_and_Status register. . . . . . . . . . . . . . . . . 12  
Mode_Control register . . . . . . . . . . . . . . . . . . 13  
Int_Control register. . . . . . . . . . . . . . . . . . . . . 14  
Int_Status register. . . . . . . . . . . . . . . . . . . . . . 16  
On-chip oscillator . . . . . . . . . . . . . . . . . . . . . . 17  
Watchdog (UJA1078/xx/WD versions) . . . . . . 17  
Watchdog Window behavior. . . . . . . . . . . . . . 17  
Watchdog Timeout behavior. . . . . . . . . . . . . . 18  
Watchdog Off behavior. . . . . . . . . . . . . . . . . . 18  
System reset. . . . . . . . . . . . . . . . . . . . . . . . . . 18  
RSTN pin . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
EN output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
LIMP output . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Power supplies . . . . . . . . . . . . . . . . . . . . . . . . 20  
Battery pin (BAT) . . . . . . . . . . . . . . . . . . . . . . 20  
Voltage regulator V1 . . . . . . . . . . . . . . . . . . . . 20  
Voltage regulator V2 . . . . . . . . . . . . . . . . . . . . 22  
CAN transceiver . . . . . . . . . . . . . . . . . . . . . . . 22  
CAN operating modes . . . . . . . . . . . . . . . . . . 23  
Active mode . . . . . . . . . . . . . . . . . . . . . . . . . . 23  
Lowpower/Off modes . . . . . . . . . . . . . . . . . . . 23  
Split circuit . . . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Fail-safe features . . . . . . . . . . . . . . . . . . . . . . 24  
9
10  
11  
11.1  
12  
6.1.1  
6.1.2  
6.1.3  
6.1.4  
6.1.5  
6.1.6  
6.2  
6.2.1  
6.2.2  
6.2.3  
6.2.4  
6.2.5  
6.2.6  
6.3  
13  
Soldering of SMD packages. . . . . . . . . . . . . . 47  
Introduction to soldering. . . . . . . . . . . . . . . . . 47  
Wave and reflow soldering. . . . . . . . . . . . . . . 47  
Wave soldering . . . . . . . . . . . . . . . . . . . . . . . 47  
Reflow soldering . . . . . . . . . . . . . . . . . . . . . . 48  
13.1  
13.2  
13.3  
13.4  
14  
Revision history . . . . . . . . . . . . . . . . . . . . . . . 50  
15  
Legal information . . . . . . . . . . . . . . . . . . . . . . 51  
Data sheet status . . . . . . . . . . . . . . . . . . . . . . 51  
Definitions . . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Disclaimers . . . . . . . . . . . . . . . . . . . . . . . . . . 51  
Trademarks . . . . . . . . . . . . . . . . . . . . . . . . . . 52  
15.1  
15.2  
15.3  
15.4  
6.4  
6.4.1  
6.4.2  
6.4.3  
6.5  
6.5.1  
6.5.2  
6.5.3  
6.6  
6.6.1  
6.6.2  
6.6.3  
6.7  
6.7.1  
6.7.1.1  
6.7.1.2  
6.7.2  
6.7.3  
16  
17  
Contact information . . . . . . . . . . . . . . . . . . . . 52  
Contents. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP B.V. 2010.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 27 May 2010  
Document identifier: UJA1078_2  
 

相关型号:

UJA1078TW/5V0/WD

High-speed CAN/dual LIN core system basis chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1079

LIN core system basis chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1079A

LIN core system basis chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1079ATW/3V3

IC 16-BIT, MICROCONTROLLER, PDSO32, 11 X 6.10 MM, 0.65 MM PITCH, GREEN, PLASTIC, MO-153, SOT-549-1, HTSSOP-32, Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1079ATW/3V3/WD

IC 16-BIT, MICROCONTROLLER, PDSO32, 11 X 6.10 MM, 0.65 MM PITCH, GREEN, PLASTIC, MO-153, SOT-549-1, HTSSOP-32, Microcontroller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1079ATW/5V0

LIN core system basis chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1079ATW/5V0/WD

LIN core system basis chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1079TW/3V3

LIN core system basis chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1079TW/3V3/WD

LIN core system basis chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1079TW/5V0

LIN core system basis chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1079TW/5V0/WD

LIN core system basis chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1131HW/3V3

Buck/boost HS-CAN/(dual) LIN system basis chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP