MD56V62160 [OKI]

4-Bank x 1,048,576-Word x 16-Bit SYNCHRONOUS DYNAMIC RAM; 4 - X银行1,048,576字×16位的同步动态RAM
MD56V62160
型号: MD56V62160
厂家: OKI ELECTRONIC COMPONETS    OKI ELECTRONIC COMPONETS
描述:

4-Bank x 1,048,576-Word x 16-Bit SYNCHRONOUS DYNAMIC RAM
4 - X银行1,048,576字×16位的同步动态RAM

文件: 总28页 (文件大小:302K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
E2G1052-17-X1  
Preliminary  
This version: Mar. 1998  
¡ Semiconductor  
MD56V62160/H  
4-Bank ¥ 1,048,576-Word ¥ 16-Bit SYNCHRONOUS DYNAMIC RAM  
DESCRIPTION  
The MD56V62160/H is a 4-bank ¥ 1,048,576-word ¥ 16-bit synchronous dynamic RAM,  
fabricated in Oki's CMOS silicon-gate process technology. The device operates at 3.3 V. The inputs  
and outputs are LVTTL compatible.  
FEATURES  
• Silicon gate, quadruple polysilicon CMOS, 1-transistor memory cell  
• 4-bank ¥ 1,048,576-word ¥ 16-bit configuration  
• 3.3 V power supply, ±0.3 V tolerance  
• Input  
: LVTTL compatible  
• Output : LVTTL compatible  
• Refresh : 4096 cycles/64 ms  
• Programmable data transfer mode  
CAS latency (2, 3)  
– Burst length (2, 4, 8)  
– Data scramble (sequential, interleave)  
• CBR auto-refresh, Self-refresh capability  
• Package:  
54-pin 400 mil plastic TSOP (Type II) (TSOPII54-P-400-0.80-K) (Product : MD56V62160/H-xxTA)  
xx indicates speed rank.  
PRODUCT FAMILY  
Access Time (Max.)  
Max.  
Frequency  
Family  
tAC2  
9 ns  
tAC3  
9 ns  
MD56V62160-10  
MD56V62160-12  
MD56V62160H-15  
100 MHz  
83 MHz  
66 MHz  
14 ns  
9 ns  
10 ns  
9 ns  
1/28  
¡ Semiconductor  
MD56V62160/H  
PIN CONFIGURATION (TOP VIEW)  
VCC  
1
2
3
4
5
6
7
8
9
54 VSS  
DQ1  
53 DQ16  
VCCQ  
52 VSSQ  
DQ2  
DQ3  
51 DQ15  
50 DQ14  
VSSQ  
49 VCCQ  
DQ4  
DQ5  
48 DQ13  
47 DQ12  
VCCQ  
46 VSSQ  
DQ6 10  
DQ7 11  
45 DQ11  
44 DQ10  
VSSQ  
12  
43 VCCQ  
DQ8 13  
VCC 14  
42 DQ9  
41 VSS  
40 NC  
39 UDQM  
38 CLK  
37 CKE  
36 NC  
35 A11  
34 A9  
LDQM 15  
WE 16  
CAS 17  
RAS 18  
CS 19  
A13/BA0 20  
A12/BA1 21  
A10 22  
A0 23  
33 A8  
32 A7  
A1 24  
31 A6  
A2 25  
30 A5  
A3 26  
29 A4  
VCC 27  
28 VSS  
54-Pin Plastic TSOP (II)  
(K Type)  
Pin Name  
CLK  
Function  
Pin Name  
Function  
System Clock  
UDQM, LDQM Data Input/Output Mask  
CS  
Chip Select  
DQi  
VCC  
VSS  
VCC  
Data Input/Output  
CKE  
Clock Enable  
Power Supply (3.3 V)  
Ground (0 V)  
A0 - A11  
A12, A13  
RAS  
Address  
Bank Select Address  
Row Address Strobe  
Column Address Strobe  
Write Enable  
Q
Data Output Power Supply (3.3 V)  
Data Output Ground (0 V)  
No Connection  
VSSQ  
CAS  
NC  
WE  
Note:  
The same power supply voltage must be provided to every V pin and V Q pin.  
CC CC  
The same GND voltage level must be provided to every V pin and V Q pin.  
SS  
SS  
2/28  
¡ Semiconductor  
MD56V62160/H  
PIN DESCRIPTION  
CLK  
Fetches all inputs at the "H" edge.  
Disables or enables device operation by asserting or deactivating all inputs except CLK, CKE,  
CS  
UDQM and LDQM.  
CKE  
Masks system clock to deactivate the subsequent CLK operation.  
If CKE is deactivated, system clock will be masked so that the subsequent CLK operation is  
deactivated. CKE should be asserted at least one cycle prior to a new command.  
Row & column multiplexed.  
Address  
Row address: RA0 – RA11  
Column address: CA0 – CA7  
A12, A13  
(BA1, BA0)  
RAS  
Bank Access pins. These pins are dedicated to select one of 4 banks.  
CAS  
Functionality depends on the combination. For details, see the function truth table.  
WE  
UDQM,  
LDQM  
Masks the read data of two clocks later when UDQM and LDQM are set "H" at the "H" edge of the clock signal.  
Masks the write data of the same clock when UDQM and LDQM are set "H" at the "H" edge of the clock signal.  
UDQM controls upper byte and LDQM controls lower byte.  
DQi  
Data inputs/outputs are multiplexed on the same pin.  
3/28  
¡ Semiconductor  
MD56V62160/H  
BLOCK DIAGRAM  
CLK  
CKE  
CLOCK  
BUFFER  
Row  
Address  
Latches  
& Refresh  
Counter  
Command  
Decoding  
Logic  
CS  
RAS  
CAS  
WE  
Command  
Buffers  
Row Decoders  
Control  
Logic  
Word Drivers  
UDQM  
LDQM  
Column  
Address  
Latches  
& Counter  
Memory  
Cells  
Latency  
& Burst  
controller  
Mode  
Register  
Address  
Buffers  
A0 -  
A13  
BANK A  
BANK B  
BANK C  
BANK D  
Input  
Data  
Register  
Input  
Buffers  
DQ1 - DQ16  
Output  
Data  
Register  
Output  
Buffers  
4/28  
¡ Semiconductor  
MD56V62160/H  
ELECTRICAL CHARACTERISTICS  
Absolute Maximum Ratings  
(Voltages referenced to VSS  
)
Parameter  
Symbol  
Rating  
–0.5 to VCC + 0.5  
–0.5 to 4.6  
–55 to 150  
1
Unit  
V
Voltage on Any Pin Relative to VSS  
VIN, VOUT  
V
CC Supply Voltage  
VCC, VCC  
Tstg  
Q
V
Storage Temperature  
Power Dissipation  
°C  
W
PD*  
Short Circuit Current  
Operating Temperature  
IOS  
50  
mA  
°C  
Topr  
0 to 70  
*: Ta = 25°C  
Recommended Operating Conditions  
(Voltages referenced to VSS = 0 V)  
Parameter  
Power Supply Voltage  
Input High Voltage  
Input Low Voltage  
Symbol  
Min.  
3.0  
Typ.  
3.3  
Max.  
3.6  
Unit  
VCC, VCC  
VIH  
Q
V
V
V
2.0  
V
CC + 0.3  
VIL  
–0.3  
0.8  
Capacitance  
(VCC = 3.3 V 0.3 V, Ta = 25°C, f = 1 MHz)  
Parameter  
Symbol  
Min.  
Max.  
Unit  
Input Capacitance (A0 - A13)  
Input Capacitance (CLK, CKE, CS,  
RAS, CAS, WE, UDQM, LDQM)  
Input/Output Capacitance  
(DQ1 - DQ16)  
CIN1  
2
5
pF  
CIN2  
2
5
7
pF  
pF  
COUT  
2
5/28  
¡ Semiconductor  
MD56V62160/H  
DC Characteristics  
Condition  
Version  
-12  
Min. Max.Min. Max. Min. Max.  
Parameter  
Symbol  
Unit Note  
-10  
H-15  
CKE  
Others  
Output High Voltage VOH  
Output Low Voltage VOL  
Input Leakage Current ILI  
Output Leakage Current ILO  
IOH = –2 mA  
IOL = 2 mA  
2.4  
2.4  
2.4  
V
V
0.4  
0.4  
0.4  
10 10 –10 10  
10 10 –10 10  
10 10 mA  
10 10 mA  
Average Power  
Supply Current  
(Operating)  
I
CC1  
CKE VIH  
tCC = min  
tRC = min  
145  
40  
125  
35  
120 mA 1, 2  
No Burst  
Power Supply  
Current (Stand by)  
ICC  
2
CKE VIH  
CKE £ VIL  
tCC = min  
30 mA  
15 mA  
3
2
Average Power  
Supply Current  
(Clock Suspension)  
ICC3S  
tCC = min  
tCC = min  
tCC = min  
15  
15  
Average Power  
Supply Current  
(Active Stand by)  
ICC  
3
4
CKE VIH  
95  
85  
75 mA  
3
Power Supply  
Current (Burst)  
ICC  
CKE VIH  
CKE VIH  
210  
185  
180  
155  
160 mA 1, 2  
I
CC5  
tCC = min  
tRC = min  
Power Supply  
Current  
155 mA  
2
(Auto-Refresh)  
Average Power  
Supply Current  
(Self-Refresh)  
ICC  
6
7
CKE £ VIL  
CKE £ VIL  
tCC = min  
2
2
2
2
2
2
mA  
mA  
Average Power  
Supply Current  
(Power down)  
ICC  
tCC = min  
Notes: 1. Measured with outputs open.  
2. The address and data can be changed once or left unchanged during one cycle.  
3. The address and data can be changed once or left unchanged during two cycles.  
6/28  
¡ Semiconductor  
MD56V62160/H  
Mode Set Address Keys  
CAS Latency  
Burst Type  
Burst Length  
A2 A1 A0 BT = 0  
Reserved Reserved  
A6 A5 A4  
CL  
A3  
BT  
BT = 1  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
Reserved  
Reserved  
2
0
1
Sequential  
Interleave  
0
0
0
0
1
1
1
1
0
0
1
1
0
0
1
1
0
1
0
1
0
1
0
1
2
4
8
2
4
8
3
Reserved  
Reserved  
Reserved  
Reserved  
Reserved Reserved  
Reserved Reserved  
Reserved Reserved  
Reserved Reserved  
Note:  
A7, A8, A9, A10, A11, A12 and A13 should stay "L" during mode set cycle.  
POWER ON SEQUENCE  
1. With inputs in NOP state, turn on the power supply and start the system clock.  
2. After the V voltage has reached the specified level, pause for 200 ms or more with  
CC  
the input kept in NOP state.  
3. Issue the precharge all bank command.  
4. Apply a CBR auto-refresh eight or more times.  
5. Enter the mode register setting command.  
7/28  
¡ Semiconductor  
MD56V62160/H  
AC Characteristics  
Note 1, 2  
MD56V62160-10 MD56V62160-12 MD56V62160H-15  
Parameter  
Symbol  
tCC  
Unit Note  
Min.  
10  
15  
3
Max.  
9
Min.  
12  
17.5  
3
Max.  
Min.  
15  
15  
3
Max.  
9
CL = 3  
ns  
ns  
Clock Cycles Time  
CL = 2  
CL = 3  
CL = 2  
10  
ns  
ns  
ns  
ns  
ns  
ns  
3, 4  
3, 4  
Access Time from  
Clock  
tAC  
9
14  
9
Clock "H" Pulse Time  
Clock "L" Pulse Time  
Input Setup Time  
Input Hold Time  
tCH  
tCL  
tSI  
3
3
3
3
3
3
tHI  
1
1.5  
1
Output Low Impedance  
Time from Clock  
tOLZ  
tOHZ  
3
8
3
10  
3
8
ns  
ns  
Output High Impedance  
Time from Clock  
Output Hold from Clock  
RAS Cycle Time  
tOH  
tRC  
3
105  
3
115  
45  
70  
35  
24  
105  
3
105  
30  
70  
30  
15  
105  
ns  
ns  
ns  
ns  
ns  
ns  
3
90  
30  
60  
30  
15  
RAS Precharge Time  
RAS Active Time  
tRP  
tRAS  
tRCD  
tWR  
RAS to CAS Delay Time  
Write Recovery Time  
RAS to RAS Bank Active  
Delay Time  
tRRD  
20  
24  
24  
ns  
Refresh Time  
tREF  
64  
3
tSI + 1 CLK  
64  
3
tSI + 1 CLK  
64  
3
ms  
ns  
Power-down Exit Set-up Time tPDE tSI + 1 CLK  
Input Level Transition Time tT  
CAS to CAS Delay Time (Min.) lCCD  
ns  
1
1
1
1
Cycle  
Cycle  
Clock Disable Time from CKE  
lCKE  
1
1
Data Output High Impedance  
Time from UDQM, LDQM  
lDOZ  
2
0
0
2
3
2
2
2
Cycle  
Cycle  
Cycle  
Cycle  
Cycle  
Cycle  
Data Input Mask Time from  
UDQM, LDQM  
lDOD  
lDWD  
lROH  
lMRD  
lOWD  
0
0
2
3
2
0
0
2
3
2
Data Input Time from Write  
Command  
Data Output High Impedance  
Time from Precharge Command  
Active Command Input Time from Mode  
Register Set Command Input (Min.)  
Write Command Input Time  
from Output  
8/28  
¡ Semiconductor  
MD56V62160/H  
Notes : 1. AC measurements assume that t = 1 ns.  
T
2. The reference level for timing of input signals is 1.4 V.  
3. Output load.  
1.4 V  
50 W  
Z = 50 W  
Output  
50 pF  
4. The access time is defined at 1.4 V.  
5. If t is longer than 1 ns, then the reference level for timing of input signals is V and  
T
IH  
V .  
IL  
9/28  
¡ Semiconductor  
MD56V62160/H  
TIMING WAVEFORM  
Read & Write Cycle (Same Bank) @ CAS Latency = 2, Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLK  
tRC  
CKE  
CS  
tRP  
RAS  
tRCD  
CAS  
Ra  
Ca0  
Rb  
Cb0  
ADDR  
A13  
A12  
A10  
DQ  
Ra  
Rb  
tOH  
Qa0 Qa1 Qa2 Qa3  
Db0 Db1 Db2 Db3  
tOHZ  
tAC  
tWR  
WE  
UDQM,  
LDQM  
Row Active Read Command  
Row Active Write Command  
Precharge Command  
Precharge Command  
10/28  
¡ Semiconductor  
MD56V62160/H  
Single Bit Read-Write-Read Cycle (Same Page) @ CAS Latency = 2, Burst Length = 4  
tCH  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLK  
tCC  
tCL  
High  
CKE  
CS  
tSI  
tHI  
RAS  
lCCD  
tHI  
tSI  
tSI  
CAS  
tSI  
tSI  
Ra  
Ca  
Cb  
Cc  
ADDR  
tHI  
tHI  
A13  
A12  
A10  
DQ  
Ra  
tAC  
tHI  
tSI  
Qa  
Db  
Qc  
tOLZ  
tHI  
tOH  
tOHZ  
lOWD  
WE  
tSI  
UDQM,  
LDQM  
Row Active  
Write Command  
Precharge Command  
Read Command  
Read Command  
11/28  
¡ Semiconductor  
MD56V62160/H  
*Notes: 1. When CS is set "High" at a clock transition from "Low" to "High", all inputs except CKE, UDQM, and  
LDQM are invalid.  
2. When issuing an active, read or write command, the bank is selected by A12 and A13.  
A12  
0
A13  
0
Active, read or write  
Bank A  
0
1
Bank B  
1
0
Bank C  
1
1
Bank D  
3. The auto precharge function is enabled or disabled by the A10 input when the read or write command  
is issued.  
A10  
0
A12  
0
A13  
0
Operation  
After the end of burst, bank A holds the idle status.  
After the end of burst, bank A is precharged automatically.  
After the end of burst, bank B holds the idle status.  
After the end of burst, bank B is precharged automatically.  
After the end of burst, bank C holds the idle status.  
After the end of burst, bank C is precharged automatically.  
After the end of burst, bank D holds the idle status.  
After the end of burst, bank D is precharged automatically.  
1
0
0
0
0
1
1
0
1
0
1
0
1
1
0
0
1
1
1
1
1
4. When issuing a precharge command, the bank to be precharged is selected by the A10, A12 and A13  
inputs.  
A10  
0
A12  
0
A13  
0
Operation  
Bank A is precharged.  
Bank B is precharged.  
Bank C is precharged.  
Bank D is precharged.  
All banks are precharged.  
0
0
1
0
1
0
0
1
1
1
X
X
5. The input data and the write command are latched by the same clock (Write latency = 0).  
6. The output is forced to high impedance by (1 CLK + tOHZ) after UDQM, LDQM entry.  
12/28  
¡ Semiconductor  
MD56V62160/H  
Page Read & Write Cycle (Same Bank) @ CAS Latency = 2, Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLK  
High  
CKE  
CS  
Bank A Active  
RAS  
CAS  
lCCD  
Ca0  
Cb0  
Cc0  
Cd0  
ADDR  
A13  
A12  
A10  
DQ  
Qa0 Qa1 Qb0 Qb1  
Dc0 Dc1 Dd0  
*Note2  
tWR  
lOWD  
WE  
*Note1  
UDQM,  
LDQM  
Read Command Read Command  
Write Command Write Command  
Precharge Command  
*Notes: 1. To write data before a burst read ends, UDQM and LDQM should be asserted three cycles prior to the  
write command to avoid bus contention.  
2. To assert row precharge before a burst write ends, wait tWR after the last write data input.  
Input data during the precharge input cycle will be masked internally.  
13/28  
¡ Semiconductor  
MD56V62160/H  
Read & Write Cycle with Auto Precharge @ Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLK  
High  
CKE  
CS  
RAS  
tRRD  
CAS  
RAa  
RDb CAa  
CDb  
ADDR  
A13  
A12  
A10  
WE  
RAa  
RDb  
CAS Latency = 2  
QAa0 QAa1 QAa2 QAa3  
DDb0 DDb1 DDb2 DDb3  
DQ  
A-Bank Precharge Start  
UDQM,  
LDQM  
CAS Latency = 3  
DQ  
QAa0 QAa1 QAa2 QAa3  
DDb0 DDb1 DDb2 DDb3  
tWR  
A-Bank Precharge Start  
UDQM,  
LDQM  
Row Active  
(A-Bank)  
A Bank Read with  
Auto Precharge  
D Bank Write with  
Auto Precharge  
D Bank Precharge  
Start Point  
Row Active  
(D-Bank)  
14/28  
¡ Semiconductor  
MD56V62160/H  
Bank Interleave Random Row Read Cycle @ CAS Latency = 2, Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLK  
High  
CKE  
CS  
tRC  
RAS  
tRRD  
CAS  
RAa  
CAa  
RCb  
CCb  
RAc  
CAc  
ADDR  
A13  
A12  
A10  
DQ  
RAa  
RCb  
RAc  
QAa0 QAa1 QAa2 QAa3  
QCb0 QCb1 QCb2 QCb3  
QAc0 QAc1 QAc2 QAc3  
WE  
UDQM,  
LDQM  
Row Active Read Command  
(A-Bank) (A-Bank)  
Read Command  
(C-Bank)  
Read Command  
(A-Bank)  
Row Active  
(C-Bank)  
Precharge Command  
(C-Bank)  
Precharge Command  
(A-Bank)  
Row Active  
(A-Bank)  
15/28  
¡ Semiconductor  
MD56V62160/H  
Bank Interleave Random Row Write Cycle @ CAS Latency = 2, Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLK  
High  
CKE  
CS  
RAS  
CAS  
RAa  
CAa  
RBb  
CBb  
RAc  
CAc  
ADDR  
A13  
A12  
A10  
DQ  
RAa  
RBb  
RAc  
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3  
DAc0 DAc1  
WE  
UDQM,  
LDQM  
Row Active  
(A-Bank)  
Row Active  
(B-Bank)  
Precharge  
Command  
(A-Bank)  
Write Command  
(A-Bank)  
Write Command  
(A-Bank)  
Write Command  
(B-Bank)  
Row Active  
(A-Bank)  
Precharge Command  
(A-Bank)  
Precharge Command  
(B-Bank)  
16/28  
¡ Semiconductor  
MD56V62160/H  
Bank Interleave Page Read Cycle @ CAS Latency = 2, Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLK  
High  
CKE  
CS  
*Note1  
RAS  
CAS  
RAa  
CAa  
RCb  
CCb  
CAc  
CCd  
CAe  
ADDR  
A13  
A12  
A10  
DQ  
RAa  
RCa  
QAa0 QAa1 QAa2 QAa3 QCb0 QCb1 QCb2 QCb3 QAc0 QAc1 QCd0 QCd1 QAe0 QAe1  
lROH  
WE  
UDQM,  
LDQM  
Row Active  
(A-Bank)  
Row Active  
(C-Bank)  
Read Command  
(C-Bank)  
Precharge Command  
(A-Bank)  
Read Command  
(A-Bank)  
Read Command  
(C-Bank)  
Read Command  
(A-Bank)  
Read Command  
(A-Bank)  
*Note:  
1. CS is ignored when RAS, CAS and WE are high at the same cycle.  
17/28  
¡ Semiconductor  
MD56V62160/H  
Bank Interleave Page Write Cycle @ CAS Latency = 2, Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLK  
High  
CKE  
CS  
RAS  
CAS  
RBa  
CBa  
RDb  
CDb  
CBc  
CDd  
ADDR  
A13  
A12  
A10  
DQ  
RBa  
RDb  
DBa0 DBa1 DBa2 DBa3 DDb0 DDb1 DDb2 DDb3 DBc0 DBc1 DDd0  
WE  
UDQM,  
LDQM  
Row Active  
(B-Bank)  
Row Active  
(D-Bank)  
Write Command  
(D-Bank)  
Write Command  
(B-Bank)  
Write Command  
(D-Bank)  
Write Command  
(B-Bank)  
Precharge Command  
(All Banks)  
18/28  
¡ Semiconductor  
MD56V62160/H  
Bank Interleave Random Row Read/Write Cycle @ CAS Latency = 2, Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLK  
High  
CKE  
CS  
RAS  
CAS  
RAa  
CAa  
RCb  
CCb  
RAc  
CAc  
ADDR  
A13  
A12  
A10  
DQ  
RAa  
RCb  
RAc  
QAa0 QAa1 QAa2 QAa3  
DCb0 DCb1 DCb2 DCb3  
QAc0 QAc1 QAc2 QAc3  
WE  
UDQM,  
LDQM  
Row Active  
(A-Bank)  
Write Command  
(C-Bank)  
Read Command  
(A-Bank)  
Row Active  
(C-Bank)  
Read Command  
(A-Bank)  
Precharge Command  
(A-Bank)  
Row Active  
(A-Bank)  
19/28  
¡ Semiconductor  
MD56V62160/H  
Bank Interleave Page Read/Write Cycle @ CAS Latency = 2, Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLK  
High  
CKE  
CS  
RAS  
CAS  
CAa0  
CDb0  
CAc0  
ADDR  
A13  
A12  
A10  
DQ  
QAa0 QAa1 QAa2 QAa3  
DDb0 DDb1 DDb2 DDb3  
QAc0 QAc1 QAc2 QAc3  
WE  
UDQM,  
LDQM  
Read Command  
(A-Bank)  
Write Command  
(D-Bank)  
Read Command  
(A-Bank)  
20/28  
¡ Semiconductor  
MD56V62160/H  
Clock Suspension & DQM Operation Cycle @ CAS Latency = 2, Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLK  
*Note1  
*Note1  
CKE  
CS  
RAS  
CAS  
Ra  
Ca  
Cb  
Cc  
ADDR  
A13  
A12  
Ra  
A10  
Qa0 Qa1  
Qa2  
Qa2  
Qb0 Qb1  
Qb0 Qb1  
Dc0  
Dc2  
DQ1 - 8  
tOHZ  
tOHZ  
*Note3  
*Note4  
DQ9 - 16  
Qa0  
Qa3  
Dc0 Dc1  
*Note2  
WE  
LDQM  
*Note4  
UDQM  
Row Active  
Read  
DQM  
CLOCK  
Suspension  
Read  
Command  
Write  
DQM  
Write  
DQM  
Read DQM  
Read  
Write  
CLOCK  
Read DQM  
Command  
Command Suspension  
*Notes: 1. When Clock Suspension is asserted, the next clock cycle is ignored.  
2. When LDQM and UDQM are asserted, the read data after two clock cycles is masked.  
3. When LDQM and UDQM are asserted, the write data in the same clock cycle is masked.  
4. When LDQM is set High, the input/output data of DQ1 - DQ8 is masked.  
When UDQM is set High, the input/output data of DQ9 - DQ16 is masked.  
21/28  
¡ Semiconductor  
MD56V62160/H  
Read Interruption by Precharge Command @ Burst Length = 8  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLK  
High  
CKE  
CS  
RAS  
CAS  
Ra  
Ca  
ADDR  
A13  
A12  
A10  
WE  
Ra  
CAS Latency = 2  
*Note1  
Qa0 Qa1 Qa2 Qa3 Qa4 Qa5  
DQ  
UDQM,  
LDQM  
CAS Latency = 3  
*Note1  
Qa0 Qa1 Qa2 Qa3 Qa4  
DQ  
UDQM,  
LDQM  
Row Active  
Read Command  
Precharge Command  
*Note:  
1. If row precharge is asserted before burst read ends, then the read data will not output after the second  
clock cycle of the precharge command.  
22/28  
¡ Semiconductor  
MD56V62160/H  
Power Down Mode @ CAS Latency = 2, Burst Length = 4  
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
CLK  
*Note2  
tSI  
*Note1  
tPDE  
tSI  
tSI  
CKE  
CS  
RAS  
CAS  
Ra  
Ca  
ADDR  
A13  
A12  
A10  
DQ  
Ra  
Qa0 Qa1 Qa2  
WE  
UDQM,  
LDQM  
Row Active  
Clock  
Suspention  
Exit  
Precharge  
Command  
Power-down  
Entry  
Power-down  
Exit  
Clock  
Suspention  
Entry  
Read  
Command  
*Notes: 1. Whenallbanksareinprechargestate, andifCKEissetlow, thentheMD56V62160/Henterspower-down  
mode and maintains the mode while CKE is low.  
2. To release the circuit from power-down mode, CKE has to be set high for longer than tPDE (tSI + 1 CLK).  
23/28  
¡ Semiconductor  
MD56V62160/H  
Self Refresh Cycle  
0
1
2
CLK  
tRC  
CKE  
CS  
tSI  
RAS  
CAS  
Ra  
BS  
BS  
Ra  
ADDR  
A13  
A12  
A10  
DQ  
Hi - Z  
Hi - Z  
WE  
UDQM,  
LDQM  
Self  
Self  
Row  
Refresh  
Entry  
Refresh  
Exit  
Active  
24/28  
¡ Semiconductor  
MD56V62160/H  
Mode Register Set Cycle  
Auto Refresh Cycle  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10  
11  
12  
CLK  
High  
lMRD  
High  
CKE  
CS  
tRC  
RAS  
CAS  
key  
Ra  
ADDR  
DQ  
Hi - Z  
Hi - Z  
WE  
UDQM,  
LDQM  
MRS  
New Command  
Auto Refresh  
Auto Refresh  
25/28  
¡ Semiconductor  
MD56V62160/H  
FUNCTION TRUTH TABLE (Table 1) (1/2)  
Current State1 CS RAS CAS WE BA ADDR  
Action  
Idle  
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
L
L
X
H
H
H
L
X
H
H
L
X
H
L
X
X
X
X
NOP  
NOP  
BA  
BA  
BA  
BA  
X
X
ILLEGAL 2  
ILLEGAL 2  
Row Active  
NOP 4  
X
H
L
CA  
RA  
A10  
X
H
H
L
L
L
H
L
Auto-Refresh or Self-Refresh 5  
L
L
L
OP Code Mode Register Write  
Row Active  
X
H
H
H
L
X
H
L
X
X
H
L
X
X
X
NOP  
NOP  
X
BA CA, A10 Read  
BA CA, A10 Write  
L
H
H
L
H
L
BA  
BA  
X
RA  
A10  
X
ILLEGAL 2  
Precharge  
ILLEGAL  
L
L
X
X
H
L
Read  
X
H
H
H
H
L
X
H
H
L
X
X
NOP (Continue Row Active after Burst ends)  
NOP (Continue Row Active after Burst ends)  
Reserved  
X
X
BA  
X
H
L
BA CA, A10 Term Burst, start new Burst Read  
BA CA, A10 Term Burst, start new Burst Write  
L
H
H
L
H
L
BA  
BA  
X
RA  
A10  
X
ILLEGAL 2  
L
Term Burst, execute Row Precharge  
ILLEGAL  
L
X
X
H
L
Write  
X
H
H
H
H
L
X
H
H
L
X
X
NOP (Continue Row Active after Burst ends)  
NOP (Continue Row Active after Burst ends)  
Reserved (Term Burst) --> Row Active  
X
X
BA  
X
H
L
BA CA, A10 Term Burst, start new Burst Read  
BA CA, A10 Term Burst, start new Burst Write  
L
H
H
L
H
L
BA  
BA  
X
RA  
A10  
X
ILLEGAL 2  
L
Term Burst, execute Row Precharge  
ILLEGAL  
L
X
X
H
L
Read with  
X
H
H
H
H
L
X
H
H
L
X
X
NOP (Continue Burst to End and enter Row Precharge)  
NOP (Continue Burst to End and enter Row Precharge)  
ILLEGAL 2  
Auto Precharge  
X
X
BA  
X
H
L
BA CA, A10 ILLEGAL 2  
ILLEGAL  
BA RA, A10 ILLEGAL 2  
L
X
X
H
L
X
X
X
H
L
L
X
X
X
X
X
X
ILLEGAL  
Write with  
X
H
H
H
H
L
X
H
H
L
NOP (Continue Burst to End and enter Row Precharge)  
NOP (Continue Burst to End and enter Row Precharge)  
ILLEGAL 2  
Auto Precharge  
X
BA  
H
L
BA CA, A10 ILLEGAL 2  
ILLEGAL  
BA RA, A10 ILLEGAL 2  
ILLEGAL  
L
X
X
H
L
X
X
L
X
X
26/28  
¡ Semiconductor  
MD56V62160/H  
FUNCTION TRUTH TABLE (Table 1) (2/2)  
Current State1 CS RAS CAS WE BA ADDR  
Action  
Precharge  
Write Recovery  
Row Active  
Refresh  
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
H
L
L
L
L
X
H
H
H
L
X
H
H
L
X
H
L
X
X
X
X
NOP --> Idle after tRP  
NOP --> Idle after tRP  
ILLEGAL 2  
ILLEGAL 2  
ILLEGAL 2  
NOP 4  
BA  
BA  
BA  
BA  
X
X
X
H
L
CA  
RA  
A10  
X
H
H
L
L
L
X
X
H
L
ILLEGAL  
X
H
H
H
L
X
H
H
L
X
X
NOP  
X
X
NOP  
BA  
BA  
BA  
BA  
X
X
ILLEGAL 2  
ILLEGAL 2  
ILLEGAL 2  
ILLEGAL 2  
ILLEGAL  
X
H
L
CA  
RA  
A10  
X
H
H
L
L
L
X
X
H
L
X
H
H
H
L
X
H
H
L
X
X
NOP --> Row Active after tRCD  
NOP --> Row Active after tRCD  
ILLEGAL 2  
ILLEGAL 2  
ILLEGAL 2  
X
X
BA  
BA  
BA  
BA  
X
X
X
H
L
CA  
RA  
A10  
X
H
H
L
L
ILLEGAL 2  
L
X
X
X
X
X
X
X
H
L
ILLEGAL  
X
H
H
L
X
H
L
X
X
NOP --> Idle after tRC  
NOP --> Idle after tRC  
ILLEGAL  
X
X
X
X
H
L
X
X
ILLEGAL  
L
X
X
ILLEGAL  
Mode Register  
Access  
X
H
H
H
L
X
H
H
L
X
X
NOP  
X
X
NOP  
X
X
ILLEGAL  
X
X
X
X
ILLEGAL  
X
X
X
ILLEGAL  
ABBREVIATIONS  
RA = Row Address  
CA = Column Address  
BA = Bank Address  
AP = Auto Precharge  
NOP = No OPeration command  
Notes:  
1. All inputs are enabled when CKE is set high for at least 1 cycle prior to the inputs.  
2. Illegaltobankinspecifiedstate,butmaybelegalinsomecasesdependingonthestateofbank  
selection.  
3. Satisfy the timing of tCCD and tWR to prevent bus contention.  
4. NOP to bank precharging or in idle state. Precharges activated bank by BA or A10.  
5. Illegal if any bank is not idle.  
27/28  
¡ Semiconductor  
MD56V62160/H  
FUNCTION TRUTH TABLE for CKE (Table 2)  
Current State (n) CKEn-1  
Self Refresh  
CKEn CS RAS CAS WE ADDR  
Action  
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
H
H
H
H
H
H
H
L
H
H
L
L
X
H
H
H
H
H
L
X
H
L
L
L
L
X
X
H
L
L
L
L
X
X
H
L
L
L
L
L
L
X
X
X
X
X
X
X
H
H
H
L
X
X
H
H
L
X
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
INVALID  
Exit Self Refresh --> ABI  
Exit Self Refresh --> ABI  
ILLEGAL  
X
X
X
X
X
H
L
ILLEGAL  
X
X
X
X
H
H
L
ILLEGAL  
X
X
X
H
H
H
L
NOP (Maintain Self Refresh)  
INVALID  
Power Down  
X
H
H
H
H
H
L
Exit Power Down --> ABI  
Exit Power Down --> ABI  
ILLEGAL  
X
X
X
X
X
H
L
ILLEGAL  
ILLEGAL 6  
X
X
X
X
H
H
L
X
X
X
H
H
H
L
NOP (Continue power down mode)  
Refer to Table 1  
Enter Power Down  
Enter Power Down  
ILLEGAL  
All Banks Idle 6  
(ABI)  
H
L
L
L
L
X
L
ILLEGAL  
L
H
L
ILLEGAL  
L
L
H
L
Enter Self Refresh  
ILLEGAL  
L
L
L
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
NOP  
Any State Other  
H
L
Refer to Operations in Table 1  
Begin Clock Suspend Next Cycle  
Enable Clock of Next Cycle  
Continue Clock Suspension  
than Listed Above  
H
L
Note:  
6. Power-down and self refresh can be entered only when all the banks are in an idle state.  
28/28  

相关型号:

MD56V62160-10TA

Synchronous DRAM, 4MX16, 9ns, CMOS, PDSO54, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54
OKI

MD56V62160E

4-Bank × 1,048,576-Word × 16-Bit SYNCHRONOUS DYNAMIC RAM
OKI

MD56V62160E-10

4-Bank × 1,048,576-Word × 16-Bit SYNCHRONOUS DYNAMIC RAM
OKI

MD56V62160E-10TA

Synchronous DRAM, 4MX16, 6ns, CMOS, PDSO54, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54
OKI

MD56V62160E-7

4-Bank × 1,048,576-Word × 16-Bit SYNCHRONOUS DYNAMIC RAM
OKI

MD56V62160E-7TA

Synchronous DRAM, 4MX16, 6ns, CMOS, PDSO54, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54
OKI

MD56V62160E-XXTA

4-Bank × 1,048,576-Word × 16-Bit SYNCHRONOUS DYNAMIC RAM
OKI

MD56V62160H

4-Bank x 1,048,576-Word x 16-Bit SYNCHRONOUS DYNAMIC RAM
OKI

MD56V62160H-15TA

Synchronous DRAM, 4MX16, 9ns, CMOS, PDSO54, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-54
OKI

MD56V62160M-10TA

16-Bit SYNCHRONOUS DYNAMIC RAM
ROHM

MD56V62160M-75TA

16-Bit SYNCHRONOUS DYNAMIC RAM
ROHM

MD56V62160M-7TA

16-Bit SYNCHRONOUS DYNAMIC RAM
ROHM