UJA1132HW/5V0 [NXP]

Buck/boost HS-CAN/(dual) LIN system basis chip;
UJA1132HW/5V0
型号: UJA1132HW/5V0
厂家: NXP    NXP
描述:

Buck/boost HS-CAN/(dual) LIN system basis chip

文件: 总132页 (文件大小:858K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
UJA113x series  
Buck/boost HS-CAN/(dual) LIN system basis chip  
Rev. 2 — 5 July 2016  
Product data sheet  
1. General description  
The UJA113x System Basis Chip (SBC) contains a fully integrated buck and boost  
converter along with a number of features commonly found in the latest generation of  
automotive Electronic Control Units (ECUs). It interfaces directly with CAN and LIN bus  
lines, supplies the microcontroller, handles input and output signals and supports fail-safe  
features including a watchdog and advanced ‘limp home’ functionality configurable via  
non-volatile memory. The UJA113x is available in number of variants as detailed in  
Section 3.  
To satisfy the demand for SBCs that operate at low battery supply voltages and feature  
low power dissipation, a switched mode power supply (SMPS) with automatic down (Buck  
mode) or up conversion (Boost mode) has been integrated into the UJA113x. In Boost  
mode, the SMPS of the UJA1131 and UJA1132 variants can continue supplying a  
microcontroller during dips in the battery voltage, ensuring uninterrupted operation. The  
boost stage of the UJA1135 and the UJA1136 has limited output current capability, and is  
suitable for supplying the memory in a microcontroller to prevent information being lost.  
The SMPS requires only a single external coil and some capacitors but no separate  
semiconductors.  
The UJA113x implements the classic CAN physical layer as defined in the current  
ISO11898 standard (-2:2003, -5:2007, -6:2013). Pending the release of the upcoming  
version of ISO11898-2:201x including CAN FD, additional timing parameters defining loop  
delay symmetry are included. This implementation enables reliable communication in the  
CAN FD fast phase at data rates up to 2 Mbit/s.  
The UJA113xFD/x variants support ISO 11898-6:2013 and ISO 11898-2:201x compliant  
CAN partial networking with a selective wake-up function incorporating CAN FD-passive.  
CAN FD-passive is a feature that allows CAN FD bus traffic to be ignored in  
Sleep/Standby mode. CAN FD-passive partial networking is the perfect fit for networks  
that support both CAN FD and classic CAN communications. It allows normal CAN  
controllers that do not need to communicate CAN FD messages to remain in partial  
networking Sleep/Standby mode during CAN FD communication without generating bus  
errors.  
A number of configuration settings are stored in non-volatile memory. This makes it  
possible to adapt the power-on and limp home behavior of the UJA113x to meet the  
specific requirements of an application.  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
2. Features and benefits  
2.1 General  
Generic SBC functions:  
Fully integrated buck-boost converter  
5 V/3.3 V voltage regulator delivering up to 500 mA  
Separate voltage regulator with optional protection against shorts to battery and  
loss of module ground  
CAN transceiver and up to two LIN transceivers  
Two-channel battery monitoring with integrated A/D converter  
Watchdog with Window and Timeout modes and on-chip oscillator  
Serial Peripheral Interface (SPI) for communicating with the microcontroller  
ECU power management system  
Protected general-purpose high-voltage I/O pins configurable as high-side drivers  
(HS), low-side drivers (LS) or wake-up inputs  
Four internal PWM/pulse timers in derivatives containing high-voltage I/O pins  
(see Table 1)  
Designed for automotive applications:  
Excellent ElectroMagnetic Compatibility (EMC) performance  
6 kV ElectroStatic Discharge (ESD) protection according to the Human Body  
Model (HBM) on the CAN/LIN bus pins  
6 kV ElectroStatic Discharge protection according to IEC 61000-4-2 on the  
CAN/LIN bus pins, the sensor supply output (VEXT) and the HVIO pins  
40 V short-circuit proof CAN/LIN bus pins  
Battery and CAN/LIN bus pins are protected against transients in accordance with  
ISO 7637-3  
Very low-current Standby and Sleep modes with full wake-up capability  
Supports remote flash programming via the CAN-bus  
Compact 10 mm 10 mm HTQFP48 package with low thermal resistance  
Dark green product (halogen free and Restriction of Hazardous Substances (RoHS)  
compliant)  
2.2 Integrated buck and boost converter (SMPS)  
Buck and boost functions with a single external coil:  
Automatic Buck or Boost mode selection depending on input voltage and output  
load conditions  
Boost function allows the UJA1131 and UJA1132 to operate at very low supply  
voltages (e.g. 2 V; lowest achievable supply voltage depends on output load  
conditions)  
Boost function of the UJA1135 and UJA1136 can be used to supply the volatile  
memory of a microcontroller down to battery voltages a low as 2 V.  
Soft-start function  
The SMPS functions as a pre-regulator for V1 and, optionally, V2:  
Results in excellent load response at V1 and V2  
Results in negligible ripple at V1 and V2 outputs  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
2 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Pre-regulator output voltage selectable via the SPI  
The SMPS can be switched to Pass-through mode to ensure the lowest possible  
current consumption with immediate full output current capability  
The SMPS can be used to supply external loads directly:  
e.g. as an energy-efficient supply for an LED chain  
2.3 Low-drop voltage regulators (LDOs)  
Main voltage regulator V1:  
5 V or 3.3 V nominal output voltage (depending on the selected device)  
500 mA output current capability  
capable of 500 mA transient load current jump in Standby mode  
Current limiting above 500 mA  
On-resistance of less than 2   
2 % accuracy  
Undervoltage reset; selectable threshold on the 5 V version: 60 %, 70 %, 80 % or  
90 % of nominal value (default detection and release at 90 %)  
Excellent transient response with a small ceramic output capacitor  
Short-circuit protection  
Integrated clamp protects the microcontroller by maintaining the output voltage  
below 6 V, even when reverse currents of up to 50 mA are injected  
Turned off in Sleep mode  
Auxiliary voltage regulator V2 with configurable output stage:  
5 V nominal output voltage  
2 % accuracy (1.5 % up to 5 mA output current)  
Excellent transient response with a small ceramic output capacitor  
Short-circuit protection  
Current limiting above 100 mA  
Configurable as supply for on-board loads  
Configurable as supply for off-board loads (‘sensor supply’); protected against  
shorts to GND and battery; loss-of-ground proof; high ESD robustness  
2.4 CAN transceiver  
ISO 11898-2:201x (upcoming merged ISO 11898-2/5/6) compliant 1 Mbit/s high-speed  
CAN transceiver supporting CAN FD active communication up to 2 Mbit/s in the CAN  
FD data field  
Autonomous bus biasing according to ISO 11898-6:2013  
CAN-bus connections are truly floating when power to pin BAT is off  
UJA113xFD: selective wake-up function (ISO11989-6:2013 compliant CAN partial  
networking)  
No ‘false’ wake-ups due to CAN FD traffic  
Separate supply pin for flexibility (e.g. can be supplied from V1 or V2)  
2.5 LIN transceivers  
One or two channels depending on the selected device  
LIN 2.x compliant  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
3 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Compliant with SAE J2602  
Downward compatible with LIN 1.3  
Integrated LIN slave termination  
Improved EMC emission performance with optimized curve shaping  
2.6 High-voltage I/Os (HVIOs; not available in UJA113xFD/0 variants)  
4 or 8 general-purpose input/output pins individually configurable as high- or low-side  
output drivers  
On/off control via the SPI or by mapping to one of four internal PWM timers  
Optional direct output on/off control via another HVIO configured as an input  
(HVIO1 to HVIO4 controlled by HVIO5 to HVIO8 in variants with 8 HVIO pins)  
PWM timing options include 8-bit dimming up to 250 Hz as well as periodic pulses  
with variable length and variable repetition rate; e.g. for cyclic contact monitoring  
On-resistance less than 24   
Two or more HVIOs can be combined to form a single output with increased driver  
capability  
Combined into one or two banks of four HVIOs with individual supply pins for each  
bank; the banks can be supplied independently from the battery (12 V), the SMPS  
(6 V) or V1/V2 (5 V)  
Reverse-current protection of the output in Off mode (loss-of-ground and  
loss-of-battery proof)  
Open-load diagnostics and short-circuit protection and diagnostics  
Can be configured individually to shut down in response to a battery supply  
undervoltage and/or overvoltage  
Individually configurable as inputs with wake-up capability  
Selectable wake-up edge  
Selectable wake-up threshold: ratiometric to HVIO supply pin or absolute level  
Wake-up threshold tolerates ground offsets of up to 2.5 V  
Wake-up source reporting via SPI  
Continuous or periodic input level sampling; timing can be synchronized with  
another HVIO pin configured as an output driver for cyclic contact monitoring  
Three HVIOs can be configured individually as limp-home outputs  
HVIO2 as static high-side driver limp-home signal  
HVIO3 as 100 Hz, 10 % duty cycle limp-home signal  
HVIO4 as 1.25 Hz, 50 % duty cycle limp-home signal  
2.7 A/D converter for monitoring the battery voltage  
10-bit resolution, accurate to 300 mV at 20 V full scale  
Two channels:  
Measures the voltage level on pin BAT or pin BATSENSE  
Measures the battery voltage on either side of a polarity protection diode  
connected to pin BATSENSE via a series resistor  
Continuous measurement on both channels  
Optional software interrupt and/or shutdown of functions when measured supply  
voltage is outside a defined range (undervoltage and overvoltage detection)  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
4 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
2.8 Power management  
Wake-up via CAN, LIN or HVIO pins with wake-up source recognition  
HVIO wake input functionality can be disabled to reduce current consumption  
Cyclic output signal for biasing various wake-up applications with selectable period  
and configurable on-time  
Cyclic wake-up with selectable period  
Standby mode featuring very low supply current with V1 active to maintain supply to  
the microcontroller  
Sleep mode featuring very low supply current with V1 off  
Sleep mode option can be disabled via non-volatile memory  
2.9 System control and diagnostic features  
Watchdog that can operate in Window, Timeout (with optional cyclic wake-up) and Off  
Modes (with automatic re-enable if an interrupt is generated)  
Watchdog period selectable between 8 ms and 4 s  
16-, 24- or 32-bit SPI for configuration, control and diagnosis  
2 Interrupt output pins - one for high- and low-priority interrupts, one for high-priority  
interrupts; interrupts can be enabled individually:  
V1 and V2/VEXT undervoltage; V2/VEXT overvoltage; battery over- and  
undervoltage; CAN, LIN and local wake-up (HVIO); CAN and HVIO diagnostics;  
overtemperature warning; cyclic wake-up; SPI failure  
Bidirectional reset pin with selectable reset length to support various microcontrollers;  
triggered, for example, by a watchdog overflow or by a V1 undervoltage event  
Limp-home output (LIMP) for activating application-specific ‘limp-home’ hardware in  
the event of a serious system malfunction  
Configuration information for selected functions stored in non-volatile memory  
Enable output (EN) for controlling safety-critical hardware; e.g. shut-down if the  
microcontroller fails  
Overtemperature warning and shut-down  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
5 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
3. Product family overview  
Table 1.  
Feature overview of UJA113x SBC family  
UJA1131HW/5V0  
UJA1131HW/3V3  
UJA1132HW/5V0  
UJA1132HW/3V3  
UJA1135HW/5V0  
UJA1135HW/3V3  
UJA1136HW/5V0  
UJA1136HW/3V3  
UJA1131HW/FD/5V/4  
UJA1131HW/FD/3V/4 ●  
UJA1131HW/FD/5V/0 ●  
UJA1131HW/FD/3V/0 ●  
UJA1132HW/FD/5V/4 ●  
UJA1132HW/FD/3V/4 ●  
UJA1132HW/FD/5V/0 ●  
UJA1132HW/FD/3V/0 ●  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
6 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
4. Ordering information  
Table 2.  
Ordering information  
Type number[1]  
Package  
Name  
Description  
Version  
UJA1131HW/5V0  
HTQFP48  
plastic thermal enhanced thin quad flat package; 48 leads; body SOT1181-2  
10 x 10 x 1.0 mm; exposed die pad  
UJA1131HW/3V3  
UJA1132HW/5V0  
UJA1132HW/3V3  
UJA1135HW/5V0  
UJA1135HW/3V3  
UJA1136HW/5V0  
UJA1136HW/3V3  
UJA1131HW/FD/5V/4  
UJA1131HW/FD/3V/4  
UJA1131HW/FD/5V/0  
UJA1131HW/FD/3V/0  
UJA1132HW/FD/5V/4  
UJA1132HW/FD/3V/4  
UJA1132HW/FD/5V/0  
UJA1132HW/FD/3V/0  
[1] UJA113x/5Vx variants contain a 5 V regulator (V1); UJA113x/3Vx variants contain a 3.3 V regulator (V1); UJA113xFD/x variants support  
CAN partial networking.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
7 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
5. Block diagram  
/ꢇ  
/ꢆ  
96036  
9ꢇ %$79ꢆ  
9ꢆ  
9ꢇ  
9ꢆ  
*1'  
&/$03  
*1'  
*1'  
%$76036  
*1'6036  
29  
89  
9(;7  
89  
%227+ꢇ  
%227+ꢆ  
&$3$  
&$3%  
%$76(16(  
$'&&$3  
6036ꢊ  
5(*8/$725  
6<67(0ꢊ&21752//(5  
89ꢎ29  
5671  
ꢊ:$7&+'2*  
*1'  
9ꢇ  
ꢋꢊ5(6(7ꢊ&75/ꢌ  
ꢋꢊ(1ꢊ&75/ꢌ  
$'&  
ꢋꢊ/,03ꢊ&75/ꢌ  
ꢋꢊ,17(55837ꢊ&75/ꢌ  
ꢋꢊ3:0ꢊ7,0(5ꢊ&75/ꢌ  
ꢋꢊ32:(5ꢊ02'(ꢊ&75/ꢌ  
ꢋꢊ5(*8/$725ꢊ&75/ꢌꢊꢍ  
ꢊꢊ67$786  
ꢋꢊ$'&ꢊ&75/ꢌꢊꢍꢊ67$786  
ꢋꢊ&$1ꢊ02'(ꢊ&75/ꢌꢊꢍꢊ67$786  
ꢋꢊ/,1ꢊ02'(ꢊ&75/ꢌꢊꢍꢊ67$786  
ꢋꢊ+9,2ꢊ02'(ꢊ&75/ꢌꢊꢍꢊ67$786  
ꢋꢊ63,ꢊ)$,/85(ꢊ67$786  
ꢋꢊ6%&ꢊ&21),*85$7,21ꢊꢈ07391ꢉ  
26&,//$725  
%$7  
(1  
/(9(/ꢋ  
6+,)7(5  
96036  
,17(51$/  
6833/<ꢊꢍꢊ  
5()(5(1&(  
,171ꢆ  
,171ꢇ  
*/2%$/  
7(03(5$785(  
3527(&7,21  
/,03  
9ꢇ  
6',  
6'2  
6&.  
/(9(/ꢋ  
6+,)7(5  
63,  
*1'  
6&61  
89  
*1'  
9ꢇ  
%$7  
9&$1  
9ꢇ  
7;'/ꢇ  
7;'&  
5;'&  
/(9(/ꢋ  
6+,)7(5  
/(9(/ꢋ  
6+,)7(5  
5;'/ꢇ  
ꢈꢇꢉ  
/,1  
7;'/ꢆ  
&$1  
&$1+  
&$1/  
ꢈꢇꢉ  
5;'/ꢆ  
%$7  
*1'  
*1'  
/,1ꢇ  
ꢈꢇꢉ  
/,1ꢆ  
%$7+6ꢆ  
%$7+6ꢇ  
+9,2ꢇ  
+9,2ꢆ  
+9,2ꢅ  
+9,2ꢄ  
+9,2ꢃ  
+9,2ꢂ  
+9,2ꢁ  
+9,2ꢀ  
RSWLRQDOꢊGLUHFWꢊ  
FRQWURO  
*1'  
*1'  
*1'  
*1'  
ꢀꢁꢂDDDꢃꢁꢂ  
(1) UJA1132x and UJA1136x only  
Fig 1. Block diagram of UJA113x variants without partial networking  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
8 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
/ꢇ  
/ꢆ  
96036  
9ꢇ %$79ꢆ  
9ꢆ  
9ꢇ  
9ꢆ  
*1'  
&/$03  
*1'  
*1'  
%$76036  
*1'6036  
29  
89  
9(;7  
89  
%227+ꢇ  
%227+ꢆ  
&$3$  
&$3%  
%$76(16(  
$'&&$3  
6036ꢊ  
5(*8/$725  
6<67(0ꢊ&21752//(5  
89ꢎ29  
5671  
ꢊ:$7&+'2*  
*1'  
9ꢇ  
ꢋꢊ5(6(7ꢊ&75/ꢌ  
ꢋꢊ(1ꢊ&75/ꢌ  
$'&  
ꢋꢊ/,03ꢊ&75/ꢌ  
ꢋꢊ,17(55837ꢊ&75/ꢌ  
ꢋꢊ3:0ꢊ7,0(5ꢊ&75/ꢌ  
ꢋꢊ32:(5ꢊ02'(ꢊ&75/ꢌ  
ꢋꢊ5(*8/$725ꢊ&75/ꢌꢊꢍ  
ꢊꢊ67$786  
ꢋꢊ$'&ꢊ&75/ꢌꢊꢍꢊ67$786  
ꢋꢊ&$1ꢊ02'(ꢊ&75/ꢌꢊꢍꢊ67$786  
ꢋꢊ/,1ꢊ02'(ꢊ&75/ꢌꢊꢍꢊ67$786  
ꢋꢊ+9,2ꢊ02'(ꢊ&75/ꢌꢊꢍꢊ67$786  
ꢋꢊ63,ꢊ)$,/85(ꢊ67$786  
ꢋꢊ6%&ꢊ&21),*85$7,21ꢊꢈ07391ꢉ  
26&,//$725  
%$7  
(1  
/(9(/ꢋ  
6+,)7(5  
96036  
,17(51$/  
6833/<ꢊꢍꢊ  
5()(5(1&(  
,171ꢆ  
,171ꢇ  
*/2%$/  
7(03(5$785(  
3527(&7,21  
/,03  
9ꢇ  
6',  
6'2  
6&.  
/(9(/ꢋ  
6+,)7(5  
63,  
*1'  
6&61  
89  
*1'  
9ꢇ  
%$7  
9&$1  
9ꢇ  
7;'/ꢇ  
7;'&  
5;'&  
/(9(/ꢋ  
6+,)7(5  
/(9(/ꢋ  
6+,)7(5  
5;'/ꢇ  
ꢈꢇꢉ  
&$1  
/,1  
7;'/ꢆ  
ꢈꢇꢉ  
3$57,$/ꢊ1(7:25.,1*  
&$1ꢊ)'ꢊ3$66,9(  
5;'/ꢆ  
%$7  
*1'  
*1'  
&$1+  
&$1/  
/,1ꢇ  
ꢈꢇꢉ  
/,1ꢆ  
ꢈꢆꢉ  
%$7+6ꢇ  
ꢈꢆꢉ  
ꢈꢆꢉ  
ꢈꢆꢉ  
ꢈꢆꢉ  
+9,2ꢇ  
+9,2ꢆ  
+9,2ꢅ  
+9,2ꢄ  
*1'  
*1'  
*1'  
DDDꢄꢀꢅꢅꢆꢅꢆ  
(1) UJA1132FDx  
(2) UJA113xFD/4 only  
Fig 2. Block diagram of UJA113xFD/x variants featuring CAN partial networking  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
9 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
6. Pinning information  
6.1 Pinning  
ꢈꢆꢉ  
ꢅꢂ  
ꢅꢃ  
ꢅꢄ  
ꢅꢅ  
ꢅꢆ  
ꢅꢇ  
ꢅꢐ  
ꢆꢏ  
ꢆꢀ  
ꢆꢁ  
ꢆꢂ  
ꢆꢃ  
%$79ꢆ  
9(;7  
9ꢆ  
+9,2ꢆꢎLꢌFꢌ  
+9,2ꢅꢎLꢌFꢌ  
+9,2ꢄꢎLꢌFꢌ  
ꢈꢆꢉ  
ꢈꢆꢉ  
ꢈꢅꢉ  
ꢈꢅꢉ  
ꢈꢅꢉ  
ꢈꢅꢉ  
*1'  
(1  
+9,2ꢃꢎQꢌFꢌ  
+9,2ꢂꢎQꢌFꢌ  
+9,2ꢁꢎQꢌFꢌ  
+9,2ꢀꢎQꢌFꢌ  
9ꢇ  
8-$ꢀꢀꢁ[  
6',  
ꢈꢅꢉ  
6'2  
6&.  
6&61  
,171ꢇ  
5671  
%$7+6ꢆꢎQꢌFꢌ  
%$76(16(  
$'&&$3  
%$7  
ꢇꢐ  
ꢇꢇ  
ꢇꢆ  
ꢈꢇꢉ  
/,1ꢆꢎLꢌFꢌ  
ꢀꢁꢂDDDꢃꢁꢃ  
(1) UJA1131x and UJA1135x only  
(2) UJA113xFD/0 only  
(3) UJA113xFD/x only  
Fig 3. Pin configuration  
6.2 Pin description  
Table 3.  
Symbol  
Pin description  
Pin Description  
supply input for V2 regulator  
BATV2  
VEXT  
V2  
1
2
3
protected output of voltage regulator V2 (‘sensor supply’)  
protection selection for voltage regulator V2: leave pin unconnected for a  
protected LDO with output at VEXT; connect to pin VEXT for an unprotected  
LDO with lower drop-out  
GND  
EN  
4
5
6
ground  
enable output  
V1  
voltage regulator output for the microcontroller (5 V or 3.3 V depending on  
SBC version)  
SDI  
7
8
SPI data input  
SPI data output  
SDO  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
10 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 3.  
Pin description …continued  
Symbol  
SCK  
Pin  
9
Description  
SPI clock input  
SCSN  
INTN1  
RSTN  
10  
11  
12  
SPI chip select input  
interrupt output 1 to the microcontroller (triggered by all interrupts)  
reset input/output to and from the microcontroller; referenced to V1 (see  
Section 7.3.1)  
INTN2  
13  
14  
interrupt output 2 to the microcontroller (triggered by high-priority interrupts)  
RXDL2/i.c  
LIN2 receive data output; internally connected and should be left open in  
UJA1131x and UJA1135x  
TXDL2/i.c.  
15  
LIN2 transmit data input; internally connected and should be left open in  
UJA1131x and UJA1135x  
RXDL1  
TXDL1  
RXDC  
TXDC  
VCAN  
CANH  
CANL  
GND  
16  
17  
18  
19  
20  
21  
22  
23  
24  
25  
LIN1 receive data output  
LIN1 transmit data input  
CAN receive data output  
CAN transmit data input  
5 V supply input for the integrated HS-CAN transceiver  
CANH bus line  
CANL bus line  
ground  
LIN1  
LIN bus line 1  
LIN2/i.c.  
LIN bus line 2; internally connected and should be left open in UJA1131x  
and UJA1135x  
BAT  
26  
battery supply for the LIN transceiver; input source 0 for battery A/D  
converter  
ADCCAP  
27  
connection for A/D converter source 0 input filter capacitor  
battery A/D converter source 1 input  
BATSENSE 28  
BATHS2/n.c 29  
.
battery supply input for HVIO 5, 6, 7 and 8 (bank 1); not connected in  
UJA113xFD/x  
HVIO8/n.c. 30  
HVIO7/n.c. 31  
HVIO6/n.c. 32  
HVIO5/n.c. 33  
high voltage input/output 8; not connected in UJA113xFD/x  
high voltage input/output 7; not connected in UJA113xFD/x  
high voltage input/output 6; not connected in UJA113xFD/x  
high voltage input/output 5; not connected in UJA113xFD/x  
high voltage input/output 4; internally connected in UJA113xFD/0  
high voltage input/output 3; internally connected in UJA113xFD/0  
high voltage input/output 2; internally connected in UJA113xFD/0  
high voltage input/output 1; internally connected in UJA113xFD/0  
HVIO4/i.c.  
HVIO3/i.c.  
HVIO2/i.c.  
HVIO1/i.c.  
34  
35  
36  
37  
BATHS1/i.c. 38  
battery supply input for HVIO 1, 2, 3 and 4 (bank 0); internally connected  
and should be left open in UJA113xFD/0  
LIMP  
39  
40  
41  
42  
43  
44  
limp home output  
CAPB  
CAPA  
terminal B for SMPS bootstrap capacitor  
terminal A for SMPS bootstrap capacitor  
terminal for bootstrap capacitor 1 (connected between BOOTH1 and L1)  
battery supply input for SMPS  
BOOTH1  
BATSMPS  
L1  
SMPS coil terminal 1  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
11 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 3.  
Symbol  
GNDSMPS 45  
Pin description …continued  
Pin Description  
ground connection for SMPS  
L2  
46  
47  
48  
SMPS coil terminal 2  
VSMPS  
BOOTH2  
SMPS output voltage  
terminal for bootstrap capacitor 2 (connected between BOOTH2 and L2)  
The exposed die pad at the bottom of the package allows for better heat dissipation from  
the SBC via the printed-circuit board. It is internally connected to GND (pins 4, 23) and  
must be connected to ground on the PCB.  
7. Functional description  
7.1 System Controller  
The system controller manages register configuration and controls the internal functions  
of the SBC. Detailed device status information is collected and made available to the  
microcontroller. The system controller also generates reset and interrupt signals.  
7.1.1 Operating modes  
The system controller is a state machine. SBC operating modes and state transitions are  
illustrated in Figure 4. A detailed hardware characterization of the SBC operating modes  
by functional block is given in Table 4.  
7.1.1.1 Off mode  
The UJA113x switches to Off mode when the battery supply voltage is too low to power  
the SBC.  
When the battery is initially connected, the UJA113x powers up in Off mode. As soon as  
the battery supply rises above the power-on detection threshold (Vth(det)pon), the SBC  
executes a system reset and enters Standby mode. It switches automatically to Off mode  
from all other modes if the battery supply voltage and the SMPS output voltage fall below  
the power-off threshold (Vth(det)poff). In Off mode, the voltage regulators are disabled and  
the CAN and LIN bus systems are in a high-resistive state.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
12 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.1.1.2 Standby mode  
Standby mode is a low-power mode in which regulator V1 is switched on.  
The SBC switches to Standby mode via Reset mode:  
from Off mode if the battery voltage rises above the power-on detection threshold  
(Vth(det)pon  
)
from Overload mode when the battery voltage is below the overvoltage detection  
threshold (Vth(det)ov) and the chip temperature is below the overtemperature protection  
release threshold, Tth(rel)otp, (provided the reset counter does not overflow; i.e.  
RCC < 3, see Section 7.3)  
from Sleep mode in response to a regular or diagnostic interrupt (see Section 7.12)  
provided RCC 3 on entering Reset mode  
from Normal mode in the event of a reset event, provided RCC 3 on entering Reset  
mode  
Standby mode can also be selected from Normal mode via an SPI command (MC = 100;  
see Table 5).  
The SBC exits Standby mode if:  
Normal or Sleep mode is selected via an SPI command  
a reset event is generated  
the global chip temperature rises above the OverTemperature Protection (OTP)  
activation threshold, Tth(act)otp, causing the SBC to enter Overload mode  
the battery voltage rises above the overvoltage detection threshold (Vth(det)ov),  
causing the SBC to enter Overload mode  
the battery supply voltage and the SMPS output voltage fall below the power-off  
threshold (Vth(det)poff), causing the SBC to switch to Off mode  
7.1.1.3 Normal mode  
Normal mode is the active SBC operating mode. In this mode, the SBC is fully operational  
and all onboard hardware can be activated.  
Normal mode can be selected from Standby mode via an SPI command (MC = 111).  
The SBC immediately exits Normal mode if:  
a reset event is triggered  
Standby or Sleep mode is selected via the SPI (MC = 100 or MC = 001)  
the global chip temperature rises above the OTP activation threshold, Tth(act)otp  
,
causing the SBC to enter Overload mode  
the battery voltage rises above the overvoltage detection threshold (Vth(det)ov),  
causing the SBC to enter Overload mode  
the battery supply voltage and the SMPS output voltage fall below the power-off  
threshold (Vth(det)poff), causing the SBC to switch to Off mode  
Remark: When the UJA113x enters Normal mode, the following features are activated  
after a short delay (td(act)norm; see Table 91): CAN and LIN transceivers, battery  
monitoring, HVIO low side drivers.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
13 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
IURPꢊDQ\ꢊPRGHꢊ  
SRZHUꢊRII  
IURPꢊDQ\ꢊPRGHꢊH[FHSWꢊ2IIꢊ  
RYHUWHPSHUDWXUHꢊRU  
RYHUYROWDJH  
)RUFHG  
1RUPDO  
2II  
2YHUORDG  
)10&ꢊ  ꢊꢇ  
QRꢊRYHUWHPSHUDWXUHꢊDQGꢊ  
QRꢊRYHUYROWDJH  
SRZHUꢊRQ  
07319ꢊSURJUDPPLQJ  
RUꢊ9ꢇꢊXQGHUYROWDJH  
5HVHW  
5&&ꢊRYHUIORZꢊ  
)63  
6OHHSꢊGLVDEOHG  
ꢈ6/3&ꢊ ꢊꢇꢉꢊ  
DQ\ꢊUHVHW  
HYHQW  
5&&ꢊꢑꢊꢅꢊRQ  
ZDNHꢋXSꢊ25  
LQWHUUXSWꢊSHQGLQJꢊ25  
QRꢊDFWLYHꢊZDNHꢋXSꢊVRXUFH  
DQ\ꢊUHVHW  
HYHQW  
6/3&ꢊ ꢊꢐꢊ  
HQWHULQJ  
5HVHWꢊPRGH  
63,  
1RUPDO  
6WDQGE\  
6OHHS  
63,  
6/3&ꢊ ꢊꢐ  
63,  
63,  
6/3&ꢊ ꢊꢐ  
DDDꢄꢀꢅꢅꢆꢇꢅ  
Fig 4. UJA113x system controller  
7.1.1.4 Sleep mode  
Sleep mode is a low-power mode similar to Standby mode. However, V1 is switched off in  
Sleep mode.  
Sleep mode is selected from Normal or Standby mode via an SPI command (MC = 001).  
The SBC switches to Sleep mode when this command is received, provided there are no  
pending interrupts or wake-up events and at least one regular wake-up source is enabled  
(see Section 7.12.2). Any attempt to enter Sleep mode while one of these conditions has  
not been met will trigger a system reset and set the reset source status bits (RSS) to  
10100 (‘illegal Sleep mode command received’; see Table 6).  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
14 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Sleep mode can be deactivated by setting the Sleep control bit (SLPC) in the SBC  
configuration register to 1 (see Table 9). This register is located in the non-volatile  
memory area of the device. When this bit is set to 1, the Sleep mode command is ignored.  
No other SBC functions are affected.  
If the reset counter overflows when the SBC is in Reset mode, it switches to Forced Sleep  
Preparation (FSP) mode. The reset counter is cleared and limp home activated in FSP  
mode. The SBC then switches automatically to Sleep mode, provided SLPC = 0 (if  
SLPC = 1, it returns to Reset mode).  
Since V1 is off in Sleep mode, the only way the SBC can exit Sleep mode is via a wake-up  
event. This can be a regular or a diagnostic wake-up event (see Section 7.12).  
7.1.1.5 Overload mode  
Overload mode is provided to prevent the device being damaged in critical situations. The  
SBC switches immediately to Overload mode:  
from any mode other than Off mode if the global chip temperature rises above the  
overtemperature protection activation threshold, Tth(act)otp  
if the battery voltage remains above the overvoltage detection threshold (Vth(det)ov) for  
longer than the overvoltage detection time, tdet(ov)  
The SBC generates overtemperature and overvoltage/load dump shutdown warning  
interrupts to help prevent the loss of data in the microcontroller memory in the event of a  
critical overtemperature/overload event (see Section 7.6 and Section 7.8.3).  
In Overload mode, the voltage regulators are switched off, pin RSTN is driven LOW and  
the limp home control bit, LHC, is set to 1 so that the LIMP pin is driven LOW (see  
Section 7.5). In addition, the SMPS is off, the bus systems are in a high-resistive state and  
the HVIOs are in a fail-safe state (see Section 7.10.4).  
The SBC exits Overload mode when,  
the global chip temperature is below Tth(rel)otp and VBAT < Vth(det)ov  
the device is forced to Off mode (supply voltage < Vth(det)poff  
)
After leaving Overload mode, the SBC generates a system reset and enters Standby  
mode.  
7.1.1.6 Reset mode  
The SBC switches to Reset mode in response to a reset event (see Section 7.3). This  
ensures that pin RSTN is pulled down for a defined period to allow the microcontroller to  
start up in a controlled manner. In addition, Reset mode provides a number of fail-safe  
features including a reset counter and a reset watchdog.  
The SBC exits Reset mode if:  
the device is forced to Off or Overload mode  
the reset event has been processed and pin RSTN has been switched HIGH again;  
the SBC then switches to Standby mode  
the reset counter overflows causing the SBC to switch to Sleep mode via FSP mode  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
15 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.1.1.7 Forced Sleep Preparation (FSP) mode  
FSP mode is an intermediate state that is activated in the event of a serious system  
failure. In FSP mode, all control settings are reset to safe values to avoid deadlocks and to  
ensure that the system starts up correctly once the failure condition has been eliminated.  
In FSP mode, all pending interrupts are cleared and all regular interrupt sources are  
activated (see Table 56). In addition, bit LHC bit is set to 1 to activate the limp home  
function (See Table 12).  
The SBC switches to FSP mode from Reset mode if the reset counter overflows.  
7.1.1.8 Forced Normal mode  
Forced Normal mode is a test mode intended for initial prototyping and device evaluation  
in the laboratory. It simplifies SBC testing, is useful for failure detection and can be used  
for first factory flashing of the microcontroller during production.  
The CAN and LIN transceivers, the SMPS, V1 and V2 are on in Forced Normal mode. The  
HVIOs and the watchdog are disabled and there is limited access to the SPI registers.  
Only the Main status register (address 0x03), the Watchdog status register (address  
0x05), the Identification registers (addresses 0x7E and 0x7F) and the registers in  
non-volatile memory (addresses 0x70 and 0x75) can be read. The non-volatile memory  
can be reprogrammed provided the SBC is in the factory preset state (see Section 7.13  
for details).  
The SBC switches to Forced Normal mode after power-on if bit FNMC in the SBC  
configuration and control register (Table 9) is set to 1. After the initial power-on reset  
sequence has been completed, system reset is disabled. So the SBC cannot force a reset  
and will not react to external reset events.  
The SBC exits Forced Normal mode if:  
the non-volatile memory is (re-)programmed  
the SBC switches to Overload or Off mode  
A system reset is performed when the SBC exits Forced Normal mode.  
7.1.1.9 Hardware characterization for the SBC operating modes  
Note that the digital interface pins may be inactive when the voltage on V1 drops below  
the V1 undervoltage threshold (see Section 7.8.5.1).  
Table 4.  
Block  
Hardware characterization by functional block  
Operating mode  
Off  
Forced  
Normal  
Standby  
Normal  
Sleep  
Reset  
Overload FSP  
V1  
off  
on  
on  
off  
on  
V2C[1]  
on  
V2C[1]  
off  
V2C[1]  
on  
V2C[1]  
off  
off  
on  
V2C[1]  
V2/VEXT off  
HVIOn[2] off  
HVIOn control HVIOn control HVIOn  
HVIOn  
control  
fail-safe  
state[4]  
HVIOn  
control  
register;  
low-side  
drivers  
register[3]  
control  
register;  
low-side  
drivers  
register;  
low-side  
drivers  
register;  
low-side  
drivers  
disabled[3]  
disabled[3]  
disabled[3]  
disabled[3]  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
16 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 4.  
Block  
Hardware characterization by functional block …continued  
Operating mode  
Off  
Forced  
Normal  
Standby  
Normal  
Sleep  
Reset  
Overload FSP  
SMPS  
CAN  
off  
on (default SMPS control SMPS control SMPS  
on  
off  
on  
voltage)  
register[5]  
register[5]  
control  
register[5]  
CAN Off CAN Active/ CAN Offline/  
CAN Listen- CAN Offline  
CAN Active/  
CAN Offline/  
CAN Offline  
Bias/ CAN  
Listen-only/  
CAN Off if  
CAN shut  
down  
CAN Offline/ CANOffline/ CAN Off  
CAN Offline CAN Offline  
Bias  
CAN Offline/  
CAN Offline  
Bias  
only  
Bias/ CAN  
Listen-only[6]  
Bias  
condition  
true[6]  
LIN1/  
LIN Off LIN Active LIN Offline/ LIN LIN Active/ LIN LIN Offline  
LIN Offline  
ENC/  
LIN Off  
off  
LIN Offline  
LIN2[7]  
Listen-only[8]  
Listen-only/  
LIN Offline[8]  
EN  
off  
off  
ENC/ENDC[9]  
ENC/ENDC[9] ENC/  
ENC/  
ENDC[9]  
ENDC[9][10] ENDC[9]  
RSTN  
LIMP  
LOW  
HIGH  
HIGH  
LHC[11]  
HIGH  
LHC[11]  
LOW  
LHC[11]  
LOW  
LHC[11]  
LOW  
LOW  
floating floating  
LHC = 1  
LHC = 1  
RXDC  
pull-up CAN status pull-up to V1;  
CAN status if pull-up to V1 pull-up to  
pull-up to pull-up to V1  
V1  
to V1  
LOW if CAN  
CMC = 01/10;  
V1/LOW if  
CAN  
wake-up; CAN otherwise  
status if  
CMC = 11  
same as  
Standby  
wake-up  
RXDL1/  
pull-up LIN status  
pull-up to V1;  
LOW if LIN  
wake-up; LIN  
status if  
LIN status if  
LMC = 01/10;  
otherwise  
same as  
pull-up to V1 pull-up to  
V1/LOW if  
pull-up to pull-up to V1  
V1  
RXDL2[7] to V1  
LIN wake-up  
LMC = 11  
Standby  
SPI  
disabled limited  
active  
active  
disabled  
WMC[12]  
disabled  
off  
disabled  
off  
disabled  
off  
access  
Watchdog off  
off  
WMC[12]  
WMC[12]  
[1] Determined by the setting of bits V2C in the Regulator control register (see Table 25).  
[2] HVIO availability depends on the device variant (see Table 1).  
[3] Determined by the settings in the relevant HVIO control register (see Section 7.10.7).  
[4] See Section 7.10.4.  
[5] Determined by the settings in the SMPS control register (see Table 23).  
[6] Determined by the setting of bits CMC in the CAN control register (see Table 26).  
[7] Availability of LIN2 depends on the device variant (see Table 1).  
[8] Determined by the setting of bits LMCn in the LIN control register (see Table 27).  
[9] Determined by the settings of bits ENC and ENDC in the Fail-safe control register (see Table 12).  
[10] Since V1 is off, EN can only operate as open-drain output in Sleep mode  
[11] Determined by the setting of bit LHC in the Fail-safe control register (see Table 12).  
[12] Determined by the setting of bits WMC in the Watchdog control register (see Table 7).  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
17 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.1.2 System control registers  
The operating mode is selected via bits MC in the Mode control register. The Mode control  
register is accessed via SPI address 0x01 (see also Section 7.16.2).  
Table 5.  
Bit  
Mode control register (address 01h)  
Symbol  
reserved  
MC  
Access  
R
Value  
-
Description  
7:3  
2:0  
R/W  
001  
100  
111  
Sleep mode  
Standby mode  
Normal mode  
The Main SBC status register can be accessed to monitor the status of the  
overtemperature warning flag and to determine whether the SBC has entered Normal  
mode after power-up. It also indicates the source of the most recent reset event.  
Table 6.  
Main SBC status register (address 03h)  
Bit  
7
Symbol  
reserved  
OTWS  
Access  
Value  
Description  
R
R
-
6
0
1
0
1
IC temperature below overtemperature warning threshold  
IC temperature above overtemperature warning threshold  
SBS has entered Normal mode (after leaving Off mode)  
SBS powered up but has not yet switched to Normal mode  
source of most recent reset event:  
5
NMS  
RSS  
R
R
4:0  
00000  
00001  
00010  
00011  
00100  
00101  
00110  
00111  
01000  
01001  
01010  
01011  
01100  
01101  
01110  
01111  
10000  
10001  
10010  
10011  
10100  
10101  
exited Off mode (power-on)  
CAN wake-up detected in Sleep mode  
LIN1 wake-up detected in Sleep mode  
LIN2 wake-up detected in Sleep mode (if LIN2 is available)  
HVIO1 wake-up detected in Sleep mode (if dedicated HVIO is available)  
HVIO2 wake-up detected in Sleep mode (if dedicated HVIO is available)  
HVIO3 wake-up detected in Sleep mode (if dedicated HVIO is available)  
HVIO4 wake-up detected in Sleep mode (if dedicated HVIO is available)  
HVIO5 wake-up detected in Sleep mode (if dedicated HVIO is available)  
HVIO6 wake-up detected in Sleep mode (if dedicated HVIO is available)  
HVIO7 wake-up detected in Sleep mode (if dedicated HVIO is available)  
HVIO8 wake-up detected in Sleep mode (if dedicated HVIO is available)  
watchdog overflow in Sleep mode  
diagnostic wake-up in Sleep mode  
watchdog triggered too early  
watchdog overflow  
illegal watchdog mode control access  
RSTN pulled down externally  
leaving Overload mode  
V1 undervoltage event  
illegal Sleep mode command received  
wake-up after leaving FSP mode  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
18 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.2 Watchdog  
The UJA113x contains a watchdog that supports three operating modes: Window,  
Timeout and Autonomous. In Window mode (available only in SBC Normal mode), a  
watchdog trigger event within a closed watchdog window resets the watchdog timer. In  
Timeout mode, the watchdog runs continuously and can be reset at any time within the  
time-out time by a watchdog trigger. Watchdog Timeout mode can also be used for cyclic  
wake-up of the microcontroller. In Autonomous mode, the watchdog can be off or in  
Timeout mode.  
The watchdog mode and watchdog period are selected via the Watchdog control register  
(Table 7) and can only be changed when the SBC is in Standby mode.  
The watchdog mode is selected via bits WMC. If Window mode is selected (WMC = 100),  
the watchdog remains in (or switches to) Timeout mode until the SBC enters Normal  
mode. Any attempt to change the watchdog operating mode (via WMC) while the SBC is  
in Normal mode will cause the UJA113x to switch to Reset mode and the reset source  
status bits (RSS) will be set to 10000 (‘illegal watchdog mode control access’; see  
Table 6).  
Eight watchdog periods are supported, from 8 ms to 4096 ms. The watchdog period is  
programmed via bits NWP. The selected period is valid for both Window and Timeout  
modes. The default watchdog period is 128 ms.  
A watchdog trigger event resets the watchdog timer. A watchdog trigger event is any valid  
write access to the Watchdog control register. If the watchdog mode or the watchdog  
period have changed as a result of the write access, the new values are valid immediately.  
Table 7.  
Watchdog control register (address 00h)  
Bit  
Symbol  
Access Value  
Description  
7:5  
WMC  
R/W  
watchdog mode control:  
Autonomous mode  
Timeout mode  
001[1]  
010[2]  
100[3]  
Window mode  
4
reserved  
NWP  
R
-
3:0  
R/W  
nominal watchdog period  
1000  
0001  
0010  
1011  
0100[2]  
1101  
1110  
0111  
8 ms  
16 ms  
32 ms  
64 ms  
128 ms  
256 ms  
1024 ms  
4096 ms  
[1] Default value if SDMC = 1 (see Section 7.2.1)  
[2] Default value.  
[3] Selected in Standby mode but only activated when the SBC switches to Normal mode.  
The watchdog is a valuable safety mechanism, so it is critical that it is configured correctly.  
Two features are provided to prevent watchdog parameters being changed by mistake:  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
19 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
redundant states associated with configuration bits WMC and NWP  
reconfiguration protection in Normal mode  
Redundant states associated with control bits WMC and NWP ensure that a single bit  
error cannot cause the watchdog to be configured incorrectly (at least 2 bits must be  
changed to reconfigure WMC or NWP). If an attempt is made to write an invalid code to  
WMC or NWP (e.g. 011 or 1001 respectively), the SPI operation is abandoned and an SPI  
failure interrupt is generated, if enabled (see Section 7.12).  
Two operating modes have a major impact on the operation of the watchdog: Forced  
Normal mode and Software Development mode (Software Development mode is provided  
for test purposes and is not an SBC operating mode; the UJA113x can be in any mode  
with Software Development mode enabled; see Section 7.2.1). These modes are enabled  
and disabled via bits FNMC and SDMC respectively in the SBC configuration control  
register (see Table 9). This register is located in the non-volatile memory area (see  
Section 7.13). In Forced Normal mode (FNM), the watchdog is disabled. In Software  
Development mode (SDM), the watchdog can be disabled or activated for test purposes.  
Information on the status of the watchdog is available from the Watchdog status register  
(Table 10). This register also indicates whether Forced Normal and Software  
Development modes are active.  
Table 8.  
Summary of watchdog settings  
System controller state  
Watchdog configuration  
SDMC = x  
SDMC = x  
SDMC = 0  
SDMC = 1  
WMC = 100  
(Window)  
WMC = 010[1] WMC = 001  
WMC = 001[2]  
(Autonomous)  
(Timeout)  
Timeout  
Timeout  
Timeout  
Timeout  
off  
(Autonomous)  
Normal mode  
Window  
Timeout  
off  
off  
off  
off  
off  
off  
off  
Standby mode (INTN1 HIGH) Timeout  
Standby mode (INTN1 LOW) Timeout  
Timeout  
off  
Sleep mode  
Timeout  
off  
Forced Normal mode  
Other modes  
off  
off  
off  
off  
[1] Default value if SDMC = 0  
[2] Default value if SDMC = 1  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
20 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 9.  
SBC configuration control register (address 74h)  
This table is located in non-volatile memory with restricted write access.  
Bit Symbol  
Access Value Description  
7:6 reserved  
R
-
5:4 V1RTSUC R/W  
V1 reset threshold (defined by bit V1RTC) at start-up:  
00[1]  
01  
V1 undervoltage detection at 90 % of nominal value at  
start-up (V1RTC = 00)  
V1 undervoltage detection at 80 % of nominal value at  
start-up (V1RTC = 01)  
10  
V1 undervoltage detection at 70 % of nominal value at  
start-up (V1RTC = 10)  
11  
V1 undervoltage detection at 60 % of nominal value at  
start-up (V1RTC = 11)  
3
2
1
FNMC  
R/W  
R/W  
R/W  
0
Forced Normal mode disabled  
1[1]  
0[1]  
1
Forced Normal mode enabled  
SDMC  
Software development mode disabled  
Software development mode enabled  
VEXTAC  
0[1]  
regulator V2 can be used as a sensor supply via pin VEXT,  
provided pin V2 is left floating  
1
regulator V2 not protected against shorts to higher voltages;  
pin V2 must be shorted to pin VEXT  
0
SLPC  
R/W  
0[1]  
1
Sleep mode supported  
Sleep mode not supported  
[1] Factory preset value.  
Table 10. Watchdog status register (address 05h)  
Bit  
7:4  
3
Symbol  
reserved  
FNMS  
Access Value Description  
R
R
-
0
1
0
1
SBC is not in Forced Normal mode  
SBC is in Forced Normal mode  
SBC is not in Software Development mode  
SBC is in Software Development mode  
watchdog status:  
2
SDMS  
WDS  
R
R
1:0  
00  
01  
10  
11  
watchdog is off  
watchdog is in first half of window  
watchdog is in second half of window  
reserved  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
21 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.2.1 Software development mode  
Software Development mode is provided to simplify the software design process. When  
Software Development mode is enabled, the watchdog starts up in Autonomous mode  
(WMC = 001) and is inactive after a system reset, overriding the default value (see  
Table 7). The watchdog is always off in Autonomous mode if Software Development mode  
is enabled (SDMC = 1; see Table 9).  
Software can be run without a watchdog in Software Development mode. However, it is  
possible to activate and deactivate the watchdog for test purposes by selecting Window or  
Timeout mode via bits WMC while the SBC is in Standby mode (note that Window mode  
will only be activated once the SBC switches to Normal mode). Software Development  
mode is activated via bits SDMC in non-volatile memory (see Table 9).  
7.2.2 Watchdog behavior in Window mode  
The watchdog runs continuously in Window mode. The watchdog is in Window mode  
when WMC = 100 and the UJA113x is in Normal mode.  
In Window mode, the watchdog can only be triggered during the second half of the  
watchdog period. If the watchdog overflows, or is triggered in the first half of the watchdog  
period (before ttrig(wd)1), a system reset is performed. If the watchdog is triggered in the  
second half of the watchdog period (after ttrig(wd)1 but before ttrig(wd)2), the watchdog timer  
is restarted.  
7.2.3 Watchdog behavior in Timeout mode  
The watchdog runs continuously in Timeout mode. The watchdog is in Timeout mode  
when WMC = 010 and the UJA113x is in Normal, Standby or Sleep mode. The watchdog  
will also be in Timeout mode if WMC = 100 and the UJA113x is in Standby or Sleep mode.  
If Autonomous mode is selected (WMC = 001), the watchdog will be in Timeout mode if  
one of the conditions for Timeout mode listed in Table 8 has been satisfied.  
In Timeout mode, the watchdog can be triggered at any time up to ttrig(wd)2 after the start of  
the watchdog period. If the watchdog overflows (t > ttrig(wd)2), the watchdog interrupt bit  
(WDI) in the System interrupt status register (Table 58) is set. If a WDI is already pending,  
a system reset is performed. In Timeout mode, the watchdog can be used as a cyclic  
wake-up source for the microcontroller when the UJA113x is in Standby or Sleep mode. In  
Sleep mode, a watchdog overflow generates a wake-up event.  
7.2.4 Watchdog behavior in Autonomous mode  
Autonomous mode is selected when WMC = 001. In Autonomous mode, the watchdog is  
either off or in Timeout mode, according to the conditions detailed in Table 8.  
When Autonomous mode is selected, the watchdog will be in Timeout mode if the SBC is  
in Normal mode and Software Development mode is disabled (SDMC = 0). If the SBC is  
in Standby mode, the watchdog will be in Timeout mode if INTN1 is LOW and SDMC = 0.  
Otherwise the watchdog will be off.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
22 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.2.5 Exceptional behavior of the watchdog after writing to the Watchdog register  
A successful write operation to the Watchdog control register resets the watchdog timer.  
Bits WDS are set to 01 and the watchdog restarts at the beginning of the watchdog period  
(regardless of the selected watchdog mode). However, the watchdog may restart  
unexpectedly in the second half of the watchdog period or a WDI interrupt may be  
generated under the following conditions.  
Case A: When the watchdog is running in Timeout mode (see Table 8) and a new  
watchdog period is selected (via bits NWP) that is shorter than the existing watchdog  
period, one of both of the following events may occur.  
Status bits WDS can be set to 10. When this happens, the timer restarts at the  
beginning of the second half of the watchdog period, causing the watchdog to overflow  
earlier than expected. This can be avoided by writing the new NWP (or NWP + WMC)  
code twice whenever the watchdog period needs to be changed. The write commands  
should be sent consecutively. The gap between the commands should be at least  
td(W)SPI, but less than half of the new watchdog period.  
If the watchdog is in the second half of the watchdog period when the watchdog period  
is changed, the timer will be reset correctly. The watchdog will restart at the beginning of  
the watchdog period and WDS will be set 01. However, a WDI interrupt may be  
generated unexpectedly. To counteract this effect, the WDI interrupt should be cleared  
by default after the new watchdog period has been selected. The gap between this  
command and the two write commands discussed above should not be less than  
td(W)SPI.  
Case B: If the watchdog is triggered in Timeout mode (see Table 8) at exactly the same  
time that WDS is set to 10, it will start up again in the second half of the watchdog period.  
As in Case A, this will cause the watchdog to overflow earlier than expected. This  
behavior appears identical to an ignored watchdog trigger event and can be avoided by  
issuing two consecutive watchdog commands. The gap between the commands should  
be at least td(W)SPI and the second command should be issued before the end of the first  
half of the watchdog period. It is recommended to use this trigger scheme if it is possible  
that the watchdog could be triggered exactly in the middle of the watchdog window.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
23 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.3 System reset  
When a system reset occurs, the SBC switches to Reset mode and initiates a process  
that generates a low-level pulse on pin RSTN.  
When the UJA113x enters Reset mode, the value stored in the reset counter (RCC) is  
checked. If RCC < 3, the reset counter is incremented (bits RCC = RCC + 1; see  
Table 12). Pin RSTN is then pulled LOW for the selected reset length (tw(rst)) to begin the  
reset process. The reset length is determined by bits RLC in the Start-up control register  
(Table 11). When the reset timer expires, RSTN is released and the SBC switches to  
Standby mode.  
\HV  
5&&ꢂ ꢂꢁ"  
QR  
ꢅꢅ5&&  
LIꢂVXSSO\ꢂRN  
)63ꢊPRGH  
UHVHWꢊWLPHꢋRXW  
WLPHUꢊH[SLUHG  
5671ꢂ/2:  
IRUꢂW  
ZꢃUVWꢄ  
9ꢇꢊXQGHUYROWDJH  
UHVHWꢊWLPHꢋRXW  
WLPHUꢊH[SLUHG  
5671ꢂ+,*+"  
\HV  
ꢀꢁꢂDDDꢇꢅꢈ  
6WDQGE\ꢊPRGH  
Fig 5. Reset process during a system reset  
The reset counter ensures that repeated reset events are detected. If RCC is equal to 3  
when the UJA113x enters Reset mode, the SBC assumes that a serious failure has  
occurred and switches to FSP mode, enabling the limp home function (see Section 7.5).  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
24 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
When the system is running correctly, it is expected that the reset counter will be reset  
(RCC = 00) periodically by the system software to ensure that routine reset events do not  
cause it to overflow. When the battery supply voltage is low (VBATSMPS < Vuvd(BATSMPS)),  
the reset counter is not incremented. This precaution ensures that the system starts up  
properly when the supply voltage is low.  
The voltage on V1 is monitored throughout the reset process. If a V1 undervoltage is  
detected, the reset timer is restarted. The reset process is also monitored by a reset  
time-out timer. The reset time-out timer ensures that deadlock is avoided in Reset mode,  
e.g. due to a permanently low V1 supply. If the reset process has not been completed by  
the time the reset time-out timer expires (after tto(rst)), the reset counter is incremented.  
The reset process is then restarted if RCC < 3. If RCC = 3, the SBC switches to FSP  
mode.  
7.3.1 Characteristics of pin RSTN  
Pin RSTN is a bidirectional open-drain low-side driver with integrated pull-up resistance,  
as shown in Figure 6. With this configuration, the SBC can detect the pin being pulled  
down externally, e.g. by the microcontroller. The input reset pulse width must be at least  
tw(rst)  
.
9ꢇ  
5671  
ꢀꢁꢂDDDꢅꢉꢈ  
Fig 6. RSTN internal pin configuration  
7.3.2 Selecting the output reset pulse width  
The duration of the output reset pulse is selected via bits RLC in the Start-up control  
register (Table 11), which is located in non-volatile memory. The SBC distinguishes  
between a cold start and a warm start. A cold start is performed on start-up if the reset  
event was generated by a V1 undervoltage event (the V1 undervoltage threshold is  
defined by bits V1RTC; see Table 25). This happens when the SBC exits Off, Overload  
and Sleep modes. The output reset pulse width for a cold start is determined by the  
setting of bits RLC.  
If the reset event was not triggered by a V1 undervoltage (e.g by a warm start of the  
microcontroller), the SBC always uses the shortest reset length (tw(rst) = 1 ms to 1.5 ms).  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
25 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 11. Start-up control register (address 73h)  
This table is located in non-volatile memory with restricted write access.  
Bit Symbol  
7:6 reserved  
5:4 RLC  
Access Value  
Description  
R
-
R/W  
RSTN output reset pulse width:  
tw(rst) = 20 ms to 25 ms  
00[1]  
01  
tw(rst) = 10 ms to 12.5 ms  
10  
tw(rst) = 3.6 ms to 5 ms  
11  
tw(rst) = 1 ms to 1.5 ms  
3
2
1
0
V2SUC  
IO4SFC  
IO3SFC  
IO2SFC  
R/W  
R/W  
R/W  
R/W  
V2 start-up control:  
0[1]  
1
bits V2C set to 00 at power-up (default)  
bits V2C set to 11 at power-up  
HVIO4 configuration control:  
0[1]  
1
pin HVIO4 configured as a standard I/O pin  
HVIO4 limp home function enabled  
HVIO3 configuration control:  
0[1]  
1
pin HVIO3 configured as a standard I/O pin  
HVIO3 limp home function enabled  
HVIO2 configuration control:  
0[1]  
1
pin HVIO2 configured as a standard I/O pin  
HVIO2 limp home function enabled  
[1] Factory preset value.  
7.3.3 Reset sources  
The following events cause the SBC to switch to Reset mode:  
VV1 drops below the selected V1 undervoltage threshold defined by bits V1RTC  
pin RSTN is pulled down externally  
the watchdog overflows in Window mode  
the watchdog is triggered too early in Window mode (before ttrig(wd)1  
)
the watchdog overflows in Timeout mode while a watchdog interrupt (WDI) is pending  
an attempt is made to reconfigure the Watchdog control register while the SBC is in  
Normal mode  
the SBC leaves Off mode  
the SBC leaves Overload mode  
the SBC leaves Sleep mode (local or bus wake-up)  
a Sleep mode command is received while an interrupt is pending (INTN1 LOW; see  
Section 7.12.3)  
a Sleep mode command is received while no regular interrupt is selected (see  
Section 7.12.3)  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
26 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.4 EN output  
The EN pin can be used to control external hardware, such as power components, or as a  
general-purpose output when the system is running properly.  
The EN pin is a V1-based digital output driver. It can be configured via bit ENDC in the  
Fail-safe control register as a push-pull output driver or as an open-drain low side driver.  
The functionality is identical in both configurations. The only difference is that the pin is left  
floating if the open-drain option is selected and pulled up otherwise.  
The output signal on pin EN is configured via bit ENC as follows:  
ENC = 00: EN is permanently LOW  
ENC = 01: EN is HIGH when the SBC is in Normal, Reset and Standby modes  
ENC = 10: EN is HIGH when the SBC is in Normal mode  
ENC = 11: EN is controlled by Timer 2  
If the high-side driver is deactivated (ENDC = 1), a pull-up resistor is needed from EN to  
V1, regardless of the value of ENC.  
The EN pin can be used to deactivate external hardware in the event of a battery over- or  
undervoltage when the SBC is in Normal mode (see also Section 7.8.2). This function is  
enabled/disabled via bits ENSC (see Table 12). When this function is enabled, the EN pin  
is driven low when the battery supply is outside its specified operating range (see  
Table 12). When this happens, the settings of bits ENC are ignored.  
7.4.1 Fail-safe control register  
The Fail-safe control register contains the reset counter along with EN and limp home  
control settings.  
Table 12. Fail-safe control register (address 02h)  
Bit  
Symbol  
Access Value Description  
7:6  
ENSC  
R/W  
EN shut-down control:  
00  
01  
10  
11  
EN pin not influenced by battery over- or undervoltage  
EN pin driven LOW when battery undervoltage detected  
EN pin driven LOW when battery overvoltage detected  
EN pin driven LOW when battery over- or undervoltage  
detected  
5
ENDC  
ENC  
R/W  
R/W  
EN high-side driver activation:  
0
1
EN high-side driver enabled; push-pull output  
EN high-side driver disabled; pin configured as an  
open-drain low-side driver  
4:3  
EN output configuration:  
00  
01  
EN is driven permanently LOW  
EN is HIGH (or floating if ENDC = 1) when the SBC is in  
Normal, Reset and Standby modes  
10  
11  
EN is HIGH (or floating if ENDC = 1) when the SBC is in  
Normal mode  
EN is controlled by Timer 2  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
27 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 12. Fail-safe control register (address 02h) …continued  
Bit  
Symbol  
Access Value Description  
2
LHC  
R/W  
LIMP output configuration:  
LIMP pin is floating  
0
1
LIMP pin is driven LOW  
1:0  
RCC  
R/W  
xx  
reset counter; incremented at every system reset if  
VBATSMPS > Vuvd(BATSMPS); maximum value is 3  
7.5 Limp home function  
The LIMP pin can be used to enable so called ‘limp home’ hardware in the event of an  
ECU failure. Detectable failure conditions include SBC overtemperature events, loss of  
watchdog service, short circuits on pins RSTN or V1 and user-initiated or external reset  
events. The LIMP pin is a battery-related, active-LOW, open-drain output.  
The LIMP pin is activated automatically (via bit LHC in the Fail-Safe control register;  
Table 12) as the soon as the SBC enters Overload Mode or switches to FSP mode after  
multiple reset events. Alternatively, the host controller can activate the LIMP output  
directly by setting bit LHC via the SPI.  
Bit LHC is cleared automatically when the SBC enters Off mode. In SBC active modes, it  
is assumed that the host controller will clear bit LHC via the SPI. When bit LHC is cleared,  
the LIMP pin is immediately released.  
In addition to the LIMP pin, an advanced limp home function has been implemented via  
pins HVIO2, HVIO3 and HVIO4 (see Section 7.10.6). These pins can be configured  
individually as ‘limp home’ or standard I/O pins via the Start-up control register (see  
Table 11), which is located in the non-volatile memory area.  
Pin HVIO2 can be used as an additional static LIMP signal. The difference between this  
pin and the LIMP pin is that HVIO2 activates its high-side driver to allow the dedicated  
limp home hardware to be supplied directly.  
The high-side driver of HVIO3 can be used to drive a PWM signal with a 10 % duty cycle  
and a period of 100 Hz when configured as a limp home output. HVIO4 provides a slow  
1.25 Hz clock with a 50 % duty cycle that can be used for hazard light control.  
7.6 Global temperature protection  
The temperature of the UJA113x is monitored continuously. The SBC switches to  
Overload mode when the global chip temperature rises above the overtemperature  
protection activation threshold, Tth(act)otp. When this event happens, pin RSTN is driven  
LOW and limp home is activated (pin LIMP is driven low; HVIO2/HVIO3/HVIO4 limp home  
functionality is triggered if enabled). In addition, the SMPS, the CAN and LIN transceivers  
and all voltage regulators are switched off. The HVIO pins are set to fail-safe state (see  
Section 7.10.4). When the global chip temperature falls below the overtemperature  
protection release threshold, Tth(rel)otp, the SBC switches to Standby mode via Reset  
mode.  
The SBC can be configured to issue an overtemperature warning. When the global chip  
temperature rises above the overtemperature warning threshold (Tth(warn)otp), the SBC  
generates an OTWI interrupt, if enabled. It can also lower the output voltage of the SMPS  
to reduce power dissipation (see Section 7.8.4.6).  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
28 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.7 Register locking  
Sections of the register address map can be write-protected to protect against unintended  
modifications. Any attempt to overwrite a locked register results in the entire SPI  
command being ignored (even if part of the SPI command accesses unlocked registers).  
An SPI failure interrupt is generated (SPIFI = 1), if enabled. Note that this facility only  
protects locked bits from being modified via the SPI and will not prevent the UJA113x  
updating status registers etc.  
Table 13. Lock control register (address 0Ah)  
Bit Symbol Access Value Description  
7
6
reserved  
LK6C  
R
-
R/W  
lock control 6: address area 0x68 to 0x6F - data mask (FD  
versions only)  
0
1
SPI write-access enabled  
SPI write-access disabled  
5
4
LK5C  
LK4C  
R/W  
R/W  
lock control 5: address area 0x50 to 0x5F - Timer control  
SPI write access enabled  
0
1
SPI write access disabled  
lock control 4: address area 0x40 to 0x4F - HVIO5 to HVIO8  
control (if HVIO bank 1 available; see Section 7.10)  
0
1
SPI write access enabled  
SPI write access disabled  
3
LK3C  
R/W  
lock control 3: address area 0x30 to 0x3F - HVIO1 to HVIO4  
control (if HVIO bank 0 available; see Section 7.10)  
0
1
SPI write access enabled  
SPI write access disabled  
2
1
0
LK2C  
LK1C  
LK0C  
R/W  
R/W  
R/W  
lock control 2: address area 0x20 to 0x2F - transceiver control  
SPI write access enabled  
0
1
SPI write access disabled  
lock control 1: address area 0x10 to 0x1F - supply control  
SPI write access enabled  
0
1
SPI write access disabled  
lock control 0: address area 0x06 to 0x09 - general-purpose  
memory  
0
1
SPI write access enabled  
SPI write access disabled  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
29 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.8 Power supplies  
7.8.1 Battery supply pins  
The UJA113x contains a number of supply pins for suppling different SBC modules:  
BATSMPS supplies the SMPS and regulator V1  
BATV2 supplies regulator V2  
BATHS1 supplies HVIO1, HVIO2, HVIO3 and HVIO4 (if available)  
BATHS2 supplies HVIO5, HVIO6, HVIO7 and HVIO8 (if available)  
BAT supplies the LIN transceiver and is an input to the A/D converters  
An external diode is needed in series between the battery and any supply pin connected  
directly to the battery to protect the device against negative voltages.The battery pins can  
be supplied via different paths. A loss of supply at one or more of the battery pins will not  
damage the device.  
The internal circuitry is supplied via pin BAT or pin VSMPS. If both VBAT and VVSMPS fall  
below the power-off detection threshold, Vth(det)poff, the SBC switches immediately to Off  
mode. The voltage regulators and the internal logic are shut down in Off mode. The SBC  
switches from Off mode to Standby mode as soon as VBAT rises above the power-on  
detection threshold, Vth(det)pon. This event generates a power-on status interrupt (POSI) to  
inform the microcontroller that the UJA113x has left Off mode.  
7.8.2 Battery monitor  
The SBC contains a two-channel 10-bit ADC covering the 20 V full-scale range for  
monitoring the battery voltage. The ADC is used to measure the supply voltages on pins  
BAT and BATSENSE. If a series resistor and a capacitor are connected as shown in  
Figure 7, the supply voltage connected to the anode of the reverse polarity diode can be  
monitored via pin BATSENSE. The ADC conversion results are stored in bits BMBCD and  
BMSCD in, respectively, the VBAT and VBATSENSE conversion results registers  
(Table 18/Table 19 and Table 20/Table 21).  
An under- or overvoltage event on a selected ADC channel generates a battery monitor  
undervoltage (BMUI) or overvoltage (BMOI) interrupt (and optionally deactivates the CAN  
transceiver and peripheral loads connected to HVIOn/V2/VEXT or EN). The channel is  
selected via the battery monitor source control bit (BMSC) in the Battery monitor trigger  
source control register (Table 14). If BMSC = 0, an under- or overvoltage on pin BAT  
triggers an interrupt. If BMSC = 1, an under- or overvoltage on pin BATSENSE triggers an  
interrupt.  
The battery monitor under- and overvoltage thresholds are set via bits BMUTC and  
BMOTC (see Table 15 and Table 16). Under- and overvoltage threshold hysteresis levels  
are set via bits BMHUC and BMHOC (see Table 17). The under- and overvoltage status  
can be monitored via bits BMUVS and BMOVS in the Supply status register (Table 22).  
In order to minimize quiescent current consumption, battery monitoring is only enabled  
when the SBC is in Normal mode. When battery monitoring is deactivated, all related  
functions are unavailable.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
30 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
8-$ꢀꢀꢁ[  
LQWHUQDOꢊVXSSO\  
%$7  
EDWWHU\  
$'&&$3  
$'&  
%$76(16(  
ꢀꢁꢂDDDꢇꢅꢊ  
Fig 7. Battery monitoring circuit  
Table 14. Battery monitor event trigger source control register (address 11h)  
Bit Symbol Access Value Description  
7:1 reserved  
BMSC  
R
-
0
R/W  
trigger source for generating battery monitoring/overvoltage/  
undervoltage/shutdown events:  
0
1
voltage on BAT triggers an event  
voltage on BATSENSE triggers an event  
Table 15. Battery monitor undervoltage threshold control register (address 12h)  
Bit Symbol Access Value Description  
7:0 BMUTC R/W  
xxxxxxxx threshold for triggering a battery undervoltage event and  
BMUI interrupt; threshold = BMUTC[7:0]/255 20 V  
Table 16. Battery monitor overvoltage threshold control register (address 13h)  
Bit Symbol Access Value Description  
7:0 BMOTC R/W  
xxxxxxxx threshold for triggering a battery overvoltage event and  
BMOI interrupt; threshold = BMOTC[7:0]/255 20 V  
Table 17. Battery monitor hysteresis control register (address 14h)  
Bit Symbol Access Value Description  
7:4 BMHOC R/W  
xxxx  
battery monitor overvoltage threshold release level; release  
level = BMHOC[7:4] 4/255 20 V below threshold defined  
by BMOTC  
3:0 BMHUC R/W  
xxxx  
battery monitor undervoltage threshold release level; release  
level = BMHUC[3:0] 4/255 20 V below threshold defined  
by BMUTC  
Table 18. ADC conversion results for VBAT register 1 (address 15h)  
Bit Symbol Access Value Description  
7:0 BMBCD  
R
xxxxxxxx ADC conversion results for voltage measured on pin BAT;  
8 most significant bits  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
31 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 19. ADC conversion results for VBAT register 2 (address 16h)  
Bit Symbol Access Value  
Description  
7:3 reserved  
BMBCS  
R
-
2
ADC conversion results for VBAT read out via SPI:  
8 MSBs of BMBCD not read out via SPI  
8 MSBs of BMBCD read out via SPI  
0
1
1:0 BMBCD  
R
xx  
ADC conversion results for voltage measured on pin BAT;  
2 least significant bits  
Table 20. ADC conversion results for VBATSENSE register 1 (address 17h)  
Bit Symbol Access Value Description  
7:0 BMSCD  
R
xxxxxxxx ADC conversion results for voltage measured on pin  
BATSENSE; 8 most significant bits  
Table 21. ADC conversion results for VBATSENSE register 2 (address 18h)  
Bit Symbol Access Value  
Description  
7:3 reserved  
BMSCS  
R
-
2
ADC conversion results for VBATSENSE read out via SPI:  
8 MSBs of BMSCD not read out via SPI  
8 MSBs of BMSCD read out via SPI  
0
1
1:0 BMSCD  
R
xx  
ADC conversion results for voltage measured on pin  
BATSENSE; 2 least significant bits  
Table 22. Supply voltage status register (address 1Bh)  
Bit  
7:6  
5
Symbol Access Value Description  
reserved  
BMOVS  
R
R
-
overvoltage status of voltage on selected (via BMSC) event  
trigger source (BAT or BATSENSE):  
0
1
voltage below overvoltage threshold (defined by BMOTC)  
voltage above overvoltage threshold (defined by BMOTC)  
4
BMUVS  
R
undervoltage status of voltage on selected (via BMSC) event  
trigger source (BAT or BATSENSE):  
0
1
voltage above undervoltage threshold (defined by BMUTC)  
voltage below undervoltage threshold (defined by BMUTC)  
status of voltage on pin VSMPS:  
3
SMPSS  
VEXTS  
R
R
0
1
VVSMPS is within the regulation window  
VVSMPS is outside the regulation window  
status of VEXT pin:  
2:1  
00  
VVEXT ok (above undervoltage and below overvoltage  
thresholds)  
01  
10  
11  
VVEXT below undervoltage threshold  
VVEXT above overvoltage threshold  
VVEXT disabled  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
32 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 22. Supply voltage status register (address 1Bh) …continued  
Bit  
Symbol Access Value Description  
V1S V1 status:  
0
R
0
1
V1 output voltage above 90 % undervoltage threshold  
V1 output voltage below 90 % undervoltage threshold  
7.8.3 Overvoltage shut-down  
If the supply voltage remains above the overvoltage detection threshold (Vth(det)ov) for  
longer than tdet(ov), the SBC triggers an Overvoltage shut-down interrupt (OVSDI; see  
Table 56). Once the interrupt has been generated, the overvoltage shut-down timer is  
started and the SBC enters Overload mode after td(sd)ov  
.
If the supply voltage falls below the overvoltage release threshold (Vth(rel)ov) while the  
overvoltage shut-down timer is running, a system reset is generated when the timer  
expires and the SBC switches to Standby mode (via Reset mode; see Figure 4).  
A system reset is generated every time the SBC exits Overload mode. In all cases, the  
reset source is recorded as ‘leaving Overload mode’ (RSS = 10010; see Table 6).  
7.8.4 Buck and Boost converter (SMPS)  
All the active components of a SMPS are included in the UJA113x (only a single external  
coil and some capacitors are needed to obtain a functional SMPS). Three bootstrap  
capacitors are needed between pins CAPA and CAPB, BOOTH1 and L1 and between  
BOOTH2 and L2 (see Figure 31). The converter operating mode, Boost or Buck is  
selected automatically and depends on the supply voltage level and the load conditions.  
The SMPS configuration is shown in Figure 8.  
The SMPS is used as a pre-regulator for linear regulator V1. It can also be used as a  
pre-regulator for V2 or to supply an external load such as an LED chain.  
7.8.4.1 SMPS parameter selection and status monitoring  
The SMPS output voltage (between 5 V and 8 V) is selected via bits SMPSOC in the  
SMPS output voltage control register (Table 24). Since the SMPS is intended to operate  
as a pre-regulator for linear regulators V1 and/or V2, the output voltage must be set to a  
voltage higher than the output voltage(s) of V1 and/or V2. At power-on and when a pulse  
is detected on RSTN, the SMPS is enabled with the output voltage set to 6.0 V (the  
default value; see Table 87).  
The SMPS status can be monitored via bit SMPSS in the Supply voltage status register  
(Table 22). A regulation window is defined from VVSMPS(act) 60 mV to VVSMPS(act)  
+
60 mV. VVSMPS(act) is the actual value of the SMPS output voltage at DC load. SMPSS is  
set to 0 when VVSMPS is within the regulation window. SMPSS is set to 1 when VVSMPS is  
outside the regulation window for longer than tto(reg). This time-out is added because load  
transients may cause a short excursion of Vvsmps outside the 60 mV window while the  
SMPS is still in regulation and inside its specified limits. An SMPSSI interrupt is  
generated, if enabled (SMPSSIE = 1; see Table 66), when VVSMPS moves outside the  
regulation window.  
The SMPSS flag will be set/cleared when Vvsmps leaves/enters the regulation window  
because of a transition between switched mode and Pass-through mode. This includes  
transitions requested via SPI, automatic transitions caused by a too-low or too-high supply  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
33 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
voltage, and automatic transitions caused by a too-high output current. The SMPSS flag is  
disabled when the SMPS is in Pass-through mode and cannot trigger an SMPSSI  
interrupt.  
Table 23. SMPS control register (address 19h)  
Bit Symbol  
Access Value Description  
7:4 reserved  
R
-
3
SMPSOTC R/W  
SMPS overtemperature control:  
0
1
VVSMPS not modified when an overtemperature warning  
received (OTWI interrupt)  
VVSMPS automatically reduced to 5 V when the chip  
temperature is above the overtemperature warning  
threshold, Tth(warn)otp  
2
reserved  
R
-
1:0 SMPSC  
R/W  
SMPS on/off control:  
00  
01  
the SMPS is on in Normal, Standby and Reset modes  
and shut down in all other modes  
the SMPS is on in Normal, Standby, Reset and Sleep  
modes and shut down in all other modes  
10  
11  
reserved  
Pass-through mode is requested in Normal, Standby and  
Sleep modes  
Table 24. SMPS output voltage control register (address 1Ah)  
Bit Symbol  
7:4 reserved  
3:0 SMPSOC  
Access Value Description  
R
-
R/W  
SMPS output voltage (VVSMPS):  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
1100  
1101  
1110  
1111  
5.0 V  
5.2 V  
5.4 V  
5.6 V  
5.8 V  
6.0 V  
6.2 V  
6.4 V  
6.6 V  
6.8 V  
7.0 V  
7.2 V  
7.4 V  
7.6 V  
7.8 V  
8.0 V  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
34 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.8.4.2 Automatic up/down principle  
An up- and a down-converter are combined in the SMPS. The SMPS switches  
automatically and seamlessly between three operating modes, without affecting the  
performance.  
Buck mode: The converter will be in Buck mode when the required output voltage is  
significantly lower than the input voltage. In this mode, the coil terminal connected to pin  
L2 is permanently connected to the output, VSMPS, via internal switch S3 (see Figure 8).  
S1 and S2 are the buck converter switches.  
A buck converter uses significantly less energy than a linear regulator because the  
average input current is lower than the average output current.  
Boost mode: The converter will be in Boost mode when the required output voltage is  
higher than the input voltage. In this mode, the coil terminal connected to pin L1 is  
permanently connected to the input, pin BATSMPS, via internal switch S1. S3 and S4 are  
the boost converter switches. In Boost mode, the average input current is higher than the  
average output current.  
At very low input voltages, the load can be too great to maintain a constant output voltage,  
causing the output voltage to fall. Note that the boost current capability of the  
UJA1131/UJA1132 is higher than that of the UJA1135/UJA1136.  
Auto mode: The converter will be in Auto mode when the required output voltage is in the  
same range as the input voltage. In this mode, all four switches operate to maintain the  
output voltage at the correct level, independently of the input voltage.  
/
6036  
RXWSXW  
LQSXW  
&
6036  
'ꢆ  
6ꢅ  
6ꢇ  
&$3$  
&$3%  
6ꢆ  
6ꢄ  
'ꢇ  
8-$ꢀꢀꢁ[  
$8720$7,&ꢊ%8&.ꢊ$1'ꢊ%2267ꢊ02'(ꢊ&21752//(5  
ꢀꢁꢂDDDꢇꢇꢅ  
Fig 8. Configuring the automatic Buck and Boost mode controller  
Bootstrap cycle: In Buck, Boost and Auto modes, a bootstrap capacitor charge cycle is  
inserted after every 32nd PWM cycle. The duration of the charge cycle is 1/4 of a PWM  
cycle. During the bootstrap charge cycle, both sides of the coil are connected to ground.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
35 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
In Pass-through mode (see Section 7.8.4.4), a bootstrap charge cycle only occurs if one  
of the bootstrap voltages drops below the minimum voltage required to keep S1 and S3  
switched on properly. The bootstrap charge cycle frequency is automatically reduced to  
minimize quiescent current.  
7.8.4.3 Start-up and inrush currents  
The SMPS can start up at any battery voltage above the power-on level. It switches  
automatically to Boost, Buck or Auto mode as required by the battery voltage level and  
output voltage setting. The auto up/down mechanism allows for a controlled start-up, even  
when the input voltage is lower than the desired output voltage. Unlike a conventional  
boost-converter, the SMPS does not require a voltage at the output to start up.  
To avoid excessive inrush currents and coil saturation at start-up, the rate of increase of  
the coil current is limited by the switching control mechanism when the SMPS is starting  
up. This function also prevents overshoot at the output voltage during start-up.  
7.8.4.4 Pass-through mode operation  
When the output load is light, it may not be necessary to use the SMPS as a pre-regulator  
for V1 and/or V2 since the internal power dissipation will be relatively low, even when  
using linear regulators. For example, the microcontroller still needs to be supplied when  
the SBC is in Standby mode, even though it may be switched to a low-current mode.  
Pass-through mode is provided for such situations.  
In Pass-through mode, switches S1 and S3 are closed. The internal power consumption  
of the SMPS is negligible. The output voltage mirrors the input voltage, less the voltage  
drop across the coil and the switches.  
Pass-through mode is selected via bits SMPSC in the SMPS control register (Table 23).  
When SMPSC is set to 11, the UJA113x switches to Pass-through mode provided no  
over- or under-voltage is detected and the load current is below the pass-through  
overcurrent threshold, Ith(ocd)(VSMPS). The transition from a switching mode to  
Pass-through mode is made gradually to avoid overshoots and oscillations on VSMPS  
(see Section 7.8.4.5).  
Pass-through mode is automatically disabled and the SMPS is reactivated under any of  
the following conditions:  
undervoltage detected (VBATSMPS < Vuvd(BATSMPS)  
)
overvoltage detected (VBATSMPS > Vovd(BATSMPS)  
)
the chip temperature rises above the overtemperature warning threshold (Tth(warn)otp  
)
the load current exceeds the pass-through overcurrent threshold, Ith(ocd)(VSMPS)  
Undervoltage protection prevents a system reset being generated by a falling battery  
supply voltage. Overvoltage protection ensures that loads connected to the SMPS output  
are not exposed to the high voltages that could be generated during a jump start or load  
dump. Overvoltage protection also allows 16 V ceramic capacitors to be used at the  
SMPS output.  
When the chip temperature exceeds the overtemperature warning threshold, the SMPS is  
reactivated to reduce internal dissipation. If the load current exceeds the pass-through  
overcurrent threshold, Ith(ocd)(VSMPS), the SMPS is reactivated to limit the output current in  
the event of a short-circuit condition on the VSMPS pin.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
36 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
A timer is started as soon as the SMPS is activated. If the condition that caused the SMPS  
to leave Pass-through mode is removed before the timer expires (after td(act)), the return to  
Pass-through mode is postponed until the timer has expired (td(act) is the minimum time  
the SMPS spends in switched mode before a transition to Pass-through mode can be  
attempted).  
When the SMPS is active, it is not possible to determine if an overcurrent would be  
detected in Pass-through mode. So the SMPS will attempt to return to Pass-through mode  
after td(act) if Pass-through mode is still selected (SMPSC = 11) and no over- or  
under-voltage is present. If an overcurrent is detected, the SMPS will be activated again  
(after tt(sw-pt)). So a continuous overcurrent causes the SMPS to cycle through active and  
Pass-through modes with a period of td(act) + tt(sw-pt)  
.
Automatic transition in and out of Pass-through mode is illustrated in Figure 9.  
During the transition from Pass-through to an active SMPS operating mode, the voltage  
on the VSMPS pin remains above the selected output voltage. This precaution  
guarantees that the voltage regulator(s) remains in regulation and within specification. It  
also ensures that the system can withstand load current transients on the V1 regulator  
output from 0 mA to 500 mA in Standby mode.  
6036ꢊFRQWUROꢊELWꢊ6036&ꢊ ꢊꢇꢇ  
6036ꢊUHPDLQVꢊLQꢊ3DVVꢋWKURXJKꢊPRGH  
96036ꢊ  
9
 9  
 9  
%$76036ꢊ  RYGꢈ%$76036ꢉ  
XYGꢈ%$76036ꢉꢊ  
9
  9  
 %$76036  
,
 ,  
96036ꢊ  WKꢈRFGꢉꢈ96036ꢉ  
9
%$76036  
96036  
9
9
RYGꢈ%$76036ꢉ  
9
XYGꢈ%$76036ꢉ  
ꢈꢇꢉ  
9
96036ꢈ60362&ꢉ  
,
96036  
,
WKꢈRFGꢉꢈ96036ꢉ  
DDDꢄꢀꢀꢊꢆꢅꢇ  
(1) VVSMPS(SMPSOC) is the SMPS output voltage selected via bits SMPSOC  
Fig 9. The SMPS switches in and out of Pass-through mode automatically when activated (SMPSC = 11)  
7.8.4.5 Transitions to and from Pass-through mode  
When switching to Pass-through mode, the SMPS cannot simply close the two high-side  
switches (S1 and S3) as this would generate very large transient currents in the coil and a  
large output voltage overshoot. Instead, the SMPS controller slowly increase the duty  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
37 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
cycle. As soon as the controller detects a 100% duty cycle it stops switching and only  
generates filling pulses to keep the bootstrap capacitors charged. The time required to  
reach 100% duty cycle depends on the output load. The transition is always completed  
within tt(sw-pt). This behavior is illustrated in Figure 10.  
9
%$76036  
9
96036  
/ꢇ  
ꢈꢇꢉ  
ꢈꢆꢉ  
ꢈꢅꢉ  
GHWHUPLQHGꢊE\ꢊORDG  
W
WꢈVZꢋSWꢉ  
DDDꢄꢀꢁꢀꢁꢀꢀ  
(1) Pass-through mode activated (SMPSC = 11) AND (Vuvd(BATSMPS) < VBATSMPS < Vovd(BATSMPS)) AND IVSMPS < Ith(ocd)(VSMPS)  
(2) The output voltage rises until the PWM duty cycle reaches 100 %. The time required depends on the output load.  
(3) All non-essential circuitry is switched off after tt(sw-pt) and a low-current mode is activated. Overcurrent detection is enabled.  
Fig 10. Transition from switched mode to Pass-through mode  
After the fixed transition time (tt(sw-pt)), all analog modules involved in SMPS switching are  
switched off to conserve current. The pass-through control module will remain active to  
provide regular filler pulses to keep the bootstrap supply capacitors charged. It will also  
monitor the over- and under voltage indicator signals. The SMPS will meet Standby mode  
current requirements.  
The transition time is inserted to allow the system (microcontroller) some time to switch to  
a sleep mode after switching on Pass-through mode.  
When the SMPS is triggered to leave Pass-through mode, VVSMPS is likely to be much  
greater than the programmed value. To achieve a smooth transition, all analog circuits are  
started up and all switching is suspended. This will cause VVSMPS to fall. Once VVSMPS  
falls below the programmed output voltage level plus 100 mV, normal switching is  
resumed. The time between disabling Pass-through mode and the SMPS starting  
switching is determined by the output load.  
To prevent the SMPS rapidly oscillating between switching and Pass-through mode, it will  
remain in switching mode for at least td(act) before attempting to return to Pass-through  
mode.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
38 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
9
9
96036  
%$76036  
/ꢇ  
ꢈꢇꢉ  
ꢈꢆꢉ  
ꢈꢅꢉ  
GHWHUPLQHGꢊE\ꢊORDG  
W
GꢈDFWꢉ  
DDDꢄꢀꢁꢀꢁꢀꢅ  
(1) Pass-through mode disabled (SMPSC 11) OR VBATSMPS < Vuvd(BATSMPS) OR  
VBATSMPS > Vovd(BATSMPS) OR IVSMPS > Ith(ocd)(VSMPS) OR IC temperature > Tth(warn)otp. All switches  
are open.  
(2) VVSMPS = programmed VVSMPS + 100 mV. Switching restarts.  
(3) Pass-through can be entered again after td(act) (provided all requirements are met). If IVSMPS  
th(ocd)(VSMPS) when the SMPS re-enters Pass-through mode, it will start switching again after  
tt(sw-pt). The circuit will switch repeatedly between switching and Pass-through modes with a cycle  
time of td(act) + tt(sw-pt) while IVSMPS > Ith(ocd)(VSMPS)  
>
I
.
Fig 11. Transition from Pass-through mode to switched mode  
7.8.4.6 Overload protection  
Output current limiting protects the SMPS and the control module against short circuits at  
the output.  
Under normal operating conditions, the SMPS minimizes internal power dissipation.  
However, if the input voltage is low when the SMPS is required to supply a heavy load in  
Boost mode, the input current can significantly exceed the output current. When this  
happens, the power dissipated in the internal switches and diodes can lead to thermal  
overload. Thermal shutdown can be avoided by reducing the load current and/or the  
SMPS output voltage. An overtemperature warning (status bit OTWS = 1; see Table 6)  
can be interpreted as a request to take appropriate action.  
The UJA113x provides an option to reduce the SMPS output voltage to 5 V automatically  
when the overtemperature warning threshold has been exceeded. This option is enabled  
by setting bit SMPSOTC in the SMPS control register (Table 23) to 1. When this option is  
activated, the linear regulators fed by the SMPS are no longer able to supply 5 V.  
However the output voltage of the regulator supplying the microcontroller may still be high  
enough for it to remain operational. This depends on the supply voltage range of the  
microcontroller. Automatic output voltage reduction is disabled (SMPSOTC = 0) at  
power-up and when a pulse is received on RSTN.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
39 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.8.5 Linear regulators  
The UJA113x contains two independent voltage regulators, V1 and V2.  
7.8.5.1 V1 regulator  
Regulator V1 is intended to supply the microcontroller, its periphery and additional CAN  
transceivers and delivers up to 500 mA at 3.3 V or 5 V. It is supplied internally from the  
output of the SMPS.  
The output voltage on V1 is monitored continuously. A system reset is generated if the  
voltage on V1 falls below the undervoltage threshold.  
For the 5 V versions of the UJA113x (UJA113x/5V0), the undervoltage threshold (60 %,  
70 %, 80 % or 90 % of the nominal V1 voltage) is selected via bits V1RTC in the  
Regulator control register (Table 25). The default value of the undervoltage threshold at  
power-up is determined by the value of bits V1RTSUC in the SBC configuration control  
register (Table 9). The SBC configuration control register is in non-volatile memory,  
allowing the user to define the undervoltage threshold (V1RTC) at start-up.  
For the 3.3 V versions (UJA113x/5V0), the 90 % threshold always applies (regardless of  
the V1RTC and V1RTSUC setting).  
In addition, a warning is issued (a V1UI interrupt) if V1 drops below 90 % of the nominal  
value (provided the interrupt is enabled; V1UIE = 1). The UJA113x/5V0 can use this  
information to warn the microcontroller that the level on V1 is outside the nominal supply  
range when the 60 %, 70 % or 80 % threshold is selected. The status of V1, whether the  
output voltage is above or below the 90 % undervoltage threshold, can be read via bit V1S  
in the Supply voltage status register (Table 22).  
In reverse supply situations (e.g. when the attached microcontroller is in low-power mode  
and current is injected via its port pins to its supply pins), internal clamp circuitry ensures  
that the voltage on pin V1 remains below 6 V.  
7.8.5.2 Voltage regulator V2  
Voltage regulator V2 is a 5 V regulator with two outputs V2 and VEXT.  
If the regulator is intended to supply external components that require protection against  
shorts to battery and shorts to ground, the VEXT output should be selected, leaving pin  
V2 open. Bit VEXTAC must be set to 0 (see Table 9). In this configuration, the output  
current flows through a transistor connected between V2 and VEXT (see Figure 1). This  
transistor is automatically deactivated if an overvoltage is detected at pin VEXT. The  
transistor is re-enabled when the overvoltage condition is removed, reactivating VEXT.  
Pins V2 and VEXT should be shorted together when the regulator is being used to supply  
internal loads (e.g. the CAN transceiver and other peripheral loads). In this case, bit  
VEXTAC should be set to 1 (VEXTAC is located in non-volatile memory).  
The V2 output pin is not protected against shorts to the battery, but connecting V2 to  
VEXT reduces the supply voltage needed on BATV2 to generate 5 V at the output at low  
battery voltages. The configuration options are illustrated in Figure 12.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
40 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
V2 is enabled and disabled via bits V2C in the Regulator control register (Table 25). The  
value of bits V2SUC in the Start-up control register (Table 11) determine the default value  
at power-up. The Start-up control register is in non-volatile memory (see Section 7.13),  
allowing the user to define the configuration of V2 at start-up.  
%$79ꢆ  
%$79ꢆ  
9ꢆ  
9ꢆ  
8-$ꢀꢀꢁ[  
8-$ꢀꢀꢁ[  
H[WHUQDO  
ORDGV  
LQWHUQDO  
ORDGV  
9(;7  
9(;7  
ꢆꢌꢆꢊ—)  
ꢃꢐꢊ9  
ꢆꢌꢆꢊ—)  
ꢇꢐꢊ9  
ꢀꢁꢂDDDꢃꢁꢉ  
Fig 12. V2/VEXT configuration options for suppling internal and external loads  
The output voltage on VEXT is monitored continuously. Warnings are issued when the  
voltage drops below 90 % of the nominal value (VEXTUI interrupt) or rises to 110 % of the  
nominal value (VEXTOI interrupt). This information can be used to warn the  
microcontroller that the level on VEXT is outside the nominal supply range or that a failure  
has occurred. The status of VVEXT can be read via bits VEXTS in the Supply voltage  
status register (Table 22).  
The UJA113x can be configured to shut down V2 automatically when the battery monitor  
detects an under- or overvoltage on the battery supply (via bits V2SC; see Table 25).  
7.8.5.3 Regulator control register  
Table 25. Regulator control register (address 10h)  
Bit Symbol Access Value Description  
7:6 reserved  
5:4 V2SC  
R
-
R/W  
V2 shutdown response to a battery over- or undervoltage:  
no shut-down in response to under- or overvoltage  
shut-down in response to an undervoltage  
shut-down in response to an overvoltage  
shut-down in response to under- and overvoltage  
V2 control:  
00  
01  
10  
11  
[1]  
3:2 V2C  
R/W  
R/W  
00  
01  
10  
V2 off in all modes  
V2 on in Normal mode  
V2 on in Normal, Standby and Reset modes  
V2 on in Normal, Standby, Sleep, Reset and FSP modes  
V1 undervoltage reset threshold:  
11  
[2]  
1:0 V1RTC  
00  
01  
10  
11  
reset threshold set to 90 % of V1 nominal output voltage  
reset threshold set to 80 % of V1 nominal output voltage  
reset threshold set to 70 % of V1 nominal output voltage  
reset threshold set to 60 % of V1 nominal output voltage  
[1] Default value at power-up defined by setting of bits V2SUC (see Table 11).  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
41 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
[2] Valid for the UJA113x/5V0 versions only; for the UJA113x/3V3 versions, the V1 undervoltage reset  
threshold is always 90 % of the nominal value. Default value at power-up defined by setting of bits  
V1RTSUC. (see Table 9).  
7.9 CAN and LIN bus transceivers  
7.9.1 High-speed CAN transceiver  
The integrated high-speed CAN transceiver is designed for active communication at bit  
rates up to 1 Mbit/s (up to 2 Mbit/s in the CAN FD data field), providing differential transmit  
and receive capability to a CAN protocol controller. The transceiver is ISO 11898-2:201x  
(upcoming merged ISO 11898-2/5/6 standard) compliant. It is supplied via pin VCAN,  
which can be connected to the output of V2, for example, or to V1 in the 5 V version  
(UJA113x/5V0).  
The CAN transceiver supports autonomous CAN biasing. When the SBC detects activity  
on the CAN-bus, it activates autonomous CAN biasing if the CAN transceiver is inactive.  
This is useful when the node is disabled due to a malfunction in the microcontroller. The  
SBC ensures that the CAN-bus is correctly biased so that communication is not disturbed  
by a disabled ECU. The autonomous CAN bias voltage is derived directly from the battery,  
so it is active even if VCAN is not supplied.  
7.9.1.1 CAN operating modes  
The integrated CAN transceiver supports four operating modes: Active, Listen-only,  
Offline and Offline Bias (see Figure 13). The CAN transceiver operating mode depends on  
the UJA113x operating mode and on the setting of bits CMC in the CAN control register  
(Table 26).  
When the UJA113x is in Normal mode, the CAN transceiver operating mode (Active,  
Listen-only or Offline) can be selected via bits CMC in the CAN control register (Table 26).  
When the UJA113x is in Standby or Sleep modes, the transceiver is forced to Offline or  
Offline Bias mode (depending on bus activity).  
CAN Active mode: In CAN Active mode, the transceiver can transmit and receive data  
via CANH and CANL. The differential receiver converts the analog data on the bus lines  
into digital data, which is output on pin RXDC. The transmitter converts digital data  
generated by the CAN controller (input on pin TXDC) into analog signals suitable for  
transmission over the CANH and CANL bus lines.  
CAN Active mode is selected when CMC = 01 or 10. When CMC = 01, VCAN  
undervoltage detection is enabled and the transceiver will go to CAN Offline or CAN  
Offline Bias mode when the voltage on VCAN drops below the undervoltage detection  
threshold, (VVCAN < Vuvd(VCAN)). When CMC = 10, VCAN undervoltage detection is  
disabled. The transmitter will remain active until the voltage on V1 drops below the V1  
reset threshold (selected via bits V1RTC). The SBC will then switch to Reset mode and  
the transceiver will switch to CAN Offline or CAN Offline Bias mode.  
The CAN transceiver is in Active mode when:  
the UJA113x is in Normal mode (MC = 111) and the CAN transceiver has been  
enabled by setting bits CMC in the CAN control register to 01 or 10 (see Table 26)  
and:  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
42 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
if CMC = 01, the voltage on pin VCAN is above the undervoltage detection  
threshold (Vuvd(VCAN)  
)
if CMC = 10, the voltage on pin V1 is above the V1 reset threshold OR  
the SBC is in Forced Normal mode with VVCAN > Vuvd(VCAN)  
If pin TXDC is held LOW (e.g. by a short-circuit to GND) when CAN Active mode is  
selected via bits CMC, the transceiver will not enter CAN Active mode but will switch to or  
remain in CAN Listen-only mode. It will remain in Listen-only mode until pin TXDC goes  
HIGH in order to prevent a hardware and/or software application failure from driving the  
bus lines to an unwanted dominant state.  
In CAN Active mode, the CAN bias voltage is derived from the supply voltage on VCAN.  
The application can determine whether the CAN transceiver is ready to transmit/receive  
data or is disabled by reading the CAN Transceiver Status (CTS) bit in the Transceiver  
Status Register (Table 28).  
CAN Listen-only mode: Listen-only mode enables basic selective wake-up using the  
CAN protocol controller in the host microcontroller. In Listen-only mode the CAN  
transmitter is disabled, reducing current consumption. The CAN receiver and CAN biasing  
remain active. This enables the host microcontroller to switch to a low-power mode in  
which an embedded CAN protocol controller remains active, waiting for a signal to wake  
up the microcontroller.  
The CAN transceiver is in Listen-only mode when:  
the UJA113x is in Normal or Standby mode and CMC = 11 OR  
the UJA113x is in Forced Normal mode and VVCAN < Vuvd(VCAN)  
Note that VVCAN does not need to remain active (> Vuvd(VCAN)) in CAN Listen-only mode.  
However, the CAN transceiver will not leave Listen-only mode while TXDC is LOW or if  
CAN Active mode is selected by setting CMC = 01 while VVCAN < Vuvd(VCAN)  
.
CAN Offline and Offline Bias modes: In CAN Offline mode, the transceiver monitors the  
CAN bus for a wake-up event, provided CAN wake-up detection is enabled (CWIE = 1;  
see Table 67). CANH and CANL are biased to GND.  
CAN Offline Bias mode is the same as CAN Offline mode, with the exception that the CAN  
bus is biased to 2.5 V. This mode is activated automatically when activity is detected on  
the CAN bus while the transceiver is in CAN Offline mode. The transceiver will return to  
CAN Offline mode if the CAN bus is silent (no CAN bus edges) for longer than tto(silence)  
.
The CAN transceiver switches to CAN Offline mode from CAN Active or CAN Listen only  
mode if:  
the SBC switches to Sleep, Reset or FSP mode OR  
the SBC is in Normal mode and CMC = 00 OR  
the SBC is in Standby mode and CMC = 00, 01 or 10  
provided the CAN-bus has been inactive for at least tto(silence). If the CAN-bus has been  
inactive for less than tto(silence), the CAN transceiver switches first to CAN Offline Bias  
mode and then to CAN Offline mode once the bus has been silent for tto(silence)  
.
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
43 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
The CAN transceiver switches to CAN Offline/Offline Bias mode from CAN Active mode if  
CMC = 01 and VVCAN < Vuvd(VCAN) or CMC = 10 and the voltage on V1 drops below the  
V1 reset threshold.  
The CAN transceiver switches to CAN Offline mode:  
from CAN Offline Bias mode if no activity is detected on the bus (no CAN edges) for  
t > tto(silence) OR  
when the SBC switches from Off or Overtemp mode to Reset mode  
The CAN transceiver switches from CAN Offline mode to CAN Offline Bias mode if:  
a standard wake-up pattern (according to ISO 11898-5) is detected on the CAN bus  
OR  
the SBC is in Normal mode, CMC = 01 and VVCAN < Vuvd(VCAN)  
CAN off mode: The CAN transceiver is switched off completely with the bus lines floating  
when:  
the SBC switches to Off or Overload mode OR  
CSC 00 AND CAN shut down condition true OR  
VBAT and VSMPS fall below the CAN receiver undervoltage detection threshold,  
Vuvd(CAN)  
It is switched on again on entering CAN Offline mode when VBAT or VSMPS is above the  
undervoltage release threshold (Vuvr(CAN)) and the SBC is no longer in Off/Overload  
mode. CAN Off mode prevents reverse currents flowing from the bus when the battery  
supply to the SBC is lost.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
44 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
&$1ꢂ$FWLYH  
WUDQVPLWWHUꢒꢊRQ  
UHFHLYHUꢒꢊRQ  
5;'&ꢒꢊELWVWUHDP  
&$1+ꢎ&$1/ꢒꢊWHUPLQDWHG  
WRꢊ9&$1ꢎꢆ  
>6OHHSꢊ25ꢊ5HVHWꢊ25ꢊ)63ꢊ25  
ꢈ6WDQGE\ꢊꢍꢊ&0&ꢊꢊꢇꢇꢉꢊ25  
ꢈ1RUPDOꢊꢍꢊ&0&ꢊ ꢊꢐꢐꢉꢊ25  
ꢈ&0&ꢊ ꢊꢐꢇꢊꢍꢊ9  
9&$1  
ꢊꢑꢊ9 ꢉ@ꢊꢍ  
XYGꢈ9&$1ꢉ  
Wꢊ!ꢊW  
WRꢈVLOHQFHꢉ  
>ꢈ1RUPDOꢊꢍꢊ&0&ꢊ ꢊꢇꢐꢉꢊ25  
ꢊꢈ1RUPDOꢊꢍꢊ&0&ꢊ ꢊꢐꢇꢊꢍꢊ  
>ꢈ1RUPDOꢊ25ꢊ6WDQGE\ꢉꢊꢍꢊ&0&ꢊ ꢊꢇꢇ@ꢊ25  
ꢈ)RUFHGꢊ1RUPDOꢊꢍꢊ9 ꢊꢑꢊ9  
ꢉꢊ  
9&$1 XYGꢈ9&$1ꢉ  
9
ꢊ!  
9&$1  
>6OHHSꢊ25ꢊ5HVHWꢊ25ꢊ)63ꢊ25  
ꢈ6WDQGE\ꢊꢍꢊ&0&ꢊꢊꢇꢇꢉꢊ25  
ꢈ1RUPDOꢊꢍꢊ&0&ꢊ ꢊꢐꢐꢉꢊ25  
9
ꢉꢊ25  
XYGꢈ9&$1ꢉ  
ꢈ)RUFHGꢊ1RUPDOꢊꢍ  
ꢊ!ꢊ9 @ꢊꢍ  
9
9&$1  
XYGꢈ9&$1ꢉ  
ꢈ&0&ꢊ ꢊꢐꢇꢊꢍꢊ9  
ꢊꢑꢊ9  
ꢉ@ꢊꢍ  
9&$1  
XYGꢈ9&$1ꢉ  
ꢊ7;'&ꢊ+,*+  
WꢊꢑꢊW  
WRꢈVLOHQFHꢉ  
>ꢈ1RUPDOꢊꢍꢊ&0&ꢊ ꢊꢇꢐꢉꢊ25  
>ꢈ1RUPDOꢊꢍꢊ&0&ꢊ ꢊꢇꢐꢉꢊ25  
ꢊꢈ1RUPDOꢊꢍꢊ&0&ꢊ ꢊꢐꢇꢊꢍꢊ9  
ꢊꢈ1RUPDOꢊꢍꢊ&0&ꢊ ꢊꢐꢇꢊꢍꢊ9  
ꢊ!  
ꢊ!  
9&$1  
9&$1  
>ꢈ1RUPDOꢊꢍ  
&0&ꢊ ꢊꢇꢐꢉꢊ25  
ꢈ1RUPDOꢊꢍꢊ&0&ꢊ ꢊꢐꢇꢊ  
ꢍꢊ9 ꢊ!ꢊ9  
9
ꢉꢊ25  
9
ꢉ@ꢊꢍꢊ7;'&ꢊ+,*+  
XYGꢈ9&$1ꢉ  
ꢈ)RUFHGꢊ1RUPDOꢊꢍ  
ꢊ!ꢊ9 @ꢊꢍꢊ7;'&ꢊ+,*+  
XYGꢈ9&$1ꢉ  
9
XYGꢈ9&$1ꢉ  
9&$1  
9&$1 XYGꢈ9&$1ꢉ@ꢊꢍ  
7;'&ꢊ/2:ꢊ  
>ꢈ1RUPDOꢊ25ꢊ6WDQGE\ꢉꢊꢍꢊ&0&ꢊ ꢊꢇꢇ@ꢊ25  
>ꢈ1RUPDOꢊꢍꢊ&0&ꢊ ꢊꢇꢐꢉꢊ25  
&$1ꢂ2IIOLQHꢂ%LDV  
&$1ꢂ/LVWHQꢆRQO\  
WUDQVPLWWHUꢒꢊRII  
UHFHLYHUꢒꢊRQ  
5;'&ꢒꢊELWVWUHDP  
&$1+ꢎ&$1/ꢒꢊWHUPLQDWHG  
WRꢊꢆꢌꢃꢊ9  
ꢈ1RUPDOꢊꢍꢊ&0&ꢊ ꢊꢐꢇꢊꢍ  
9
ꢊ!ꢊ9  
ꢉꢊꢍꢊ7;'&ꢊ/2:@  
9&$1  
XYGꢈ9&$1ꢉ  
WUDQVPLWWHUꢒꢊRII  
5;'&ꢒꢊZDNHꢋXSꢎ+,*+  
&$1+ꢎ&$1/ꢒꢊWHUPLQDWHG  
WRꢊꢆꢌꢃꢊ9  
>6OHHSꢊ25ꢊ5HVHWꢊ25ꢊ)63ꢊ25  
ꢈ6WDQGE\ꢊꢍꢊ&0&ꢊꢊꢇꢇꢉꢊ25  
ꢈ1RUPDOꢊꢍꢊ&0&ꢊ ꢊꢐꢐꢉ@ꢊꢍ  
WꢊꢑꢊW  
WRꢈVLOHQFHꢉ  
>6OHHSꢊ25ꢊ5HVHWꢊ25ꢊ)63ꢊ25  
ꢈ6WDQGE\ꢊꢍꢊ&0&ꢊꢊꢇꢇꢉꢊ25  
ꢈ1RUPDOꢊꢍꢊ&0&ꢊ ꢊꢐꢐꢉ@ꢊꢍ  
>ꢈ1RUPDOꢊ25ꢊ6WDQGE\ꢉꢊꢍꢊ&0&ꢊ ꢊꢇꢇ@ꢊ25  
>ꢈ1RUPDOꢊꢍꢊ&0&ꢊ ꢊꢇꢐꢉꢊ25  
IURPꢊDOOꢊPRGHV  
ꢈ1RUPDOꢊꢍꢊ&0&ꢊ ꢊꢐꢇꢊꢍ  
Wꢊ!ꢊW  
WRꢈVLOHQFHꢉ  
9
ꢊ!ꢊ9  
ꢉꢊꢍꢊ7;'&ꢊ/2:@ꢊ25  
9&$1  
XYGꢈ9&$1ꢉ  
9&$1  
6%&ꢊHQWHUVꢊ2IIꢎ2YHUORDGꢊ25  
&$1ꢊZDNHꢋXSꢊSDWWHUQꢊꢊ25  
ꢈ1RUPDOꢊꢍꢊ&0&ꢊ ꢊꢐꢇꢊꢍ  
ꢈ)RUFHGꢊ1RUPDOꢊꢍꢊ9  
ꢊꢑꢊ9  
ꢉꢊ  
XYGꢈ9&$1ꢉ  
ꢈ9  
%$7  
ꢊDQGꢊ9  
ꢊꢑꢊ9  
6036 XYGꢈ&$1ꢉꢊ  
25  
&6&ꢊꢊꢐꢐꢊꢍꢊ&$1ꢊVKXWGRZQꢊFRQGLWLRQ  
9
ꢊꢑꢊ9   
XYGꢈ9&$1ꢉ  
9&$1  
>6OHHSꢊ25ꢊ5HVHWꢊ25ꢊ)63ꢊ25  
ꢈ6WDQGE\ꢊꢍꢊ&0&ꢊꢊꢇꢇꢉꢊ25  
ꢈ1RUPDOꢊꢍꢊ&0&ꢊ ꢊꢐꢐꢉ@ꢊꢍ  
Wꢊ!ꢊW  
WRꢈVLOHQFHꢉ  
&$1ꢂ2IIOLQH  
&$1ꢂ2II  
WUDQVPLWWHUꢒꢊRII  
WUDQVPLWWHUꢒꢊRII  
UHFHLYHUꢒꢊRII  
5;'&ꢒꢊZDNHꢋXSꢎ+,*+  
&$1+ꢎ&$1/ꢒꢊWHUPLQDWHG  
WRꢊ*1'  
5;'&ꢒꢊ+,*+  
&$1+ꢎ&$1/ꢒꢊIORDWLQJ  
6%&ꢊOHDYHV  
2IIꢎ2YHUWHPSꢊꢍ  
QRꢊVKXWGRZQꢊFRQGLWLRQꢊꢍ  
>ꢈ9 ꢊRUꢊ9 ꢊ!ꢊ9  
@
%$7 6036ꢉ XYUꢈ&$1ꢉ  
ꢀꢁꢂDDDꢇꢇꢃ  
Fig 13. CAN transceiver state machine  
7.9.1.2 CAN standard wake-up (partial networking not enabled)  
If the CAN transceiver is in Offline or Offline Bias mode and CAN wake-up is enabled  
(CWIE = 1), but CAN selective wake-up is disabled (CPNC = 0 or PNCOK = 0), the  
UJA113x will monitor the bus for a wake-up pattern.  
A filter at the receiver input prevents unwanted wake-up events occurring due to  
automotive transients or EMI. A dominant-recessive-dominant wake-up pattern must be  
transmitted on the CAN bus within the wake-up timeout time (tto(wake)) to pass the wake-up  
filter and trigger a wake-up event (see Figure 14; note that additional pulses may occur  
between the recessive/dominant phases). The recessive and dominant phases must last  
at least twake(busrec) and twake(busdom), respectively.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
45 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
GRPLQDQW  
UHFHVVLYH  
GRPLQDQW  
W
ꢊ•ꢊW  
UHF  
W
ꢊ•ꢊW  
GRP ZDNHꢈEXVGRPꢉ  
W
ꢊ•ꢊW  
ZDNHꢈEXVGRPꢉ  
ZDNHꢈEXVUHFꢉ  
GRP  
W
ꢊꢑꢊW  
WRꢈZDNHꢉ  
ZDNH  
&$1ꢊZDNHꢋXS  
ꢀꢁꢂDDDꢅꢈꢉ  
Fig 14. CAN wake-up timing showing a valid wake-up pattern  
When a valid CAN wake-up pattern is detected on the bus, CAN wake-up interrupt bit CWI  
in the Transceiver interrupt status register is set (see Table 60) and pin RXDC is driven  
LOW. If the SBC was in Sleep mode when the wake-up pattern was detected, V1 is  
enabled to supply the microcontroller and the SBC switches to Standby mode via Reset  
mode.  
7.9.1.3 CAN partial networking (UJ113xFD only)  
Partial networking allows nodes in a CAN network to be selectively activated in response  
to dedicated wake-up frames (WUF). Only nodes that are functionally required are active  
on the bus while the other nodes remain in a low-power mode until needed.  
If both CAN wake-up detection (CWIE = 1) and CAN selective wake-up (CPNC = 1) are  
enabled, and the partial networking registers are configured correctly (PNCOK = 1), the  
transceiver monitors the bus for dedicated CAN wake-up frames.  
Wake-up frame (WUF): A wake-up frame is a CAN frame according to ISO11898-1:2003,  
consisting of an identifier field (ID), a Data Length Code (DLC), a data field and a Cyclic  
Redundancy Check (CRC) code including the CRC delimiter.  
The wake-up frame format, standard (11-bit) or extended (29-bit) identifier, is selected via  
bit IDE in the Frame control register (Table 32).  
A valid WUF identifier is defined and stored in the ID registers (Table 30). An ID mask can  
be defined to allow a group of identifiers to be recognized as valid by an individual node.  
The identifier mask is defined in the mask registers (Table 31), where a 1 means ‘don’t  
care’.  
In the example illustrated in Figure 15, based on the standard frame format, the 11-bit  
identifier is defined as 0x1A0. The identifier is stored in ID registers 2 (0x29) and 3 (0x2A).  
The three least significant bits of the ID mask, bits 2 to 4 of Mask register 2 (0x2D), are set  
to 1, which means that the corresponding identifier bits are ‘don’t care’. This means that  
any of eight different identifiers will be recognized as valid in the received WUF (from  
0x1A0 to 0x1A7).  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
46 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
8-$ꢀꢀꢁ[)'ꢂ63,ꢊ6HWWLQJV  
ꢇꢇꢋELWꢊ,GHQWLILHUꢊILHOGꢒ  
ꢐ[ꢇ$ꢐꢊVWRUHGꢊLQꢊ,'  
UHJLVWHUVꢊꢆꢊDQGꢊꢅ  
,'ꢊPDVNꢒ  
ꢐ[ꢐꢐꢁꢊVWRUHGꢊLQꢊ0DVN  
UHJLVWHUVꢊꢆꢊDQGꢊꢅ  
9DOLGꢊ:DNHꢋ8Sꢊ,GHQWLILHUVꢒꢐ[ꢇ$ꢐꢊWRꢊꢐ[ꢇ$ꢁ  
[
[
[
DDDꢄꢀꢁꢁꢆꢇꢀ  
Fig 15. Evaluating the ID field in a selective wake-up frame  
The data field indicates which nodes are to be woken up. Within the data field, groups of  
nodes can be predefined and associated with bits in a data mask. By comparing the  
incoming data field with the data mask, multiple groups of nodes can be woken up  
simultaneously with a single wake-up message.  
The data length code (bits DLC in the Frame control register; Table 32) determines the  
number of data bytes (between 0 and 8) expected in the data field of a CAN wake-up  
frame. If one or more data bytes are expected (DLC 0000), at least one bit in the data  
field of the received wake-up frame must be set to 1 and at least one equivalent bit in the  
associated data mask register in the transceiver (see Table 33) must also be set to 1 for a  
successful wake-up. Each matching pair of 1s indicates a group of nodes to be activated  
(since the data field is up to 8 bytes long, up to 64 groups of nodes can be defined). If  
DLC = 0, a data field is not expected.  
In the example illustrated in Figure 16, the data field consists of a single byte (DLC = 1).  
This means that the data field in the incoming wake-up frame is evaluated against data  
mask 7 (stored at address 6Fh; see Table 33 and Figure 19). Data mask 7 is defined as  
10101000 in the example. This means the node is assigned to three groups (Group1,  
Group 3 and Group 5).  
The received message shown in Figure 16 could, potentially, wake up four groups of  
nodes: groups 2, 3, 4 and 5. Two matches are found (groups 3 and 5) when the message  
data bits are compared with the configured data mask (DM7).  
'/&  
'DWDꢊPDVNꢊꢁ  
VWRUHG  
YDOXHV  
*URXSVꢒ  
UHFHLYHG  
PHVVDJH  
ꢀꢁꢂDDDꢇꢈꢂ  
Fig 16. Evaluating the Data field in a selective wake-up frame  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
47 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Optionally, the data length code and the data field can be excluded from the evaluation of  
the wake-up frame. If bit PNDM = 0, only the identifier field is evaluated to determine if the  
frame contains a valid wake-up message. If PNDM = 1 (the default value), the data field is  
included for wake-up filtering.  
When PNDM = 0, a valid wake-up message is detected and a wake-up event is captured  
(and CW is set to 1) when:  
the identifier field in the received wake-up frame matches the pattern in the ID  
registers after filtering AND  
the CRC field in the received frame (including a recessive CRC delimiter) was  
received without error  
When PNDM = 1, a valid wake-up message is detected when:  
the identifier field in the received wake-up frame matches the pattern in the ID  
registers after filtering AND  
the frame is not a Remote frame AND  
the data length code in the received message matches the configured data length  
code (bits DLC) AND  
if the data length code is greater than 0, at least one bit in the data field of the  
received frame is set and the corresponding bit in the associated data mask register is  
also set AND  
the CRC field in the received frame (including a recessive CRC delimiter) was  
received without error  
If the UJA113xFD receives a CAN message containing errors (e.g. a ‘stuffing’ error) that  
are transmitted in advance of the ACK field, an internal error counter is incremented. If a  
CAN message is received without any errors appearing in front of the ACK field, the  
counter is decremented. Data received after the CRC delimiter and before the next Start  
of Frame (SOF) is ignored by the partial networking module. If the counter overflows  
(counter > 31), a frame detect error is captured (PNFDEI = 1) and the device wakes up;  
the counter is reset to zero when the bias is switched off and partial networking is  
re-enabled.  
Partial networking is assumed to be configured correctly when PNCOK is set to 1 by the  
application software. The UJA113xFD clears PNCOK after a write access to any of the  
CAN partial networking configuration registers (see Section 7.9.8).  
If selective wake-up is disabled (CPNC = 0) or partial networking is not configured  
correctly (PNCOK = 0), and the CAN transceiver is in Offline mode with wake-up enabled  
(CWIE = 1), then any valid wake-up pattern according to ISO 11898-2:201x (upcoming  
merged ISO 11898-2/5/6 standard) will trigger a wake-up event.  
If the CAN transceiver is not in Offline or Offline Bias mode (CMC 00) or CAN wake-up  
is disabled (CWIE = 0), all wake-up patterns on the bus will be ignored.  
CAN FD frames: CAN FD stands for ‘CAN with Flexible Data-Rate’. It is based on the  
CAN protocol as specified in the upcoming ISO 11898-1:201x standard.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
48 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
CAN FD is being gradually introduced into automotive market. In time, all CAN controllers  
will be required to comply with the new standard (enabling ‘FD-active’ nodes) or at least to  
tolerate CAN FD communication (enabling ‘FD-passive’ nodes). The UJA113xFD  
supports FD-passive features by means of a dedicated implementation of the partial  
networking protocol.  
The UJA113xFD can be configured to recognize CAN FD frames as valid CAN frames.  
When CFDC = 1, the error counter is decremented every time the control field of a CAN  
FD frame is received. The UJA113xFD remains in low-power mode (CAN FD-passive)  
with partial networking enabled. CAN FD frames are never recognized as valid wake-up  
frames, even if PNDM = 0 and the frame contains a valid ID. After receiving the control  
field of a CAN FD frame, the UJA113xFD ignores further bus signals until idle is again  
detected.  
CAN FD frames are interpreted as frames with errors by the partial networking module  
when CFDC = 0. So the error counter is incremented when a CAN FD frame is received. If  
the ratio of CAN FD frames to valid CAN frames exceeds the threshold that triggers error  
counter overflow, bit PNFDEI is set to 1 and the device wakes up.  
7.9.1.4 Fail-safe features  
TXDC dominant time-out: A TXDC dominant time-out timer is started when pin TXDC is  
forced LOW while the transceiver is in Active Mode. If the LOW state on pin TXDC  
persists for longer than the TXDC dominant time-out time (tto(dom)TXDC), the transmitter is  
disabled, releasing the bus lines to recessive state. A CAN failure interrupt (CFI) is  
generated, if enabled (CFIE = 1; see Table 67).  
This function prevents a hardware and/or software application failure from driving the bus  
lines to a permanent dominant state (blocking all network communications). The TXDC  
dominant time-out timer is reset when pin TXDC goes HIGH. The status of the TXDC  
dominant time-out can be read via bit CFS in the Transceiver status register (Table 28).  
The TXDC dominant time-out time also defines the minimum possible bit rate of 40 kbit/s.  
Pull-up on TXDC pin: Pin TXDC has an internal pull-up towards V1 to ensure a safe  
defined state in case the pin is left floating.  
CAN failure interrupt: A CAN failure interrupt is triggered (CFI = 1), if enabled, when  
status bit VCS (indicating that VVCAN < Vuvd(VCAN)) or status bit CFS (indicating that pin  
TXDC is clamped LOW) is set to 1.  
CAN shut down in response to a battery under- or overvoltage: The CAN transceiver  
can be configured to shut down if the battery monitor detects an under- or overvoltage on  
the battery supply (see Section 7.8.2). The response of the CAN transceiver (to a BMUI  
and/or BMOI interrupt) is configured via bits CSC in the CAN control register (Table 26).  
This feature makes it possible to reduce current consumption very quickly when the  
battery supply voltage drops below the undervoltage threshold, and/or to limit power  
consumption when the battery supply voltage rises above the overvoltage threshold.  
7.9.2 LIN transceiver(s)  
The LIN transceiver(s) provides the interface between a Local Interconnect Network (LIN)  
master/slave protocol controller and the physical bus in a LIN network. It is primarily  
intended for in-vehicle sub-networks using baud rates from 1 kBd up to 20 kBd.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
49 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
For optimum support of LIN slave applications, the transceiver(s) contains an integrated  
LIN slave termination resistor (connected between the LIN pin and pin BAT).  
7.9.2.1 LIN 2.x/SAE J2602 compliant  
The UJA113x is fully LIN 2.0, LIN 2.1, LIN 2.2, LIN 2.2A and SAE J2602 compliant. Since  
the LIN physical layer is independent of higher OSI model layers (e.g. the LIN protocol),  
nodes containing a LIN 2.2A-compliant physical layer can be combined, without  
restriction, with LIN physical layer nodes that comply with earlier revisions (LIN 1.0, LIN  
1.1, LIN 1.2, LIN 1.3, LIN 2.0, LIN 2.1 and LIN 2.2).  
7.9.3 LIN operating modes  
The integrated LIN transceiver(s) supports three operating modes: Active, Offline and  
Listen only. In the UJA1132 and UJA1136, the dual LIN transceivers can be controlled  
independently, so one can be active while the other is off.  
)RUFHGꢊ1RUPDOꢊꢍ  
9
ꢊ!ꢊ9  
ꢊꢊꢍ  
%$7  
XYGꢈ/,1ꢉ  
QRꢊ2IIꢎ2YHUORDGꢊFRQGWLRQ  
1RUPDOꢊꢍ  
/0&ꢊ ꢊꢐꢇꢎꢇꢐ  
/,1ꢂ$FWLYH  
IURPꢊDQ\ꢊVWDWH  
WUDQVPLWWHUꢒꢊRQ  
UHFHLYHUꢒꢊRQ  
5;'&ꢒꢊELWVWUHDP  
ꢈ1RUPDOꢊ25ꢊ6WDQGE\ꢉꢊꢍꢊ  
/0&ꢊ ꢊꢇꢇꢊ  
6OHHSꢊ25ꢊ5HVHWꢊ25ꢊ)63ꢊ25  
ꢈ6WDQGE\ꢊꢍꢊ/0&ꢊ ꢊꢐꢐꢎꢐꢇꢎꢇꢐꢉꢊ25  
ꢈ1RUPDOꢊꢍꢊ/0&ꢊ ꢊꢐꢐꢉ  
1RUPDOꢊꢍꢊ/0&ꢊ ꢊꢐꢇꢎꢇꢐ  
1RUPDOꢊꢍꢊ/0&ꢊ ꢊꢐꢇꢎꢇꢐ  
6OHHSꢊ25ꢊ5HVHWꢊ25ꢊ)63ꢊ25  
ꢈ6WDQGE\ꢊꢍꢊ/0&ꢊ ꢊꢐꢐꢎꢐꢇꢎꢇꢐꢉꢊ25  
ꢈ1RUPDOꢊꢍꢊ/0&ꢊ ꢊꢐꢐꢉ  
ꢈ1RUPDOꢊ25  
6WDQGE\ꢉꢊꢍ  
/0&ꢊ ꢊꢇꢇ  
6OHHSꢊ25ꢊ5HVHWꢊ25ꢊ)63ꢊ25  
ꢈ6WDQGE\ꢊꢍꢊ/0&ꢊ ꢊꢐꢐꢎꢐꢇꢎꢇꢐꢉꢊ25  
ꢈ1RUPDOꢊꢍꢊ/0&ꢊ ꢊꢐꢐꢉ  
/,1ꢂ/LVWHQꢆRQO\  
/,1ꢂ2IIOLQH  
WUDQVPLWWHUꢒꢊRII  
UHFHLYHUꢒꢊRQ  
5;'/ꢒꢊELWVWUHDP  
WUDQVPLWWHUꢒꢊRII  
UHFHLYHUꢒꢊZDNHꢋXSꢊꢎꢊRII  
5;'/ꢒꢊZDNHꢋXSꢎ+,*+  
ꢈ1RUPDOꢊ25ꢊ6WDQGE\ꢉꢊꢍ  
/0&ꢊ ꢊꢇꢇ  
9
ꢊ!ꢊ9  
ꢊꢊꢍ  
%$7  
XYGꢈ/,1ꢉ  
QRꢊ2IIꢎ2YHUORDGꢎ)RUFHGꢊ1RUPDOꢊFRQGLWLRQ  
IURPꢊDQ\ꢊVWDWH  
/,1ꢂ2II  
WUDQVPLWWHUꢒꢊRII  
UHFHLYHUꢒꢊRII  
5;'/ꢒꢊ+,*+  
ꢈ1RUPDOꢊꢍꢊ9  
ꢊꢑꢊ9  
ꢉꢊ25  
%$7  
XYGꢈ/,1ꢉ  
2IIꢎ2YHUORDGꢊFRQGWLRQ  
ꢀꢁꢂDDDꢇꢇꢂ  
Fig 17. LIN transceiver state machine  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
50 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.9.3.1 LIN Active mode  
In LIN Active mode, the transceiver can transmit and receive data via the LIN bus pins.  
The receiver detects data streams on the LIN bus (via pin LINn) and transfers the input  
data to the microcontroller via pin RXDLn. LIN recessive is represented by a HIGH level  
on RXDLn; LIN dominant is represented by a LOW level.  
Transmit data streams from the protocol controller on the TXDLn input are converted by  
the transmitters into optimized bus signals shaped to minimize EME.  
The LIN transceiver is in Active mode when:  
the SBC is in Normal mode (MC = 111) and the LIN transceiver has been enabled by  
setting bit LMCn in the LIN mode control register to 01 or 10 (see Table 27) and the  
supply voltage on pin BAT is above the LIN undervoltage detection threshold  
(VBAT > Vuvd(LIN)) OR  
the SBC is in Forced Normal mode (FNMC = 1) and the supply voltage on pin BAT is  
above the LIN undervoltage detection threshold (VBAT > Vuvd(LIN)  
)
7.9.3.2 LIN Offline mode  
In Offline mode, the LIN transceiver monitors the LIN bus for a remote wake-up event,  
provided LIN wake-up detection is enabled (LWInE = 1; see Table 67) and  
V
BAT > Vuvd(LIN).  
A filter at the receiver input prevents automotive transients or EMI triggering invalid  
wake-up events. A LOW level on the LIN bus lasting at least twake(dom)LIN followed by a  
rising edge triggers a remote wake-up event (see Figure 18). Pin RXDLx is driven LOW  
and an LWIn interrupt is generated to signal to the microcontroller that a remote wake-up  
event has been detected. If the SBC is in Sleep mode when the remote-wake up event is  
triggered, it switches to Standby mode, enabling the microcontroller supply on V1.  
The LIN transceiver switches to LIN Offline mode from LIN Active or LIN Listen-only mode  
when:  
the SBC is in Sleep, Reset or FSP mode OR  
the SBC is in Normal mode with LMCn = 00 OR  
the SBC is in Standby mode with LMCn = 00, 01 or 10 OR  
and from LIN Off mode when:  
the supply voltage on pin BAT is above the LIN undervoltage detection threshold  
(VBAT > Vuvd(LIN)) and the SBC is not in Off or Overload mode.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
51 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
/,1[ꢊ  
ZDNHꢋXS  
5;'/[  
W
ZDNHꢈGRPꢉ/,1  
ꢀꢁꢂDDDꢇꢇꢈ  
Fig 18. LIN wake-up timing diagram  
7.9.3.3 LIN Listen-only mode  
In Listen-only mode, the LIN transmitter is disabled. The LIN receiver remains active,  
allowing the microcontroller to monitor activity on the bus while not transmitting.  
The LIN transceiver is in Listen-only mode when:  
the SBC is in Normal or Standby mode AND  
LMCn = 11 AND  
the supply voltage on pin BAT is above the LIN undervoltage detection threshold  
(VBAT > Vuvd(LIN)  
)
7.9.3.4 LIN Off mode  
The LIN transceiver is switched off completely in LIN Off mode. The bus lines are released  
and remain in recessive state. The receiver is deactivated and unable to respond to a  
wake-up pattern. The transceiver switches to LIN Off mode when:  
the SBC switches to Off or Overload mode OR  
VBAT falls below the LIN undervoltage detection threshold, Vuvd(LIN), while the SBC is  
in Normal mode (undervoltage monitoring is switched off in Standby, Sleep and Reset  
modes)  
7.9.4 Fail-safe features  
7.9.4.1 General fail-safe features  
The following fail-safe features have been implemented:  
Pin TXDLn has an internal pull-up towards V1 to guarantee safe, defined states if this  
pin is left floating  
The transmitter output stage current is limited in order to protect the transmitter  
against short circuits to pin BAT  
A loss of power (pins BAT and GND) has no impact on the bus lines or on the  
microcontroller. No reverse currents flow from the bus.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
52 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.9.4.2 TXDL dominant time-out  
A TXDL dominant time-out timer circuit prevents the bus lines being driven to a permanent  
dominant state (blocking all network communications) if pin TXDLn is forced permanently  
LOW by a hardware and/or software application failure. The timer is triggered by a  
negative edge on TXDLn. If the pin remains LOW for longer than the TXDL dominant  
time-out time (tto(dom)TXDL), the transmitter is disabled, driving the bus line to a recessive  
state. The timer is reset by a positive edge on TXDLn.  
This function can be disabled (via bits LSCn; see Table 27) to allow the UJA113x to be  
used in applications requiring the transmission and/or reception of long LOW sequences.  
7.9.5 LIN slope control  
Automatic slope control has been incorporated into the LIN transmitter, so it is not  
necessary to select the bit rate.  
7.9.6 Operation when supply voltage is outside specified operating range  
If VBAT > 18 V or VBAT < 5 V, the LIN transceiver may remain operational, but parameter  
values cannot be guaranteed to remain within the operating ranges specified in Table 90  
and Table 91.  
In LIN Active mode:  
If the input level on pin TXDLn is HIGH, the LIN transmitter output on pin LINn will be  
recessive.  
If the input level on pin LINn is recessive, the receiver output on pin RXDLn will be  
HIGH.  
If the voltage on pin VBAT rises to 28 V (e.g. during an automotive jump-start), reliable  
LIN data transfer is still supported  
If VBAT < Vuvd(LIN), the LIN transceiver switches to Off mode (note that LIN  
undervoltage detection is only active while the SBC is in Normal mode).  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
53 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.9.7 Transceiver control and status registers  
Table 26. CAN control register (address 20h)  
Bit  
7
Symbol  
reserved  
CFDC  
Access Value  
Description  
R
-
[1]  
6
R/W  
CAN FD control:  
0
CAN FD tolerance disabled  
CAN FD tolerance enabled  
CAN partial networking configuration OK:  
1
[1]  
5
PNCOK  
R/W  
0
partial networking register configuration invalid (wake-up  
via standard wake-up pattern only)  
1
partial networking registers configured successfully  
CAN partial networking control:  
disable CAN selective wake-up  
enable CAN selective wake-up  
[1]  
4
CPNC  
CSC  
R/W  
R/W  
0
1
3:2  
CAN shut-down control:  
00  
01  
CAN transceiver is not shut down when a battery monitor  
under- or overvoltage interrupt is generated  
CAN transceiver shuts down in response to a battery  
monitor undervoltage (BMUI) interrupt (SBC in Normal  
mode)  
10  
11  
CAN transceiver shuts down in response to a battery  
monitor overvoltage (BMOI) interrupt (SBC in Normal  
mode)  
CAN transceiver shuts down in response to a BMUI or  
BMOI interrupt (SBC in Normal mode)  
1:0  
CMC  
R/W  
CAN transceiver operating mode selection:  
Offline/Offline Bias mode  
00  
01  
10  
Active mode (when the SBC is in Normal mode)  
Active mode (when the SBC is in Normal mode); VCAN  
undervoltage disabled  
11  
Listen-only mode  
[1] Valid for UJA113xFD/x variants only; otherwise reserved.  
Table 27. LIN control register (address 21h)  
Bit Symbol Access Value Description  
[1]  
7:6 LSC2  
R/W  
LIN2 slope control:  
slope control active  
slope control active  
00  
01  
10  
slope control active and TXDL dominant time-out  
deactivated  
11  
reserved  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
54 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 27. LIN control register (address 21h) …continued  
Bit Symbol Access Value Description  
[1]  
5:4 LMC2  
R/W  
LIN2 transceiver operating mode selection:  
Offline  
00  
01  
10  
11  
Active mode (when the SBC is in Normal mode)  
Active mode (when the SBC is in Normal mode)  
Listen-only mode  
3:2 LSC1  
R/W  
LIN/LIN1 slope control:  
00  
01  
10  
slope control active  
slope control active  
slope control active and TXDL dominant time-out  
deactivated  
11  
reserved  
1:0 LMC1  
R/W  
LIN/LIN1 transceiver operating mode selection:  
Offline  
00  
01  
10  
11  
Active mode (when the SBC is in Normal mode)  
Active mode (when the SBC is in Normal mode)  
Listen-only mode  
[1] UJA1132 and UJA1136 only; bits 7:4 are reserved in the UJA1131 and UJA1135 and should remain  
cleared.  
Table 28. Transceiver status register (address 22h)  
Bit  
Symbol  
Access Value Description  
7
CTS  
R
CAN transmitter status:  
0
CAN transmitter disabled  
1
CAN transmitter ready to transmit data  
CAN partial networking error:  
[1]  
6
CPNERR  
R
0
1
no CAN partial networking error detected (PNFDEI = 0  
AND PNCOK = 1)  
CAN partial networking error detected (PNFDEI = 1 OR  
PNCOK = 0; wake-up via standard wake-up pattern  
only)  
[1]  
5
4
CPNS  
R
R
CAN partial networking status:  
0
CAN partial networking configuration error detected  
(PNCOK = 0)  
1
CAN partial networking configuration ok (PNCOK = 1)  
CAN oscillator status:  
[1]  
COSCS  
0
1
CAN partial networking oscillator not running at target  
frequency  
CAN partial networking oscillator running at target  
frequency  
3
CBSS  
R
CAN-bus silence status:  
0
1
CAN-bus has been inactive for less than tto(silence)  
CAN-bus has been inactive for longer than tto(silence)  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
55 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 28. Transceiver status register (address 22h) …continued  
Bit  
Symbol  
Access Value Description  
2
VLINS  
R
LIN supply status:  
0
1
LIN supply ok in Normal mode or SBC not in Normal  
mode  
LIN switched to Offline mode due to a LIN undervoltage  
event in Normal mode  
1
VCS  
R
CAN supply status:  
0
1
VCAN undervoltage detection is deactivated or the  
CAN supply is above the undervoltage threshold  
(VVCAN > Vuvd(VCAN)) with VCAN undervoltage detection  
active (it is only active when the SBC is in Normal mode  
and CMC = 01 or CMC = 11)  
CAN supply is below the undervoltage threshold  
(VVCAN < Vuvd(VCAN)) with the SBC in Normal mode and  
CMC = 01 or CMC = 11  
0
CFS  
R
CAN failure status:  
no failure detected  
0
1
CAN transmitter disabled due to a TXDC dominant  
time-out event  
[1] Valid for UJA113xFD/x variants only; otherwise reserved.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
56 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.9.8 CAN partial networking configuration registers  
Dedicated registers are provided for configuring CAN partial networking.  
Table 29. Data rate register (address 26h)  
Bit  
7:3  
2:0  
Symbol  
reserved  
CDR  
Access  
R
Value  
Description  
-
R/W  
CAN data rate selection:  
50 kbit/s  
000  
001  
010  
011  
100  
100 kbit/s  
125 kbit/s  
250 kbit/s  
reserved (intended for future use; currently  
selects 500 kbit/s)  
101  
110  
500 kbit/s  
reserved (intended for future use; currently  
selects 500 kbit/s)  
111  
1000 kbit/s  
Table 30. ID registers 0 to 3 (addresses 27h to 2Ah)  
Addr. Bit Symbol Access Value Description  
27h  
28h  
29h  
7:0 ID7:ID0  
7:0 ID15:ID8  
7:2 ID23:ID18  
R/W  
R/W  
R/W  
-
-
-
bits ID7 to ID00 of the extended frame format  
bits ID15 to ID8 of the extended frame format  
bits ID23 to ID18 of the extended frame format  
bits ID5 to ID0 of the standard frame format  
1:0 ID17:ID16  
7:5 reserved  
4:0 ID28:ID24  
R/W  
R
-
-
-
bits ID17 to ID16 of the extended frame format  
2Ah  
R/W  
bits ID28 to ID24 of the extended frame format  
bits ID10 to ID6 of the standard frame format  
Table 31. ID mask registers 0 to 3 (addresses 2Bh to 2Eh)  
Addr. Bit Symbol  
Access Value Description  
2Bh 7:0 IDM7:IDM0  
R/W  
-
-
-
ID mask bits 7 to 0 of extended frame format  
ID mask bits 15 to 8 of extended frame format  
2Ch 7:0 IDM15:IDM8 R/W  
2Dh 7:2 IDM23:IDM18 R/W  
ID mask bits 23 to 18 of extended frame format  
ID mask bits 5 to 0 of standard frame format  
1:0 IDM17:IDM16 R/W  
-
-
-
ID mask bits 17 to 16 of extended frame format  
2Eh 7:5 reserved  
R
4:0 IDM28:IDM24 R/W  
ID mask bits 28 to 24 of extended frame format  
ID mask. bits 10 to 6 of standard frame format  
Table 32. Frame control register (address 2Fh)  
Bit  
Symbol  
Access  
Value  
Description  
7
IDE  
R/W  
-
identifier format:  
0
1
standard frame format (11-bit)  
extended frame format (29-bit)  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
57 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 32. Frame control register (address 2Fh) …continued  
Bit  
Symbol  
Access  
Value  
Description  
6
PNDM  
R/W  
-
partial networking data mask:  
0
data length code and data field are ‘don’t care’ for  
wake-up  
1
-
data length code and data field are evaluated at  
wake-up  
5:4  
3:0  
reserved  
DLC  
R
R/W  
number of data bytes expected in a CAN frame:  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
0
1
2
3
4
5
6
7
8
1001 to  
1111  
tolerated, 8 bytes expected  
Table 33. Data mask registers (addresses 68h to 6Fh)  
Addr.  
68h  
Bit  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
7:0  
Symbol  
DM0  
DM1  
DM2  
DM3  
DM4  
DM5  
DM6  
DM7  
Access Value  
Description  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
-
-
-
-
-
-
-
-
data mask 0 configuration  
data mask 1 configuration  
data mask 2 configuration  
data mask 3 configuration  
data mask 4 configuration  
data mask 5 configuration  
data mask 6 configuration  
data mask 7 configuration  
69h  
6Ah  
6Bh  
6Ch  
6Dh  
6Eh  
6Fh  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
58 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
'/&ꢊ!ꢊꢀ  
'/&ꢊ ꢊꢀ  
'/&ꢊ ꢊꢁ  
'/&ꢊ ꢊꢂ  
'/&ꢊ ꢊꢃ  
'/&ꢊ ꢊꢄ  
'/&ꢊ ꢊꢅ  
'/&ꢊ ꢊꢆ  
'/&ꢊ ꢊꢇ  
'0ꢐ  
'0ꢐ  
'0ꢇ  
'0ꢇ  
'0ꢇ  
'0ꢆ  
'0ꢆ  
'0ꢆ  
'0ꢆ  
'0ꢅ  
'0ꢅ  
'0ꢅ  
'0ꢅ  
'0ꢅ  
'0ꢄ  
'0ꢄ  
'0ꢄ  
'0ꢄ  
'0ꢄ  
'0ꢄ  
'0ꢃ  
'0ꢃ  
'0ꢃ  
'0ꢃ  
'0ꢃ  
'0ꢃ  
'0ꢃ  
'0ꢂ '0ꢁ  
'0ꢂ '0ꢁ  
'0ꢂ '0ꢁ  
'0ꢂ '0ꢁ  
'0ꢂ '0ꢁ  
'0ꢂ '0ꢁ  
'0ꢂ  
'0ꢁ  
'0ꢂ '0ꢁ  
'0ꢁ  
DDDꢄꢀꢁꢈꢂꢁꢂ  
Fig 19. Data mask register usage for different values of DLC  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
59 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.10 High-voltage input/output pins (HVIOs; not available in UJA113xFD/0)  
The UJA113x contains 4 or 8 high-voltage input/output pins (HVIO) that can be configured  
via the SPI as high- or low-side drivers or as wake-up inputs. They are clustered in 1 or 2  
banks of 4 HVIO pins. HVIO1 to HVIO4 belong to bank 0; HVIO5 to HVIO8 belong to bank  
1. Each bank has its own dedicated supply pin (BATHS1 and BATHS2 respectively). The  
BATHSx pins can be supplied independently from the battery, the SMPS or from one of  
the voltage regulators, provided the supply voltage remains within the specified range.  
The structure of the HVIOs is depicted in Figure 20.  
6<67(0ꢊ&21752/  
%$7+6ꢆ  
%$7+6ꢇ  
+9,2ꢇ  
+9,2ꢆ  
+9,2ꢅ  
+9,2ꢄ  
+9,2ꢃ  
+9,2ꢂ  
+9,2ꢁ  
+9,2ꢀ  
RSWLRQDOꢊGLUHFWꢊFRQWURO  
%DQNꢊꢐ  
%DQNꢊꢇ  
ꢀꢁꢂDDDꢇꢇꢉ  
Bank 1 is not available in the UJA113xFD/4.  
Fig 20. HVIO structure  
The high- and low-side drivers allow the HVIOs to be used, for example, to supply sensors  
or an LED chain or for biasing switches. The HVIOs could be used in combination with the  
four integrated timers to synchronously bias and sample switches or to generate PWM  
signals for adjusting the brightness of LEDs. Two or more HVIOs can be combined to form  
a single output with increased driver capability. In addition, the HVIOs can be configured  
to generate limp home signals or to control hazard lights.  
7.10.1 HVIO configuration  
A dedicated control register is provided for each of the 8 HVIO pins (Table 34). Before it  
can be used, an HVIO pin must first be configured via bits IOnCC. These control bits are  
used to assign a high-level function to each of the HVIO pins. If an HVIO pin is not  
configured (IOnCC = 000), the output drivers are off and the input is deactivated. All other  
control bits are ignored.  
Once an HVIO pin has been configured, it can be activated via bits IOnAC. An HVIO can  
be permanently enabled or disabled, or it can be controlled by one of the four integrated  
timers. If an HVIO is configured as an output driver, the output is activated by each pulse  
of the associated timer signal. This allows an output to be cyclically activated or controlled  
by a PWM signal.  
Remark: HVIO outputs configured as low-side drivers are only enabled while the SBC is  
in Normal mode.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
60 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
If an HVIO is configured as a wake-up input, control bits IOnAC define the sampling  
scheme. If the HVIO is permanently deactivated, then the wake input is never sampled. If  
the pin is permanently enabled, it is sampled at a rate of fs(wake). If it is controlled by a  
timer, the sample rate is determined by the frequency of the timer signal (the sample point  
is at the end of the timer pulse). HVIO control via a timer is depicted in Figure 21.  
%$7+6ꢇ  
96036  
&RQILJXUDWLRQꢒ  
+9,2ꢇꢊꢋꢊ/6ꢊGULYHUꢊ  
+9,2ꢆꢊꢋꢊ/6ꢊGULYHUꢊꢊ  
+9,2ꢅꢊꢋꢊ+6ꢊGULYHUꢊ  
,2ꢇ&&ꢊ ꢊꢐꢇꢐ  
,2ꢆ&&ꢊ ꢊꢐꢇꢐ  
,2ꢅ&&ꢊ ꢊꢐꢐꢇ  
+9,2ꢇ  
+9,2ꢆ  
+9,2ꢅ  
+9,2ꢄ  
+9,2ꢄꢊꢋꢊZDNHꢊLQSXWꢊ ,2ꢄ&&ꢊ ꢊꢐꢇꢇ  
8-$ꢇꢇꢅ[  
DOOꢊ+9,2VꢊDUHꢊFRQWUROOHGꢊE\ꢊ7LPHUꢊꢇꢒ  
,2ꢇ$&ꢊ ꢊ,2ꢆ$&ꢊ ꢊ,2ꢅ$&ꢊ ꢊ,2ꢄ$&ꢊ ꢊꢐꢇꢐ  
7LPHUꢊꢇꢊ  
WLPH  
WLPH  
+9,2ꢇꢎ+9,2ꢆ  
+9,2ꢅ  
96036ꢊ  
%$7+6ꢇꢊ  
WLPH  
+9,2ꢄ  
VDPSOHꢊSRLQW  
+9,2ꢄ  
VDPSOHꢊSRLQW  
+9,2ꢄ  
VDPSOHꢊSRLQW  
+9,2ꢄ  
VDPSOHꢊSRLQW  
ꢀꢁꢂDDDꢇꢇꢊ  
Fig 21. Example of HVIO control via a timer  
The wake-up detection threshold can be configured separately for each bank of HVIOs.  
The threshold can be GND-based or ratiometric to the relevant BATHSx supply voltage.  
The wake-up thresholds for bank 0 and bank 1 are configured via bits B0WTC and  
B1WTC, respectively, in the wake-up threshold control registers (Table 35 and Table 36).  
Bits IOnWLS in the wake-up status registers (Table 37 and Table 38) can be read to  
determine whether the input levels on the HVIO pins were above or below the selected  
threshold when last sampled. Note that the wake-up status information is only valid for  
HVIOs configured as wake-up inputs.  
If the SBC detects a rising or falling edge on an HVIO that is configured as a wake-up  
input, it generates a wake-up interrupt (IOnREI or IOnFEI), if enabled (see Table 68 and  
Table 70).  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
61 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.10.1.1 HVIO slope control  
The HVIO output drivers are equipped with a slope control mechanism that can be  
activated via the IOnCC control bits. The purpose of slope control is to minimize  
electro-magnetic emissions, when necessary.  
Low-side driver slope control: When slope control is disabled, the LS-driver behaves  
as a regular switch: when activated, the on-resistance immediately changes from infinite  
to Ron(HVIOn-GND). When slope control is enabled, the LS-driver behaves as a current  
source: when activated, the output sink current goes from zero to Isink(act)HVIO. The on  
resistance changes to Ron(HVIOn-GND) after a fixed delay of td(on)HVIO. This allows the user  
to adjust the dV/dt on the HVO output by selecting the output capacitance.  
HIGH-side driver slope control: When slope control is disabled, the HS-driver behaves  
as a regular switch: when activated, the on-resistance immediately changes from infinite  
to Ron(BATHSx-HVIOn). When slope control is enabled, the HS-driver initially acts as a  
slope-controlled voltage source. After a fixed time, td(on)HVIO, the HS-driver on-resistance  
changes to Ron(BATHSx-HVIOn). This behavior helps to limit the dV/dt on the HVIO output  
7.10.2 Direct control of HVIOs (only valid for variants with 8 HVIO pins)  
The direct control feature allows an HVIO on bank 0 to be controlled directly from an HVIO  
on bank 1 (without involving the SPI interface). The controlled HVIO on bank 0 must be  
configured as a high- or low-side driver and the ‘direct control’ option must be selected  
(IOnAC =110 for inverted control or IOnAC = 111 for non-inverted control). Input and  
output assignment is fixed - HVIOn of bank 0 is assigned to HVIO(n+4) of bank 1.  
The 'controlling' HVIO on bank 1 does not need to be activated. It only needs an input  
configuration (wake-up input or HS-driver and wake-up input). However, it will need to be  
activated before its status can be read or associated interrupts enabled.  
The direct control pairings can be individually enabled and the configuration of one HVIO  
pair has no impact on other HVIO functions.  
Note that the direct control option is not available for HVIO2, HVIO3 or HVIO4 if they are  
configured as limp home outputs in MTPNV memory (see Section 7.10.6).  
7.10.3 Short-circuit and open load detection  
The HVIO output drivers are protected against short circuits and open loads.  
When a short circuit is detected on an HVIO, the output driver is automatically  
deactivated. A short-circuit failure is reported via the driver status register (bits  
IOnDS = 10; see Table 39 and Table 40). To reactivate the HVIO, the associated  
activation control bits must be reset to 000 (bits IOnAC; see Table 34), which clears the  
driver status bits (IOnDS = 00; driver is OK). The HVIO can then be reactivated (again via  
bits IOnAC, as described in Section 7.10.1). If the short circuit is still present, the HVIO is  
again deactivated. The HVIO short-circuit thresholds can be set individually via bits  
IOnSCTC (see Table 41 and Table 43).  
The UJA113x is also able to detect open-load failures. However, in contrast to the  
response to a short-circuit, the output driver is not deactivated when an open load is  
detected. The open-load failure is reported via the driver status register (bits IOnDS = 01;  
see Table 39 and Table 40). The relevant status bit remains set to 01 until the driver  
current rises above the open-load threshold. The HVIO open-load detection thresholds  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
62 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
can be set individually via bits IOnOLTC (see Table 42 and Table 44).  
If the SBC detects an HVIO short-circuit or open-load failure, an IOnSCI or IOnOLI  
interrupt is generated, if enabled (see Section 7.12). If the UJA113x is in Sleep mode, the  
interrupt triggers a wake-up event.  
Note that short-circuit/open-load detection is only enabled when an HVIO driver is  
switched on. When an HVIO is controlled by a timer, diagnostic status information is  
updated when the driver switches on.  
A minimum HVIO on-time is required for open-load failure detection. A failure may not be  
detected if the on-time is less than tdet(fail)HVIO due to a short duty cycle. Once a failure has  
been detected, an open load failure is reported (IOnDS = 01). The open load failure is  
automatically recovered when the current the HVIO pin is driving exceeds the open-load  
threshold for the HVIO failure recovery time trec(HVIO)  
.
Note that positive currents flow into the IC and negative currents flow out of the IC - so  
both positive and negative thresholds are defined. For a LS-driver, the open-load  
threshold is exceeded when the driving current is above the positive threshold  
(> Ith(det)open; see Table 90). For a HS-driver, the open-load threshold is exceeded when  
the driving current is below the negative threshold (< Ith(det)open).  
7.10.4 Automatic load shedding  
It may be desirable to deactivate the HVIOs as soon as possible in response to a battery  
under- or overvoltage event. For an overvoltage, this feature can prevent overload  
conditions in the SBC or in external loads. For an undervoltage, it can help maintain the  
charge in the battery capacitor to keep the module operational for as long as possible.  
The UJA113x provides the option to deactivate the HVIO ports individually (input or  
output) in the event of an under- or overvoltage. This option helps to reduce the reaction  
time without burdening the microcontroller.  
The HVIOs are configured via bits IOnSC in the HVIOn control registers (see Table 34).  
The under- and overvoltage thresholds are defined by the battery monitor thresholds,  
BMOTC and BMUTC (see Section 7.8.2). HVIO ports are automatically reactivated when  
the under- or overvoltage condition is removed. Note that shutdown control is only active  
while the SBC is in Normal Mode.  
The HVIOs switch to a fail-safe state when the SBC enters Overload mode (see  
Section 7.1.1.5). For HVIOs configured as limp-home outputs (HVIO2, HVIO3, and/or  
HVIO4; see Section 7.10.6), the selected limp-home functions are activated when the  
HVIOs switch to fail-safe state. Otherwise, the HVIO drivers are de-activated.  
7.10.5 Safety features  
For certain applications it can be critical to ensure that an HVIO high- or low-side driver is  
not activated accidentally. To prevent this happening, a driver can be deactivated via bits  
IOnHOC and IOnLOC in non-volatile memory (see Table 45 and Table 46). Non-volatile  
memory settings have the highest priority. That means that conflicting SPI register  
settings in standard memory are overruled.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
63 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.10.6 HVIO pins configured as limp home outputs  
The LIMP pin is provided to enable ‘limp home’ hardware in the event of an ECU failure  
(see Section 7.5). Pins HVIO2, HVIO3 and HVIO4 can be used to provide additional limp  
home functionality. When the limp home control bit is set (LHC = 1; see Table 12), the  
following functions are supported:  
HVIO2 can be configured as a statically active high-side driver  
HVIO3 can be configured as a high-side switch supplying a 100 Hz PWM signal with a  
10 % duty cycle  
HVIO4 can be configured as a high-side switch supplying a 1.25 Hz PWM signal with  
a 50 % duty cycle  
Bit LHC is set automatically in Overload and FSO modes but can also be set via the SPI.  
Limp home functionality is enabled for the HVIO pins via the IOnSFC control bits in the  
Start-up control register (Table 11). The Start-up control register is located in the  
non-volatile memory bank so this function can be enabled automatically at power-on.  
When HVIO2, HVIO3 and HVIO4 are configured as limp home outputs, the bit settings in  
the dedicated control registers are ignored.  
Timer 3 and Timer 4 provide the clock signals for HVIO3 and HVIO4, respectively. When  
these HVIOs are configured as limp home outputs (LHC = 1; IOnSFC = 1), the timers are  
dedicated to the HVIOs and cannot be used for any other purpose. Timer 3 and Timer 4  
control settings are ignored (see Section 7.11).  
Short-circuit and open-load detection is enabled for HVIO2, HVIO3 and HVIO4 when they  
are configured as limp home outputs. The HVIO output driver is deactivated when a  
short-circuit is detected. In order to recover from a short-circuit failure, the HVIO must be  
deactivated and reactivated via the SPI by resetting and then setting bit LHC.  
Note that when an HVIO is configured as a limp home output, its high-side driver should  
not be deactivated via bit IOnHOC in non-volatile memory (see Table 45).  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
64 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.10.7 HVIO control and status registers  
HVIO control and status registers are not available in the UJA113xFD/0. HVIO bank 1  
(HVIO5 to HVIO 8) registers are not available in the UJA113xFD/4.  
Table 34. HVIOn control registers[1]  
Bit Symbol Access Value Description  
7:6 IOnSC  
R/W  
HVIOn shutdown control:  
00  
01  
HVIOn does not respond to a battery over- or undervoltage  
HVIOn shuts down when battery undervoltage is detected in  
Normal mode  
10  
11  
HVIOn shuts down when battery overvoltage is detected in  
Normal mode  
HVIOn shuts down when battery over- or undervoltage is  
detected in Normal mode  
5:3 IOnAC  
R/W  
HVIOn activation control:  
HVIOn is deactivated  
000  
001  
010  
011  
100  
101  
110  
HVIOn is enabled  
HVIOn is controlled by Timer 1  
HVIOn is controlled by Timer 2  
HVIOn is controlled by Timer 3  
HVIOn is controlled by Timer 4  
HVIOn is controlled by HVIOn+4 (inverted control; only  
available for bank 0)  
111  
HVIOn is controlled by HVIOn+4 (non-inverted control; only  
available for bank 0)  
2:0 IOnCC  
R/W  
HVIOn configuration control:  
000  
001  
010  
011  
100  
HVIOn is off  
HVIOn is configured as a HS-driver with slope control  
HVIOn is configured as a LS-driver with slope control  
HVIOn is configured as a wake-up input  
HVIOn is configured as a HS-driver and wake-up input with  
slope control  
101  
110  
111  
HVIOn is configured as a HS-driver without slope control  
HVIOn is configured as a LS-driver without slope control  
HVIOn is configured as a HS-driver and wake-up input  
without slope control  
[1] Addresses 30h to 33h for HVIO1 to HVIO4 respectively; addresses 40h to 43h for HVIO5 to HVIO8.  
Table 35. Bank 0 (HVIO1 to HVIO4) wake-up threshold control register (address 34h)  
Bit Symbol Access Value Description  
7:1 reserved  
R
-
0
B0WTC R/W  
bank 0 wake-up threshold configuration:  
threshold is ratiometric to VBATHS1  
threshold is absolute  
0
1
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
65 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 36. Bank 1 (HVIO5 to HVIO8) wake-up threshold control register (address 44h)  
Bit Symbol Access Value Description  
7:1 reserved  
R
-
0
B1WTC R/W  
bank 1 wake-up threshold configuration:  
threshold is ratiometric to VBATHS2  
threshold is absolute  
0
1
Table 37. Bank 0 wake-up status register (address 35h)  
Bit Symbol Access Value Description  
7:4 reserved  
R
R
-
3
2
1
0
IO4WLS  
IO3WLS  
IO2WLS  
IO1WLS  
status of input voltage on HVIO4:  
0
1
the input voltage is below the selected wake-up threshold  
the input voltage is above the selected wake-up threshold  
status of input voltage on HVIO3:  
R
R
R
0
1
the input voltage is below the selected wake-up threshold  
the input voltage is above the selected wake-up threshold  
status of input voltage on HVIO2:  
0
1
the input voltage is below the selected wake-up threshold  
the input voltage is above the selected wake-up threshold  
status of input voltage on HVIO1:  
0
1
the input voltage is below the selected wake-up threshold  
the input voltage is above the selected wake-up threshold  
Table 38. Bank 1 wake-up status register (address 45h)  
Bit Symbol Access Value Description  
7:4 reserved  
R
R
-
3
2
1
0
IO8WLS  
IO7WLS  
IO6WLS  
IO5WLS  
status of input voltage on HVIO8:  
0
1
the input voltage is below the selected wake-up threshold  
the input voltage is above the selected wake-up threshold  
status of input voltage on HVIO7:  
R
R
R
0
1
the input voltage is below the selected wake-up threshold  
the input voltage is above the selected wake-up threshold  
status of input voltage on HVIO6:  
0
1
the input voltage is below the selected wake-up threshold  
the input voltage is above the selected wake-up threshold  
status of input voltage on HVIO5:  
0
1
the input voltage is below the selected wake-up threshold  
the input voltage is above the selected wake-up threshold  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
66 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 39. Bank 0 driver status register (address 36h)  
Bit Symbol Access Value Description  
7:6 IO4DS  
5:4 IO3DS  
3:2 IO2DS  
1:0 IO1DS  
R
R
R
R
HVIO4 driver status:  
HVIO4 driver is ok  
open load on HVIO4  
short circuit on HVIO4  
HVIO4 driver is off  
HVIO3 driver status:  
HVIO3 driver is ok  
open load on HVIO3  
short circuit on HVIO3  
HVIO3 driver is off  
HVIO2 driver status:  
HVIO2 driver is ok  
open load on HVIO2  
short circuit on HVIO2  
HVIO2 driver is off  
HVIO1 driver status:  
HVIO1 driver is ok  
open load on HVIO1  
short circuit on HVIO1  
HVIO1 driver is off  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
Table 40. Bank 1 driver status register (address 46h)  
Bit Symbol Access Value Description  
7:6 IO8DS  
5:4 IO7DS  
3:2 IO6DS  
R
R
R
HVIO8 driver status:  
HVIO8 driver is ok  
open load on HVIO8  
short circuit on HVIO8  
HVIO8 driver is off  
HVIO7 driver status:  
HVIO7 driver is ok  
open load on HVIO7  
short circuit on HVIO7  
HVIO7 driver is off  
HVIO6 driver status:  
HVIO6 driver is ok  
open load on HVIO6  
short circuit on HVIO6  
HVIO6 driver is off  
00  
01  
10  
11  
00  
01  
10  
11  
00  
01  
10  
11  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
67 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 40. Bank 1 driver status register (address 46h) …continued  
Bit Symbol Access Value Description  
1:0 IO5DS  
R
HVIO5 driver status:  
HVIO5 driver is ok  
open load on HVIO5  
short circuit on HVIO5  
HVIO5 driver is off  
00  
01  
10  
11  
Table 41. Bank 0 short-circuit detection threshold control register (address 39h)  
Bit Symbol  
Access  
Value Description  
HVIO4 short-circuit detection threshold:  
7:6 IO4SCTC  
R/W  
00  
01  
10  
11  
Ith(det)sc condition 00; see Table 90  
Ith(det)sc condition 01; see Table 90  
Ith(det)sc condition 10; see Table 90  
Ith(det)sc condition 11; see Table 90  
HVIO3 short-circuit threshold:  
5:4 IO3SCTC  
3:2 IO2SCTC  
1:0 IO1SCTC  
R/W  
R/W  
R/W  
00  
01  
10  
11  
Ith(det)sc condition 00; see Table 90  
Ith(det)sc condition 01; see Table 90  
Ith(det)sc condition 10; see Table 90  
Ith(det)sc condition 11; see Table 90  
HVIO2 short-circuit threshold:  
00  
01  
10  
11  
Ith(det)sc condition 00; see Table 90  
Ith(det)sc condition 01; see Table 90  
Ith(det)sc condition 10; see Table 90  
Ith(det)sc condition 11; see Table 90  
HVIO1 short-circuit threshold:  
00  
01  
10  
11  
Ith(det)sc condition 00; see Table 90  
Ith(det)sc condition 01; see Table 90  
Ith(det)sc condition 10; see Table 90  
Ith(det)sc condition 11; see Table 90  
Table 42. Bank 0 open-load detection threshold control register (address 3Ah)  
Bit Symbol  
Access  
Value Description  
HVIO4 open-load threshold:  
7:6 IO4OLTC  
R/W  
00  
01  
10  
11  
Ith(det)open condition 00; see Table 90  
Ith(det)open condition 01; see Table 90  
Ith(det)open condition 10; see Table 90  
Ith(det)open condition 11; see Table 90  
HVIO3 open-load threshold:  
5:4 IO3OLTC  
R/W  
00  
01  
10  
11  
Ith(det)open condition 00; see Table 90  
Ith(det)open condition 01; see Table 90  
Ith(det)open condition 10; see Table 90  
Ith(det)open condition 11; see Table 90  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
68 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 42. Bank 0 open-load detection threshold control register (address 3Ah) …continued  
Bit Symbol  
Access  
Value Description  
HVIO2 open-load threshold:  
3:2 IO2OLTC  
R/W  
00  
01  
10  
11  
Ith(det)open condition 00; see Table 90  
Ith(det)open condition 01; see Table 90  
Ith(det)open condition 10; see Table 90  
Ith(det)open condition 11; see Table 90  
HVIO1 open-load threshold:  
1:0 IO1OLTC  
R/W  
00  
01  
10  
11  
Ith(det)open condition 00; see Table 90  
Ith(det)open condition 01; see Table 90  
Ith(det)open condition 10; see Table 90  
Ith(det)open condition 11; see Table 90  
Table 43. Bank 1 short-circuit detection threshold control register (address 49h)  
Bit Symbol  
Access  
Value Description  
HVIO8 short-circuit threshold:  
7:6 IO8SCTC  
R/W  
00  
01  
10  
11  
Ith(det)sc condition 00; see Table 90  
Ith(det)sc condition 01; see Table 90  
Ith(det)sc condition 10; see Table 90  
Ith(det)sc condition 11; see Table 90  
HVIO7 short-circuit threshold:  
5:4 IO7SCTC  
3:2 IO6SCTC  
1:0 IO5SCTC  
R/W  
R/W  
R/W  
00  
01  
10  
11  
Ith(det)sc condition 00; see Table 90  
Ith(det)sc condition 01; see Table 90  
Ith(det)sc condition 10; see Table 90  
Ith(det)sc condition 11; see Table 90  
HVIO6 short-circuit threshold:  
00  
01  
10  
11  
Ith(det)sc condition 00; see Table 90  
Ith(det)sc condition 01; see Table 90  
Ith(det)sc condition 10; see Table 90  
Ith(det)sc condition 11; see Table 90  
HVIO5 short-circuit threshold:  
00  
01  
10  
11  
Ith(det)sc condition 00; see Table 90  
Ith(det)sc condition 01; see Table 90  
Ith(det)sc condition 10; see Table 90  
Ith(det)sc condition 11; see Table 90  
Table 44. Bank 1 open-load detection threshold control register (address 4Ah)  
Bit Symbol  
Access  
Value Description  
HVIO8 open-load threshold:  
7:6 IO8OLTC  
R/W  
00  
01  
10  
11  
Ith(det)open condition 00; see Table 90  
Ith(det)open condition 01; see Table 90  
Ith(det)open condition 10; see Table 90  
Ith(det)open condition 11; see Table 90  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
69 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 44. Bank 1 open-load detection threshold control register (address 4Ah) …continued  
Bit Symbol  
Access  
Value Description  
HVIO7 open-load threshold:  
5:4 IO7OLTC  
R/W  
00  
01  
10  
11  
Ith(det)open condition 00; see Table 90  
Ith(det)open condition 01; see Table 90  
Ith(det)open condition 10; see Table 90  
Ith(det)open condition 11; see Table 90  
HVIO6 open-load threshold:  
3:2 IO6OLTC  
1:0 IO5OLTC  
R/W  
R/W  
00  
01  
10  
11  
Ith(det)open condition 00; see Table 90  
Ith(det)open condition 01; see Table 90  
Ith(det)open condition 10; see Table 90  
Ith(det)open condition 11; see Table 90  
HVIO5 open-load threshold:  
00  
01  
10  
11  
Ith(det)open condition 00; see Table 90  
Ith(det)open condition 01; see Table 90  
Ith(det)open condition 10; see Table 90  
Ith(det)open condition 11; see Table 90  
Table 45. HVIO high-side driver control register (address 71h)  
This table is located in non-volatile memory with restricted write access.  
Bit Symbol  
Access  
Value Description  
HVIO8 high-side driver control:  
7
6
5
4
3
IO8HOC  
IO7HOC  
IO6HOC  
IO5HOC  
IO4HOC  
R/W  
0[1]  
HVIO8 high-side driver is controlled by the setting in the  
HVIO8 control register  
1
HVIO8 high-side driver is off, regardless of the setting in  
the HVIO8 control register  
R/W  
R/W  
R/W  
R/W  
HVIO7 high-side driver control:  
0[1]  
1
HVIO7 high-side driver is controlled by the setting in the  
HVIO7 control register  
HVIO7 high-side driver is off, regardless of the setting in  
the HVIO7 control register  
HVIO6 high-side driver control:  
0[1]  
1
HVIO6 high-side driver is controlled by the setting in the  
HVIO6 control register  
HVIO6 high-side driver is off, regardless of the setting in  
the HVIO6 control register  
HVIO5 high-side driver control:  
0[1]  
1
HVIO5 high-side driver is controlled by the setting in the  
HVIO5 control register  
HVIO5 high-side driver is off, regardless of the setting in  
the HVIO5 control register  
HVIO4 high-side driver control:  
0[1]  
1
HVIO4 high-side driver is controlled by the setting in the  
HVIO4 control register  
HVIO4 high-side driver is off, regardless of the setting in  
the HVIO4 control register  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
70 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 45. HVIO high-side driver control register (address 71h) …continued  
This table is located in non-volatile memory with restricted write access.  
Bit Symbol  
Access  
Value Description  
HVIO3 high-side driver control:  
2
1
0
IO3HOC  
IO2HOC  
IO1HOC  
R/W  
0[1]  
HVIO3 high-side driver is controlled by the setting in the  
HVIO3 control register  
1
HVIO3 high-side driver is off, regardless of the setting in  
the HVIO3 control register  
R/W  
R/W  
HVIO2 high-side driver control:  
0[1]  
1
HVIO2 high-side driver is controlled by the setting in the  
HVIO2 control register  
HVIO2 high-side driver is off, regardless of the setting in  
the HVIO2 control register  
HVIO1 high-side driver control:  
0[1]  
1
HVIO1 high-side driver is controlled by the setting in the  
HVIO1 control register  
HVIO1 high-side driver is off, regardless of the setting in  
the HVIO1 control register  
[1] Factory preset value.  
Table 46. HVIO low-side driver control register (address 72h)  
This table is located in non-volatile memory with restricted write access.  
Bit Symbol  
Access  
Value Description  
HVIO8 low-side driver control:  
7
6
5
4
IO8LOC  
IO7LOC  
IO6LOC  
IO5LOC  
R/W  
0[1]  
HVIO8 low-side driver is controlled by the setting in the  
HVIO8 control register  
1
HVIO8 low-side driver is off, regardless of the setting in  
the HVIO8 control register  
R/W  
R/W  
R/W  
HVIO7 low-side driver control:  
0[1]  
1
HVIO7 low-side driver is controlled by the setting in the  
HVIO7 control register  
HVIO7 low-side driver is off, regardless of the setting in  
the HVIO7 control register  
HVIO6 low-side driver control:  
0[1]  
1
HVIO6 low-side driver is controlled by the setting in the  
HVIO6 control register  
HVIO6 low-side driver is off, regardless of the setting in  
the HVIO6 control register  
HVIO5 low-side driver control:  
0[1]  
1
HVIO5 low-side driver is controlled by the setting in the  
HVIO5 control register  
HVIO5 low-side driver is off, regardless of the setting in  
the HVIO5 control register  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
71 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 46. HVIO low-side driver control register (address 72h) …continued  
This table is located in non-volatile memory with restricted write access.  
Bit Symbol  
Access  
Value Description  
HVIO4 low-side driver control:  
3
2
1
0
IO4LOC  
IO3LOC  
IO2LOC  
IO1LOC  
R/W  
0[1]  
HVIO4 low-side driver is controlled by the setting in the  
HVIO4 control register  
1
HVIO4 low-side driver is off, regardless of the setting in  
the HVIO4 control register  
R/W  
R/W  
R/W  
HVIO3 low-side driver control:  
0[1]  
1
HVIO3 low-side driver is controlled by the setting in the  
HVIO3 control register  
HVIO3 low-side driver is off, regardless of the setting in  
the HVIO3 control register  
HVIO2 low-side driver control:  
0[1]  
1
HVIO2 low-side driver is controlled by the setting in the  
HVIO2 control register  
HVIO2 low-side driver is off, regardless of the setting in  
the HVIO2 control register  
HVIO1 low-side driver control:  
0[1]  
1
HVIO1 low-side driver is controlled by the setting in the  
HVIO1 control register  
HVIO1 low-side driver is off, regardless of the setting in  
the HVIO1 control register  
[1] Factory preset value.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
72 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.11 Timer control (not applicable to UJA113xFD/0 variants)  
The UJA113x contains 4 timers. Each timer can be assigned to any of the HVIOs. Up to  
four configuration options are available: two Autonomous options and two Slave options. If  
an Autonomous option is selected (PWM mode or Timer mode), the timer period is  
determined by the dedicated timer period control bits TnPC. If a Slave option is selected  
(Synchronous timer mode or Synchronous follower mode), the timer period is inherited  
from a timer further up the chain, as described in Table 47. Timer 1 acts as a master timer  
and, therefore, has no slave option.  
The timer mode is selected via control bits TnMC (see Table 48 to Table 54). The options  
available are described in Table 47. In an Autonomous mode, the duty cycle is determined  
by the setting of bits TnDCC (see Table 49 to Table 55). In Timer mode, the activation of  
an assigned HVIO is delayed by one period to allow for synchronization with other timers.  
Remark: When HVIO3 is configured as a limp home output (IO3SFC = 1), Timer 3  
provides the clock signal (100 Hz 10 % PWM; see Section 7.10.6). Timer 3 is not  
available for any other purpose. Timer 3 control settings are ignored (Table 52 and  
Table 53). HVIOs configured to be controlled by Timer 3 remain off. Similarly, Timer 4 is  
dedicated to HVIO4 when it is configured as a limp home output and cannot be used for  
any other purpose (1.25 Hz 50 % PWM signal).  
Table 47. Timer configuration options  
Mode  
Mode type  
TnMC  
Description  
PWM  
Autonomous  
00  
The duty cycle set via TnDCC is relative to the timer period. The period is  
determined by the dedicated timer period control bits (TnPC). This  
configuration option can be used for LED dimming.  
Timer  
Autonomous  
Slave  
01  
10  
The pulse width is a multiple of 100 s regardless of the selected period. If  
the on-time is longer than the selected period, the timer is always on. The  
period is determined by the dedicated timer period control bits (TnPC).  
This option is useful for generating short pulses with long periods, e.g. for  
switch biasing or safety heartbeat signals.  
Synchronous  
timer  
The pulse length is a multiple of 100 s. The pulse is triggered  
synchronously with the pulse of Timer 1. So the timer period is inherited  
from Timer 1, regardless of the setting of TnPC. If the pulse length is  
longer than the period of Timer 1, the timer is always on. This mode can be  
used for generating synchronized pulses of different lengths. Since Timer  
1 is the master timer, this option is only available for Timers 2 to 4. Note  
that the slave timer is triggered even when Timer 1 is operating at a duty  
cycle of 0 %.  
Synchronous  
follower  
Slave  
11  
The pulse length is a multiple of 100 s. The pulse of Timer n is triggered  
at the end of the pulse of Timer n 1. The period is also inherited from  
Timer n 1 (if Timer n 1 is also running in a Slave mode, the period is  
inherited from Timer n 2, and so on). So the pulse of Timer 3 is triggered  
at the end of the Timer 2 pulse and the period is also inherited from Timer  
2 (assuming Timer 2 is not running in a Slave mode). This mode is useful  
for generating consecutive pulses. This option is only available for Timers  
2 to 4. Note that the slave timer is triggered even when Timer 1 is  
operating at a duty cycle of 0 %.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
73 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.11.1 Timer control and status registers  
Table 48. Timer 1 control register (address 50h)  
Bit Symbol Access Value Description  
7:6 reserved  
5:2 T1PC  
R
-
R/W  
Timer 1 period:  
4 ms  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
-
8 ms  
20 ms  
30 ms  
50 ms  
100 ms  
200 ms  
400 ms  
800 ms  
1 s  
2 s  
4 s  
1
0
reserved  
T1MC  
R
R/W  
Timer 1 mode control:  
0
1
Timer 1 is in PWM mode; on-time = T1DCC T1PC / 255  
Timer 1 is in Timer mode; on-time = T1DCC tw(base)tmr s;  
period defined by T1PC  
Table 49. Timer 1 duty cycle control register (address 51h)  
Bit Symbol Access Value  
7:0 T1DCC R/W xxxxxxxx  
Description  
duty cycle = T1DCC / 255  
Table 50. Timer 2 control register (address 52h)  
Bit Symbol Access Value Description  
7:6 reserved  
5:2 T2PC  
R
-
R/W  
Timer 2 period:  
4 ms  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
8 ms  
20 ms  
30 ms  
50 ms  
100 ms  
200 ms  
400 ms  
800 ms  
1 s  
2 s  
4 s  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
74 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 50. Timer 2 control register (address 52h) …continued  
Bit Symbol Access Value Description  
0:1 T2MC  
R/W  
Timer 2 mode control:  
00  
01  
Timer 2 is in PWM mode; on-time = T2DCC T2PC / 255  
Timer 2 is in Timer mode; on-time = T2DCC tw(base)tmr s;  
period defined by T2PC  
10  
11  
Timer 2 pulse is triggered at the start of Timer 1 pulse  
(master-slave mode); on-time = T2DCC tw(base)tmr s  
Timer 2 pulse is triggered at the end of Timer 1 pulse  
(follower mode); on-time = T2DCC tw(base)tmr s  
Table 51. Timer 2 duty cycle control register (address 53h)  
Bit Symbol Access Value  
7:0 T2DCC R/W xxxxxxxx  
Description  
duty cycle = T2DCC / 255  
Table 52. Timer 3 control register (address 54h)  
Bit Symbol Access Value Description  
7:6 reserved  
5:2 T3PC  
R
-
R/W  
Timer 3 period:  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
4 ms  
8 ms  
20 ms  
30 ms  
50 ms  
100 ms  
200 ms  
400 ms  
800 ms  
1 s  
2 s  
4 s  
0:1 T3MC  
R/W  
Timer 3 mode control:  
00  
01  
Timer 3 is in PWM mode; on-time = T3DCC T3PC / 255  
Timer 3 is in Timer mode; on-time = T3DCC tw(base)tmr s;  
period defined by T3PC  
10  
11  
Timer 3 pulse is triggered at the start of Timer 1 pulse  
(master-slave mode); on-time = T3DCC tw(base)tmr s  
Timer 3 pulse is triggered at the end of Timer 2 pulse  
(follower mode); on-time = T3DCC tw(base)tmr s  
Table 53. Timer 3 duty cycle control register (address 55h)  
Bit Symbol Access Value  
7:0 T3DCC R/W xxxxxxxx  
Description  
duty cycle = T3DCC / 255  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
75 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 54. Timer 4 control register (address 56h)  
Bit Symbol Access Value Description  
7:6 reserved  
5:2 T4PC  
R
-
R/W  
Timer 4 period:  
0000  
0001  
0010  
0011  
0100  
0101  
0110  
0111  
1000  
1001  
1010  
1011  
4 ms  
8 ms  
20 ms  
30 ms  
50 ms  
100 ms  
200 ms  
400 ms  
800 ms  
1 s  
2 s  
4 s  
0:1 T4MC  
R/W  
Timer 4 mode control:  
00  
01  
Timer 4 is in PWM mode; on-time = T4DCC T4PC / 255  
Timer 4 is in Timer mode; on-time = T4DCC tw(base)tmr s;  
period defined by T4PC  
10  
11  
Timer 4 pulse is triggered at the start of Timer 1 pulse  
(master-slave mode); on-time = T4DCC tw(base)tmr s  
Timer 4 pulse is triggered at the end of Timer 3 pulse  
(follower mode); on-time = T4DCC tw(base)tmr s  
Table 55. Timer 4 duty cycle control register (address 57h)  
Bit Symbol Access Value  
7:0 T4DCC R/W xxxxxxxx  
Description  
duty cycle = T4DCC / 255  
7.12 Interrupt mechanism and wake-up function  
The SBC interrupt mechanism alerts the microcontroller to specific events or changes of  
state via the interrupt pins, INTN1 and INTN2. Most interrupts can be enabled/disabled via  
dedicated interrupt enable bits. If an event occurs while the associated interrupt is  
enabled, pin INTN1 and, depending on the interrupt source, pin INTN2 are forced LOW. If  
the device is in Sleep mode when the interrupt is generated, the SBC wakes up and  
enters Reset Mode. The SBC does not distinguish between wake-up and interrupt events.  
All wake-up events (LIN, CAN and HVIO) generate interrupt requests and all interrupts  
trigger a wake-up event when the UJA113x is in a low-power mode. When the SBC wakes  
up in response to an interrupt or wake-up event, the interrupt pin(s) will be LOW to signal  
to the microcontroller that an interrupt needs to be processed.  
Pins INTN1 and INTN2 are digital open-drain active-LOW outputs that should be  
connected to the microcontroller. External pull-up resistors to V1 are needed to pull the  
interrupt pins HIGH when no interrupt is pending. Pin INTN1 is always driven LOW when  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
76 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
an interrupt is pending. Pin INTN2 is assigned to a critical subset of interrupts that require  
immediate action, such as undervoltage or overtemperature warnings. So INTN2 can be  
used to assign priorities to interrupts via software.  
An interrupt status bit is associated with each interrupt source to indicate whether an  
interrupt is pending. The interrupt status bits are located in Table 58 to Table 64. When an  
interrupt is generated, the microcontroller needs to poll these registers to determine the  
source of the interrupt. An additional Global interrupt status register (Table 57) is provided  
to help speed up this process. The microcontroller can access this register to determine  
the type of interrupt generated (system, supply, transceiver, bank 0 or bank 1) and then go  
directly to the relevant status register, minimizing access times.  
Once the interrupt source has been identified, the relevant status bit should be cleared  
(set to 0) by writing 1 to the relevant bit - writing 0 will have no effect. A number of status  
bits can be cleared in a single write operation by writing 1 to all relevant bits. The interrupt  
pins are released (go HIGH) when all interrupt status bits have been cleared.  
7.12.1 Interrupt delay  
If interrupts occur very frequently, they can have a significant impact on the software  
processing time (because pins INTN1/INTN2 are repeatedly driven LOW, requiring a  
response from the microcontroller each time). The UJA113x incorporates an interrupt  
delay timer to limit the disturbance to the software.  
A timer is started and pin INTN1 is released when one or more interrupt status bits are  
cleared. A number of interrupts may be generated and captured while the timer is running  
and pin INTN1 remains HIGH. When the timer expires after tto(int), pin INTN1 goes LOW if  
one or more interrupts are pending. Note that the interrupt status registers can be read  
and cleared at any time, including while the timer is running and INTN1 is HIGH.  
The interrupt delay timer is stopped immediately if pin RSTN goes LOW (as happens  
when the SBC enters Reset, Sleep, Overload and Off modes). The timer has no effect on  
pin INTN2. This pin goes LOW as soon as an associated interrupt is generated to allow  
the microcontroller to react as quickly as possible.  
7.12.2 Sleep mode protection  
The interrupt (wake-up) function is critical when the UJA113x is in Sleep mode because  
the SBC will only leave Sleep mode in response to an interrupt request. To avoid  
deadlocks, the SBC distinguishes between regular and diagnostic interrupts (see  
Section 7.12.3). Regular interrupts are generated by bus (CAN, LIN) and local (HVIO)  
wake-up events; diagnostic interrupts detect failure/error conditions or state changes. At  
least one regular interrupt must be enabled before the UJA113x can switch to Sleep  
mode. Any attempt to enter Sleep mode while all the regular interrupts are disabled  
triggers a system reset.  
Another condition that must be satisfied before the UJA113x can switch to Sleep mode is  
that all interrupt status bits must be cleared (no interrupt pending). If an SPI command to  
go to Sleep mode (MC = 001) is issued while an interrupt is pending, the SBC immediately  
switches to Reset mode. This condition applies to all interrupts (regular and diagnostic).  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
77 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.12.3 Interrupt sources  
Table 56 provides an overview of the interrupts recognized by the UJA113x. The events  
that trigger each interrupt are described. In addition, the interrupt type (‘regular’ or  
‘diagnostic’) is specified along with the associated interrupt pin(s) (INTN1 or both INTN1  
and INTN2).  
Most interrupts can be enabled and disabled via the interrupt enable registers (Table 65 to  
Table 71). The following interrupts do not have associated interrupt enable bits and are  
always enabled: WDI, PNFDEI, POSI, OVSDI.  
Note that bus wake-up events (CAN, LIN1 and LIN2) also cause the dedicated RXD pins  
(RXDC, RXDL1 and RXDL2) to go LOW. Pin RXDx is released when the relevant interrupt  
status bit (CWI, LWI1 or LWI2) is cleared.  
Table 56. Interrupt sources  
Symbol Description  
Type  
diagnostic INTN1  
regular INTN1  
Pin  
Source  
CFI  
CAN failure interrupt  
Status bit VCS and/or status bit CFS is set to 1.  
CWI  
CAN wake-up interrupt  
A CAN wake-up event was detected while the  
transceiver was not in Active mode.  
CBSI  
LWIn  
CAN-bus silence interrupt  
LINn wake-up interrupt  
diagnostic INTN1  
regular INTN1  
The CAN-bus has been silent for t > tto(silence).  
A wake-up event was detected at LINn while the  
transceiver was not in Active mode.  
WDI  
watchdog failure interrupt  
diagnostic INTN1  
The watchdog overflowed in Timeout mode. If the  
watchdog overflows while a WDI is pending, a reset is  
performed. Note that this interrupt cannot be  
deactivated.  
OTWI  
overtemperature warning  
interrupt  
diagnostic INTN1,  
INTN2  
The global chip temperature has exceeded the  
over-temperature warning threshold.  
PNFDEI partial networking frame  
detect error interrupt  
diagnostic INTN1  
A CAN error frame was detected by the partial  
networking receiver.  
POSI  
SPIFI  
power-on status interrupt  
SPI failure interrupt  
diagnostic INTN1  
diagnostic INTN1  
The SBC has left Off Mode; interrupt is always enabled.  
This interrupt is triggered by the following events:  
illegal WMC code  
illegal NWP code  
illegal MC code  
wrong SPI clock count (only 16-, 24- and 32-bit  
commands are supported)  
write access to a locked register  
V1UI  
V1 undervoltage interrupt  
diagnostic INTN1,  
INTN2  
V1 voltage dropped below the 90 % undervoltage  
threshold while V1 was active (no interrupt triggered in  
Sleep mode because V1 is off). This interrupt is  
independent of the V1RTC bit setting.  
VEXTUI V2 undervoltage interrupt  
VEXTOI V2 overvoltage interrupt  
diagnostic INTN1  
diagnostic INTN1  
V2/VEXT dropped below the 90 % undervoltage  
threshold.  
V2/VEXT above the 110 % overvoltage threshold.  
BMUI  
battery monitor undervoltage diagnostic INTN1,  
interrupt INTN2  
The voltage measured at the active battery monitoring  
source (pin BAT or pin BATSENSE) dropped below the  
selected undervoltage threshold.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
78 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 56. Interrupt sources …continued  
Symbol Description  
Type  
Pin  
Source  
BMOI  
battery monitor overvoltage  
interrupt  
diagnostic INTN1,  
INTN2  
The voltage measured at the active battery monitoring  
source (pin BAT or pin BATSENSE) has risen above the  
selected overvoltage threshold.  
OVSDI  
overvoltage shut-down  
interrupt  
diagnostic INTN1,  
INTN2  
A battery overvoltage will cause the SBC to enter  
Overload Mode; interrupt is always enabled.  
SMPSSI SMPS status interrupt  
diagnostic INTN1,  
INTN2  
The state of bit SMPSS has changed (see  
Section 7.8.4.1)  
IOnOLI  
IOnSCI  
IOnREI  
IOnFEI  
HVIOn open load interrupt  
HVIOn short circuit interrupt  
HVIOn rising edge interrupt  
HVIOn falling edge interrupt  
diagnostic INTN1  
An open load condition was detected at HVIOn while the  
high-side or low-side driver was active.  
diagnostic INTN1  
A short-circuit condition was detected at HVIOn while  
the high-side or low-side driver was active.  
regular  
regular  
INTN1  
INTN1  
A rising edge wake-up signal was detected at pin HVIOn  
when configured as wake input.  
A falling edge wake-up signal was detected at pin  
HVIOn when configured as wake input.  
7.12.4 Interrupt registers  
Table 57. Global interrupt status register (address 60h)  
Bit Symbol Access Value Description  
7
6
reserved R  
-
B1FIS[1]  
B1WIS[1]  
B0FIS[2]  
B0WIS[2]  
TRXIS  
R
R
R
R
R
R
R
0
1
0
1
0
1
0
1
0
1
0
1
0
1
no pending interrupt in the bank 1 fail interrupt status register  
pending interrupt in the bank 1 fail interrupt status register  
no pending interrupt in bank 1 wake-up interrupt status register  
pending interrupt in the bank 1 wake-up interrupt status register  
no pending interrupt in the bank 0 fail interrupt status register  
pending interrupt in the bank 0 fail interrupt status register  
no pending interrupt in bank 0 wake-up interrupt status register  
pending interrupt in the bank 0 wake-up interrupt status register  
no pending interrupt in the Transceiver interrupt status register  
pending interrupt in the Transceiver interrupt status register  
no pending interrupt in the Supply interrupt status register  
pending interrupt in the Supply interrupt status register  
no pending interrupt in the System interrupt status register  
pending interrupt in the System interrupt status register  
5
4
3
2
1
0
SUPIS  
SYSIS  
[1] Reserved in UJA113xFD/x.  
[2] Reserved in UJA113xFD/0.  
Table 58. System interrupt status register (address 61h)  
Bit  
7:6  
5
Symbol  
reserved  
OVSDI[1]  
Access  
R
Value  
Description  
-
R/W  
0
1
no overvoltage shut-down interrupt pending  
overvoltage shut-down interrupt pending  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
79 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 58. System interrupt status register (address 61h) …continued  
Bit  
Symbol  
Access  
Value  
Description  
4
POSI[1]  
R/W  
0
1
-
no power-on status interrupt pending  
power-on status interrupt pending  
3
2
reserved  
OTWI  
R
R/W  
0
1
0
1
0
1
no overtemperature warning interrupt pending  
overtemperature warning interrupt pending  
no SPI failure interrupt pending  
1
0
SPIFI  
R/W  
R/W  
SPI failure interrupt pending  
WDI[1]  
no watchdog failure interrupt pending  
watchdog failure interrupt pending  
[1] Interrupt always enabled.  
Table 59. Supply interrupt status register (address 62h)  
Bit  
7:6  
5
Symbol  
reserved  
SMPSSI  
Access  
R
Value  
Description  
-
R/W  
0
1
no SMPS status interrupt pending  
SMPS status interrupt pending (value of bit SMPSS  
has changed; see Section 7.8.4.1)  
4
3
2
1
0
BMOI  
R/W  
R/W  
R/W  
R/W  
R/W  
0
1
0
1
0
1
0
1
0
1
no battery monitor overvoltage interrupt pending  
battery monitor overvoltage interrupt pending  
no battery monitor undervoltage interrupt pending  
battery monitor undervoltage interrupt pending  
no VEXT overvoltage interrupt pending  
VEXT overvoltage interrupt pending  
BMUI  
VEXTOI  
VEXTUI  
V1UI  
no VEXT undervoltage interrupt pending  
VEXT undervoltage interrupt pending  
no V1 undervoltage interrupt pending  
V1 undervoltage interrupt pending  
Table 60. Transceiver interrupt status register (address 63h)  
Bit  
7:6  
5
Symbol  
reserved  
PNFDEI  
Access  
R
Value  
Description  
-
R/W  
0
1
0
1
no partial networking frame detection error detected  
partial networking frame detection error detected  
no CAN-bus silence interrupt pending  
4
CBSI  
R/W  
CAN-bus silence interrupt pending - CAN-bus silent  
for at least t > tto(silence)  
3
2
LWI2[1]  
LWI1  
R/W  
R/W  
0
1
0
1
no LIN2 wake-up interrupt pending  
LIN2 wake-up interrupt pending  
no LIN1 wake-up interrupt pending  
LIN1 wake-up interrupt pending  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
80 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 60. Transceiver interrupt status register (address 63h) …continued  
Bit  
Symbol  
Access  
Value  
Description  
1
CFI  
R/W  
0
1
0
1
no CAN failure interrupt pending  
CAN failure interrupt pending  
no CAN wake-up interrupt pending  
CAN wake-up interrupt pending  
0
CWI  
R/W  
[1] UJA1132 and UJA1136 only; bit 3 is reserved in the UJA1131 and UJA1135.  
Table 61. Bank 0 wake-up interrupt status register (address 64h)  
Not available in UJA113xFD/0.  
Bit  
Symbol  
Access  
Value  
Description  
7
IO4FEI  
R/W  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
no HVIO4 falling edge interrupt pending  
HVIO4 falling edge interrupt pending  
no HVIO4 rising edge interrupt pending  
HVIO4 rising edge interrupt pending  
no HVIO3 falling edge interrupt pending  
HVIO3 falling edge interrupt pending  
no HVIO3 rising edge interrupt pending  
HVIO3 rising edge interrupt pending  
no HVIO2 falling edge interrupt pending  
HVIO2 falling edge interrupt pending  
no HVIO2 rising edge interrupt pending  
HVIO2 rising edge interrupt pending  
no HVIO1 falling edge interrupt pending  
HVIO1 falling edge interrupt pending  
no HVIO1 rising edge interrupt pending  
HVIO1 rising edge interrupt pending  
6
5
4
3
2
1
0
IO4REI  
IO3FEI  
IO3REI  
IO2FEI  
IO2REI  
IO1FEI  
IO1REI  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 62. Bank 0 fail interrupt status register (address 65h)  
Not available in UJA113xFD/0.  
Bit  
Symbol  
Access  
Value  
Description  
7
IO4SCI  
R/W  
0
1
0
1
0
1
0
1
0
1
0
1
no HVIO4 short circuit interrupt pending  
HVIO4 short circuit interrupt pending  
no HVIO4 open load interrupt pending  
HVIO4 open load interrupt pending  
no HVIO3 short circuit interrupt pending  
HVIO3 short circuit interrupt pending  
no HVIO3 open load interrupt pending  
HVIO3 open load interrupt pending  
no HVIO2 short circuit interrupt pending  
HVIO2 short circuit interrupt pending  
no HVIO2 open load interrupt pending  
HVIO2 open load interrupt pending  
6
5
4
3
2
IO4OLI  
IO3SCI  
IO3OLI  
IO2SCI  
IO2OLI  
R/W  
R/W  
R/W  
R/W  
R/W  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
81 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 62. Bank 0 fail interrupt status register (address 65h) …continued  
Not available in UJA113xFD/0.  
Bit  
Symbol  
Access  
Value  
Description  
1
IO1SCI  
R/W  
0
1
0
1
no HVIO1 short circuit interrupt pending  
HVIO1 short circuit interrupt pending  
no HVIO1 open load interrupt pending  
HVIO1 open load interrupt pending  
0
IO1OLI  
R/W  
Table 63. Bank 1 wake-up interrupt status register (address 66h)  
Not available in UJA113xFD/x.  
Bit  
Symbol  
Access  
Value  
Description  
7
IO8FEI  
R/W  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
no HVIO8 falling edge interrupt pending  
HVIO8 falling edge interrupt pending  
no HVIO8 rising edge interrupt pending  
HVIO8 rising edge interrupt pending  
no HVIO7 falling edge interrupt pending  
HVIO7 falling edge interrupt pending  
no HVIO7 rising edge interrupt pending  
HVIO7 rising edge interrupt pending  
no HVIO6 falling edge interrupt pending  
HVIO6 falling edge interrupt pending  
no HVIO6 rising edge interrupt pending  
HVIO6 rising edge interrupt pending  
no HVIO5 falling edge interrupt pending  
HVIO5 falling edge interrupt pending  
no HVIO5 rising edge interrupt pending  
HVIO5 rising edge interrupt pending  
6
5
4
3
2
1
0
IO8REI  
IO7FEI  
IO7REI  
IO6FEI  
IO6REI  
IO5FEI  
IO5REI  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 64. Bank 1 fail interrupt status register (address 67h)  
Not available in UJA113xFD/x.  
Bit  
Symbol  
Access  
Value  
Description  
7
IO8SCI  
R/W  
0
1
0
1
0
1
0
1
0
1
0
1
no HVIO8 short circuit interrupt pending  
HVIO8 short circuit interrupt pending  
no HVIO8 open load interrupt pending  
HVIO8 open load interrupt pending  
no HVIO7 short circuit interrupt pending  
HVIO7 short circuit interrupt pending  
no HVIO7 open load interrupt pending  
HVIO7 open load interrupt pending  
no HVIO6 short circuit interrupt pending  
HVIO6 short circuit interrupt pending  
no HVIO6 open load interrupt pending  
HVIO6 open load interrupt pending  
6
5
4
3
2
IO8OLI  
IO7SCI  
IO7OLI  
IO6SCI  
IO6OLI  
R/W  
R/W  
R/W  
R/W  
R/W  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
82 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 64. Bank 1 fail interrupt status register (address 67h) …continued  
Not available in UJA113xFD/x.  
Bit  
Symbol  
Access  
Value  
Description  
1
IO5SCI  
R/W  
0
1
0
1
no HVIO5 short circuit interrupt pending  
HVIO5 short circuit interrupt pending  
no HVIO5 open load interrupt pending  
HVIO5 open load interrupt pending  
0
IO5OLI  
R/W  
Table 65. System interrupt enable register (address 04h)  
Bit  
7:3  
2
Symbol  
reserved  
OTWIE  
Access  
R
Value  
Description  
-
R/W  
0
1
0
1
-
overtemperature warning interrupt disabled  
overtemperature warning interrupt enabled  
SPI failure interrupt disabled  
1
0
SPIFIE  
R/W  
R
SPI failure interrupt enabled  
reserved  
Table 66. Supply interrupt enable (address 1Ch)  
Bit  
7:6  
5
Symbol  
Access  
R
Value  
Description  
reserved  
SMPSSIE  
-
R/W  
0
1
0
1
0
1
0
1
0
1
0
1
SMPS status interrupt disabled  
SMPS status interrupt enabled  
4
3
2
1
0
BMOIE  
R/W  
R/W  
R/W  
R/W  
R/W  
battery monitor overvoltage interrupt disabled  
battery monitor overvoltage interrupt enabled  
battery monitor undervoltage interrupt disabled  
battery monitor undervoltage interrupt enabled  
VEXT overvoltage interrupt disabled  
VEXT overvoltage interrupt enabled  
VEXT undervoltage interrupt disabled  
VEXT undervoltage interrupt enabled  
V1 undervoltage interrupt disabled  
BMUIE  
VEXTOIE  
VEXTUIE  
V1UIE  
V1 undervoltage interrupt enabled  
Table 67. Transceiver interrupt enable register (address 23h)  
Bit Symbol  
Access Value Description  
7:5 reserved  
R
-
4
3
2
CBSIE  
LWI2E[1]  
LWI1E  
R/W  
0
1
0
1
0
1
CAN-bus silence interrupt disabled  
CAN-bus silence interrupt enabled  
LIN2 wake-up interrupt disabled  
LIN2 wake-up interrupt enabled  
LIN1 wake-up interrupt disabled  
LIN1 wake-up interrupt enabled  
R/W  
R/W  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
83 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 67. Transceiver interrupt enable register (address 23h) …continued  
Bit Symbol Access Value Description  
1
CFIE  
R/W  
0
1
0
1
CAN failure interrupt disabled  
CAN failure interrupt enabled  
CAN wake-up interrupt disabled  
CAN wake-up interrupt enabled  
0
CWIE  
R/W  
[1] UJA1132 and UJA1136 only; bit 3 is reserved in the UJA1131 and UJA1135.  
Table 68. Bank 0 wake-up interrupt enable register (address 37h)  
Not available in UJA113xFD/0.  
Bit  
Symbol  
Access  
Value  
Description  
7
IO4FEIE  
R/W  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
HVIO4 falling edge interrupt disabled  
HVIO4 falling edge interrupt enabled  
HVIO4 rising edge interrupt disabled  
HVIO4 rising edge interrupt enabled  
HVIO3 falling edge interrupt disabled  
HVIO3 falling edge interrupt enabled  
HVIO3 rising edge interrupt disabled  
HVIO3 rising edge interrupt enabled  
HVIO2 falling edge interrupt disabled  
HVIO2 falling edge interrupt enabled  
HVIO2 rising edge interrupt disabled  
HVIO2 rising edge interrupt enabled  
HVIO1 falling edge interrupt disabled  
HVIO1 falling edge interrupt enabled  
HVIO1 rising edge interrupt disabled  
HVIO1 rising edge interrupt enabled  
6
5
4
3
2
1
0
IO4REIE  
IO3FEIE  
IO3REIE  
IO2FEIE  
IO2REIE  
IO1FEIE  
IO1REIE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 69. Bank 0 fail interrupt enable register (address 38h)  
Not available in UJA113xFD/0.  
Bit  
Symbol  
Access  
Value  
Description  
7
IO4SCIE  
R/W  
0
1
0
1
0
1
0
1
0
1
0
1
HVIO4 short circuit interrupt disabled  
HVIO4 short circuit interrupt enabled  
HVIO4 open load interrupt enabled  
HVIO4 open load interrupt disabled  
HVIO3 short circuit interrupt disabled  
HVIO3 short circuit interrupt enabled  
HVIO3 open load interrupt enabled  
HVIO3 open load interrupt disabled  
HVIO2 short circuit interrupt disabled  
HVIO2 short circuit interrupt enabled  
HVIO2 open load interrupt enabled  
HVIO2 open load interrupt disabled  
6
5
4
3
2
IO4OLIE  
IO3SCIE  
IO3OLIE  
IO2SCIE  
IO2OLIE  
R/W  
R/W  
R/W  
R/W  
R/W  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
84 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 69. Bank 0 fail interrupt enable register (address 38h) …continued  
Not available in UJA113xFD/0.  
Bit  
Symbol  
Access  
Value  
Description  
1
IO1SCIE  
R/W  
0
1
0
1
HVIO1 short circuit interrupt disabled  
HVIO1 short circuit interrupt enabled  
HVIO1 open load interrupt enabled  
HVIO1 open load interrupt disabled  
0
IO1OLIE  
R/W  
Table 70. Bank 1 wake-up interrupt enable register (address 47h)  
Not available in UJA113xFD/x.  
Bit  
Symbol  
Access  
Value  
Description  
7
IO8FEIE  
R/W  
0
1
0
1
0
1
0
1
0
1
0
1
0
1
0
1
HVIO8 falling edge interrupt disabled  
HVIO8 falling edge interrupt enabled  
HVIO8 rising edge interrupt disabled  
HVIO8 rising edge interrupt enabled  
HVIO7 falling edge interrupt disabled  
HVIO7 falling edge interrupt enabled  
HVIO7 rising edge interrupt disabled  
HVIO7 rising edge interrupt enabled  
HVIO6 falling edge interrupt disabled  
HVIO6 falling edge interrupt enabled  
HVIO6 rising edge interrupt disabled  
HVIO6 rising edge interrupt enabled  
HVIO5 falling edge interrupt disabled  
HVIO5 falling edge interrupt enabled  
HVIO5 rising edge interrupt disabled  
HVIO5 rising edge interrupt enabled  
6
5
4
3
2
1
0
IO8REIE  
IO7FEIE  
IO7REIE  
IO6FEIE  
IO6REIE  
IO5FEIE  
IO5REIE  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
R/W  
Table 71. Bank 1 fail interrupt enable register (address 48h)  
Not available in UJA113xFD/x.  
Bit  
Symbol  
Access  
Value  
Description  
7
IO8SCIE  
R/W  
0
1
0
1
0
1
0
1
0
1
0
1
HVIO8 short circuit interrupt disabled  
HVIO8 short circuit interrupt enabled  
HVIO8 open load interrupt enabled  
HVIO8 open load interrupt disabled  
HVIO7 short circuit interrupt disabled  
HVIO7 short circuit interrupt enabled  
HVIO7 open load interrupt enabled  
HVIO7 open load interrupt disabled  
HVIO6 short circuit interrupt disabled  
HVIO6 short circuit interrupt enabled  
HVIO6 open load interrupt enabled  
HVIO6 open load interrupt disabled  
6
5
4
3
2
IO8OLIE  
IO7SCIE  
IO7OLIE  
IO6SCIE  
IO6OLIE  
R/W  
R/W  
R/W  
R/W  
R/W  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
85 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 71. Bank 1 fail interrupt enable register (address 48h) …continued  
Not available in UJA113xFD/x.  
Bit  
Symbol  
Access  
Value  
Description  
1
IO5SCIE  
R/W  
0
1
0
1
HVIO5 short circuit interrupt disabled  
HVIO5 short circuit interrupt enabled  
HVIO5 open load interrupt enabled  
HVIO5 open load interrupt disabled  
0
IO5OLIE  
R/W  
7.13 Non-volatile SBC configuration  
The UJA113x contains Multiple Time Programmable Non-Volatile (MTPNV) memory cells  
that allow some of the default device settings to be reconfigured. The MTPNV memory  
address range is from 0x71 to 0x74. An overview of the MTPNV registers is given in  
Table 72. Details on bit settings, including factory preset values, can be found in Table 9,  
Table 11, Table 45 and Table 46.  
Table 72. Overview of MTPNV registers  
Addr. Register Name  
Bit:  
7
6
5
4
3
2
1
0
0x71 HVIO high-side control[1] IO8HOC IO7HOC IO6HOC IO5HOC IO4HOC IO3HOC IO2HOC IO1HOC  
0x72 HVIO low-side control[1] IO8LOC IO7LOC IO6LOC IO5LOC IO4LOC IO3LOC IO2LOC IO1LOC  
0x73 Start-up control  
reserved  
reserved  
RLC  
V2SUC  
FNMC  
IO4SFC IO3SFC IO2SFC  
SDMC VEXTAC SLPC  
0x74 SBC configuration ctrl.  
V1RTSUC  
[1] For derivatives without the relevant HVIO pin, the associated bit is set to 0; this needs to be taken into account when calculating the  
CRC value.  
7.13.1 Programming the MTPNV cells  
Bit NVMPS in the MTPNV status register (Table 73) must be set to 1 before the  
non-volatile memory cells can be reprogrammed. Bit NVMPS is pre-set to 1 when the  
device is shipped. It is reset to 0 after the cells have been programmed. The battery  
supply voltage must be within the range specified for MTPNV programming (Vprog(MTPNV)  
see Table 90) while the cells are being programmed.  
;
NVMPS can be set to 1 again by restoring the factory presets (see Section 7.13.2). When  
the factory presets are restored, a system reset is generated, automatically forcing the  
UJA113x to switch to Forced Normal mode (since FNMC = 1). This ensures that the  
programming cycle cannot be interrupted by the watchdog.  
Programming of the non-volatile memory registers is performed in two steps. First, the  
required values are written to addresses 0x71 to 0x74. In the second step, reprogramming  
is confirmed by writing the correct CRC value to the MTPNV CRC control register (see  
Section 7.13.1.1). The SBC starts reprogramming the MTPNV cells as soon as the CRC  
value has been validated. If the CRC value is not correct, reprogramming is aborted. On  
completion, a system reset is generated to indicate that the MTPNV cells have been  
reprogrammed successfully. Note that updated contents of registers 0x71 to 0x74 cannot  
be read until the programming process has been successfully completed.  
After an MTPNV programming cycle has been completed, the non-volatile memory is  
protected against being overwritten via a standard SPI write operation.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
86 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
The MTPNV status register (Table 73) contains a write counter, WRCNTS, that is  
incremented each time the MTPNV cells are reprogrammed (up to a maximum value of  
111111; there is no overflow). Note that this counter is provided for information purposes  
only; reprogramming will not be aborted if it reaches its maximum value. An error  
correction code status bit, ECCS, indicates whether reprogramming was successful. It is  
not recommended to program the MTPNV cells more than Ncy(W)MTP times (see Table 90).  
Table 73. MTPNV status register (address 70h)  
Bit  
Symbol  
Access  
Value  
Description  
7:2  
WRCNTS  
R
xxxxxx write counter: contains the number of times the  
MTPNV cells were reprogrammed  
1
0
ECCS  
R
R
0
1
no error detected during MTPNV cell programming  
an error was detected during MTPNV cell  
programming  
NVMPS  
0
1
MTPNV memory cannot be overwritten  
MTPNV memory is ready to be reprogrammed  
7.13.1.1 Calculating the CRC value for MTP programming  
The cyclic redundancy check value stored in bits CRCC in the MTPNV CRC control  
register is calculated using the data written to registers 0x71 to 0x74. Not writing to one of  
these registers is equivalent to writing 00h to that register.  
Table 74. MTPNV CRC control register (address 75h)  
Bit  
Symbol  
Access  
Value  
Description  
7:0  
CRCC  
R/W  
-
CRC control data  
The CRC value is calculated using the data representation shown in Figure 22 and the  
modulo-2 division with the generator polynomial: X8 + X5 + X3 + X2 + X + 1. The result of  
this operation must be bitwise inverted.  
UHJLVWHUꢊꢐ[ꢁꢇ  
UHJLVWHUꢊꢐ[ꢁꢅ  
UHJLVWHUꢊꢐ[ꢁꢆ  
UHJLVWHUꢊꢐ[ꢁꢄ  
DDDꢄꢀꢀꢆꢇꢁꢊ  
Fig 22. Data representation for CRC calculation  
The following parameters can be used to calculate the CRC value (e.g. via the Autosar  
method):  
Table 75. Parameters for CRC coding  
Parameter  
Value  
8 bits  
0x2F  
0xFF  
CRC result width  
Polynomial  
Initial value  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
87 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 75. Parameters for CRC coding …continued  
Parameter  
Value  
no  
Input data reflected  
Result data reflected  
XOR value  
no  
0xFF  
Alternatively, the following algorithm can be used:  
data  
crc  
for  
=
0
// unsigned byte  
=
i
0xFF  
=
0
to  
3
data  
for  
=
content_of_address(0x71 + i) EXOR crc  
j
=
=
0
to  
7
if data  
128  
data  
data  
=
=
data  
data EXOR 0x2F  
*
2
// shift left by 1  
else  
data  
=
data * 2 // shift left by 1  
next  
crc  
j
data  
next  
crc  
i
=
crc EXOR 0xFF  
7.13.2 Restoring factory preset values  
Factory preset values are restored when the following conditions apply for at least  
td(MTPNV) during power-up:  
pin RSTN is held LOW  
CANH is pulled up to VBAT  
CANL is pulled down to GND  
After the factory preset values have been restored, the SBC enters Forced normal Mode.  
Since the CAN-bus is clamped dominant, pin RXDC will be LOW. During the factory  
preset restore process, this pin is forced HIGH to allow a falling edge to signal that the  
process has been completed.  
The write counter, WRCNTS, in the MTPNV status register is incremented every time the  
factory presets are restored.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
88 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.14 Device ID  
Two bytes are reserved at addresses 0x7E and 0x7F for the UJA113x identification codes.  
ID0S and ID1S combine to indicate the UJA113x series variant, as detailed in Table 78.  
Table 76. Identification register 1 (address 7Eh)  
Bit  
Symbol  
Access  
Value  
Description  
7:0  
ID0S  
R
see Table 78 device identification code (part 1)  
Table 77. Identification register 2 (address 7Fh)  
Bit  
7:6  
5:0  
Symbol  
ID1S  
Access  
Value  
Description  
R
R
see Table 78 device identification code (part 2)  
silicon version:  
IDVS  
xx0xxx  
xx1xxx  
UJA113xHW  
UJA113xFD  
Table 78. Identification codes  
Variant  
ID0S (8 LBSs of ID code)  
ID1S (2 MSBs of ID code)  
UJA1131HW/5V0  
0x11  
0x10  
0x01  
0x00  
0x11  
0x10  
0x01  
0x00  
0x51  
0x50  
0x71  
0x70  
0x41  
0x40  
0x61  
0x60  
0x0  
0x0  
0x0  
0x0  
0x1  
0x1  
0x1  
0x1  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
0x0  
UJA1131HW/3V3  
UJA1132HW/5V0  
UJA1132HW/3V3  
UJA1135HW/5V0  
UJA1135HW/3V3  
UJA1136HW/5V0  
UJA1136HW/3V3  
UJA1131HW/FD/5V/4  
UJA1131HW/FD/3V/4  
UJA1131HW/FD/5V/0  
UJA1131HW/FD/3V/0  
UJA1132HW/FD/5V/4  
UJA1132HW/FD/3V/4  
UJA1132HW/FD/5V/0  
UJA1132HW/FD/3V/0  
7.15 General-purpose memory  
The UJA113x allocates 4 bytes of RAM as general-purpose memory for storing user  
information. The general-purpose registers can be accessed via the SPI at addresses  
0x06 to 0x09 (see Table 80).  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
89 of 132  
UJA113x series  
NXP Semiconductors  
7.16 SPI  
Buck/boost HS-CAN/dual LIN system basis chip  
7.16.1 Introduction  
The Serial Peripheral Interface (SPI) provides the communication link with the  
microcontroller, supporting multi-slave operations. The SPI is configured for full-duplex  
data transfer, so status information is returned when new control data is shifted in. The  
interface also offers a read-only access option, allowing the application to read back the  
data without changing the register content.  
The SPI uses four interface signals for synchronization and data transfer:  
SCSN: SPI chip select; active LOW  
SCK: SPI clock; default level is LOW due to low-power concept  
SDI: SPI data input  
SDO: SPI data output; floating when pin SCSN is HIGH  
Bit sampling is performed on the falling clock edge and data is shifted on the rising clock  
edge (see Figure 23).  
6&61  
6&.  
6',  
ꢐꢇ  
ꢐꢆ  
ꢐꢅ  
ꢐꢄ  
1ꢋꢇ  
1
VDPSOHG  
;
06%  
06%ꢋꢇ  
06%ꢋꢆ  
06%ꢋꢅ  
ꢐꢇ  
/6%  
/6%  
;
06%  
06%ꢋꢇ  
06%ꢋꢆ  
06%ꢋꢅ  
ꢐꢇ  
6'2  
;
IORDWLQJ  
IORDWLQJ  
ꢀꢁꢂDDDꢅꢂꢂ  
Fig 23. SPI timing protocol  
The SPI data in the UJA113x is stored in a number of dedicated 8-bit registers. Each  
register is assigned a unique 7-bit address. Two bytes need to be transmitted to the SBC  
for a single register write operation. The first byte contains the 7-bit address along with a  
‘read-only’ bit (the LSB). The read-only bit must be 0 to indicate a write operation (if this bit  
is 1, a read operation is assumed and any data on the SDI pin is ignored). The second  
byte contains the data to be written to the register.  
24- and 32-bit write operations are also supported. The register address is automatically  
incremented, once for a 24-bit operation and twice for a 32-bit operation, as illustrated in  
Figure 24.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
90 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
8-$ꢀꢀꢁ[ꢊ5HJLVWHUꢊ$GGUHVVꢊ5DQJH  
ꢐ[ꢐꢐ  
ꢐ[ꢐꢇ  
ꢐ[ꢐꢆ  
ꢐ[ꢐꢅ  
ꢐ[ꢐꢄ  
ꢐ[ꢐꢃ  
ꢐ[ꢐꢂ  
ꢐ[ꢐꢁ  
ꢐ[ꢁ' ꢐ[ꢁ( ꢐ[ꢁ)  
,' ꢐ[ꢐꢃ  
GDWD  
GDWD  
GDWD  
DGGUꢊꢐꢐꢐꢐꢇꢐꢇ  
GDWDꢊE\WHꢊꢇ  
GDWDꢊE\WHꢊꢆ  
GDWDꢊE\WHꢊꢅ  
$ꢂ $ꢃ $ꢄ $ꢅ $ꢆ $ꢇ $ꢐ 52  
[
[
[
[
[
[
[
[
$GGUHVVꢊ%LWV  
5HDGꢋRQO\ꢊ%LW  
'DWDꢊ%LWV  
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
'DWDꢊ%LWV  
'DWDꢊ%LWV  
DDDꢄꢀꢀꢆꢇꢂꢀ  
Fig 24. SPI data structure for a write operation (16-, 24- or 32-bit)  
During an SPI data write operation, the contents of the addressed register(s) is returned  
via pin SDO. This also happens for a read operation (where the read-only bit is set to 1).  
During a write operation, the UJA113x monitors the number of SPI bits transmitted. If the  
number recorded is not 16, 24 or 32, the write operation is aborted and an SPI failure  
interrupt is generated (SPIFI = 1), if enabled (SPIFIE = 1).  
The SBC is ready to process an SPI operation tto(SPI) after leaving Reset mode. Any  
attempt to read or write before this timout time has elapsed will generate an SPI failure  
interrupt  
A delay of at least td(W)SPI must be inserted between consecutive SPI write operations to  
the same register, otherwise the SBC may not execute the first write access. The delay is  
measured between successive rising edges on SCSN.  
The UJA113x tolerates attempts to write to registers that do not exist. If the available  
address space is exceeded during a write operation, the data overflows into address 0x00  
(without generating an SPI failure interrupt).  
An SPI failure interrupt is generated if an illegal SPI message is received (e.g. the number  
of bits transmitted is not 16, 24 or 32). The received information is ignored and register  
contents are not modified. If an SPI write operation does not trigger an interrupt, the data  
has been successfully written to the addressed register.  
7.16.2 Register map  
The addressable register space contains 128 registers with addresses from 0x00 to 0x7F.  
The registers are divided into eight functional groups, as shown in Table 79. An overview  
of the register mapping is provided in Table 80 to Table 86. The functionality of individual  
bits is discussed in more detail in the relevant sections of the data sheet. Note that not all  
registers and bits are available in all UJA113x derivatives.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
91 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 79. Register groupings  
Address range Description  
Content  
0x00 to 0x0F  
Primary control registers  
SBC mode, watchdog, reset, limp-home,  
Overtemp, EN control  
0x10 to 0x1F  
0x20 to 0x2F  
0x30 to 0x3F  
0x40 to 0x4F  
0x50 to 0x5F  
0x60 to 0x6F  
0x70 to 0x7F  
Supply control registers  
Battery monitoring, V1, V2, SMPS control  
CAN, LIN1 and LIN2 control  
Control of HVIO1 to HVIO4  
Control of HVIO5 to HVIO8  
Timer 1 to 4 control  
Transceiver control registers  
HVIO bank 0 control registers  
HVIO bank 1 control registers  
Timer control registers  
Interrupt status registers  
MTPNV and ID registers  
Interrupt status information  
MTPNV register access  
Table 80. Overview of primary control registers  
Address Register Name  
Bit:  
7
6
5
4
3
2
1
0
0x00  
0x01  
0x02  
0x03  
0x04  
0x05  
0x06  
0x07  
0x08  
0x09  
0x0A  
Watchdog control  
Mode control  
WMC  
reserved  
ENSC  
reserved NWP  
MC  
Fail-safe control  
Main status  
ENDC  
NMS  
ENC  
RSS  
LHC  
RCC  
reserved OTWS  
System interrupt enable reserved  
OTWIE SPIFIE  
reserved  
Watchdog status  
Memory 0  
reserved  
FNMS  
SDMS  
WDS  
GPM[7:0]  
Memory 1  
GPM[15:8]  
GPM[23:16]  
GPM[31:24]  
reserved LK6C  
reserved  
Memory 2  
Memory 3  
Lock control  
LK5C  
LK4C  
LK3C  
LK2C  
LK1C  
LK0C  
0x0B to 0x0F  
Table 81. Overview of supply control registers  
Addr. Register Name  
Bit:  
7
6
5
4
3
2
1
0
0x10  
0x11  
0x12  
0x13  
0x14  
0x15  
0x16  
0x17  
0x18  
0x19  
0x1A  
Regulator control  
reserved  
V2SC  
V2C  
V1RTC  
Battery monitor interrupt ctrl. reserved  
BMSC  
Battery monitor UV control  
Battery monitor OV control  
Battery monitor hys. ctrl.  
VBAT ADC results 1  
BMUTC  
BMOTC  
BMHOC  
BMBCD  
reserved  
BMSCD  
reserved  
reserved  
reserved  
BMHUC  
VBAT ADC results 2  
BMBCS BMBCD  
BMSCS BMSCD  
BATSENSE ADC results 1  
BATSENSE ADC results 2  
SMPS control  
SMPSOTC reserved SMPSC  
SMPSOC  
SMPS o/p voltage control  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
92 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 81. Overview of supply control registers …continued  
Addr. Register Name  
Bit:  
7
6
5
4
3
2
1
0
0x1B  
0x1C  
Supply voltage status  
Supply interrupt enable  
reserved  
reserved  
reserved  
BMOVS  
BMUVS SMPSS  
VEXTS  
V1S  
SMPSSIE BMOIE BMUIE  
VEXTOIE VEXTUIE V1UIE  
0x1D to 0x1F  
Table 82. Overview of transceiver control registers  
Address Register Name  
Bit:  
7
6
5
4
3
2
1
0
0x20  
0x21  
0x22  
0x23  
CAN control  
reserved CFDC  
LSC2  
PNCOK CPNC  
LMC2  
CSC  
LSC1  
CMC  
LMC1  
VCS  
CFIE  
LIN control  
Transceiver status  
CTS  
CPNERR CPNS  
COSCS CBSS VLINS  
CBSIE LWI2E LWI1E  
CFS  
Transceiver interrupt enable reserved  
CWIE  
0x24 to 0x25  
reserved  
reserved  
ID[7:0]  
0x26  
0x27  
0x28  
0x29  
0x2A  
0x2B  
0x2C  
0x2D  
0x2E  
0x2F  
Data rate  
CDR  
ID 0  
ID 1  
ID[15:8]  
ID[23:16]  
reserved  
M[7:0]  
ID 2  
ID 3  
ID[28:24]  
Mask 0  
Mask 1  
Mask 2  
Mask 3  
Frame control  
M[15:8]  
M[23:16]  
reserved  
IDE  
M[28:24]  
DLC  
PNDM  
reserved  
Table 83. Overview of HVIO control registers  
Addr. Register Name  
Bit:  
7
6
5
4
3
2
1
0
0x30 HVIO1 control  
0x31 HVIO2 control  
0x32 HVIO3 control  
0x33 HVIO4 control  
IO1SC  
IO2SC  
IO3SC  
IO4SC  
IO1AC  
IO1CC  
IO2CC  
IO3CC  
IO4CC  
IO2AC  
IO3AC  
IO4AC  
0x34 Bank 0 threshold control reserved  
B0WTC  
IO4WLS IO3WLS IO2WLS IO1WLS  
IO2DS IO1DS  
0x35 Bank 0 wake-up status  
0x36 Bank 0 driver status  
reserved  
IO4DS  
IO3DS  
0x37 Bank 0 wake int. enable IO4FEIE IO4REIE IO3FEIE IO3REIE IO2FEIE IO2REIE IO1FEIE IO1REIE  
0x38 Bank 0 fail int. enable IO4SCIE IO4OLIE IO3SCIE IO3OLIE IO2SCIE IO2OLIE IO1SCIE IO1OLIE  
0x39 Bank 0 s/c threshold ctrl. IO4SCTC  
0x3A Bank 0 o/l threshold ctrl. IO4OLTC  
IO3SCTC  
IO3OLTC  
IO2SCTC  
IO2OLTC  
IO1SCTC  
IO1OLTC  
0x3B to 0x3F  
reserved  
IO5SC  
0x40 HVIO5 control  
0x41 HVIO6 control  
IO5AC  
IO6AC  
IO5CC  
IO6CC  
IO6SC  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
93 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 83. Overview of HVIO control registers …continued  
Addr. Register Name  
Bit:  
7
6
5
4
3
2
1
0
0x42 HVIO7 control  
0x43 HVIO8 control  
IO7SC  
IO8SC  
IO7AC  
IO8AC  
IO7CC  
IO8CC  
0x44 Bank 1 threshold control reserved  
B1WTC  
0x45 Bank 1 wake-up status  
0x46 Bank 1 driver status  
reserved  
IO8DS  
IO8WLS IO7WLS IO6WLS IO5WLS  
IO6DS IO5DS  
IO7DS  
0x47 Bank 1 wake int. enable IO8FEIE IO8REIE IO7FEIE IO7REIE IO6FEIE IO6REIE IO5FEIE IO5REIE  
0x48 Bank 1 fail int. enable IO8SCIE IO8OLIE IO7SCIE IO7OLIE IO6SCIE IO6OLIE IO5SCIE IO5OLIE  
0x49 Bank 0 s/c threshold ctrl. IO8SCTC  
0x4A Bank 0 o/l threshold ctrl. IO8OLTC  
IO7SCTC  
IO7OLTC  
IO6SCTC  
IO6OLTC  
IO5SCTC  
IO5OLTC  
0x4B to 0x4F  
reserved  
Table 84. Overview of timer control registers  
Address Register Name  
Bit:  
7
6
5
4
3
2
1
0
0x50  
0x51  
0x52  
0x53  
0x54  
0x55  
0x56  
0x57  
Timer 1 control  
reserved  
T1PC  
res.  
T1MC  
Timer 1 duty cycle control T1DCC  
Timer 2 control reserved  
Timer 2 duty cycle control T2DCC  
Timer 3 control reserved  
Timer 3 duty cycle control T3DCC  
T2PC  
T3PC  
T4PC  
T2MC  
T3MC  
T4MC  
Timer 4 control  
reserved  
T4DCC  
Timer4 duty cycle control  
0x58 to 0x5F  
reserved  
Table 85. Overview of interrupt status registers  
Addr. Register Name  
Bit:  
7
6
5
4
3
2
1
0
0x60 Global interrupt status  
0x61 System interrupt status  
0x62 Supply interrupt status  
0x63 Transceiver interrupt status  
reserved B1FIS  
reserved  
B1WIS B0FIS  
OVSDI POSI  
SMPSSI BMOI  
PNFDEI CBSI  
B0WIS  
TRXIS  
SUPIS SYSIS  
SPIFI WDI  
VEXTOI VEXTUI V1UI  
LWI1 CFI CWI  
reserved OTWI  
reserved  
BMUI  
LWI2  
reserved  
0x64 Bank 0 wake-up interrupt status IO4FEI  
0x65 Bank 0 fail interrupt status IO4SCI  
0x66 Bank 1 wake-up interrupt status IO8FEI  
IO4REI IO3FEI IO3REI IO2FEI  
IO4OLI IO3SCI IO3OLI IO2SCI  
IO8REI IO7FEI IO7REI IO6FEI  
IO8OLI IO7SCI IO7OLI IO6SCI  
IO2REI IO1FEI IO1REI  
IO2OLI IO1SCI IO1OLI  
IO6REI IO5FEI IO5REI  
IO6OLI IO5SCI IO5OLI  
0x67 Bank 1 fail interrupt status  
0x68 Data mask 0  
IO8SCI  
DM0[7:0]  
DM1[7:0]  
DM2[7:0]  
DM3[7:0]  
DM4[7:0]  
0x69 Data mask 1  
0x6A Data mask 2  
0x6B Data mask 3  
0x6C Data mask 4  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
94 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 85. Overview of interrupt status registers …continued  
Addr. Register Name  
Bit:  
7
6
5
4
3
2
1
0
0x6D Data mask 5  
0x6E Data mask 6  
0x6F Data mask 7  
DM5[7:0]  
DM6[7:0]  
DM7[7:0]  
Table 86. Overview of MTPNV and ID registers  
Addr. Register Name  
Bit:  
7
6
5
4
3
2
1
0
0x70 MTPNV interrupt status WRCNTS  
ECCS  
NVMPS  
0x71 HVIO high-side control  
0x72 HVIO low-side control  
0x73 Start-up control  
IO8HOC IO7HOC IO6HOC IO5HOC IO4HOC IO3HOC IO2HOC IO1HOC  
IO8LOC IO7LOC IO6LOC IO5LOC IO4LOC IO3LOC IO2LOC IO1LOC  
reserved  
reserved  
CRCC  
reserved  
ID0S  
RLC  
V2SUC  
FNMC  
IO4SFC IO3SFC IO2SFC  
SDMC VEXTAC SLPC  
0x74 SBC configuration ctrl.  
0x75 MTPNV CRC control  
0x76 to 0x7D  
V1RTSUC  
0x7E Identification register 1  
0x7F Identification register 2  
ID1S  
IDVS  
7.16.3 Register configuration in SBC operating modes  
A number of register bits may change state automatically when the UJA113x switches  
from one operating mode to another. This is particularly evident when the UJA113x  
switches to Off mode. These changes are summarized in Table 87. If an SPI transmission  
is in progress when the UJA113x changes state, the transmission is ignored (automatic  
state changes have priority).  
Table 87. Register bit settings in SBC operating modes  
Symbol  
Off (power-on Standby  
default)  
Normal  
Sleep  
Reset  
Overload  
FSP  
B0FIS  
0
0
0
0
0
0
no change  
no change  
no change  
no change  
no change  
no change  
-
no change  
no change  
no change  
no change  
no change  
no change  
actual state  
actual state  
actual state  
actual state  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
-
no change  
no change  
no change  
no change  
no change  
no change  
-
no change  
no change  
no change  
no change  
no change  
no change  
-
0
B0WIS  
B0WTC  
B1FIS  
0
no change  
0
B1WIS  
B1WTC  
BMBCD[1] 0000000000  
BMBCS  
BMSCD[1] 0000000000  
0
no change  
-
0
actual state  
-
actual state  
-
actual state  
-
actual state  
-
actual state  
-
BMSCS  
BMHOC  
BMHUC  
BMOI  
0
actual state  
no change  
no change  
no change  
no change  
no change  
actual state  
no change  
no change  
no change  
no change  
no change  
actual state  
no change  
no change  
no change  
no change  
no change  
actual state  
no change  
no change  
no change  
no change  
no change  
actual state  
no change  
no change  
0
0000  
0000  
0
BMOIE  
BMOTC  
0
0
11111111  
no change  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
95 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 87. Register bit settings in SBC operating modes …continued  
Symbol  
Off (power-on Standby  
default)  
Normal  
Sleep  
Reset  
Overload  
FSP  
BMOVS  
BMSC  
BMUI  
BMUIE  
BMUTC  
BMUVS  
CBSI  
0
actual state  
no change  
no change  
no change  
no change  
actual state  
no change  
no change  
1
actual state  
no change  
no change  
no change  
no change  
actual state  
no change  
no change  
actual state  
no change  
no change  
no change  
no change  
actual state  
no change  
actual state  
no change  
actual state  
actual state  
n.a.  
actual state  
no change  
no change  
no change  
no change  
actual state  
no change  
no change  
1
actual state  
no change  
no change  
no change  
no change  
actual state  
no change  
no change  
1
actual state  
no change  
no change  
no change  
no change  
actual state  
no change  
no change  
1
actual state  
no change  
0
0
0
0
0
00000000  
no change  
actual state  
0
0
0
CBSIE  
CBSS  
CDR  
0
0
0
1
101  
no change  
no change  
no change  
no change  
actual state  
no change  
actual state  
no change  
actual state  
actual state  
n.a.  
no change  
no change  
no change  
no change  
actual state  
no change  
actual state  
no change  
actual state  
actual state  
n.a.  
no change  
no change  
no change  
no change  
actual state  
no change  
actual state  
no change  
actual state  
actual state  
n.a.  
no change  
no change  
no change  
no change  
actual state  
no change  
actual state  
no change  
actual state  
actual state  
n.a.  
101  
CFDC  
CFI  
0
no change  
0
0
CFIE  
0
0
CFS  
0
actual state  
00  
CMC  
00  
COSCS  
CPNC  
CPNERR  
CPNS  
CRCC  
CSC  
0
actual state  
0
0
1
actual state  
actual state  
n.a.  
0
n.a.  
01  
no change  
0
no change  
actual state  
no change  
no change  
no change  
no change  
actual state  
no change  
no change  
no change  
MTPNV  
no change  
0
no change  
0
no change  
0
no change  
0
CTS  
0
CWI  
0
no change  
no change  
no change  
no change  
actual state  
no change  
no change  
no change  
MTPNV  
no change  
no change  
no change  
no change  
actual state  
no change  
no change  
no change  
MTPNV  
no change  
no change  
no change  
no change  
actual state  
no change  
no change  
no change  
MTPNV  
no change  
no change  
no change  
no change  
actual state  
no change  
no change  
no change  
MTPNV  
0
CWIE  
DLC  
0
1
0000  
0000  
DMn  
11111111  
actual state  
00  
no change  
actual state  
no change  
no change  
no change  
MTPNV  
actual state  
no change  
00...00  
00...00  
actual state  
no change  
no change  
ECCS  
ENC  
ENDC  
ENSC  
FNMC  
FNMS  
GPM  
0
00  
MTPNV  
0
actual state  
no change  
no change  
no change  
actual state  
no change  
no change  
actual state  
no change  
no change  
no change  
actual state  
no change  
no change  
actual state  
no change  
no change  
no change  
actual state  
no change  
no change  
actual state  
no change  
no change  
no change  
actual state  
no change  
no change  
actual state  
no change  
no change  
no change  
actual state  
no change  
no change  
0000...0000  
00...00  
00...00  
actual state  
000  
ID[28:0]  
IDM[28:0]  
IDnS  
IOnAC  
IOnCC  
000 or defined  
by dedicated  
MTPNV bit  
IOnSFC  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
96 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 87. Register bit settings in SBC operating modes …continued  
Symbol  
Off (power-on Standby  
default)  
Normal  
Sleep  
Reset  
Overload  
FSP  
IOnDS  
11  
actual state  
no change  
no change  
MTPNV  
actual state  
no change  
no change  
MTPNV  
actual state  
no change  
no change  
MTPNV  
actual state  
no change  
no change  
MTPNV  
actual state  
no change  
no change  
MTPNV  
actual state  
IOnFEI  
0
0
IOnFEIE  
IOnHOC  
IOnLOC  
IOnOLI  
0
1
MTPNV  
MTPNV  
MTPNV  
MTPNV  
MTPNV  
MTPNV  
MTPNV  
MTPNV  
MTPNV  
0
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
MTPNV  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
MTPNV  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
MTPNV  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
MTPNV  
no change  
no change  
no change  
no change  
no change  
00  
0
IOnOLIE  
IOnOLTC  
IOnREI  
IOnREIE  
IOnSC  
0
0
00  
0
no change  
0
0
1
00  
0
00  
IOnSCI  
IOnSCIE  
no change  
no change  
no change  
MTPNV  
0
0
0
IOnSCTC 00  
no change  
IOnSFC  
IOnWLS  
LHC  
MTPNV  
MTPNV  
0
actual state  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
100  
actual state  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
111  
actual state  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
001  
actual state  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
100  
actual state  
1
actual state  
0
1
LKnC  
0
no change  
no change  
no change  
no change  
no change  
no change  
don’t care  
no change  
actual state  
0100  
no change  
LMCn  
LSCn  
00  
no change  
00  
no change  
LWIn  
0
0
LWInE  
M[28:0]  
MC  
0
1
00...00  
00...00  
100  
001  
NMS  
1
no change  
actual state  
no change  
no change  
no change  
actual state  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
0
no change  
actual state  
no change  
no change  
no change  
actual state  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
actual state  
0100  
no change  
NVMPS  
NWP  
actual state  
actual state  
no change  
no change  
no change  
actual state  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
actual state  
0100  
0
0100  
OTWI  
no change  
no change  
actual state  
no change  
no change  
no change  
no change  
no change  
no change  
RCC++ if  
no change  
no change  
actual state  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
0
OTWIE  
OTWS  
OVSDI  
PNDM  
PNFDEI[2]  
PNCOK  
PNFDEI  
POSI  
0
0
0
actual state  
0
0
1
1
0
0
0
0
0
0
0
0
RCC  
00  
00  
VBAT  
>
Vuvd(BATSMPS)  
otherwise no  
change  
,
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
97 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 87. Register bit settings in SBC operating modes …continued  
Symbol  
Off (power-on Standby  
default)  
Normal  
Sleep  
Reset  
Overload  
FSP  
RLC  
MTPNV  
00000  
MTPNV  
0
MTPNV  
MTPNV  
MTPNV  
MTPNV  
MTPNV  
MTPNV  
10101  
MTPNV  
actual state  
MTPNV  
00  
RSS  
no change  
MTPNV  
no change  
MTPNV  
no change  
MTPNV  
reset source 10010  
SDMC  
SDMS  
SLPC  
SMPSC  
MTPNV  
MTPNV  
actual state  
MTPNV  
actual state  
MTPNV  
actual state  
MTPNV  
actual state  
MTPNV  
actual state  
MTPNV  
MTPNV  
00  
no change  
no change  
no change  
actual state  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
actual state  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
0101  
00  
00  
SMPSOC 0101  
0101  
0101  
0101  
SMPSOTC  
SMPSS  
SMPSSI  
SMPSSIE  
SPIFI  
0
no change  
actual state  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
0
0
0
0
actual state  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
actual state  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
actual state  
0
0
0
0
0
0
SPIFIE  
SUPIS  
SYSIS  
T1DCC  
T1MC  
0
0
0
0
0
0
00000000  
0
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
no change  
0
T1PC  
0000  
00000000  
00  
T2DCC  
T2MC  
T2PC  
0000  
00000000  
00  
T3DCC  
T3MC  
T3PC  
0000  
00000000  
00  
T4DCC  
T4MC  
T4PC  
0000  
0
TRXIS  
V1RTC  
defined by  
V1RTSUC  
00  
V1RTSUC MTPNV  
MTPNV  
MTPNV  
MTPNV  
MTPNV  
MTPNV  
MTPNV  
V1S  
0
0
0
actual state  
no change  
no change  
no change  
actual state  
no change  
no change  
no change  
actual state  
no change  
no change  
no change  
actual state  
no change  
no change  
no change  
actual state  
no change  
no change  
no change  
V1UI  
V1UIE  
V2C  
0
0
defined by  
V2SUC  
no change  
VEXTOI  
VEXTOIE  
VEXTS  
0
no change  
no change  
actual state  
no change  
MTPNV  
no change  
no change  
actual state  
no change  
MTPNV  
no change  
no change  
actual state  
no change  
MTPNV  
no change  
no change  
actual state  
no change  
MTPNV  
no change  
no change  
actual state  
no change  
MTPNV  
0
0
0
00  
actual state  
no change  
MTPNV  
V2SC  
00  
VEXTAC  
UJA113X_SERIES  
MTPNV  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
98 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 87. Register bit settings in SBC operating modes …continued  
Symbol  
Off (power-on Standby  
default)  
Normal  
Sleep  
Reset  
Overload  
FSP  
VEXTUI  
VEXTUIE  
VCS  
0
0
0
0
0
0
no change  
no change  
actual state  
actual state  
no change  
actual state  
no change  
no change  
no change  
actual state  
actual state  
no change  
actual state  
no change  
no change  
no change  
actual state  
actual state  
no change  
actual state  
no change  
no change  
no change  
actual state  
actual state  
no change  
actual state  
no change  
no change  
actual state  
actual state  
no change  
actual state  
no change  
0
0
actual state  
actual state  
0
VLINS  
WDI  
WDS  
actual state  
WMC  
001 if  
001 if  
001  
SDMC = 1;  
otherwise 010  
SDMC = 1;  
otherwise 010  
(Autonomous  
mode)  
WRCNTS actual state  
actual state  
actual state  
actual state  
actual state  
actual state  
actual state  
[1] Note that battery monitoring is only enabled in Normal mode.  
[2] UJA113xFD/x only; otherwise reserved.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
99 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
8. Limiting values  
Table 88. Limiting values  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
voltage on pin x[1]  
Conditions  
Min  
0.3  
0.3  
0.3  
Max  
+6  
Unit  
V
[2]  
Vx  
pin V1 (max current IV1 = 50 mA)  
pins V2 and VCAN  
+6  
V
pins TXDC, RXDC, EN, SDI, SDO, SCK, SCSN, TXDL1,  
TXDL2, RXDL1, RXDL2, RSTN, INTN1 and INTN2  
VV1  
0.3  
+
V
pin VEXT  
18  
18  
0.3  
+40  
+40  
+40  
V
V
V
[3]  
pins HVIO1 to HVIO8  
pins BAT, BATHS1, BATHS2, BATSMPS, BATV2, L1,  
LIMP, BATSENSE, ADCCAP  
pin BOOTH1  
VL1  
0.3  
VL1  
3.6  
+
+
V
V
pin BOOTH2  
VL2  
0.3  
VL2  
3.6  
pins L2, VSMPS  
0.3  
0.3  
0.3  
58  
40  
40  
0.3  
+18  
V
V
V
V
V
V
V
pin CAPA  
+3.6  
+0.3  
+58  
+40  
+40  
+0.3  
pin CAPB (internally shorted to GNDSMPS)  
pins CANH and CANL with respect to any other pin  
voltage difference between pin CANH and CANL  
pins LIN1 and LIN2 with respect to any other pin  
GNDSMPS  
Ix  
current on pin x  
reverse polarity  
pins BAT, BATHS1, BATHS2, BATSMPS, BATV2  
LHC = 1  
10  
-
mA  
mA  
Ii(LIMP)  
input current on pin  
LIMP  
-
20  
IBATSENSE current on pin  
BATSENSE  
continuous current; VBATSENSE < 0 V  
18  
-
-
mA  
mA  
peak current; VBATSENSE < 0 V; tmax = 2 ms; ISO7637  
pulse 1  
180  
[4]  
[4]  
[5]  
Ir  
reverse current  
transient voltage  
from pin V1 to pin VSMPS; VV1 5 V  
from pin V2 to pin BATV2; VV2 5 V  
on pins  
-
-
500  
100  
mA  
mA  
V
Vtrt  
150 +100  
BAT, BATHS1, BATHS2, BATSMPS, BATV2: via  
reverse polarity diode and capacitor to GND  
BATSENSE: coupling via 1 kresistor and 10 nF  
capacitor to GND  
CANL, CANH: coupling via 1 nF capacitors  
LIN1, LIN2: coupling via 1 nF capacitors  
HVIO1 to HVIO8: coupling via 1 nF capacitors  
VEXT: coupling via 1 nF capacitor  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
100 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 88. Limiting values …continued  
In accordance with the Absolute Maximum Rating System (IEC 60134).  
Symbol  
Parameter  
Conditions  
Min  
Max  
Unit  
[6]  
[7]  
VESD  
electrostatic discharge IEC 61000-4-2 (150 pF, 330 )  
voltage  
pins BAT, BATHS1, BATHS2, BATSMPS, BATV2 with  
6  
+6  
kV  
capacitor; CANH, CANL, LIN1 and LIN2, HVIO1 to  
HVIO8, BATSENSE with 10 nF capacitor and 1 k  
resistor; VEXT with 2.2 F capacitor  
[8]  
Human Body Model (HBM); 100 pF, 1.5 k  
all pins  
2  
6  
4  
+2  
+6  
+4  
kV  
kV  
kV  
[9]  
[7]  
pins CANH, CANL, LIN1, LIN2  
pins BAT, BATV2, BATHS1, BATHS2, HVIO1 to HVIO8,  
BATSENSE, VEXT  
[10]  
Charged Device Model (CDM); field Induced charge; 4 pF  
corner pins  
750 +750  
500 +500  
V
all other pins  
V
[11]  
Tvj  
virtual junction  
temperature  
40  
0
+150  
+85  
C  
C  
C  
C  
when programming the MTPNV cells  
Tstg  
storage temperature  
ambient temperature  
55  
40  
+150  
+125  
Tamb  
[1] The device can sustain voltages up to the specified values over the product lifetime, provided applied voltages (including transients)  
never exceed these values.  
[2] V1 has an internal clamping mechanism that ensures that, in both supplied and unsupplied state, an injection current of 50 mA (max)  
flowing from the connected microcontroller can be tolerated without needing to specify the interface pins to a voltage higher than 6 V.  
This means that an external Zener diode is not needed to limit the output voltage on V1.  
[3] The difference between the supply voltage on pin BATHS1 and the voltage on any of pins HVIO1 to HVIO4 must not exceed 40 V;  
similarly the difference between the supply voltage on pin BATHS2 and the voltage on any of pins HVIO5 to HVIO8 must not exceed  
40 V.  
[4] A reverse diode connected between V1 (anode) and VSMPS (cathode) limits the voltage drop voltage from V1(+) to VSMPS (-). A  
reverse diode connected between V2 (anode) and BATV2 (cathode) limits the voltage drop from V2(+) to BATV2 (-).  
[5] Verified by an external test house to ensure that pins can withstand ISO 7637 part 2 automotive transient test pulses 1, 2a, 3a and 3b.  
[6] According to IEC 61000-4-2; has been verified by an external test house.  
[7] Only tested relative to ground. Only valid for the application circuit shown in Figure 31.  
[8] According to AEC-Q100-002.  
[9] V1, V2, BAT, BATHS1, BATHS2, BATSMPS, VSMPS, BATV2 and VCAN connected to GND, emulating application circuit.  
[10] According to AEC-Q100-011 Rev-C1. The classification level is C4B.  
[11] In accordance with IEC 60747-1. An alternative definition of virtual junction temperature is: Tvj = Tamb + P Rth(vj-a), where Rth(vj-a) is a  
fixed value to be used for the calculation of Tvj. The rating for Tvj limits the allowable combinations of power dissipation (P) and ambient  
temperature (Tamb).  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
101 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
9. Thermal characteristics  
Table 89. Thermal characteristics  
Symbol  
Rth(vj-a)  
Rth(vj-c)  
Parameter  
Conditions  
Typ  
29  
Unit  
K/W  
K/W  
[1]  
[1]  
thermal resistance from virtual junction to ambient  
thermal resistance from virtual junction to case  
10  
[1] According to JEDEC JESD51-2, JESD51-5 and JESD51-7 at natural convection on 2s2p board. Board with two inner copper layers  
(thickness: 70 m; top and bottom layers: 35 m) and thermal via array under the exposed pad connected to the first inner copper layer.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
102 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
10. Static characteristics  
Table 90. Static characteristics  
Tvj = 40 C to +150 C; VBATSMPS = VBAT = 2 V to 28 V; VBATV2 = 5.5 V to 28 V; VBATHS1 = VBATHS2 = 4.5 V to 28 V;  
VVCAN = 4.5 V to 5.5 V; RLIN1 = RLIN2 = 500 ; R(CANH-CANL) = 60 ; LSMPS[1] = 22 H; CSMPS[1] = 22 F; VVSMPS = 6 V  
(SMPSOC = 0101); CV1 and CVEXT > 1.76 F; all voltages are defined with respect to ground; positive currents flow into the  
IC; typical values are given at VBATSMPS = VBAT =VBATV2 = VBATHS1 = VBATHS2 = 13 V and Tvj = 25 C; unless otherwise  
specified.  
Symbol  
Supply current; pins BAT, BATV2, BATHS1, BATHS2, BATSMPS  
Standby mode; CAN wake-up or no wake-up source enabled; 7.7 V < VBATSMPS < 15 V  
IDD supply current SMPS in Pass- through mode (SMPSC = 11); IV1 = 0 A; IVSMPS = 0 A  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Tvj = 40 C  
-
-
-
-
-
-
75  
80  
83  
97  
-
-
A  
A  
A  
A  
A  
A  
Tvj = +25 C  
-
Tvj = +40 C  
-
Tvj = +85 C  
-
40 C < Tvj < +40 C  
40 C < Tvj < 85 C  
110  
134  
-
Sleep mode; CAN wake-up or no wake-up source enabled; 7.7 V < VBATSMPS < 15 V  
IDD  
supply current  
SMPS off (SMPSC = 00)  
Tvj = 40 C  
-
-
-
-
-
-
43  
50  
52  
64  
-
-
A  
A  
A  
A  
A  
A  
Tvj = +25 C  
-
Tvj = +40 C  
-
Tvj = +85 C  
-
40 C < Tvj < +40 C  
40 C < Tvj < 85 C  
70  
90  
-
SMPS in Pass- through mode (SMPSC = 11); IVSMPS = 0 A  
40 C < Tvj < 85 C  
-
80  
109  
A  
Additional currents  
IDD  
supply current  
wake-up source currents  
one LIN wake-up interrupt  
enabled: LWI1E = 1 or  
LWI2E = 1; 40 C < Tvj < 85 C  
-
-
2
2
3
3
A  
A  
one HVIO bank input enabled:  
IOnCC = 011, 100 or 111 with  
n = 1 to 4 or n = 5 to 8;  
40 C < Tvj < 85 C  
V2 regulator on; VEXTAC = 1  
Tvj = 40 C  
-
-
-
-
-
-
4
4
4
4
-
-
A  
A  
A  
A  
A  
A  
Tvj = +25 C  
-
Tvj = +40 C  
-
Tvj = +85 C  
-
40 C < Tvj < +85 C  
25  
107  
V2 regulator on; VEXTAC = 0;  
80  
40 C < Tvj < 85 C  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
103 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 90. Static characteristics …continued  
Tvj = 40 C to +150 C; VBATSMPS = VBAT = 2 V to 28 V; VBATV2 = 5.5 V to 28 V; VBATHS1 = VBATHS2 = 4.5 V to 28 V;  
VVCAN = 4.5 V to 5.5 V; RLIN1 = RLIN2 = 500 ; R(CANH-CANL) = 60 ; LSMPS[1] = 22 H; CSMPS[1] = 22 F; VVSMPS = 6 V  
(SMPSOC = 0101); CV1 and CVEXT > 1.76 F; all voltages are defined with respect to ground; positive currents flow into the  
IC; typical values are given at VBATSMPS = VBAT =VBATV2 = VBATHS1 = VBATHS2 = 13 V and Tvj = 25 C; unless otherwise  
specified.  
Symbol  
Additional currents ... continued  
IDD supply current  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
for first HVIO high-side driver  
activated (IOnAC > 0) but not  
turned on; IHVIOn = 0 A  
-
550  
700  
A  
for first HVIO high-side driver  
activated (IOnAC > 0) and turned  
on; IHVIOn = 0 A  
-
-
1000  
1400  
A  
for first active HVIO low-side driver  
(IOnAC > 0); IHVIOn = 0 A  
1000  
6
1400  
8
A  
[2]  
SMPS active (SMPSC = 00/01);  
mA  
IV1 = 0 A; IVSMPS = 0 A;  
VBAT = 13 V; VSMPS = 6 V  
Normal mode;  
40 C < Tvj < 85 C  
-
-
1.2  
38  
1.7  
55  
mA  
CAN Offline Bias mode;  
A  
40 C < Tvj < 85 C  
CAN Active mode  
-
-
-
-
160  
60  
280  
125  
400  
2.6  
A  
A  
A  
mA  
CAN Listen-only mode  
CAN partial networking  
300  
1.8  
LIN1/2 Active mode;  
LIN recessive; VTXDL1/2 = VV1  
5 V < VBAT < 18 V  
;
LIN1/2 Active mode;  
LIN dominant; VTXDL1/2 = 0 V;  
5 V < VBAT < 18 V  
-
-
2.8  
-
6.7  
mA  
LIN Listen-only mode;  
5 V < VBAT < 18 V  
100  
A  
Power on/off detection on pin BAT, VSMPS, BATHS1 and BATHS2  
Vth(det)pon  
Vhys(det)pon  
Vth(det)poff  
Vuvd(CAN)  
Vuvr(CAN)  
Vuvd  
power-on detection  
threshold voltage  
highest value on pin BAT or pin  
VSMPS  
4.45  
450  
3.0  
-
5.5  
-
V
power-on detection  
hysteresis voltage  
highest value on pin BAT or pin  
VSMPS  
-
mV  
V
power-off detection  
threshold voltage  
highest value on pin BAT or pin  
VSMPS  
-
4.0  
5.5  
6
CAN undervoltage detection highest value on pin BAT or pin  
voltage VSMPS  
4.45  
4.7  
-
V
CAN undervoltage recovery highest value on pin BAT or pin  
voltage  
-
V
VSMPS  
undervoltage detection  
voltage  
on pin BATHS1 or pin BATHS2  
3.4  
-
4.2  
5.0  
V
Vuvd(LIN)  
LIN undervoltage detection on pin BAT  
voltage  
4.4  
4.7  
V
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
104 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 90. Static characteristics …continued  
Tvj = 40 C to +150 C; VBATSMPS = VBAT = 2 V to 28 V; VBATV2 = 5.5 V to 28 V; VBATHS1 = VBATHS2 = 4.5 V to 28 V;  
VVCAN = 4.5 V to 5.5 V; RLIN1 = RLIN2 = 500 ; R(CANH-CANL) = 60 ; LSMPS[1] = 22 H; CSMPS[1] = 22 F; VVSMPS = 6 V  
(SMPSOC = 0101); CV1 and CVEXT > 1.76 F; all voltages are defined with respect to ground; positive currents flow into the  
IC; typical values are given at VBATSMPS = VBAT =VBATV2 = VBATHS1 = VBATHS2 = 13 V and Tvj = 25 C; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Vuvr(LIN)  
LIN undervoltage recovery  
voltage  
on pin BAT  
4.9  
5.2  
5.5  
V
Vhys(uvd)LIN  
LIN undervoltage detection on pin BAT  
hysteresis voltage  
200  
-
-
mV  
Load dump activation/release: supply pins BAT, BATV2, BATHS1, BATHS2  
Vth(det)ov  
overvoltage detection  
threshold voltage  
30  
29  
-
-
34  
33  
V
V
Vth(rel)ov  
overvoltage release  
threshold voltage  
High-speed CAN: pin VCAN  
Vuvd(VCAN) undervoltage detection  
4.5  
1
-
4.75  
6
V
voltage on pin VCAN  
IDD(CAN)  
CAN supply current  
CAN Active mode; CAN recessive;  
VTXDC = VV1  
3
mA  
mA  
CAN Active mode; CAN dominant;  
VTXDC = 0 V;  
3
7.5  
15  
R(CANH-CANL) = no load  
CAN not in Active mode;  
-
3
5
A  
40 C < Tvj < 85 C  
SMPS Pass-through suppression: pins BATSMPS and VSMPS  
Vovd(BATSMPS) overvoltage detection  
voltage on pin BATSMPS  
VBATSMPS rising  
15  
-
-
-
16  
V
Vuvd(BATSMPS) undervoltage detection  
voltage on pin BATSMPS  
VBATSMPS falling  
7.1  
150  
7.7  
350  
V
Ith(ocd)  
overcurrent detection  
threshold current  
on pin VSMPS; for switching from  
Pass-through mode to an active  
mode  
mA  
Tvj = 150 C  
150  
-
300  
mA  
SMPS: pins L1 and L2  
R(L1-BATSMPS) resistance between pin L1  
and pin BATSMPS  
Pass-through mode  
Pass-through mode  
-
-
-
-
0.8  
0.8  
R(L2-VSMPS)  
resistance between pin L2  
and pin VSMPS  
SMPS: pin VSMPS  
[2]  
[4]  
VO  
output voltage  
IVSMPS = 500 mA to 0 mA  
VVSMPS  
VVSMPS  
VVSMPS  
V
V
(nom)  
0.95  
(nom)  
(nom)  
1.05  
[4]  
SMPS active within regulation  
window  
VVSMPS  
(act)   
-
VVSMPS  
+
(act)  
60 mV  
60 mV  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
105 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 90. Static characteristics …continued  
Tvj = 40 C to +150 C; VBATSMPS = VBAT = 2 V to 28 V; VBATV2 = 5.5 V to 28 V; VBATHS1 = VBATHS2 = 4.5 V to 28 V;  
VVCAN = 4.5 V to 5.5 V; RLIN1 = RLIN2 = 500 ; R(CANH-CANL) = 60 ; LSMPS[1] = 22 H; CSMPS[1] = 22 F; VVSMPS = 6 V  
(SMPSOC = 0101); CV1 and CVEXT > 1.76 F; all voltages are defined with respect to ground; positive currents flow into the  
IC; typical values are given at VBATSMPS = VBAT =VBATV2 = VBATHS1 = VBATHS2 = 13 V and Tvj = 25 C; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
1.2  
Max  
Unit  
A
Isc(SMPS)  
SMPS short circuit current  
VBATSMPS = 4 V  
VBATSMPS = 8 V  
VBATSMPS = 12 V  
VBATSMPS = 16 V  
-
-
-
-
-
-
-
-
1.4  
A
1.6  
A
1.85  
A
SMPS performance: pin BATSMPS  
VDD supply voltage  
UJA1131 and UJA1132  
VVSMPS = 6 V (SMPSOC = 0101)  
IVSMPS = 50 mA  
2
-
-
-
-
-
-
28  
28  
28  
28  
28  
28  
V
V
V
V
V
V
IVSMPS = 150 mA  
IVSMPS = 240 mA  
IVSMPS = 400 mA  
IVSMPS = 500 mA  
IVSMPS = 700 mA  
2.5  
3.25  
4.5  
5.5  
7.0  
UJA1131 and UJA1132;  
VVSMPS = 7 V (SMPSOC = 1010)  
IVSMPS = 50 mA  
IVSMPS = 110 mA  
IVSMPS = 180 mA  
IVSMPS = 300 mA  
IVSMPS = 420 mA  
IVSMPS = 640 mA  
UJA1135 and UJA1136  
IVSMPS = 10 mA  
2
-
-
-
-
-
-
28  
28  
28  
28  
28  
28  
V
V
V
V
V
V
2.5  
3.25  
4.5  
5.5  
7.0  
2
-
-
28  
28  
V
V
IVSMPS = 500 mA  
5.5  
Voltage source; pin V1  
VO  
output voltage  
VO(V1)nom = 5 V; VSMPS = 5.7 V to  
16 V; IV1 = 400 mA to 0 mA  
4.9  
4.9  
5
5
5.1  
5.1  
V
V
VO(V1)nom = 5 V; VSMPS = 5.9 V to  
16 V; IV1 = 500 mA to 0 mA  
I
V1 = 50 A to 50 mA  
5.5  
-
6
V
V
VO(V1)nom = 3.3 V; VSMPS = 4.3 V  
3.234  
3.3  
3.366  
to 16 V; IV1 = 500 mA to 0 mA  
R(VSMPS-V1)  
Vuvd  
resistance between pin  
VSMPS and pin V1  
saturation down to power off;  
IV1 = 500 mA  
-
-
2
undervoltage detection  
voltage  
90 %; VO(V1)nom = 5 V  
80 %; VO(V1)nom = 5 V  
70 %; VO(V1)nom = 5 V  
60 %; VO(V1)nom = 5 V  
90 %; VO(V1)nom = 3.3 V  
4.5  
4
-
-
-
-
-
4.75  
4.25  
3.75  
3.25  
3.135  
V
V
V
V
V
3.5  
3
2.97  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
106 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 90. Static characteristics …continued  
Tvj = 40 C to +150 C; VBATSMPS = VBAT = 2 V to 28 V; VBATV2 = 5.5 V to 28 V; VBATHS1 = VBATHS2 = 4.5 V to 28 V;  
VVCAN = 4.5 V to 5.5 V; RLIN1 = RLIN2 = 500 ; R(CANH-CANL) = 60 ; LSMPS[1] = 22 H; CSMPS[1] = 22 F; VVSMPS = 6 V  
(SMPSOC = 0101); CV1 and CVEXT > 1.76 F; all voltages are defined with respect to ground; positive currents flow into the  
IC; typical values are given at VBATSMPS = VBAT =VBATV2 = VBATHS1 = VBATHS2 = 13 V and Tvj = 25 C; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
4.5  
Typ  
Max  
Unit  
V
Vuvr  
undervoltage recovery  
voltage  
90 %; VO(V1)nom = 5 V  
90 %; VO(V1)nom = 3.3 V  
-
-
-
4.75  
2.97  
900  
3.135  
500  
V
IO(sc)  
short-circuit output current  
mA  
Voltage source; pin V2/VEXT  
Vuvd undervoltage detection  
4.5  
5.2  
-
-
4.75  
5.5  
V
V
voltage  
Vovd  
overvoltage detection  
voltage  
IO(sc)  
VO  
short-circuit output current  
output voltage  
280  
-
100  
mA  
V
pin V2 shorted to pin VEXT;  
VBATV2 = 5.7 V to 28 V;  
IV2 = 100 mA to 0 mA;  
CVEXT > 3.3 F  
4.9  
5
5.1  
pin V2 not connected;  
4.925  
4.9  
5
5
5.05  
5.1  
V
V
VBATV2 = 5.7 V to 28 V;  
IV2 = 5 mA to 0 mA  
pin V2 not connected;  
VBATV2 = 5.7 V to 28 V;  
IV2 = 70 mA to 5 mA  
R(BATV2-V2)  
resistance between pin  
BATV2 and pin V2  
pin V2 shorted to pin VEXT on  
PCB; saturation; IV2 = 100 mA  
-
-
-
-
7.5  
11  
R(BATV2-VEXT) resistance between pin  
BATV2 and pin VEXT  
pin V2 not connected on PCB;  
saturation; IVEXT = 70 mA  
Serial peripheral interface inputs; pins SDI, SCK and SCSN  
Vth(sw)  
switching threshold voltage VV1 = 2.97 V to 5.5 V  
0.25VV1  
0.05VV1  
-
-
0.75VV1  
-
V
V
Vth(sw)hys  
switching threshold voltage  
hysteresis  
Rpd  
Rpu  
pull-down resistance  
on pin SCK  
40  
40  
40  
40  
5  
60  
60  
60  
60  
-
80  
80  
80  
80  
+5  
k  
k  
k  
k  
A  
on pin SDI; VSDI < 0.25 VV1  
on pin SCSN  
pull-up resistance  
on pin SDI; VSDI > 0.75 VV1  
ILI(SDI)  
Ci  
input leakage current on pin  
SDI  
[2]  
input capacitance  
Vi = VV1  
-
3
6
pF  
Serial peripheral interface data output; pin SDO  
VOH  
HIGH-level output voltage  
IOH = 4 mA;  
VV1 0.4 -  
-
V
VV1 = 2.97 V to 5.5 V  
VOL  
LOW-level output voltage  
IOL = 4 mA;  
VV1 = 2.97 V to 5.5 V  
-
-
-
0.4  
+5  
V
ILO(off)  
off-state output leakage  
current  
VSCSN = VV1; VO = 0 V to VV1  
5  
A  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
107 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 90. Static characteristics …continued  
Tvj = 40 C to +150 C; VBATSMPS = VBAT = 2 V to 28 V; VBATV2 = 5.5 V to 28 V; VBATHS1 = VBATHS2 = 4.5 V to 28 V;  
VVCAN = 4.5 V to 5.5 V; RLIN1 = RLIN2 = 500 ; R(CANH-CANL) = 60 ; LSMPS[1] = 22 H; CSMPS[1] = 22 F; VVSMPS = 6 V  
(SMPSOC = 0101); CV1 and CVEXT > 1.76 F; all voltages are defined with respect to ground; positive currents flow into the  
IC; typical values are given at VBATSMPS = VBAT =VBATV2 = VBATHS1 = VBATHS2 = 13 V and Tvj = 25 C; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
[2]  
Co  
output capacitance  
SCSN = VV1  
-
3
6
pF  
Reset output; pin RSTN  
VOL  
LOW-level output voltage  
VV1 = 1 V to 5.5 V;  
0
-
0.2VV1  
V
pull-up resistor to VV1 900 ;  
40 C < Tvj < Tth(act)otp(max)  
Rpu  
pull-up resistance  
40  
60  
-
80  
k  
V
Vth(sw)  
Vth(sw)hys  
switching threshold voltage VV1 = 2.97 V to 5.5 V  
0.25VV1  
0.05VV1  
0.75VV1  
-
switching threshold voltage  
hysteresis  
-
V
Interrupt output; pin INTN1 and INTN2  
VOL LOW-level output voltage  
IOL = 4 mA;  
-
-
0.4  
V
VV1 = 2.97 V to 5.5 V  
Enable output; pin EN  
VOH  
HIGH-level output voltage  
IOH = 4 mA;  
VV1 = 2.97 V to 5.5 V  
VV1 0.4 -  
-
V
V
VOL  
LOW-level output voltage  
IOL = 4 mA;  
-
-
0.2VV1  
VV1 = 1.0 V to 5.5 V  
Limp home output; pin LIMP  
VO  
output voltage  
ILIMP = 0.8 mA; LHC = 1;  
40 C < Tvj < Tth(act)otp(max)  
-
-
-
-
0.4  
5
V
IL  
leakage current  
VLIMP = VBAT; LHC = 0  
A  
CAN transmit data input; pin TXDC  
Vth(sw)  
switching threshold voltage VV1 = 2.97 V to 5.5 V  
0.25VV1  
0.05VV1  
-
-
0.75VV1  
-
V
V
Vth(sw)hys  
switching threshold voltage  
hysteresis  
Rpu  
pull-up resistance  
40  
60  
80  
k  
CAN receive data output; pin RXDC  
VOH  
VOL  
Rpu  
HIGH-level output voltage  
LOW-level output voltage  
pull-up resistance  
IOH = 4 mA;  
V1 = 2.97 V to 5.5 V  
VV1 0.4 -  
-
V
V
IOL = 4 mA;  
VV1 = 2.97 V to 5.5 V  
-
-
0.4  
80  
V
CAN Offline mode  
40  
60  
k  
High-speed CAN-bus lines; pins CANH and CANL  
VO(dom)  
dominant output voltage  
CAN Active mode; VTXDC = 0 V  
pin CANH  
2.75  
0.5  
3.5  
1.5  
-
4.5  
V
pin CANL  
2.25  
+400  
V
Vdom(TX)sym  
transmitter dominant voltage Vdom(TX)sym  
=
400  
mV  
symmetry  
VVCAN VCANH VCANL;  
VVCAN = 5 V  
[2]  
[3]  
VTXsym  
transmitter voltage  
symmetry  
VTXsym = VCANH + VCANL  
fTXD = 250 kHz; CSPLIT = 4.7 nF  
;
0.9VVCAN  
-
1.1VVCAN  
V
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
108 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 90. Static characteristics …continued  
Tvj = 40 C to +150 C; VBATSMPS = VBAT = 2 V to 28 V; VBATV2 = 5.5 V to 28 V; VBATHS1 = VBATHS2 = 4.5 V to 28 V;  
VVCAN = 4.5 V to 5.5 V; RLIN1 = RLIN2 = 500 ; R(CANH-CANL) = 60 ; LSMPS[1] = 22 H; CSMPS[1] = 22 F; VVSMPS = 6 V  
(SMPSOC = 0101); CV1 and CVEXT > 1.76 F; all voltages are defined with respect to ground; positive currents flow into the  
IC; typical values are given at VBATSMPS = VBAT =VBATV2 = VBATHS1 = VBATHS2 = 13 V and Tvj = 25 C; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
VO(dif)bus  
bus differential output  
voltage  
CAN Active mode (dominant);  
1.5  
-
3.0  
V
VVCAN = 4.75 V to 5.5 V;  
VTXDC = 0 V;  
R(CANH-CANL) = 50 to 65   
CAN Active mode (dominant);  
1.4  
-
-
3.0  
V
VVCAN = 4.75 V to 5.5 V;  
VTXDC = 0 V;  
R(CANH-CANL) = 45 to 65   
CAN Active/Listen-only modes;  
50  
+50  
mV  
(recessive); VTXDC = VV1  
;
R(CANH-CANL) = no-load  
VO(rec)  
recessive output voltage  
CAN Active mode; VTXDC = VV1  
R(CANH-CANL) = no-load  
;
2.0  
0.5VVCAN 3.0  
V
V
V
CAN Offline mode;  
R(CANH-CANL) = no-load  
0.1  
2.0  
-
+0.1  
CAN Offline Bias/Listen-only  
modes; VVCAN = 0 V  
2.5  
3.0  
R(CANH-CANL) = no-load  
IO(dom)  
dominant output current  
recessive output current  
CAN Active mode  
VTXDC = 0 V; VVCAN = 5 V  
pin CANH; VCANH = 3 V  
54  
-
-
-
-
-
mA  
mA  
mA  
pin CANL; VCANL = 16 V  
54  
+3  
IO(rec)  
VCANL = VCANH = 27 V to +32 V;  
3  
VTXDC = VV1  
Vth(RX)dif  
differential receiver  
threshold voltage  
CAN Active/Listen-only modes;  
12 V < VCANH < +12 V;  
12 V < VCANL < +12 V  
0.5  
0.4  
50  
9
0.7  
0.7  
200  
15  
0.9  
1.15  
400  
28  
V
CAN Offline mode;  
12 V < VCANH < +12 V;  
12 V < VCANL < +12 V  
V
Vhys(RX)dif  
differential receiver  
hysteresis voltage  
CAN Active mode;  
12 V < VCANH < +12 V;  
12 V < VCANL < +12 V  
mV  
k  
Ri(cm)  
common-mode input  
resistance  
Ri  
input resistance deviation  
differential input resistance  
1  
-
+1  
52  
%
Ri(dif)  
12 V < VCANH < +12 V;  
19  
30  
k  
12 V < VCANL < +12 V;  
valid for all CAN operating modes  
[2]  
[2]  
Ci(cm)  
Ci(dif)  
common-mode input  
capacitance  
-
-
8
4
20  
10  
pF  
pF  
differential input capacitance  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
109 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 90. Static characteristics …continued  
Tvj = 40 C to +150 C; VBATSMPS = VBAT = 2 V to 28 V; VBATV2 = 5.5 V to 28 V; VBATHS1 = VBATHS2 = 4.5 V to 28 V;  
VVCAN = 4.5 V to 5.5 V; RLIN1 = RLIN2 = 500 ; R(CANH-CANL) = 60 ; LSMPS[1] = 22 H; CSMPS[1] = 22 F; VVSMPS = 6 V  
(SMPSOC = 0101); CV1 and CVEXT > 1.76 F; all voltages are defined with respect to ground; positive currents flow into the  
IC; typical values are given at VBATSMPS = VBAT =VBATV2 = VBATHS1 = VBATHS2 = 13 V and Tvj = 25 C; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
ILI  
input leakage current  
VBAT = 0 V; VVCAN = 0 V or shorted  
to GND via 47 k;  
5  
-
+5  
A  
VCANH = VCANL = 5 V  
LIN transmit data inputs; pins TXDL1 and TXDL2  
Vth(sw)  
switching threshold voltage VV1 = 2.97 V to 5.5 V  
0.25VV1  
0.05VV1  
-
-
0.75VV1  
-
V
V
Vth(sw)hys  
switching threshold voltage  
hysteresis  
Rpu  
pull-up resistance  
40  
60  
80  
k  
LIN receive data output; pin RXDL1, RXDL2  
VOH  
VOL  
Rpu  
HIGH-level output voltage  
LOW-level output voltage  
pull-up resistance  
IOH = 4 mA;  
VV1 = 2.97 V to 5.5 V  
VV1 0.4 -  
-
V
IOL = 4 mA;  
VV1 = 2.97 V to 5.5 V  
-
-
0.4  
80  
V
LIN Offline mode  
40  
60  
k  
LIN bus line; pin LIN1, LIN2  
IBUS_LIM  
current limitation for driver  
dominant state  
LIN Active mode  
VBAT = VLIN1 = VLIN2 = 18 V  
VTXDL1 = VTXDL2 = 0 V  
40  
-
-
-
-
-
200  
20  
-
mA  
A  
IBUS_PAS_rec  
receiver recessive input  
leakage current  
5 V < VLINn < 18 V;  
5 V < VBAT < 18 V;  
VLINn VBAT; VTXDLn = VV1  
IBUS_PAS_dom receiver dominant input  
leakage current including  
pull-up resistor  
VTXDLn = VV1  
;
1  
1  
mA  
mA  
VLINn = 0 V; VBAT = 12 V  
IBUS_NO_GND loss-of-ground bus current  
VBAT = 12 V; VGND = VBAT  
;
+1  
0 V < VLINn < 18 V  
IBUS_NO_BAT loss-of-battery bus current  
VBAT = 0 V; 0 V < VLINn < 18 V  
VBAT = 5 V to 18 V  
-
-
-
-
30  
A  
V
VBUSrec  
receiver recessive state  
receiver dominant state  
receiver center voltage  
0.6VBAT  
-
-
VBUSdom  
VBUS_CNT  
VBAT = 5 V to 18 V  
0.4VBAT  
V
VBUS_CNT = (VBUSrec + VBUSdom)/2  
VBAT = 5 V to 18 V;  
0.475 0.5   
VBAT VBAT  
0.525   
VBAT  
V
LIN Active mode  
VHYS  
receiver hysteresis voltage  
VHYS = VBUSrec VBUSdom  
;
-
-
0.175   
V
VBAT = 5 V to 18 V;  
VBAT  
LIN Active mode  
VSerDiode  
Cext(LIN1)  
Cext(LIN2)  
Rslave  
voltage drop at the serial  
diode  
in pull-up path with Rslave  
ISerDiode = 0.9 mA  
;
0.4  
-
-
1
V
external capacitance on pin with respect to GND  
LIN1  
-
30  
30  
60  
pF  
pF  
k  
external capacitance on pin with respect to GND  
LIN2  
-
-
slave resistance  
20  
30  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
110 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 90. Static characteristics …continued  
Tvj = 40 C to +150 C; VBATSMPS = VBAT = 2 V to 28 V; VBATV2 = 5.5 V to 28 V; VBATHS1 = VBATHS2 = 4.5 V to 28 V;  
VVCAN = 4.5 V to 5.5 V; RLIN1 = RLIN2 = 500 ; R(CANH-CANL) = 60 ; LSMPS[1] = 22 H; CSMPS[1] = 22 F; VVSMPS = 6 V  
(SMPSOC = 0101); CV1 and CVEXT > 1.76 F; all voltages are defined with respect to ground; positive currents flow into the  
IC; typical values are given at VBATSMPS = VBAT =VBATV2 = VBATHS1 = VBATHS2 = 13 V and Tvj = 25 C; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
High-voltage I/O: pins HVIO1 to HVIO8  
Vth(sw)f  
Vth(sw)r  
Vth(sw)  
Vhys(i)  
falling switching threshold  
voltage  
absolute wake-up threshold:  
B0WTC = B1WTC = 1  
2.4  
2.8  
-
-
-
-
-
3.75  
4.1  
V
rising switching threshold  
voltage  
absolute wake-up threshold:  
B0WTC = B1WTC = 1  
V
switching threshold voltage ratiometric wake-up threshold:  
B0WTC = B1WTC = 0  
0.38   
VBATHSx  
0.6   
VBATHSx  
V
input hysteresis voltage  
absolute wake-up threshold:  
B0WTC = B1WTC = 1  
250  
800  
mV  
V
ratiometric wake-up threshold:  
B0WTC = B1WTC = 0  
0.025   
VBATHSx  
0.2   
VBATHSx  
Ii  
input current  
at wake-up  
-
-
-
-
5
A  
[5]  
[5]  
Ron  
on-state resistance  
between pins BATHSx and HVIOn  
pins; HVIOn configured as  
high-side driver; IHVIOn = 60 mA  
24  
between pins BATHSx and HVIOn  
pins; HVIOn configured as  
high-side driver; IHVIOn = 60 mA;  
Tvj = 175 C  
-
-
27  
between pins HVIOn and GND;  
HVIOn configured as low-side  
driver; IHVIOn = 60 mA  
-
-
-
-
24  
27  
between pins HVIOn and GND;  
HVIOn configured as low-side  
driver; IHVIOn = 60 mA;  
Tvj = 175 C  
[5]  
Ron  
on-state resistance  
difference  
between BATHSx and HVIOn  
pairs; HVIOn configured as  
high-side driver; IHVIOn = 60 mA  
-
-
-
-
5
%
%
between HVIOn and GND pairs;  
HVIOn configured as low-side  
driver; IHVIOn = 60 mA  
10  
[2]  
[2]  
[2]  
IO(sc)  
short-circuit output current  
leakage current  
peak value; HVIOn configured as  
high-side driver; VHVIOn = 0 V  
1.3  
-
-
-
-
-
A
peak value; HVIOn configured as  
low-side driver; VHVIOn = 18 V  
1.3  
5
A
IL  
output drivers configured and off;  
0 V < VHVIOn < 18 V  
5  
A  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
111 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 90. Static characteristics …continued  
Tvj = 40 C to +150 C; VBATSMPS = VBAT = 2 V to 28 V; VBATV2 = 5.5 V to 28 V; VBATHS1 = VBATHS2 = 4.5 V to 28 V;  
VVCAN = 4.5 V to 5.5 V; RLIN1 = RLIN2 = 500 ; R(CANH-CANL) = 60 ; LSMPS[1] = 22 H; CSMPS[1] = 22 F; VVSMPS = 6 V  
(SMPSOC = 0101); CV1 and CVEXT > 1.76 F; all voltages are defined with respect to ground; positive currents flow into the  
IC; typical values are given at VBATSMPS = VBAT =VBATV2 = VBATHS1 = VBATHS2 = 13 V and Tvj = 25 C; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Ith(det)sc  
short-circuit detection  
threshold current  
HVIOn high-side driver  
IOnSCTC = 00  
IOnSCTC = 01  
IOnSCTC = 10  
IOnSCTC = 11  
HVIOn low-side driver  
IOnSCTC = 00  
IOnSCTC = 01  
IOnSCTC = 10  
IOnSCTC = 11  
HVIOn high-side driver  
IOnOLTC = 00  
IOnOLTC = 01  
IOnOLTC = 10  
IOnOLTC= 11  
36  
54  
72  
108  
30  
45  
60  
90  
24  
36  
48  
72  
mA  
mA  
mA  
mA  
24  
36  
48  
72  
30  
45  
60  
90  
36  
mA  
mA  
mA  
mA  
54  
72  
108  
Ith(det)open  
open load detection  
threshold current  
4.1  
7  
2  
1.25  
4  
mA  
mA  
mA  
mA  
5  
13  
25  
10  
20  
8  
16  
HVIOn low-side driver  
IOnOLTC = 00  
IOnOLTC= 01  
1.25  
4
2
6
mA  
mA  
mA  
mA  
mA  
5
9
IOnOLTC= 10  
8
10  
20  
125  
13  
24  
170  
IOnOLTC = 11  
16  
70  
Isink(act)HVIO  
HVIO activation sink current HVIO configured as low-side  
driver with slope control  
(IOnCC = 010); VHVIOn = 2.0 V  
Battery monitoring; pins BAT and BATSENSE  
Vi  
input voltage  
Normal mode  
2
-
20  
V
VADC(acc)  
ADC voltage accuracy  
accuracy of ADC conversion  
results stored in bits BMBCD and  
BMSCD (see Section 7.8.2)  
300  
0
+300  
mV  
Battery input filter capacitor; pin ADCCAP  
R(BAT-ADCCAP) resistance between pin BAT  
and pin ADCCAP  
0.5  
1
1.7  
k  
MTP non-volatile memory  
Ncy(W)MTP  
number of MTP write cycles  
-
-
-
200  
28  
-
[2]  
Vprog(MTPNV) MTPNV programming  
voltage  
6
V
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
112 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 90. Static characteristics …continued  
Tvj = 40 C to +150 C; VBATSMPS = VBAT = 2 V to 28 V; VBATV2 = 5.5 V to 28 V; VBATHS1 = VBATHS2 = 4.5 V to 28 V;  
VVCAN = 4.5 V to 5.5 V; RLIN1 = RLIN2 = 500 ; R(CANH-CANL) = 60 ; LSMPS[1] = 22 H; CSMPS[1] = 22 F; VVSMPS = 6 V  
(SMPSOC = 0101); CV1 and CVEXT > 1.76 F; all voltages are defined with respect to ground; positive currents flow into the  
IC; typical values are given at VBATSMPS = VBAT =VBATV2 = VBATHS1 = VBATHS2 = 13 V and Tvj = 25 C; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Temperature protection  
Tth(act)otp  
Tth(rel)otp  
Tth(warn)otp  
overtemperature protection  
activation threshold  
temperature  
167  
177  
187  
C  
overtemperature protection  
release threshold  
temperature  
127  
127  
137  
137  
147  
147  
C  
C  
overtemperature protection  
warning threshold  
temperature  
[1] LSMPS and CSMPS are external components needed to configure the SMPS. See Section 7.8.4.  
[2] Not tested in production; guaranteed by design.  
[3] The test circuit used to measure the bus output voltage symmetry (which includes CSPLIT) is shown in Figure 33.  
[4] VVSMPS(nom) is between 5 V and 8 V and is selected via bits SMPSOC (see Table 24).  
[5] When x = 1, n = 1 to 4; when x = 2, n = 5 to 8.  
DDDꢄꢀꢀꢆꢂꢈꢉ  
ꢇꢐꢐ  
ꢈꢓꢉ  
ꢀꢐ  
ꢈꢇꢉ  
ꢈꢆꢉ  
ꢈꢅꢉ  
ꢈꢄꢉ  
ꢈꢃꢉ  
ꢈꢂꢉ  
ꢈꢁꢉ  
ꢂꢐ  
ꢄꢐ  
ꢆꢐ  
ꢐꢌꢆ  
ꢐꢌꢄ  
ꢊꢊꢐꢌꢂ  
, ꢊꢈ$ꢉ  
96036  
(1) VBATSMPS = 27 V  
(2) VBATSMPS = 13 V  
(3) VBATSMPS = 5.5 V  
(4) VBATSMPS = 4.5 V  
(5) VBATSMPS = 3.25 V (6) VBATSMPS = 2.5 V (7) VBATSMPS = 2 V  
Fig 25. Graph of SMPS efficiency as a function of load current for a range of supply  
voltages  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
113 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
DDDꢄꢀꢀꢆꢈꢀꢆ  
ꢂꢌꢃ  
9
96036  
ꢈ9ꢉ  
ꢂꢌꢐ  
ꢃꢌꢃ  
ꢃꢌꢐ  
ꢄꢌꢃ  
ꢄꢌꢐ  
ꢈꢇꢉ  
ꢈꢆꢉ  
ꢈꢅꢉ  
ꢈꢄꢉ  
ꢈꢃꢉ  
ꢈꢂꢉ  
ꢈꢁꢉ  
ꢈꢀꢉ  
ꢆꢌꢐ  
ꢄꢌꢐ  
ꢂꢌꢐ  
ꢀꢌꢐ  
ꢇꢐꢌꢐ  
ꢇꢆꢌꢐ  
9
ꢊꢈ9ꢉ  
%$76036  
(1) IVSMPS = 0.0 A  
(5) IVSMPS = 0.24 A (6) IVSMPS = 0.4 A  
(2) IVSMPS = 0.05 A  
(3) IVSMPS = 0.1 A (4) IVSMPS = 0.15 A  
(7) IVSMPS = 0.5 A (8) IVSMPS = 0.69 A  
Fig 26. Graph of SMPS output voltage as a function of supply voltage for a range of load  
currents  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
114 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
11. Dynamic characteristics  
Table 91. Dynamic characteristics  
Tvj = 40 C to +150 C; VBATSMPS = VBAT = 2 V to 28 V; VBATV2 = 5.5 V to 28 V; VBATHS1 = VBATHS2 = 4.5 V to 28 V;  
VVCAN = 4.5 V to 5.5 V; RLIN1 = RLIN2 = 500 ; R(CANH-CANL) = 60 ; LSMPS[1] = 22 H; CSMPS[1] = 22 F; VVSMPS = 6 V  
(SMPSOC = 0101); CV1 and CVEXT > 1.76 F; all voltages are defined with respect to ground; positive currents flow into the  
IC; typical values are given at VBATSMPS = VBAT =VBATV2 = VBATHS1 = VBATHS2 = 13 V and Tvj = 25 C; unless otherwise  
specified.  
Symbol  
SMPS  
fsw  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
switching frequency  
315  
137  
380  
-
465  
203  
kHz  
tto(reg)  
regulation time-out time  
SMPSS is set to 1 when VVSMPS is  
outside the regulation window for  
longer than tto(reg)  
s  
td(act)  
active mode delay time  
minimum time SMPS spends in  
switched mode before a new mode  
transition can be attempted  
Pass-through mode and  
(IVSMPS > Ith(ocd)(VSMPS)) or  
0.9  
2.7  
1
3
1.1  
3.3  
ms  
ms  
(VUVD(BATSMPS) > VBATSMPS  
VOVD(BATSMPS)  
>
)
tt(sw-pt)  
transition time from  
switched mode to  
pass-through mode  
Battery supply  
[2]  
tstartup  
start-up time  
from VBAT exceeding the power-on  
detection threshold until VV1  
exceeds the 90 % undervoltage  
threshold; CV1 < 10 F;  
-
1
2.1  
ms  
500 mA < IV1 < 0 mA  
tdet(ov)  
overvoltage detection time from load dump/overvoltage  
threshold exceeded to OVSDI  
interrupt  
400  
100  
-
-
480  
120  
ms  
ms  
td(sd)ov  
overvoltage shutdown delay after OVSDI interrupt  
time  
Voltage source; pin V1  
tdet(uv)  
undervoltage detection time VV1 falling  
6
-
-
-
39  
40  
s  
s  
td(uvd-RSTNL)  
delay time from  
undervoltage detection to  
RSTN LOW  
HS-CAN transceiver supply; pin VCAN  
tdet(uv)  
undervoltage detection time VVCAN falling  
6
-
32  
s  
Voltage source; pin VEXT  
tdet(uv)  
undervoltage detection time VVEXT falling  
at start-up of VEXT; VVEXT falling  
overvoltage detection time VVEXT rising  
Serial peripheral interface timing; pins SCSN, SCK, SDI and SDO  
6
-
39  
2.8  
39  
s  
ms  
s  
2.2  
6
2.5  
-
tdet(ov)  
tcy(clk)  
clock cycle time  
VV1 = 2.97 V to 5.5 V  
VV1 = 2.97 V to 5.5 V  
250  
50  
-
-
-
-
ns  
ns  
tSPILEAD  
SPI enable lead time  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
115 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 91. Dynamic characteristics …continued  
Tvj = 40 C to +150 C; VBATSMPS = VBAT = 2 V to 28 V; VBATV2 = 5.5 V to 28 V; VBATHS1 = VBATHS2 = 4.5 V to 28 V;  
VVCAN = 4.5 V to 5.5 V; RLIN1 = RLIN2 = 500 ; R(CANH-CANL) = 60 ; LSMPS[1] = 22 H; CSMPS[1] = 22 F; VVSMPS = 6 V  
(SMPSOC = 0101); CV1 and CVEXT > 1.76 F; all voltages are defined with respect to ground; positive currents flow into the  
IC; typical values are given at VBATSMPS = VBAT =VBATV2 = VBATHS1 = VBATHS2 = 13 V and Tvj = 25 C; unless otherwise  
specified.  
Symbol  
tSPILAG  
tclk(H)  
tclk(L)  
Parameter  
Conditions  
Min  
50  
Typ  
Max  
Unit  
ns  
SPI enable lag time  
clock HIGH time  
clock LOW time  
VV1 = 2.97 V to 5.5 V  
VV1 = 2.97 V to 5.5 V  
VV1 = 2.97 V to 5.5 V  
VV1 = 2.97 V to 5.5 V  
VV1 = 2.97 V to 5.5 V  
-
-
-
-
-
-
-
125  
125  
50  
-
ns  
-
ns  
tsu(D)  
data input set-up time  
data input hold time  
data output valid time  
-
ns  
th(D)  
50  
-
ns  
tv(Q)  
pin SDO; VV1 = 2.97 V to 5.5 V;  
CL = 20 pF  
-
50  
ns  
tWH(S)  
chip select pulse width  
HIGH  
VV1 = 2.97 V to 5.5 V  
250  
-
-
-
-
-
ns  
s  
s  
ns  
tto(SPI)  
SPI time-out time  
after leaving Reset mode;  
VV1 = 2.97 V to 5.5 V  
-
53  
10  
-
td(W)SPI  
SPI write delay time  
between two consecutive write  
access operations  
-
td(SCKL-SCSNL)  
delay time from SCK LOW  
to SCSN LOW  
50  
Reset output; pin RSTN  
tw(rst) reset pulse width  
output pulse width  
RLC = 00  
20  
10  
3.6  
1
-
25  
12.5  
5
ms  
ms  
ms  
ms  
s  
RLC = 01  
-
RLC = 10  
-
RLC = 11  
-
1.5  
-
input pulse width  
18  
120  
-
tto(rst)  
reset time-out time  
135  
150  
ms  
Interrupt time-out; pin INTN1  
tto(int)  
interrupt time-out time  
INTN1 remains HIGH for at least  
0.9  
1
1.1  
ms  
t
to(int) after being released  
High-voltage I/O: pins HVIO1 to HVIO8  
tw(wake)  
wake-up pulse width  
input configuration; interrupt  
enabled  
51.5  
55  
-
-
s  
fs(wake)  
wake-up sampling  
frequency  
-
142  
24  
30  
38  
kHz  
s  
tdet(fail)HVIO  
HVIO failure detection time open-load detection, HVIO already  
running  
18  
21  
27  
34  
overcurrent detection, HVIO already  
running  
12  
s  
trec(fail)HVIO  
td(on)HVIO  
HVIO failure recovery time open-load recovery, HVIO already  
running  
30  
s  
HVIO turn-on delay time  
fast slope  
slow slope  
36  
72  
40  
80  
44  
88  
s  
s  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
116 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 91. Dynamic characteristics …continued  
Tvj = 40 C to +150 C; VBATSMPS = VBAT = 2 V to 28 V; VBATV2 = 5.5 V to 28 V; VBATHS1 = VBATHS2 = 4.5 V to 28 V;  
VVCAN = 4.5 V to 5.5 V; RLIN1 = RLIN2 = 500 ; R(CANH-CANL) = 60 ; LSMPS[1] = 22 H; CSMPS[1] = 22 F; VVSMPS = 6 V  
(SMPSOC = 0101); CV1 and CVEXT > 1.76 F; all voltages are defined with respect to ground; positive currents flow into the  
IC; typical values are given at VBATSMPS = VBAT =VBATV2 = VBATHS1 = VBATHS2 = 13 V and Tvj = 25 C; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
td(fdet-INTN1L)  
delay time from failure  
-
8
9
s  
detection to INTN1 LOW  
Battery monitoring: pins BAT, BATSENSE  
tc(ADC) ADC conversion time  
time taken to measure and convert  
input voltage and store result in bits  
BMBCD or BMSCD (see  
5.4  
6
6.6  
s  
Section 7.8.2);  
Normal mode; 0 V < VBAT < 20 V  
CAN transceiver timing; pins CANH, CANL, TXDC and RXDC  
td(TXDCH-RXDCH) delay time from TXDC  
HIGH to RXDC HIGH  
70 % VTXDC to 70 % VRXDC  
;
CRXDC = 15 pF; fTXDC = 250 kHz;  
R(CANH-CANL) = 60 ;  
-
-
-
-
-
-
-
-
255  
350  
255  
350  
ns  
ns  
ns  
ns  
C(CANH-CANL) = 100 pF;  
[2]  
70 % VTXDC to 70 % VRXDC  
CRXDC = 15 pF; fTXDC = 250 kHz;  
R(CANH-CANL) = 120 ;  
;
C(CANH-CANL) = 200 pF;  
td(TXDCL-RXDCL) delay time from TXDC LOW 30 % VTXDC to 30 % VRXDC  
;
to RXDC LOW  
CRXDC = 15 pF; fTXDC = 250 kHz;  
R(CANH-CANL) = 60 ;  
C(CANH-CANL) = 100 pF;  
[2]  
30 % VTXDC to 30 % VRXDC  
;
CRXDC = 15 pF; fTXDC = 250 kHz;  
R(CANH-CANL) = 120 ;  
C(CANH-CANL) = 200 pF;  
td(TXDC-busdom)  
td(TXDC-busrec)  
td(busdom-RXDC)  
td(busrec-RXDC)  
tbit(RXDC)  
delay time from TXDC to  
bus dominant  
-
80  
80  
105  
120  
-
90  
ns  
ns  
ns  
ns  
ns  
s  
delay time from TXDC to  
bus recessive  
-
-
delay time from bus  
dominant to RXDC  
CRXDC = 15 pF  
CRXDC = 15 pF  
-
-
delay time from bus  
recessive to RXDC  
-
-
[2]  
bit time on pin RXDC  
tbit(TXDC) = 500 ns (see Figure 28);  
C(CANH-CANL) = 100 pF  
400  
0.5  
550  
3
twake(busdom)  
bus dominant wake-up time first pulse (after first recessive) for  
wake-up on pins CANH and CANL  
Sleep mode  
-
second pulse for wake-up on pins  
CANH and CANL  
0.5  
0.5  
0.5  
-
-
-
3
3
3
s  
s  
s  
twake(busrec)  
bus recessive wake-up time first pulse for wake-up on pins  
CANH and CANL; Sleep mode  
second pulse (after first dominant)  
for wake-up on pins CANH and  
CANL  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
117 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 91. Dynamic characteristics …continued  
Tvj = 40 C to +150 C; VBATSMPS = VBAT = 2 V to 28 V; VBATV2 = 5.5 V to 28 V; VBATHS1 = VBATHS2 = 4.5 V to 28 V;  
VVCAN = 4.5 V to 5.5 V; RLIN1 = RLIN2 = 500 ; R(CANH-CANL) = 60 ; LSMPS[1] = 22 H; CSMPS[1] = 22 F; VVSMPS = 6 V  
(SMPSOC = 0101); CV1 and CVEXT > 1.76 F; all voltages are defined with respect to ground; positive currents flow into the  
IC; typical values are given at VBATSMPS = VBAT =VBATV2 = VBATHS1 = VBATHS2 = 13 V and Tvj = 25 C; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
tto(wake)  
wake-up time-out time  
between first and second dominant  
pulses; CAN Offline mode  
570  
-
850  
s  
tto(dom)TXDC  
tto(silence)  
td(busact-bias)  
td(act)CAN  
TXDC dominant time-out  
time  
CAN Active mode; VTXDC = 0 V  
0.8  
0.8  
-
3
1
-
5
ms  
s
bus silence time-out time  
recessive time measurement started  
in all CAN modes  
1.2  
200  
24  
delay time from bus active  
to bias  
s  
s  
CAN activation delay time  
MC = 111; CAN entering CAN Active  
mode; td(act)norm expired  
-
-
LIN transceivers; pins LIN1, LIN2, TXDL1, TXDL2, RXDL1, RXDL2  
th(rec)(max) = 0.744VBAT  
Vth(dom)(max) = 0.581VBAT  
tbit = 50 s; VBAT = 7 V to 18 V  
Vth(rec)(max) = 0.768VBAT  
[3]  
[5]  
[6]  
1  
2  
3  
4  
duty cycle 1  
duty cycle 2  
duty cycle 3  
duty cycle 4  
V
;
0.396  
-
-
-
-
-
-
-
-
-
;
[3]  
[5]  
[6]  
;
0.396  
-
Vth(dom)(max) = 0.6VBAT; tbit = 50 s;  
VBAT = 5 V to 7 V  
[4]  
[5]  
[6]  
V
th(rec)(min) = 0.442VBAT  
Vth(dom)(min) = 0.284VBAT; bit  
VBAT = 7.6 V to 18 V  
;
-
0.581  
0.581  
-
t
= 50 s;  
[4]  
[5]  
[6]  
Vth(rec)(min) = 0.405VBAT  
;
-
Vth(dom)(min) = 0.271VBAT; tbit = 50 s;  
VBAT = 5.6 V to 7.6 V  
[3]  
[5]  
[6]  
V
th(rec)(max) = 0.778VBAT  
Vth(dom)(max) = 0.616VBAT  
tbit = 96 s; VBAT = 7 V to 18 V  
;
0.417  
;
[3]  
[5]  
[6]  
Vth(rec)(max) = 0.805VBAT  
Vth(dom)(max) = 0.637VBAT  
tbit = 96 s; VBAT = 5 V to 7 V  
;
0.417  
-
;
[4]  
[5]  
[6]  
V
V
th(rec)(min) = 0.389VBAT  
th(dom)(min) = 0.251VBAT; tbit = 96 s  
;
-
-
0.590  
0.590  
VBAT = 7.6 V to 18 V  
th(rec)(min) = 0.372VBAT  
Vth(dom)(min) = 0.238VBAT; tbit = 96 s;  
BAT = 5.6 V to 7.6 V  
[4]  
[5]  
[6]  
V
;
V
[6]  
trx_pd  
receiver propagation delay rising and falling;  
CRXD = 20 pF  
-
-
-
6
s  
s  
[6]  
trx_sym  
receiver propagation delay CRXD = 20 pF; rising edge with  
2  
+2  
symmetry  
respect to falling edge  
twake(dom)LIN  
tto(dom)TXDL  
LIN dominant wake-up time LIN Offline mode  
30  
28  
80  
32  
150  
36  
s  
TXDL dominant time-out  
time  
LIN Active mode; VTXDL = 0 V  
ms  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
118 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Table 91. Dynamic characteristics …continued  
Tvj = 40 C to +150 C; VBATSMPS = VBAT = 2 V to 28 V; VBATV2 = 5.5 V to 28 V; VBATHS1 = VBATHS2 = 4.5 V to 28 V;  
VVCAN = 4.5 V to 5.5 V; RLIN1 = RLIN2 = 500 ; R(CANH-CANL) = 60 ; LSMPS[1] = 22 H; CSMPS[1] = 22 F; VVSMPS = 6 V  
(SMPSOC = 0101); CV1 and CVEXT > 1.76 F; all voltages are defined with respect to ground; positive currents flow into the  
IC; typical values are given at VBATSMPS = VBAT =VBATV2 = VBATHS1 = VBATHS2 = 13 V and Tvj = 25 C; unless otherwise  
specified.  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Mode transition  
td(act)norm  
normal mode activation  
delay time  
MC = 111; delay before CAN and  
LIN transceivers, battery monitoring  
and HVIO low side drivers are  
activated after the SBC switches to  
Normal mode  
-
-
320  
s  
MTP non-volatile memory  
tret(data)  
data retention time  
MTPNV delay time  
Tvj = 90 C  
20  
-
-
year  
s
td(MTPNV)  
before factory presets are restored;  
VRSTN = 0 V, VCANL = 0 V and  
VCANH > 5 V during power-up with  
VBAT = 6 V to 28 V  
0.9  
1
1.1  
tprog(MTPNV)  
MTPNV programming time correct CRC code received at  
address 0x75; VBAT = 6 V to 28 V  
43  
48  
53  
ms  
Watchdog  
[8]  
ttrig(wd)1  
watchdog trigger time 1  
watchdog trigger time 2  
Normal mode  
watchdog Window mode only  
0.45   
-
-
0.55   
ms  
ms  
NWP[9]  
NWP[9]  
[10]  
ttrig(wd)2  
Normal, Standby and Sleep modes;  
watchdog Window and Timeout  
modes  
0.9   
1.11   
NWP[9]  
NWP[9]  
Timer  
Ttmr  
timer period  
TnPC = 0000 (4 ms selected)  
TnPC = 0001 (8 ms selected)  
TnPC = 0010 (20 ms selected)  
TnPC = 0011 (30 ms selected)  
TnPC = 0100 (50 ms selected)  
TnPC = 0101 (100 ms selected)  
TnPC = 0110 (200 ms selected)  
TnPC = 0111 (400 ms selected)  
TnPC = 1000 (800 ms selected)  
TnPC = 1001 (1 s selected)  
TnPC = 1010 (2 s selected)  
TnPC = 1011 (4 s selected)  
3.67  
4.08  
8.16  
4.49  
8.98  
ms  
ms  
ms  
ms  
ms  
7.34  
18.36  
25.70  
44.06  
88.12  
20.40 22.44  
28.56 31.42  
48.96 53.86  
97.92 107.72 ms  
176.25 195.84 215.43 ms  
352.51 391.68 430.85 ms  
705.02 783.36 861.70 ms  
899.64 999.6 1099.56 ms  
1799.28 1999.2 2199.12 ms  
3598.56 3998.4 4398.24 ms  
tw(base)tmr  
timer base pulse width  
86.4  
96  
105.6  
s  
[1] LSMPS and CSMPS are external components needed to configure the SMPS. See Section 7.8.4.  
[2] Not tested in production; guaranteed by design.  
tbusrecmin  
-------------------------------  
[3] 1 3 =  
. Variable tbus(rec)(min) is illustrated in the LIN timing diagram in Figure 29.  
2 tbit  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
119 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
tbusrecmax  
-------------------------------  
[4] 2 4 =  
. Variable tbus(rec)(max) is illustrated in the LIN timing diagram in Figure 29.  
2 tbit  
[5] Bus load conditions are: CL = 1 nF and RL = 1 k; CL = 6.8 nF and RL = 600 ; CL = 10 nF and RL = 500 .  
[6] See LIN timing diagram in Figure 29.  
[7]  
trx_sym = trx_pdr trx_pdf.  
[8] A system reset will be performed if the watchdog is in Window mode and is triggered earlier than ttrig(wd)1 after the start of the watchdog  
period (thus in the first half of the watchdog period).  
[9] The nominal watchdog period is programmed via the NWP control bits in the Watchdog control register (Table 7); valid in watchdog  
Window mode only.  
[10] The watchdog will be reset if it is in window mode and is triggered after ttrig(wd)1, but not later than ttrig(wd)2, after the start of the watchdog  
period (thus, in the second half of the watchdog period). If the watchdog is in Timeout mode, it will be reset if it is triggered within ttrig(wd)2  
after the start of the watchdog period.  
+,*+  
7;'&  
/2:  
&$1+  
&$1/  
GRPLQDQW  
ꢐꢌꢏꢊ9  
9
2ꢈGLIꢉEXV  
ꢐꢌꢃꢊ9  
UHFHVVLYH  
+,*+  
5;'&  
/2:  
W
W
Gꢈ7;'&ꢋEXVUHFꢉ  
Gꢈ7;'&ꢋEXVGRPꢉ  
W
W
GꢈEXVUHFꢋ5;'&ꢉ  
ꢀꢁꢂDDDꢁꢂꢁ  
GꢈEXVGRPꢋ5;'&ꢉ  
W
W
Gꢈ7;'&+ꢋ5;'&+ꢉ  
Gꢈ7;'&/ꢋ5;'&/ꢉ  
Fig 27. CAN transceiver timing diagram  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
120 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
ꢁꢐꢊꢓ  
7;'&  
ꢅꢐꢊꢓ  
ꢅꢐꢊꢓ  
ꢃꢊ[ꢊW  
ELWꢈ7;'&ꢉ  
W
ELWꢈ7;'&ꢉ  
ꢁꢐꢊꢓ  
5;'&  
ꢅꢐꢊꢓ  
W
ELWꢈ5;'&ꢉ  
DDDꢄꢀꢁꢈꢇꢈꢊ  
Fig 28. CAN transceiver bit timing (loop symmetry) diagram  
W
W
ELW  
ELW  
9
ꢎ9  
7;'/ꢇ 7;'/ꢆ  
W
W
W
EXVꢈUHFꢉꢈPLQꢉ  
EXVꢈGRPꢉꢈPD[ꢉ  
9
9
9
9
WKꢈUHFꢉꢈPD[ꢉ  
WKUHVKROGVꢊRI  
UHFHLYLQJꢊQRGHꢊꢇ  
WKꢈGRPꢉꢈPD[ꢉ  
WKꢈUHFꢉꢈPLQꢉ  
WKꢈGRPꢉꢈPLQꢉ  
/,1ꢇꢎ/,1ꢆ  
EXVꢊVLJQDO  
W
EXVꢈGRPꢉꢈPLQꢉ  
EXVꢈUHFꢉꢈPD[ꢉ  
9
%$7  
WKUHVKROGVꢊRI  
UHFHLYLQJꢊQRGHꢊꢆ  
W
W
W
U[BSGI  
U[BSGU  
U[BSGI  
9
5;'/ꢇ  
9
5;'/ꢆ  
UHFHLYLQJ  
QRGHꢊꢇ  
W
W
W
U[BSGI  
U[BSGI  
U[BSGU  
9
5;'/ꢇ  
9
UHFHLYLQJ  
QRGHꢊꢆ  
5;'/ꢆ  
DDDꢄꢀꢀꢆꢂꢁꢉ  
Fig 29. Timing diagram LIN transceivers  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
121 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
6&61  
W
W
W
W
:+ꢈ6ꢉ  
63,/($'  
F\ꢈFONꢉ  
W
63,/$*  
W
FONꢈ+ꢉ  
FONꢈ/ꢉ  
W
Gꢈ6&./ꢋ6&61/ꢉ  
6&.  
;
W
Kꢈ'ꢉ  
W
W
Kꢈ'ꢉ  
VXꢈ'ꢉ  
6',  
;
06%  
/6%  
;
W
Yꢈ4ꢉ  
IORDWLQJ  
IORDWLQJ  
;
06%  
/6%  
6'2  
DDDꢄꢀꢁꢊꢁꢇꢈ  
Fig 30. SPI timing diagram  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
122 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
12. Application information  
12.1 Application diagram  
&
/
&
%227  
%227  
6036  
&
6036  
%227+ꢆ  
ꢄꢀ  
*1'6036  
ꢄꢃ  
ꢄꢇ  
96036  
9ꢇ  
ꢄꢁ  
&$3$  
ꢃꢊ9ꢊWR  
ꢅꢌꢅꢊ9  
&
&
8-$ꢀꢀꢁ[  
&
%227  
!ꢇꢌꢁꢂꢊ—)ꢊ  
9ꢆ  
#ꢊ9ꢇꢊ ꢊꢃꢊ9  
&$3%  
ꢄꢐ  
ꢄꢅ  
9(;7  
/ꢇ  
ꢃꢊ9  
%DWWHU\  
%$76036  
%$7  
!ꢇꢌꢁꢂꢊ—)ꢊ  
#ꢊ9(;7ꢊ ꢊꢃꢊ9  
(0&ꢊILOWHU  
ꢈꢇꢉ  
ꢄꢁꢊ—)  
ꢇꢐꢊQ)  
FHUDPLF  
ꢆꢂ  
$'&&$3  
ꢆꢁ  
%$79ꢆ  
%$7+6ꢇ  
ꢇꢐꢊQ)ꢎ  
ꢃꢐꢊ9  
ꢇꢐꢊQ)  
FHUDPLF  
ꢅꢀ  
ꢆꢏ  
ꢆꢀ  
DOWHUQDWLYHO\ꢊFRXOGꢊEH  
FRQQHFWHGꢊWRꢊ96036  
%$7+6ꢆ  
ꢇꢊNȍ  
%$76(16(  
ꢇꢐꢊQ)ꢎ  
ꢃꢐꢊ9  
XVHꢊRIꢊ%$76(16(ꢊLVꢊRSWLRQDO  
+9,2ꢊFRXSOLQJ  
+9,2[  
ꢅꢐꢊWRꢊꢅꢁꢊ  
ꢈꢇꢉ  
ꢄꢁꢊQ)  
ꢈꢇꢉ  
ꢀꢆꢊS)  
DDDꢄꢀꢀꢆꢂꢃꢇ  
LSMPS: 22 H 20 %, current rating 1.5 A or higher  
L1: 1.5 H, note that the size of the coil also depends on the sizes of the capacitors on both sides  
SMPS: >20 F at 6 V, ceramic X7R or equivalent, ESR < 50 m, voltage rating 16 V or more  
C
C1: 47 F aluminum, ripple current rating > 250 mA RMS, voltage rating 40 V or more  
C2: >100 nF ceramic X7R or equivalent, ESR < 50 m, voltage rating 40 V or more  
CBOOT: 4.7 nF 20 %, IL < 10 A, voltage rating 3.6 V or more  
(1) recommended value  
Fig 31. Application diagram  
12.2 Application hints  
Further information on the application of the UJA113x series can be found in NXP  
application hints AH1506 ‘UJA113x Application Hints’.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
123 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
13. Test information  
%$7 9&$1  
5;'&  
7;'&  
&$1+  
&$1/  
5
&ꢈ  
ꢋꢊ&  
&
5;'&  
ꢈ&$1+ꢊ ꢊ&$1/ꢉ  
&$1+ꢊ &$1/ꢉ  
6%&  
*1'  
DDDꢄꢀꢁꢈꢂꢀꢀ  
Fig 32. Timing test circuit for CAN transceiver  
9&$1  
7;'&  
5;'&  
&$1+  
&$1/  
ꢅꢐꢊȍ  
ꢅꢐꢊȍ  
Iꢊ ꢊꢆꢃꢐꢊN+]  
6%&  
&
63/,7  
ꢄꢌꢁꢊQ)  
*1'  
DDDꢄꢀꢁꢀꢇꢃꢂ  
Fig 33. Test circuit for measuring transceiver driver symmetry  
%$7  
5;'/ꢇ  
5
/,1ꢇ  
&
&
5;'/ꢇ  
7;'/ꢇ  
5;'/ꢆ  
7;'/ꢆ  
/,1ꢇ  
/,1ꢆ  
&
/,1ꢇ  
6%&  
5
/,1ꢆ  
&
/,1ꢆ  
5;'/ꢆ  
*1'  
DDDꢄꢀꢀꢆꢂꢅꢃ  
Fig 34. Timing test circuit for LIN transceivers  
13.1 Quality information  
This product has been qualified in accordance with the Automotive Electronics Council  
(AEC) standard Q100 Rev-G - Failure mechanism based stress test qualification for  
integrated circuits, and is suitable for use in automotive applications.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
124 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
14. Package outline  
+74)3ꢇꢈꢉꢂSODVWLFꢂWKHUPDOꢂHQKDQFHGꢂWKLQꢂTXDGꢂIODWꢂSDFNDJHꢊꢂꢇꢈꢂOHDGVꢊ  
ERG\ꢂꢀꢋꢂ[ꢂꢀꢋꢂ[ꢂꢀꢂPPꢊꢂH[SRVHGꢂGLHꢂSDG  
627ꢀꢀꢈꢀꢆꢌ  
\
;
H[SRVHGꢊGLHꢊSDG  
$
'
K
ꢅꢂ  
ꢆꢃ  
=
(
ꢅꢁ  
ꢆꢄ  
H
$
$
$
(
+
(
$
(
K
Z
ș
E
S
/
S
SLQꢊꢇꢊLQGH[  
/
ꢄꢀ  
ꢇꢅ  
GHWDLOꢊ;  
ꢇꢆ  
Y
$
=
'
Z
E
S
H
'
%
+
'
Y
%
ꢇꢐꢊPP  
VFDOH  
'LPHQVLRQVꢊꢈPPꢊDUHꢊWKHꢊRULJLQDOꢊGLPHQVLRQVꢉ  
8QLW  
ꢈꢇꢉ  
ꢈꢇꢉ  
ꢈꢇꢉ  
ꢈꢇꢉ  
$
$
$
$
E
S
F
'
'
K
(
(
H
+
+
/
/
Y
Z
\
=
=
(
ș
K
'
(
S
'
ƒ
PD[ ꢇꢌꢆ ꢐꢌꢇꢆꢃ ꢇꢌꢐꢃ  
ꢐꢌꢅꢃ ꢐꢌꢇꢀ ꢇꢐꢌꢇ ꢃꢌꢐ ꢇꢐꢌꢇ ꢃꢌꢐ  
ꢐꢌꢅꢐ ꢐꢌꢇꢃ ꢇꢐꢌꢐ ꢄꢌꢃ ꢇꢐꢌꢐ ꢄꢌꢃ  
ꢐꢌꢆꢃ ꢐꢌꢇꢆ ꢏꢌꢏ ꢄꢌꢐ ꢏꢌꢏ ꢄꢌꢐ  
ꢇꢆꢌꢇꢃ ꢇꢆꢌꢇꢃ  
ꢇꢆꢌꢐꢐ ꢇꢆꢌꢐꢐ  
ꢇꢇꢌꢀꢃ ꢇꢇꢌꢀꢃ  
ꢐꢌꢁꢃ  
ꢐꢌꢂꢐ  
ꢐꢌꢄꢃ  
ꢇꢌꢃꢁ ꢇꢌꢃꢁ  
ꢇꢌꢄꢅ ꢇꢌꢄꢅ  
ꢇꢌꢆꢀ ꢇꢌꢆꢀ  
QRP  
PLQ  
ꢐꢌꢇꢐꢐ ꢇꢌꢐꢐ  
ꢐꢌꢐꢃꢐ ꢐꢌꢏꢃ  
PP  
ꢐꢌꢆꢃ  
ꢐꢌꢂꢃ  
ꢐꢌꢆ ꢐꢌꢐꢀ ꢐꢌꢇ  
ƒ
1RWH  
ꢇꢌꢊ3ODVWLFꢊRUꢊPHWDOꢊSURWUXVLRQVꢊRIꢊꢐꢌꢆꢃꢊPPꢊPD[LPXPꢊSHUꢊVLGHꢊDUHꢊQRWꢊLQFOXGHGꢌ  
VRWꢁꢁꢊꢁꢄꢅBSR  
5HIHUHQFHV  
2XWOLQH  
YHUVLRQ  
(XURSHDQ  
SURMHFWLRQ  
,VVXHꢊGDWH  
,(&  
ꢋꢊꢋꢊꢋ  
-('(&  
06ꢋꢐꢆꢂ  
-(,7$  
ꢋꢊꢋꢊꢋ  
ꢇꢆꢋꢐꢏꢋꢇꢄ  
ꢇꢆꢋꢇꢐꢋꢇꢂ  
627ꢇꢇꢀꢇꢋꢆ  
Fig 35. Package outline SOT1181-2 (HTQFP48)  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
125 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
15. Handling information  
All input and output pins are protected against ElectroStatic Discharge (ESD) under  
normal handling. When handling ensure that the appropriate precautions are taken as  
described in JESD625-A or equivalent standards.  
16. Soldering of SMD packages  
This text provides a very brief insight into a complex technology. A more in-depth account  
of soldering ICs can be found in Application Note AN10365 “Surface mount reflow  
soldering description”.  
16.1 Introduction to soldering  
Soldering is one of the most common methods through which packages are attached to  
Printed Circuit Boards (PCBs), to form electrical circuits. The soldered joint provides both  
the mechanical and the electrical connection. There is no single soldering method that is  
ideal for all IC packages. Wave soldering is often preferred when through-hole and  
Surface Mount Devices (SMDs) are mixed on one printed wiring board; however, it is not  
suitable for fine pitch SMDs. Reflow soldering is ideal for the small pitches and high  
densities that come with increased miniaturization.  
16.2 Wave and reflow soldering  
Wave soldering is a joining technology in which the joints are made by solder coming from  
a standing wave of liquid solder. The wave soldering process is suitable for the following:  
Through-hole components  
Leaded or leadless SMDs, which are glued to the surface of the printed circuit board  
Not all SMDs can be wave soldered. Packages with solder balls, and some leadless  
packages which have solder lands underneath the body, cannot be wave soldered. Also,  
leaded SMDs with leads having a pitch smaller than ~0.6 mm cannot be wave soldered,  
due to an increased probability of bridging.  
The reflow soldering process involves applying solder paste to a board, followed by  
component placement and exposure to a temperature profile. Leaded packages,  
packages with solder balls, and leadless packages are all reflow solderable.  
Key characteristics in both wave and reflow soldering are:  
Board specifications, including the board finish, solder masks and vias  
Package footprints, including solder thieves and orientation  
The moisture sensitivity level of the packages  
Package placement  
Inspection and repair  
Lead-free soldering versus SnPb soldering  
16.3 Wave soldering  
Key characteristics in wave soldering are:  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
126 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
Process issues, such as application of adhesive and flux, clinching of leads, board  
transport, the solder wave parameters, and the time during which components are  
exposed to the wave  
Solder bath specifications, including temperature and impurities  
16.4 Reflow soldering  
Key characteristics in reflow soldering are:  
Lead-free versus SnPb soldering; note that a lead-free reflow process usually leads to  
higher minimum peak temperatures (see Figure 36) than a SnPb process, thus  
reducing the process window  
Solder paste printing issues including smearing, release, and adjusting the process  
window for a mix of large and small components on one board  
Reflow temperature profile; this profile includes preheat, reflow (in which the board is  
heated to the peak temperature) and cooling down. It is imperative that the peak  
temperature is high enough for the solder to make reliable solder joints (a solder paste  
characteristic). In addition, the peak temperature must be low enough that the  
packages and/or boards are not damaged. The peak temperature of the package  
depends on package thickness and volume and is classified in accordance with  
Table 92 and 93  
Table 92. SnPb eutectic process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
235  
350  
220  
< 2.5  
2.5  
220  
220  
Table 93. Lead-free process (from J-STD-020D)  
Package thickness (mm) Package reflow temperature (C)  
Volume (mm3)  
< 350  
260  
350 to 2000  
> 2000  
260  
< 1.6  
260  
250  
245  
1.6 to 2.5  
> 2.5  
260  
245  
250  
245  
Moisture sensitivity precautions, as indicated on the packing, must be respected at all  
times.  
Studies have shown that small packages reach higher temperatures during reflow  
soldering, see Figure 36.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
127 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
maximum peak temperature  
= MSL limit, damage level  
temperature  
minimum peak temperature  
= minimum soldering temperature  
peak  
temperature  
time  
001aac844  
MSL: Moisture Sensitivity Level  
Fig 36. Temperature profiles for large and small components  
For further information on temperature profiles, refer to Application Note AN10365  
“Surface mount reflow soldering description”.  
17. Revision history  
Table 94. Revision history  
Document ID  
Release date  
20160705  
Data sheet status  
Change notice Supersedes  
- UJA113x_SER_1  
UJA113x_SER_2.2  
Modifications:  
Product data sheet  
Table 2: Table note 2 deleted  
Figure 2, Figure 4, Figure 5, Figure 9, Figure 15: revised  
Table 49, Table 51, Table 53, Table 55: TxDCC access code corrected (to R/W)  
Section 7.16.1: text amended (paragraph added)  
Table 88: measurement conditions changed for parameters Vx (DC value removed) and Vtrt  
(HVIOx coupling); Table note 1 added  
Table 90: supply current (IDD) section revised; values for additional IDD current in Offline Bias  
mode changed  
Figure 31: value of one of the HVIOx capacitors changed  
Section 12.2 added  
UJA113x_SER_1  
20150611  
Product data sheet  
-
-
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
128 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
18. Legal information  
18.1 Data sheet status  
Document status[1][2]  
Product status[3]  
Development  
Definition  
Objective [short] data sheet  
This document contains data from the objective specification for product development.  
This document contains data from the preliminary specification.  
This document contains the product specification.  
Preliminary [short] data sheet Qualification  
Product [short] data sheet Production  
[1]  
[2]  
[3]  
Please consult the most recently issued document before initiating or completing a design.  
The term ‘short data sheet’ is explained in section “Definitions”.  
The product status of device(s) described in this document may have changed since this document was published and may differ in case of multiple devices. The latest product status  
information is available on the Internet at URL http://www.nxp.com.  
Suitability for use in automotive applications — This NXP  
18.2 Definitions  
Semiconductors product has been qualified for use in automotive  
applications. Unless otherwise agreed in writing, the product is not designed,  
authorized or warranted to be suitable for use in life support, life-critical or  
safety-critical systems or equipment, nor in applications where failure or  
malfunction of an NXP Semiconductors product can reasonably be expected  
to result in personal injury, death or severe property or environmental  
damage. NXP Semiconductors and its suppliers accept no liability for  
inclusion and/or use of NXP Semiconductors products in such equipment or  
applications and therefore such inclusion and/or use is at the customer's own  
risk.  
Draft — The document is a draft version only. The content is still under  
internal review and subject to formal approval, which may result in  
modifications or additions. NXP Semiconductors does not give any  
representations or warranties as to the accuracy or completeness of  
information included herein and shall have no liability for the consequences of  
use of such information.  
Short data sheet — A short data sheet is an extract from a full data sheet  
with the same product type number(s) and title. A short data sheet is intended  
for quick reference only and should not be relied upon to contain detailed and  
full information. For detailed and full information see the relevant full data  
sheet, which is available on request via the local NXP Semiconductors sales  
office. In case of any inconsistency or conflict with the short data sheet, the  
full data sheet shall prevail.  
Applications — Applications that are described herein for any of these  
products are for illustrative purposes only. NXP Semiconductors makes no  
representation or warranty that such applications will be suitable for the  
specified use without further testing or modification.  
Customers are responsible for the design and operation of their applications  
and products using NXP Semiconductors products, and NXP Semiconductors  
accepts no liability for any assistance with applications or customer product  
design. It is customer’s sole responsibility to determine whether the NXP  
Semiconductors product is suitable and fit for the customer’s applications and  
products planned, as well as for the planned application and use of  
customer’s third party customer(s). Customers should provide appropriate  
design and operating safeguards to minimize the risks associated with their  
applications and products.  
Product specification — The information and data provided in a Product  
data sheet shall define the specification of the product as agreed between  
NXP Semiconductors and its customer, unless NXP Semiconductors and  
customer have explicitly agreed otherwise in writing. In no event however,  
shall an agreement be valid in which the NXP Semiconductors product is  
deemed to offer functions and qualities beyond those described in the  
Product data sheet.  
NXP Semiconductors does not accept any liability related to any default,  
damage, costs or problem which is based on any weakness or default in the  
customer’s applications or products, or the application or use by customer’s  
third party customer(s). Customer is responsible for doing all necessary  
testing for the customer’s applications and products using NXP  
Semiconductors products in order to avoid a default of the applications and  
the products or of the application or use by customer’s third party  
customer(s). NXP does not accept any liability in this respect.  
18.3 Disclaimers  
Limited warranty and liability — Information in this document is believed to  
be accurate and reliable. However, NXP Semiconductors does not give any  
representations or warranties, expressed or implied, as to the accuracy or  
completeness of such information and shall have no liability for the  
consequences of use of such information. NXP Semiconductors takes no  
responsibility for the content in this document if provided by an information  
source outside of NXP Semiconductors.  
Limiting values — Stress above one or more limiting values (as defined in  
the Absolute Maximum Ratings System of IEC 60134) will cause permanent  
damage to the device. Limiting values are stress ratings only and (proper)  
operation of the device at these or any other conditions above those given in  
the Recommended operating conditions section (if present) or the  
Characteristics sections of this document is not warranted. Constant or  
repeated exposure to limiting values will permanently and irreversibly affect  
the quality and reliability of the device.  
In no event shall NXP Semiconductors be liable for any indirect, incidental,  
punitive, special or consequential damages (including - without limitation - lost  
profits, lost savings, business interruption, costs related to the removal or  
replacement of any products or rework charges) whether or not such  
damages are based on tort (including negligence), warranty, breach of  
contract or any other legal theory.  
Notwithstanding any damages that customer might incur for any reason  
whatsoever, NXP Semiconductors’ aggregate and cumulative liability towards  
customer for the products described herein shall be limited in accordance  
with the Terms and conditions of commercial sale of NXP Semiconductors.  
Terms and conditions of commercial sale — NXP Semiconductors  
products are sold subject to the general terms and conditions of commercial  
sale, as published at http://www.nxp.com/profile/terms, unless otherwise  
agreed in a valid written individual agreement. In case an individual  
agreement is concluded only the terms and conditions of the respective  
agreement shall apply. NXP Semiconductors hereby expressly objects to  
applying the customer’s general terms and conditions with regard to the  
purchase of NXP Semiconductors products by customer.  
Right to make changes — NXP Semiconductors reserves the right to make  
changes to information published in this document, including without  
limitation specifications and product descriptions, at any time and without  
notice. This document supersedes and replaces all information supplied prior  
to the publication hereof.  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
129 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
No offer to sell or license — Nothing in this document may be interpreted or  
construed as an offer to sell products that is open for acceptance or the grant,  
conveyance or implication of any license under any copyrights, patents or  
other industrial or intellectual property rights.  
Translations — A non-English (translated) version of a document is for  
reference only. The English version shall prevail in case of any discrepancy  
between the translated and English versions.  
Export control — This document as well as the item(s) described herein  
may be subject to export control regulations. Export might require a prior  
authorization from competent authorities.  
18.4 Trademarks  
Notice: All referenced brands, product names, service names and trademarks  
are the property of their respective owners.  
19. Contact information  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
130 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
20. Contents  
1
General description. . . . . . . . . . . . . . . . . . . . . . 1  
7.6  
7.7  
7.8  
7.8.1  
7.8.2  
7.8.3  
7.8.4  
7.8.4.1  
Global temperature protection . . . . . . . . . . . . 28  
Register locking . . . . . . . . . . . . . . . . . . . . . . . 29  
Power supplies. . . . . . . . . . . . . . . . . . . . . . . . 30  
Battery supply pins. . . . . . . . . . . . . . . . . . . . . 30  
Battery monitor. . . . . . . . . . . . . . . . . . . . . . . . 30  
Overvoltage shut-down . . . . . . . . . . . . . . . . . 33  
Buck and Boost converter (SMPS) . . . . . . . . 33  
SMPS parameter selection and status  
2
Features and benefits . . . . . . . . . . . . . . . . . . . . 2  
General. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2  
Integrated buck and boost converter (SMPS). . 2  
Low-drop voltage regulators (LDOs). . . . . . . . . 3  
CAN transceiver . . . . . . . . . . . . . . . . . . . . . . . . 3  
LIN transceivers . . . . . . . . . . . . . . . . . . . . . . . . 3  
High-voltage I/Os (HVIOs; not available in  
2.1  
2.2  
2.3  
2.4  
2.5  
2.6  
monitoring . . . . . . . . . . . . . . . . . . . . . . . . . . . 33  
Automatic up/down principle . . . . . . . . . . . . . 35  
Start-up and inrush currents. . . . . . . . . . . . . . 36  
Pass-through mode operation . . . . . . . . . . . . 36  
Transitions to and from Pass-through mode . 37  
Overload protection . . . . . . . . . . . . . . . . . . . . 39  
Linear regulators . . . . . . . . . . . . . . . . . . . . . . 40  
V1 regulator . . . . . . . . . . . . . . . . . . . . . . . . . . 40  
Voltage regulator V2 . . . . . . . . . . . . . . . . . . . 40  
Regulator control register. . . . . . . . . . . . . . . . 41  
CAN and LIN bus transceivers. . . . . . . . . . . . 42  
High-speed CAN transceiver . . . . . . . . . . . . . 42  
CAN operating modes . . . . . . . . . . . . . . . . . . 42  
CAN standard wake-up (partial networking  
not enabled). . . . . . . . . . . . . . . . . . . . . . . . . . 45  
CAN partial networking (UJ113xFD only). . . . 46  
Fail-safe features . . . . . . . . . . . . . . . . . . . . . . 49  
LIN transceiver(s). . . . . . . . . . . . . . . . . . . . . . 49  
LIN 2.x/SAE J2602 compliant . . . . . . . . . . . . 50  
LIN operating modes . . . . . . . . . . . . . . . . . . . 50  
LIN Active mode. . . . . . . . . . . . . . . . . . . . . . . 51  
LIN Offline mode . . . . . . . . . . . . . . . . . . . . . . 51  
LIN Listen-only mode. . . . . . . . . . . . . . . . . . . 52  
LIN Off mode . . . . . . . . . . . . . . . . . . . . . . . . . 52  
Fail-safe features . . . . . . . . . . . . . . . . . . . . . . 52  
General fail-safe features. . . . . . . . . . . . . . . . 52  
TXDL dominant time-out . . . . . . . . . . . . . . . . 53  
LIN slope control . . . . . . . . . . . . . . . . . . . . . . 53  
Operation when supply voltage is outside  
UJA113xFD/0 variants). . . . . . . . . . . . . . . . . . . 4  
A/D converter for monitoring the battery  
voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4  
Power management . . . . . . . . . . . . . . . . . . . . . 5  
System control and diagnostic features . . . . . . 5  
7.8.4.2  
7.8.4.3  
7.8.4.4  
7.8.4.5  
7.8.4.6  
7.8.5  
7.8.5.1  
7.8.5.2  
7.8.5.3  
7.9  
2.7  
2.8  
2.9  
3
4
5
Product family overview . . . . . . . . . . . . . . . . . . 6  
Ordering information. . . . . . . . . . . . . . . . . . . . . 7  
Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 8  
6
6.1  
6.2  
Pinning information. . . . . . . . . . . . . . . . . . . . . 10  
Pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10  
Pin description . . . . . . . . . . . . . . . . . . . . . . . . 10  
7.9.1  
7.9.1.1  
7.9.1.2  
7
7.1  
7.1.1  
Functional description . . . . . . . . . . . . . . . . . . 12  
System Controller. . . . . . . . . . . . . . . . . . . . . . 12  
Operating modes . . . . . . . . . . . . . . . . . . . . . . 12  
Off mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12  
Standby mode. . . . . . . . . . . . . . . . . . . . . . . . . 13  
Normal mode . . . . . . . . . . . . . . . . . . . . . . . . . 13  
Sleep mode . . . . . . . . . . . . . . . . . . . . . . . . . . 14  
Overload mode. . . . . . . . . . . . . . . . . . . . . . . . 15  
Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . 15  
Forced Sleep Preparation (FSP) mode . . . . . 16  
Forced Normal mode . . . . . . . . . . . . . . . . . . . 16  
Hardware characterization for the SBC  
operating modes. . . . . . . . . . . . . . . . . . . . . . . 16  
System control registers. . . . . . . . . . . . . . . . . 18  
Watchdog . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19  
Software development mode . . . . . . . . . . . . . 22  
Watchdog behavior in Window mode . . . . . . . 22  
Watchdog behavior in Timeout mode . . . . . . . 22  
Watchdog behavior in Autonomous mode . . . 22  
Exceptional behavior of the watchdog  
7.9.1.3  
7.9.1.4  
7.9.2  
7.9.2.1  
7.9.3  
7.9.3.1  
7.9.3.2  
7.9.3.3  
7.9.3.4  
7.9.4  
7.9.4.1  
7.9.4.2  
7.9.5  
7.1.1.1  
7.1.1.2  
7.1.1.3  
7.1.1.4  
7.1.1.5  
7.1.1.6  
7.1.1.7  
7.1.1.8  
7.1.1.9  
7.1.2  
7.2  
7.2.1  
7.2.2  
7.2.3  
7.2.4  
7.2.5  
7.9.6  
specified operating range. . . . . . . . . . . . . . . . 53  
Transceiver control and status registers . . . . 54  
CAN partial networking configuration registers 57  
High-voltage input/output pins (HVIOs; not  
available in UJA113xFD/0) . . . . . . . . . . . . . . 60  
HVIO configuration. . . . . . . . . . . . . . . . . . . . . 60  
7.9.7  
7.9.8  
7.10  
after writing to the Watchdog register. . . . . . . 23  
System reset. . . . . . . . . . . . . . . . . . . . . . . . . . 24  
Characteristics of pin RSTN . . . . . . . . . . . . . . 25  
Selecting the output reset pulse width . . . . . . 25  
Reset sources. . . . . . . . . . . . . . . . . . . . . . . . . 26  
EN output . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27  
Fail-safe control register. . . . . . . . . . . . . . . . . 27  
Limp home function . . . . . . . . . . . . . . . . . . . . 28  
7.3  
7.10.1  
7.3.1  
7.3.2  
7.3.3  
7.4  
7.4.1  
7.5  
7.10.1.1 HVIO slope control. . . . . . . . . . . . . . . . . . . . . 62  
7.10.2  
Direct control of HVIOs  
(only valid for variants with 8 HVIO pins) . . . . 62  
Short-circuit and open load detection . . . . . . 62  
Automatic load shedding . . . . . . . . . . . . . . . . 63  
7.10.3  
7.10.4  
continued >>  
UJA113X_SERIES  
All information provided in this document is subject to legal disclaimers.  
© NXP Semiconductors N.V. 2016. All rights reserved.  
Product data sheet  
Rev. 2 — 5 July 2016  
131 of 132  
UJA113x series  
NXP Semiconductors  
Buck/boost HS-CAN/dual LIN system basis chip  
7.10.5  
7.10.6  
7.10.7  
7.11  
Safety features . . . . . . . . . . . . . . . . . . . . . . . . 63  
HVIO pins configured as limp home outputs . 64  
HVIO control and status registers. . . . . . . . . . 65  
Timer control (not applicable to  
UJA113xFD/0 variants). . . . . . . . . . . . . . . . . . 73  
Timer control and status registers . . . . . . . . . 74  
Interrupt mechanism and wake-up function . . 76  
Interrupt delay. . . . . . . . . . . . . . . . . . . . . . . . . 77  
Sleep mode protection . . . . . . . . . . . . . . . . . . 77  
Interrupt sources. . . . . . . . . . . . . . . . . . . . . . . 78  
Interrupt registers . . . . . . . . . . . . . . . . . . . . . . 79  
Non-volatile SBC configuration. . . . . . . . . . . . 86  
Programming the MTPNV cells . . . . . . . . . . . 86  
7.11.1  
7.12  
7.12.1  
7.12.2  
7.12.3  
7.12.4  
7.13  
7.13.1  
7.13.1.1 Calculating the CRC value for MTP  
programming . . . . . . . . . . . . . . . . . . . . . . . . . 87  
7.13.2  
7.14  
7.15  
Restoring factory preset values . . . . . . . . . . . 88  
Device ID . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89  
General-purpose memory. . . . . . . . . . . . . . . . 89  
SPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . 90  
Register map . . . . . . . . . . . . . . . . . . . . . . . . . 91  
Register configuration in SBC operating  
7.16  
7.16.1  
7.16.2  
7.16.3  
modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95  
8
Limiting values. . . . . . . . . . . . . . . . . . . . . . . . 100  
Thermal characteristics . . . . . . . . . . . . . . . . 102  
Static characteristics. . . . . . . . . . . . . . . . . . . 103  
Dynamic characteristics . . . . . . . . . . . . . . . . 115  
9
10  
11  
12  
12.1  
12.2  
Application information. . . . . . . . . . . . . . . . . 123  
Application diagram . . . . . . . . . . . . . . . . . . . 123  
Application hints . . . . . . . . . . . . . . . . . . . . . . 123  
13  
13.1  
14  
Test information. . . . . . . . . . . . . . . . . . . . . . . 124  
Quality information . . . . . . . . . . . . . . . . . . . . 124  
Package outline . . . . . . . . . . . . . . . . . . . . . . . 125  
Handling information. . . . . . . . . . . . . . . . . . . 126  
15  
16  
Soldering of SMD packages . . . . . . . . . . . . . 126  
Introduction to soldering . . . . . . . . . . . . . . . . 126  
Wave and reflow soldering . . . . . . . . . . . . . . 126  
Wave soldering. . . . . . . . . . . . . . . . . . . . . . . 126  
Reflow soldering. . . . . . . . . . . . . . . . . . . . . . 127  
16.1  
16.2  
16.3  
16.4  
17  
Revision history. . . . . . . . . . . . . . . . . . . . . . . 128  
18  
Legal information. . . . . . . . . . . . . . . . . . . . . . 129  
Data sheet status . . . . . . . . . . . . . . . . . . . . . 129  
Definitions. . . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Disclaimers. . . . . . . . . . . . . . . . . . . . . . . . . . 129  
Trademarks. . . . . . . . . . . . . . . . . . . . . . . . . . 130  
18.1  
18.2  
18.3  
18.4  
19  
20  
Contact information. . . . . . . . . . . . . . . . . . . . 130  
Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131  
Please be aware that important notices concerning this document and the product(s)  
described herein, have been included in section ‘Legal information’.  
© NXP Semiconductors N.V. 2016.  
All rights reserved.  
For more information, please visit: http://www.nxp.com  
For sales office addresses, please send an email to: salesaddresses@nxp.com  
Date of release: 5 July 2016  
Document identifier: UJA113X_SERIES  

相关型号:

UJA1132HW/5V0Y

UJA113X_SER - Buck/boost HS-CAN/dual LIN system basis chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1135HW/3V3

Buck/boost HS-CAN/(dual) LIN system basis chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1135HW/5V0

Buck/boost HS-CAN/(dual) LIN system basis chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1136HW/3V3

Buck/boost HS-CAN/(dual) LIN system basis chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1136HW/5V0

Buck/boost HS-CAN/(dual) LIN system basis chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA113X

Buck/boost HS-CAN/(dual) LIN system basis chip

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1163

Mini high-speed CAN system basis chip with Standby mode

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1163TK

Mini high-speed CAN system basis chip with Standby mode

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1164

Mini high-speed CAN system basis chip with Standby mode & watchdog

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1167A

Mini high-speed CAN system basis chip with Standby/Sleep modes & watchdog

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1167ATK

Mini high-speed CAN system basis chip with Standby/Sleep modes & watchdog

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP

UJA1167ATK/X

Mini high-speed CAN system basis chip with Standby/Sleep modes & watchdog

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 217
-
NXP