AT8563 [Narda-ATM]

AT8563是一款经典的工业级实时时钟芯片(RTC),I2C总线接口,具有功耗低、精度高等特点,广泛应用于电表、水表、气表、电话等产品。;
AT8563
型号: AT8563
厂家: Narda-ATM    Narda-ATM
描述:

AT8563是一款经典的工业级实时时钟芯片(RTC),I2C总线接口,具有功耗低、精度高等特点,广泛应用于电表、水表、气表、电话等产品。

电话 时钟
文件: 总24页 (文件大小:729K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DataSheet  
AT8563  
——A low power RTC chip with I2C  
深圳市宏达科技有限公司  
深圳市宏达科技有限公司 Tel:0755-36917049 Moile:13530382140 曾先生 Fax:0755-29502958  
CONTENTS  
1
2
Chip Overview............................................................................................................................1  
Functional Description................................................................................................................2  
2.1 Summary ..........................................................................................................................2  
2.2 Alarm function modes......................................................................................................4  
2.3 Timer................................................................................................................................4  
2.4 CLKOUT output ..............................................................................................................4  
2.5 Reset.................................................................................................................................4  
2.6 Voltage-low detector........................................................................................................4  
2.7 Register organization .......................................................................................................5  
2.7.1 Control/Status 1 register........................................................................................6  
2.7.2 Control/Status 2 register........................................................................................6  
2.7.3 Seconds, Minutes and Hours registers ..................................................................7  
2.7.4 Days, Weekdays, Months/Century and Years registers ........................................7  
2.7.5 Alarm registers......................................................................................................9  
2.7.6 CLKOUT frequency register...............................................................................10  
2.7.7 Countdown timer registers ..................................................................................10  
2.8 EXT_CLK test mode......................................................................................................11  
2.9 Power-On Reset override mode .....................................................................................12  
Serial interface ..........................................................................................................................12  
3.1 I2C Specification ............................................................................................................12  
3.2 I2C of AT8563................................................................................................................14  
Parameters.................................................................................................................................15  
Application Reference...............................................................................................................19  
5.1 Crystal frequency adjustment.........................................................................................19  
Package outline .........................................................................................................................20  
6.1 DIP-8..............................................................................................................................20  
6.2 SO8 ................................................................................................................................21  
6.3 TSSOP8..........................................................................................................................21  
6.4 MSOP8...........................................................................................................................22  
3
4
5
6
涕囗嶦嬳轢祵戤暭间儐厜 Tel:0755-36917049 Mobile:13530382140 暢僬瓃 Fax:0755-29502958  
Torwards  
AT8563  
1 Chip Overview  
AT8563 is a CMOS real-time clock/calendar chip optimized for low power consumption.  
The timing counter consists of century, year, month, day, date, hour, minute and second bits.  
External MPU can read or set the time as well as timer or alarmer when it is necessary. As  
exchanging data by the advance serial bus I2C, lines number on PCB can be reduced  
dramatically, which is very suitable in a complicated system.  
The chip has the following features:  
‹
‹
‹
‹
‹
An external 32.768 kHz crystal is needed to generated time base  
Wide operating supply voltage range: 1.0 to 5.5 V  
Low back-up current; typical 0.25 µA at VDD = 3.0 V and Tamb = 25 °C  
400 kHz two-wire I2C-bus interface (at VDD = 1.8 to 5.5 V)  
Programmable clock output for peripheral devices: 32.768 kHz, 1024 Hz 32 Hz  
and 1 Hz  
‹
‹
‹
‹
‹
Alarm and timer functions  
Voltage-low detector  
Integrated oscillator capacitor  
Internal power-on reset  
I2C-bus slave address: read A3H; write A2H  
Typical Applications:  
‹
‹
‹
‹
Mobile telephones  
Portable instruments  
OA equipments such as Fax machines  
Battery powered products  
Table 1 shows our ordering information for AT8563.  
Table1 Ordering information  
Type number  
Package  
Name  
Name  
DIP8  
Description  
quantity  
100/tape  
2500/reel  
3000/reel  
3000/reel  
AT8563P  
AT8563T  
AT8563TS  
AT8563S  
plastic dual in-line package; 8 leads (300 mil)  
plastic small outline package; 8 leads; body width 3.9 mm  
plastic small outline package; 8 leads; body width 3.0 mm  
plastic small outline package; 8 leads; body width 3.0 mm  
SO8  
SSO8  
MSOP8  
1
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
Table 2 Quick reference data  
Symol  
Parameter  
Conditions  
Min  
1.0  
Max  
5.5  
Unit  
I2C-bus inactive; Tamb = 25 °  
I2C-bus active; fSCL = 400 kHz;  
V
V
VDD  
supply voltage operating mode  
1.8  
5.5  
Tamb = 30 to +85°C  
fSCL = 200 kHz  
800  
200  
µA  
µA  
supply crrent; timer and CLKOUT  
disabled  
fSCL = 100 kHz  
IDD  
fSCL = 0 Hz; Tamb= 25 °C  
VDD = 5 V  
550  
450  
µA  
µA  
°C  
°C  
VDD = 2 V  
Tamb  
Tstg  
operating ambient temperature  
storage temperature  
-
-
30  
65  
+85  
+150  
2 Functional Description  
2.1 Summary  
The device’s structure is shown in Fig 1.  
Fig 1 Block diagram  
2
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
AT8563’s pin layout and its protection network are shown in Fig 2 and Fig 3.  
Fig 3 Device diode protection diagram  
Fig 2 Pin Layout  
Table 3 gives the pins’ description.  
Table 3: Pin description  
Description  
Symbol  
OSCI  
OSCO  
INT  
Pin  
1
oscillator input  
oscillator output  
2
3
interrupt output (open-drain; active LOW)  
ground  
VSS  
4
SDA  
5
serial Data I/O (open-drain)  
serial Clock in  
SCL  
6
CLKOUT  
VDD  
7
clock output (open-drain)  
positive power supply  
8
AT8563 contains sixteen 8-bit registers with an auto-increasing address register, an  
on-chip 32.768 kHz oscillator with an integrated capacitor, a frequency divider which provides  
source clock for the Real-Time Clock (RTC), a programmable clock output, a timer, an alarm, a  
voltage-low detector and a I2C-bus interface.  
The 16 registers are mapped into a memory block, which is addressable, but not all bits  
are implemented. The first two registers (memory address 00H and 01H) are used as control  
and/or status registers. The memory addresses 02H through 08H are used as counters for the  
clock function (seconds up to year counters). Address locations 09H through 0CH contain  
alarm registers which define the conditions for an alarm. Address 0DH controls the frequency  
of CLKOUT output. 0EH and 0FH are timer control, timer counter register, respectively.  
The Seconds, Minutes, Hours, Days, Months, Years as well as the Minute alarm, Hour  
alarm and Day alarm registers are all coded in BCD format. The Weekdays and Weekday  
alarm register are not coded in BCD format.  
When one of the RTC registers is read the contents of all counters are frozen. Therefore,  
3
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
faulty reading of the clock/calendar during a carry condition is prevented.  
2.2 Alarm function modes  
———  
By clearing the MSB (bit AE= Alarm Enable) of one or more of the alarm registers, the  
corresponding alarm condition(s) will be active. In this way an alarm can be generated from  
once per minute up to once per week. The alarm condition sets the alarm flag, AF (bit 3 of  
Control/Status 2 register). The asserted AF can be used to generate an interrupt (INT). Bit AF  
can only be cleared by software.  
2.3 Timer  
The 8-bit countdown timer (address 0FH) is controlled by the Timer Control register  
(address 0EH; see Table 25). The Timer Control register selects one of 4 source clock  
frequencies for the timer (4096, 64, 1, or 160 Hz), and enables/disables the timer. The timer  
counts down from a software-loaded 8-bit binary value. At the end of every countdown, the  
timer sets the timer flag TF (see Table 7). The timer flag TF can only be cleared by software.  
The asserted timer flag TF can be used to generate aninterrupt (INT). The interrupt may be  
generated as a pulsed signal every countdownperiod or as a permanently active signal which  
follows the condition of TF. TI/TP (seeTable 7) is used to control this mode selection. When  
reading the timer, current countdown value is returned.  
2.4 CLKOUT output  
A programmable square wave is available at the CLKOUT pin. Operation is controlled by  
the CLKOUT frequency register (address 0DH; see Table 23). Frequencies of 32.768 kHz  
(default), 1024, 32 and 1 Hz can be generated for use as a system clock, microcontroller clock,  
input to a charge pump, or for calibration of the oscillator. CLKOUT is an open-drain output  
and enabled at power-on. If disabled it becomes high-impedance.  
2.5 Reset  
AT8563 includes an internal reset circuit which is active whenever the oscillator is  
stopped. In the reset state the I2C-bus logic is initialized and all registers, including the address  
———  
pointer, are cleared with the exception of bits FE, VL, TD1, TD0, TESTC and AEwhich are set  
to logic 1.  
2.6 Voltage-low detector  
AT8563 has an on-chip voltage-low detector. When VDD drops below Vlow the VL bit  
(Voltage Low, bit 7 in the Seconds register) is set to indicate that reliable clock/calendar  
information is no longer guaranteed. The VL flag can only be cleared by software.  
The VL bit is intended to detect the situation when VDD is decreasing slowly for example  
under battery operation. Should VDD reach Vlow before power is re-asserted then the VL bit will  
4
深圳市宏达科技有公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
be set. This will indicate that the time may have been corrupted.  
Fig 4 Voltage-low detection  
2.7 Register organization  
Table 4 Registers overview  
Address  
Register name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
00H  
01H  
0DH  
0EH  
Control/Status 1  
Control/Status 2  
CLKOUT frequency  
Timer control  
TEST1  
0
0
0
-
STOP  
0
TESTC  
0
TF  
-
0
0
0
-
TI/TP  
AF  
AIE  
TIE  
FE  
-
-
-
-
FD1 FD0  
TD1 TD0  
TE  
-
-
-
0FH  
Timer countdownvalue  
<timer countdown value>  
Note: Bit positions labeled as ‘’are not implemented; those labeled with ‘0’ should always be written with  
logic 0.  
Table 5 BCD formatted registers overview  
Address  
Register name  
b7  
b6  
b5  
b4  
b3  
b2  
b1  
b0  
Seconds  
minutes  
hours  
02H  
03H  
04H  
05H  
06H  
VL  
ten seconds0-5)  
ten minutes0-5)  
seconds0-9)  
minutes0-9)  
hours0-9)  
days0-9)  
ten hours0-2)  
ten days0-3)  
days  
weekday  
weekdays0-6)  
month0-9)  
ten month  
07H  
months/century  
C
0-1)  
08H  
09H  
0AH  
0BH  
0CH  
years  
ten years0-9)  
years0-9)  
minutes0-9)  
hours0-9)  
———  
minute alarm  
hour alarm  
day alarm  
ten minutes0-5)  
AE  
———  
ten hours0-2)  
ten days0-3)  
AE  
———  
days0-9)  
AE  
———  
weekday alarm  
weekdays0-6)  
AE  
Note: Bit positions labelled as ‘’are not implemented.  
5
圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
2.7.1 Control/Status 1 register  
Table 6 Control/Status 1 register bits description  
00H  
b7  
Symbol  
TEST1  
Description  
TEST1 = 0; normal mode.  
TEST1 = 1; EXT_CLK test mode; see Section 8.7.  
STOP = 0; RTC source clock runs.  
STOP = 1; all RTC divider chain flip-flops are asynchronously set to logic 0; the  
RTC clock is stopped (CLKOUT at 32.768 kHz is still available).  
b5  
STOP  
TESTC = 0; power-on reset override facility is disabled (set to logic 0 for normal  
operation).  
TESTC = 1; power-on reset override is enabled.  
b3  
TESTC  
-
b6, b4,  
b2..0  
By default set to logic 0.  
2.7.2 Control/Status 2 register  
Table 7 Description of Control/Status 2 register bits description  
01H  
Symbol  
0
Description  
b7..5  
By default set to logic 0  
TI/TP = 0: INT is active when TF is active (subject to the status of TIE).  
TI/TP = 1: INT pulses active according to Table 8 (subject to the status of TIE). Note  
that if AF and AIE are active then INT will be permanently active.  
When an alarm occurs, AF is set to logic 1. Similarly, at the end of a timer  
countdown, TF is set to logic 1. These bits maintain their value until overwritten by  
software. If both timer and alarm interrupts are required in the application, the source  
of the interrupt can be determined by reading these bits. To prevent one flag being  
overwritten while clearing another, a logic AND is performed during a write access.  
See Table 9 for the value descriptions of bits AF and TF.  
Bits AIE and TIE activate or deactivate the generation of an interrupt when AF or TF  
is asserted, respectively. The interrupt is the logical OR of these two conditions  
when both AIE and TIE are set.  
AIE = 0: alarm interrupt disabled; AIE = 1: alarm interrupt enabled.  
TIE = 0: timer interrupt disabled; TIE = 1: timer interrupt enabled.  
b4  
b3  
TI/TP  
AF  
b2  
b1  
b0  
TF  
AIE  
TIE  
———  
Table 8 INT operation (bit TI/TP = 1)  
———  
INT period(s)  
Source clock (Hz)  
n=1  
n>1  
4096  
64  
1/8192  
1/128  
1/64  
1/4096  
1/64  
1
1/64  
1/60  
1/64  
1/64  
Note:  
———  
[1] TF and INT become active simultaneously.  
[2] n = loaded countdown timer value. Timer stopped when n = 0.  
6
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
Table 9 Value descriptions for bits AF and TF  
Bit: AF Bit: TF  
Description Description  
R/W  
Value  
Value  
0
alarm flag inactive  
0
1
0
1
timer flag inactive  
timer flag active  
Read  
1
alarm flag active  
0
alarm flag is cleared  
alarm flag remains unchanged  
timer flag is cleared  
Write  
1
timer flag remains unchanged  
2.7.3 Seconds, Minutes and Hours registers  
Table 10: Seconds/VL register bits description  
02H  
b7  
Symbol  
VL  
Description  
VL = 0: reliable clock/calendar information is guaranteed;  
VL = 1: reliable clock/calendar information is no longer guaranteed.  
These bits represent the current seconds value coded in BCD format; value  
= 00 to 59.  
b6..0 <seconds>  
Example: <seconds> = 101 1001, represents the value 59 s.  
Table 11 Minutes register bits description  
Description  
03H  
b7  
Symbol  
-
not implemented  
These bits represent the current minutes value coded in BCD  
format; value = 00 to 59.  
b6..0 <minutes>  
Table 12 Hours register bits description  
Description  
04H  
b7..6  
b5..0  
Symbol  
-
not implemented  
These bits represent the current hours value coded in BCD format; value = 00  
to 23.  
<hours>  
2.7.4 Days, Weekdays, Months/Century and Years registers  
Table 13 Days register bits description  
05H Symbol  
b7..6  
Description  
-
not implemented  
7
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
These bits represent the current day value coded in BCD format; value = 01 to  
31.  
AT8563 compensates for leap years by adding a 29th day to February if the year  
counter contains a value which is exactly divisible by 4, including the year ‘00’.  
b5..0 <days>  
Table 14 Weekdays register bits description  
Description  
06H  
Symbol  
b7..3  
-
not implemented  
These bits represent the current weekday value 0 to 6, whose  
meaning is customized by users. However, we recommend a way  
to specify the weekday number, see Table 15.  
These bits may be re-assigned by the user.  
b2..0 <weekdays>  
Table 15 Suggested Weekday assignments  
Day  
Bit 2 Bit 1 Bit 0  
Sunday  
Monday  
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
1
0
Tuesday  
Wednesday  
Thursday  
Friday  
Saturday  
Table 16 Months/Century register bits description  
07H  
Symbol  
Description  
Century bit. C = 0; indicates the century is 20xx.  
C = 1; indicates the century is 19xx. ‘xx’ indicates the value held in the  
Years register; see Table 18.  
This bit is toggled when the Years register overflows from 99 to 00.  
These bits may be re-assigned by the user  
b7  
C
-
b6..5  
not implemented  
These bits represents the current month value coded in BCD format;  
value = 01 to 12; see Table 17.  
b4..0 <months>  
Table 17 Month assignments  
Month  
Bit 4 Bit 3 Bit 2 Bit 1 Bit 0  
January  
February  
March  
April  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
0
1
1
0
0
1
1
0
1
0
1
0
May  
June  
8
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
July  
0
0
0
1
1
1
0
1
1
0
0
0
1
0
0
0
0
0
1
0
0
0
0
1
1
0
1
0
1
0
August  
September  
October  
November  
December  
Table 18 Years register bits description  
08H  
Symbol  
Description  
This register represents the current year value coded in BCD format; value  
= 00 to 99.  
b7..0 <years>  
2.7.5 Alarm registers  
When one or more of the alarm registers are loaded with a valid minute, hour, day or  
———  
weekday and its corresponding AE(Alarm Enable) bit is a logic 0, then that information will be  
compared with the current minute, hour, day and weekday. When all enabled comparisons first  
match, the bit AF (Alarm Flag) is set.  
AF will remain set until cleared by software. Once AF has been cleared it will only be set  
again when the time increments to match the alarm condition once more. Alarm registers  
———  
which have their AE bit set at logic 1 will be ignored.  
Table 19 Minute alarm register bits description  
09H  
b7  
Symbol  
Description  
———  
———  
———  
AE= 0; minute alarm is enabled. A E= 1; minute alarm is disabled.  
AE  
These bits represents the minute alarm information coded in BCD  
format; value = 00 to 59.  
b6..0 <minute alarm>  
Table 20 Hour alarm register bits description  
0AH  
7
Symbol  
Description  
———  
———  
———  
AE  
AE= 0; hour alarm is enabled. A E= 1; hour alarm is disabled.  
These bits represents the hour alarm information coded in BCD  
format; value = 00 to 23.  
6 to  
0
<hour alarm>  
Table 21: Day alarm register bits description  
0BH  
b7  
Symbol  
Description  
———  
———  
———  
AE  
AE= 0; day alarm is enabled. A E= 1; day alarm is disabled.  
9
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
These bits represents the day alarm information coded in BCD  
format; value = 01 to 31.  
b6..0  
<day alarm>  
Table 22 Weekday alarm register bits description  
Symbol Description  
0CH  
b7  
———  
———  
AE= 0; weekday alarm is enabled.  
———  
AE  
AE= 1; weekday alarm is disabled.  
These bits represents the weekday alarm information  
value 0 to 6.  
b6..0 <Weekday alarm>  
2.7.6 CLKOUT frequency register  
Table 23 CLKOUT frequency register bits description  
0DH  
Symbol  
Description  
FE = 0; the CLKOUT output is inhibited and the CLKOUT output is set to  
high-impedance. FE = 1; the CLKOUT output is activated.  
b7  
FE  
-
b6..2  
not implemented  
b1  
b0  
FD1  
FD0  
These bits control the frequency output (fCLKOUT) on the CLKOUT pin; see  
Table 24.  
Table 24 CLKOUT frequency selection  
FD1 FD0  
fCLKOUT  
32.768 kHz  
1 024 Hz  
32 Hz  
0
0
1
1
0
1
0
1
1 Hz  
2.7.7 Countdown timer registers  
The Timer register is an 8-bit binary countdown timer. It is enabled and disabled via the  
Timer control register bit TE. The source clock for the timer is also selected by the Timer  
control register. Other timer properties, e.g. interrupt generation, are controlled via the  
Control/status 2 register. For accurate read back of the countdown value, the I2C-bus clock  
SCL must be operating at a frequency of at least twice the selected timer clock.  
Table 25 Timer control register bits description  
Symbol  
Description  
TE = 0; timer is disabled. TE = 1; timer is enabled.  
not implemented  
0EH  
b7  
TE  
-
b6b2  
10  
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
Symbol  
Description  
0EH  
b1  
Timer source clock frequency selection bits. These bits  
determine the source clock for the countdown timer, see  
Table 26. When not in use, TD1 and TD0 should be set to  
‘11’ (160 Hz) for power saving.  
TD1  
b0  
TD0  
Table 26 Timer source clock frequency selection  
Timer source clock  
TD[1:0]  
frequencyHz)  
00  
01  
10  
11  
4096  
64  
1
1/60  
Table 27 Timer countdown value register bits description  
Description  
0FH  
Symbol  
<timer countdown value>  
b7b0  
countdown value n, the counter’s period is “”n/fCLK”  
2.8 EXT_CLK test mode  
A test mode is available which allows for on-board testing. In this mode it is possible to set  
up test conditions and control the operation of the RTC.  
The test mode is entered by setting bit TEST1 in the Control/Status1 register. The  
CLKOUT pin then becomes an input. The test mode replaces the internal 64 Hz signal with the  
signal that is applied to the CLKOUT pin. Every 64 positive edges applied to CLKOUT will then  
generate an increment of one second.  
The signal applied to the CLKOUT pin should have a minimum pulse width of 300 ns and  
a minimum period of 1000 ns. The internal 64 Hz clock, now sourced from CLKOUT, is divided  
down to 1 Hz by a 26 divide chain called a pre-scaler. The pre-scaler can be set into a known  
state by using the STOP bit. When the STOP bit is set, the pre-scaler is reset to 0. STOP must  
be cleared before the pre-scaler can operate again. From a STOP condition, the first 1 s  
increment will take place after 32 positive edges on CLKOUT. Thereafter, every 64 positive  
edges will cause a 1 s increment.  
Remark: Entry into EXT_CLK test mode is not synchronized to the internal 64 Hz clock.  
When entering the test mode, no assumption as to the state of the pre-scaler can be made.  
You can operate in the following steps:  
1. Enter the EXT_CLK test mode; set bit 7 of Control/Status 1 register (TEST = 1)  
2. Set bit 5 of Control/Status 1 register (STOP = 1)  
3. Clear bit 5 of Control/Status 1 register (STOP = 0)  
4. Set time registers (Seconds, Minutes, Hours, Days, Weekdays, Months/Century and  
Years) to desired value  
11  
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
5. Apply 32 clock pulses to CLKOUT  
6. Read time registers to see the first change  
7. Apply 64 clock pulses to CLKOUT  
8. Read time registers to see the second change.  
Repeat steps 7 and 8 for additional increments if necessary.  
2.9 Power-On Reset override mode  
The POR duration is directly related to the crystal oscillator start-up time. Due to the long  
start-up times experienced by these types of circuits, a mechanism has been built in to disable  
the POR and hence speed up on-board test of the device. The setting of this mode requires  
that the I2C-bus pins, SDA and SCL, be toggled in a specific order as shown in Fig 5. All timing  
values are required minimum.  
Once the override mode has been entered, the chip immediately stops being reset and  
normal operation starts i.e. entry into the EXT_CLK test mode via I2C-bus access. The  
override mode is cleared by writing a logic 0 to bit TESTC. Re-entry into the override mode is  
only possible after TESTC is set to logic 1. Setting TESTC to logic 0 during normal operation  
has no effect except to prevent entry into the POR override mode.  
Fig 5 POR override sequence.  
3 Serial interface  
The serial interface of AT8563 is the I2C -bus, which requires minimum connections  
between MPU and it peripherals ——.a serial Data I/O line and a serial CLK line driven by  
MPU.  
3.1 I2C Specification  
The I2C -bus is for bidirectional, two-line communication between different ICs or modules.  
The two lines are a serial data line (SDA) and a serial clock line (SCL). Both lines must be  
connected to a positive supply via a pull-up resistor. Data transfer may be initiated only when  
the bus is idle.  
The I2C -bus system configuration is shown in Fig 6. A device generating a message is a  
‘transmitter’, a device receiving a message is the ‘receiver’. The device that controls the  
message is the ‘master’ and the devices which are controlled by the master are the ‘slaves’.  
12  
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
Fig 6 I2C-bus system configuration.  
Both data and clock lines remain HIGH when the bus is not busy. A HIGH-to-LOW  
transition of the data line, while the clock is HIGH is defined as the start condition (S). A  
LOW-to-HIGH transition of the data line while the clock is HIGH is defined as the stop  
condition (P); see Fig 7.  
Fig 7 START and STOP conditions on the I2C-bus  
One data bit is transferred during each clock pulse. The data on the SDA line must remain  
stable during the HIGH period of the clock pulse as changes in the data line at this time will be  
interpreted as a control signal; see Fig 8.  
Fig 8 Bit transfer on the I2C-bus  
The number of data bytes transferred between the START and STOP conditions from  
transmitter to receiver is unlimited. Each byte of eight bits is followed by an acknowledge bit.  
The acknowledge bit is a HIGH level signal put on the bus by the transmitter during which time  
the master generates an extra acknowledge related clock pulse.  
A slave receiver which is addressed must generate an acknowledge after the  
reception of each byte. Also a master receiver must generate an acknowledge after the  
reception of each byte that has been clocked out of the slave transmitter.  
The device that acknowledges must pull down the SDA line during the acknowledge clock  
pulse, so that the SDA line is stable LOW during the HIGH period of the acknowledge related  
clock pulse (set-up and hold times must be taken into consideration).  
A master receiver must signal an end of data to the transmitter by not generating an  
13  
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
acknowledge on the last byte that has been clocked out of the slave. In this event the  
transmitter must leave the data line HIGH to enable the master to generate a STOP condition.  
Fig 9 Acknowledge on the I2C -bus  
3.2 I2C of AT8563  
Before any data is transmitted on the I2C -bus, the device which should respond is  
addressed first. The addressing is always carried out with the first byte transmitted after the  
start procedure.  
AT8563 acts as a slave receiver or slave transmitter. Therefore the clock signal SCL is  
only an input signal, but the data signal SDA is a bidirectional line.  
AT8563 slave address is shown in Fig 10.  
Fig 10 Slave address  
The I2C -bus configuration for the different AT8563 read and write cycles are shown in Fig  
11, 12 and 13. The word address is a four bit value that defines which register is to be  
accessed next. The upper four bits of the word address are not used.  
Fig 11 Master transmits to slave receiver (write mode)  
14  
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
Fig 12 Master reads after setting word address (write word address; read data)  
Fig 13 Master reads slave immediately after first byte (read mode)  
4 Parameters  
Table 28 Absolute Parameters  
Symbol  
Parameter  
Min  
Max  
Unit  
VDD  
IDD  
supply voltage  
supply current  
-0.5  
-50  
+6.5  
+50  
6.5  
V
mA  
V
input voltage on inputs SCL and SDA  
input voltage on input OSCI  
-0.5  
VI  
-0.5  
-0.5  
VDD + 0.5  
6.5  
V
V
VO  
output voltage on outputs CLKOUT and INT  
II  
DC input current at any input  
DC output current at any output  
total power dissipation  
-10  
-10  
-
+10  
300  
+85  
mA  
mA  
mW  
IO  
Ptot  
15  
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
Tamb  
Tstg  
operating ambient temperature  
storage temperature  
-40  
-65  
+150  
-0.5  
°C  
°C  
Please refer Table 29 and Table 30 for DC or AC characteristics.  
Table 29: Static characteristics  
(Test condition: VDD = 1.8 to 5.5 V; VSS = 0 V; Tamb =40 to 85° C; fOSC = 32.768 kHz; quartz Rs = 40 k;  
CL = 8 pF; unless otherwise specified. )  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
Supplies  
I2C bus  
1.0[1]  
1.8[1]  
VLOW  
5.5  
5.5  
5.5  
V
V
V
inactive; Tamb  
= 25 °C  
supply voltage  
I2C bus active;  
VDD  
f
SCL = 400 kHz  
Tamb=25 °C  
supply voltage for reliable  
clock/calendar information  
[2]  
fSCL=200kHz  
800  
200  
μA  
μA  
fSCL=100kHz  
fSCL=0Hz  
VDD=5V  
[2]  
supply current;  
IDD1  
CLKOUT disabled(FE=0)  
700  
650  
600  
900  
750  
650  
800  
200  
nA  
nA  
nA  
μA  
μA  
VDD=3V  
VDD=2V  
[2]  
fSCL=200kHz  
fSCL=100kHz  
fSCL=0kHz  
VDD=5V  
[2]  
supply current;  
CLKOUT enabled  
(fCLKOUT = 32 kHz; FE = 1)  
IDD2  
1000  
810  
1100  
900  
800  
nA  
nA  
nA  
VDD=3V  
VDD=2V  
720  
Inputs  
VIL  
VSS  
0.7VDD  
-1  
0.3VDD  
VDD  
+1  
V
V
LOW-level input voltage  
HIGH-level input voltage  
input leakage current  
input capacitance  
VIH  
ILI  
VI= VDD or VSS  
μA  
pF  
[3]  
Ci  
7
Outputs  
VOL=0.4V;  
VDD=5V  
IOL(SDA)  
-3  
mA  
LOW-level output current;pin SDA  
LOW-level output current;pin INT  
––––––––––  
-1  
-1  
mA  
mA  
IOL(  
)
I N T  
LOW-level output current; pin  
CLKOUT  
IOL(CLKOUT)  
16  
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
Symbol  
Parameter  
Conditions  
OH=4.6V;  
VDD=5V  
Min  
1
Typ  
Max  
Unit  
mA  
V
HIGH-level output current; pin  
CLKOUT  
IOH(CLKOUT)  
ILO  
VO=VDD or VSS  
-1  
+1  
μA  
output leakage current  
Voltage detector  
voltage-low detection level  
Tamb=25℃  
VLOW  
0.9  
1.0  
V
[1] For reliable oscillator start-up at power-up: VDD(min) power-up = VDD(min) + 0.3 V.  
[2] Timer source clock = 160 Hz; SCL and SDA = VDD  
.
[3] Tested on sample basis.  
Tamb=25℃;Timer=1 minute.  
IDD as a function of VDD; CLKOUT = 32 kHz  
Tamb=25℃;Timer=1 minute.  
Fig 15  
Fig 14 IDD as a function of VDD; CLKOUT disabled  
Tamb=25℃;normalized to VDD=3V.  
Fig 17 Frequency deviation as function of VDD  
VDD=3V;Timer=1 minute.  
Fig 16  
IDD as a function of Tamb; CLKOUT = 32 kHz  
Table 30 AC characteristics  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
pF  
Oscillator  
CL  
integrated load capacitance  
oscillator stability  
15  
25  
35  
ΔVDD=200mV  
amb=25  
ΔfOSC/fOSC  
2×10-7  
T
17  
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
Quartz crystal parameters(fOSC=32.768kHz)  
serial resistance  
RS  
CL  
2
8
10  
40  
kΩ  
parallel load capacitance  
pF  
Version B  
Version C  
10  
12  
CT  
pF  
trimmer capacitance  
CLKOUT output  
[1]  
CLKOUT duty factor  
I2 C-bus timing characteristics[2]  
50  
δCLKOUT  
%
[3]  
SCL clock frequency  
fSCL  
400  
kHz  
START condition hold time  
tHD;STA  
0.6  
0.6  
μs  
set-up time for a repeated  
START condition  
tSU:STA  
μs  
SCL LOW time  
tLOW  
tHIGH  
tr  
1.3  
0.6  
μs  
μs  
μs  
μs  
pF  
ns  
ns  
μs  
ns  
SCL HIGH time  
SCL and SDA rise time  
SCL and SDA fall time  
capacitive bus line load  
data set-up time  
0.3  
0.3  
400  
tf  
Cb  
tSU;DAT  
tH D;DAT  
tSU:STO  
tSW  
100  
0
data hold time  
set-up time for STOP condition  
tolerable spike width on bus  
4.0  
50  
[1] Unspecified for fCLKOUT = 32.768 kHz.  
[2] All timing values are valid within the operating supply voltage range at Tamb and referenced to VIL and  
VIH with an input voltage swing of VSS to VDD  
.
[3] I2C -bus access time between two STARTs or between a START and a STOP condition to this device  
must be less than one second.  
Fig 18 I2C -bus timing waveforms.  
18  
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
5 Application Reference  
Fig 19 Typical Application diagram  
5.1 Crystal frequency adjustment  
‹
Method 1: Fixed OSCI capacitor — By evaluating the average capacitance  
necessary for the application layout a fixed capacitor can be used. The frequency is  
best measured via the 32.768 kHz signal available after power-on at the CLKOUT  
pin. The frequency tolerance depends on the quartz crystal tolerance, the capacitor  
tolerance and the device-to-device tolerance (on average ±5 × 106).  
Average deviations of ±5 minutes per year can be easily achieved.  
Method 2: OSCI trimmer — The oscillator is tuned to the required accuracy by  
adjusting a trimmer capacitor on pin OSCI and measuring the 32.768 kHz signal  
available after power-on at the CLKOUT pin.  
‹
‹
Method 3: OSCO output — Direct output measurement on pin OSCO (accounting for  
test probe capacitance).  
19  
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
6 Package outline  
6.1 DIP-8  
Table 20 DIP-8  
Table 31 Dimension noted in Fig 20  
A
A1  
A2  
z
Unit  
b
b1  
b2  
c
D
E
e
e1  
L
ME  
MH  
w
max min max  
max  
1.73 0.53 1.07 0.36 9.8 6.48  
1.14 0.38 0.89 0.23 9.2 6.20  
0.068 0.021 0.042 0.014 0.39 0.26  
0.045 0.016 0.035 0.009 0.36 0.24  
3.60 8.26 10.0  
3.05 7.80 8.3  
0.14 0.32 0.39  
0.12 0.31 0.33  
mm 4.2 0.51 3.2  
inch 0.17 0.020 0.13  
2.54 7.62  
0.10 0.30  
0.254 1.15  
0.01 0.045  
20  
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
6.2 SO8  
21 SO-8  
Table 32 Dimension noted in Fig 21  
A
D(1) E(2)  
e
HE  
L
LP  
Q
v
w
y
z
Unit  
A1  
A2 A3 bp  
c
θ
max  
0.25 1.45  
0.49  
0.36  
0.25  
0.19  
5.0 4.0  
4.8 3.8  
6.2  
5.8  
1.0  
0.4  
0.7  
0.6  
0.7  
0.3  
mm 1.75  
0.25  
0.01  
1.27  
0.050  
1.05  
0.041  
0.25 0.25 0.1  
0.01 0.01 0.004  
0.10 1.25  
8°  
0°°  
0.010 0.057  
0.004 0.049  
0.019 0.0100 0.20 0.16  
0.014 0.0075 0.19 0.15  
0.244  
0.228  
0.039 0.028  
0.016 0.024  
0.028  
0.012  
inch 0.069  
6.3 TSSOP8  
Fig 22 TSSOP-8  
21  
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  
Torwards  
AT8563  
Table 33 Dimension noted in Fig 22  
Unit  
mm  
A
A1  
B
C
D
E
e
H
0.006 0.012 0.007 0.122 0.176  
0.002 0.007 0.004 0.114 0.169  
0.256  
0.246  
0.043  
0.0256  
0.15  
0.05  
0.30  
0.18  
0.18  
0.09  
3.10  
2.90  
4.48  
4.30  
6.50  
6.25  
inch  
1.10  
0.65  
6.4 MSOP8  
22  
深圳市宏达科技有限公司 Mobile:13530382140 曾先生  

相关型号:

AT85C5121

8-bit Microcontroller with Multiprotocol Smart Card Interface
ATMEL

AT85C5121-ICRIL

Microcontroller, 8-Bit, CRAM, 16MHz, CMOS, PDSO24, SSOP-24
ATMEL

AT85C5121-ICRUL

8-bit Microcontroller with Multiprotocol Smart Card Interface
ATMEL

AT85C5121-ICSIL

Microcontroller, 8-Bit, CRAM, 16MHz, CMOS, PDSO24, SSOP-24
ATMEL

AT85C5121-ICSUL

8-bit Microcontroller with Multiprotocol Smart Card Interface
ATMEL

AT85C5121-S3RIL

Microcontroller, 8-Bit, CRAM, 16MHz, CMOS, PQCC52, PLASTIC, LCC-52
ATMEL

AT85C5121-S3RUL

8-bit Microcontroller with Multiprotocol Smart Card Interface
ATMEL

AT85C5121-S3SIL

Microcontroller, 8-Bit, CRAM, 16MHz, CMOS, PQCC52, PLASTIC, LCC-52
ATMEL

AT85C5121-S3SUL

8-bit Microcontroller with Multiprotocol Smart Card Interface
ATMEL

AT85C5122

MICROCONTROLLER WITH USB AND SMART CARD READER INTERFACES
ATMEL

AT85C5122-RDRIM

Microcontroller, 8-Bit, 32MHz, CMOS, PQFP64
MICROCHIP

AT85C5122-RDRJM

Microcontroller, 8-Bit, 32MHz, CMOS, PQFP64
MICROCHIP