ML9042-XXCVWA [OKI]

Dot Matrix LCD Driver, 17 X 100 Dots, CMOS, DIE-233;
ML9042-XXCVWA
型号: ML9042-XXCVWA
厂家: OKI ELECTRONIC COMPONETS    OKI ELECTRONIC COMPONETS
描述:

Dot Matrix LCD Driver, 17 X 100 Dots, CMOS, DIE-233

时钟 驱动 CD 外围集成电路
文件: 总58页 (文件大小:558K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEDL9042-01  
Issue Date: Nov. 19, 2003  
OKI Semiconductor  
ML9042-xx  
DOT MATRIX LCD CONTROLLER DRIVER  
GENERAL DESCRIPTION  
The ML9042 used in combination with an 8-bit or 4-bit microcontroller controls the operation of a character type  
dot matrix LCD.  
FEATURES  
Easy interfacing with an 8-bit or 4-bit microcontroller  
Switchable between serial and parallel interfaces  
Dot-matrix LCD controller driver for a 5 × 8 dot font  
Built-in circuit allowing automatic resetting at power-on  
Built-in 17 common signal drivers and 100 segment signal drivers  
Two built-in character generator ROMs each capable of generating 240 characters (5 × 8 dots)  
The character generator ROM can be selected by bank switching (ROM1S) pin.  
Creation of character patterns by programming: up to 8 character patterns (5 × 8 dots)  
Built-in RC oscillation circuit using external or internal resistors  
Program-selectable duties  
When ABE bit is “L”: 1/8 duty (1 line: 5 × 8 dots), or 1/16 duty (2 lines: 5 × 8 dots)  
When ABE bit is “H”: 1/9 duty (1 line: 5 × 8 dots + arbitrator), or 1/17 duty (2 lines: 5 × 8 dots + arbitrator)  
Cursor display  
Built-in bias dividing resistors to drive the LCD  
Bi-directional transfer of segment outputs  
Bi-directional transfer of common outputs  
100-dot arbitrator display  
Line display shifting  
Built-in voltage multiplier circuit  
Gold Bump Chip  
ML9042-xx CVWA/DVWA  
*xx indicates a character generator ROM code number.  
*01, 11 and 21 indicate general character generator ROM code numbers.  
CVWA indicates a bump chip with high hardness, and DVWA indicates a bump chip with low  
hardness.  
1/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
BLOCK DIAGRAM  
Segment Signal driver  
100-bit latch  
100-bit bi-directional shift register  
Parallel-  
serial converter  
2/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
I/O CIRCUITS  
VDD  
VDD  
VDD  
P
P
N
N
Applied to pins T1, T2, and T3  
Applied to pins RW/SI, RS1, and  
RS0/CSB  
Applied to pins E/SHTB, SP, ROM1S, and BE  
VDD  
VDD  
P
P
VDD  
N
P
N
Output Enable signal  
Applied to pins DB0(SO) to DB7  
3/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
PIN DESCRIPTIONS  
Symbol  
RW/SI  
Description  
The input pin with a pull-up resistor to select Read (“H”) or Write (“L”) in the Parallel I/F  
Mode.  
The pin to input data in the Serial l/F Mode. Each instruction code and each data are  
read in by the rising edge of the E/SHTB signal.  
The input pins with a pull-up resistor to select a register in the Parallel l/F Mode.  
RS1  
H
RS0/CSB  
Name of register  
Data register  
H
L
L
RS0/CSB, RS1  
H
Instruction register  
L
Expansion Instruction register  
The RSo/CSB pin is configured as a chip enable input in the Serial I/F Mode. Setting  
the RSo/CSB pin to “L” allows the I/F to be provided.  
The input pin for data input/output between the CPU and the ML9042 and for  
activating instructions in the Parallel l/F Mode.  
E/SHTB  
This pin is configured as a shift clock input in the Serial I/F Mode. The data input to the  
PW/SI pin is synchronized to the rising edge of the clock, and the data output from the  
DB0(SO) pin is synchronized to the falling edge of the shift clock.  
The input/output pins to transfer data of lower-order 4 bits between the CPU and the  
ML9042 in the Parallel l/F Mode. The pins are not used for the 4-bit interface.  
Only the DB0(SO) pin is configured as a data output in the Serial I/F Mode. Busy flag  
& address and data are output synchronized to the falling edge of the E/SHTB signal.  
These pins remain pulled up when data is not output.  
DB0(SO) to DB3  
Each pin is equipped with a pull-up resistor, so this pin should be open when not used.  
The input/output pins to transfer data of upper 4 bits between the CPU and the  
ML9042 in the Parallel l/F Mode. The pins are not used for the serial interface.  
DB4 to DB7  
Each pin is equipped with a pull-up resistor, so this pin should be open in the Serial I/F  
Mode when not used.  
The clock oscillation pins required for LCD drive signals and the operation of the  
ML9042 by instructions sent from the CPU.  
To input external clock, the OSC1 pin should be used. The OSCR3, OSCR5, and OSC2  
pins should be open.  
OSC1  
OSC2  
To start oscillation with an external resistor, the resistor should be connected between  
the OSC1 and OSC2 pins. The OSCR3 and OSCR5 pins should be open.  
OSCR3  
OSCR5  
To start oscillation at 5 V using an internal resistor, the OSC2 and OSCR5 pins should  
be short-circuited outside the ML9042. The OSC1 and OSCR3 pins should be open.  
To start oscillation at 3 V using an internal resistor, the OSC2 and OSCR3 pins should  
be short-circuited outside the ML9042. The OSC1 and OSCR5 pins should be open.  
(The OSC2, OSCR3, and OSCR5 pins can also be short-circuited outside the ML9042,  
and the OSC1 pin can be open.)  
The LCD common signal output pins.  
For 1/8 duty, non-selectable voltage waveforms are output via COM9 to COM17. For  
1/9 duty, non-selectable voltage waveforms are output via COM10 to COM17. For 1/16  
duty, a non-selectable voltage waveform is output via COM17.  
COM1 to COM17  
SEG1 to SEG100  
The LCD segment signal output pins.  
4/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Symbol  
ROM1S  
Description  
The input pin to switch the ROM bank. “H” selects ROM1 and “L” selects ROM0.  
Switching after power-on is prohibited.  
The pins to output bias voltages to the LCD.  
V1 , V2, V3A, V3B, V4  
For 1/4 bias : The V2 and V3B pins are shorted.  
For 1/5 bias : The V3A and V3B pins are shorted.  
The input pin to enable or disable the voltage multiplier circuit.  
"L" disables the voltage multiplier circuit. "H" enables the voltage multiplier circuit.  
The voltage multiplier circuit doubles the input voltage between the VIN pin and the  
GND pin, and the multiplied voltage referenced to the GND is output to the VOUT pin.  
The voltage multiplier circuit can be used only when generating a level higher than the  
BE  
VDD  
.
TESTIN  
TESTOUT  
VIN  
The input pin for test circuits. Normally connect this pin to VDD.  
The output pin for the test circuits. Normally leave this pin open.  
The pin to input voltage to the voltage multiplier.  
The pins to supply the LCD drive voltage.  
The same potential as the VDD potential is supplied to the VOUT and V0 pins when the  
voltage multiplier is not used (BE = “0” or BE = “1”, and the capacitor is not connected  
to the VC and VCC pins)  
V0, VOUT  
When the voltage multiplier is used (BE = “1”), the multiplied voltage is output to the  
VOUT pin, so that the VOUT pin and V0 pin should be connected.  
Capacitors for the voltage multiplier should be connected between the GND and the  
VOUT pin.  
The pin to connect the negative pin of the capacitor for the voltage multiplier. Leave the  
pin open when the voltage multiplier circuit is not used.  
VC  
VCC  
The pin to connect the positive pin of the capacitor used for the voltage multiplier.  
Leave the pin open when the voltage multiplier circuit is not used.  
The input pins for test circuits (normally open). Each of these pins is equipped with a  
pull-down resistor, so this pin should be left open.  
T1, T2, T3  
VDD  
The power supply pin.  
GND  
The ground level input pin.  
The input pin to select the serial or parallel interface.  
“L” selects the parallel interface.  
“H” selects the serial interface.  
SP  
The output pin to fix the adjacent input pin to the VDD level. Use this pin only for this  
purpose.  
DUMMYVDD  
The output pin to fix the adjacent input pin to the GND level. Use this pin only for this  
purpose.  
DUMMYGND  
DUMMY  
NC (No Connection) pin.  
5/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
ABSOLUTE MAXIMUM RATINGS  
(GND = 0 V)  
Parameter  
Symbol  
VDD  
Condition  
Rating  
Unit  
V
Applicable pins  
Supply Voltage  
Ta = 25°C  
–0.3 to +6.5  
VDD  
V0, V1, V2,  
V3, V4,  
V
GND  
OUT, V0, V1, V2, V3A, V3B, V4,  
LCD Driving Voltage  
Ta = 25°C  
–0.3 to +6.5  
V
RW/SI, E/SHTB, SP,  
RS0/CSB, RS1, BE,  
ROM1S, T1 to T3, DB0(SO)  
to DB7, VIN  
Input Voltage  
VI  
Ta = 25°C  
–0.3 to VDD+0.3  
–55 to +150  
V
Storage Temperature  
TSTG  
°C  
RECOMMENDED OPERATING CONDITIONS  
(GND = 0 V)  
Applicable pins  
VDD  
Parameter  
Symbol  
VDD  
Condition  
Range  
Unit  
V
Supply Voltage  
2.7 to 5.5  
V0  
LCD Driving Voltage  
2.7 to 5.5  
V
VOUT, V0  
(See Note)  
Voltage Multipler  
Input Voltage  
VMUL  
Top  
BE = “1”  
1.8 to 2.75  
–40 to +85  
V
VIN  
Operating Temperature  
°C  
Note: This voltage should be applied across V0 and GND. The following voltages are output to the V1,  
V2, V3A (V3B) and V4 pins:  
1/4 bias (V2 and V3B are short-circuited)  
V1 =3 V0/4 ±0.15 V  
V2 = V3B = V0/2 ±0.15 V  
V4 = V0/4 ±0.15 V  
1/5 bias (V3A and V3B are short-circuited)  
V1 = 4 V0/5 ±0.15 V  
V2 = 3 V0/5 ±0.15 V  
V3A = V3B = 2 V0/5 ±0.15 V  
V4 = V0/5 ±0.15 V  
The voltages at the V0, V1, V2, V3A (V3B), V4 and GND pins should satisfy  
V0 > V1 > V2 > V3A (V3B) > V4 > GND  
(Higher ←  
Lower)  
* If the chip is attached on a substrate using COG technology, the chip tends to be susceptible  
to electrical characteristics of the chip due to trace resistance on the glass substrate. It is  
recommended to use the chip by confirming that it operates on the glass substrate properly.  
Trace resistance, especially, VDD and VSS trace resistance, between the chip on the LCD  
panel and the flexible cable should be designed as low as possible. Trace resistance that  
cannot be very well decreased, larger size of the LCD panel, or greater trace capacitance  
between the microcontroller and the ML9042 device can cause device malfunction. In order  
to avoid the device malfunction, power noise should be reduced by serial interfacing of the  
microcontroller and the ML9042 device.  
* Do not apply short-circuiting across output pins and across an output pin and an input/output  
pin or the power supply pin in the output mode.  
6/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
ELECTRICAL CHARACTERISTICS  
DC Characteristics  
(GND = 0 V, VDD = 2.7 to 5.5 V, Ta = –40 to +85°C)  
Parameter  
Symbol  
VIH  
Condition  
Min.  
Typ. Max. Unit Applicable pin  
RW/SI,  
“H” Input Voltage  
0.8VDD  
VDD  
RS0/CSB, RS1,  
E/SHTB,  
V
DB0(SO) to  
DB7, SP,  
OSC1, BE,  
ROM1S  
“L” Input Voltage  
VIL  
0
0.2VDD  
“H” Output Voltage 1  
“L” Output Voltage 1  
“H” Output Voltage 2  
“L” Output Voltage 2  
VOH1 IOH = –0.1 mA  
VOL1 IOL = +0.1 mA  
VOH2 IOH = –13 µA  
VOL2 IOL = +13 µA  
0.9VDD  
DB0(SO) to  
DB7  
V
V
0.1VDD  
0.9VDD  
OSC2  
0.1VDD  
V0–  
VCH lOCH = –4 µA  
VCMH lOCMH = ±4 µA  
VCML lOCML = ±4 µA  
VCL lOCL = +4 µA  
VSH lOSH = –4 µA  
VSMH lOSMH = ±4 µA  
VSML lOSML = ±4 µA  
VSL lOSL = +4 µA  
V0–0.3  
V1–0.3  
V4–0.3  
GND  
V0  
0.012  
V1±  
V1+0.3  
V4+0.3  
GND+0.3  
V0  
V0 –GND = 5 V  
Note 1  
0.012  
COM1 to  
COM17  
COM Voltage Drop  
V
V4±  
0.012  
GND+  
0.012  
V0–  
V0–0.3  
V2–0.3  
V3–0.3  
GND  
0.012  
V2±  
V2+0.3  
V3+0.3  
GND+0.3  
V0 –GND = 5 V  
Note 1  
0.012  
SEG1 to  
SEG100  
SEG Voltage Drop  
V
V3±  
0.012  
GND+  
0.012  
E/SHTB, BE,  
SP, VIN  
Input Leakage Current  
Input Current 1  
| IIL | VDD = 5 V, VI = 5 V or 0 V  
VDD = 5 V, VI = GND  
1.0  
61  
µA  
µA  
10  
25  
RW/SI,  
VDD = 5 V, VI = VDD,  
RS0/CSB, RS1,  
DB0(SO) to  
DB7  
| II1 |  
Excluding current flowing  
through the pull-up resistor  
and the output driving MOS  
2.0  
VDD = 5 V, VI = VDD  
15  
45  
105  
2.0  
VDD = 5 V, VI = GND  
Excluding current flowing  
through the pull-down resistor  
Input Current 2  
Supply Current  
| II2 |  
lDD  
µA T1, T2, T3  
VDD = 5 V  
Note 2  
1.2  
mA VDD–GND  
Oscillation Frequency  
of External Resistor Rf  
fosc1 Rf = 85 kΩ±2%  
Note 3  
175  
270  
400  
kHz OSC1, OSC2  
7/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
VDD = 4.0 to 5.5 V  
Ta = -20 to 75°C  
OSC1, OSC2,  
OSCR5  
200  
200  
270  
280  
351  
364  
kHz  
kHz  
OSC1 and OSCR3: Open  
OSC2 and OSCR5:  
Short-circuited  
Note 4  
Oscillation Frequency of  
Internal Resistor Rf  
fosc2  
VDD = 2.7 to 3.6 V  
Ta = -20 to 75°C  
OSC1 and OSCR5: Open  
OSC2 and OSCR3:  
OSC1, OSC2,  
OSCR3  
Short-circuited  
Note 4  
OSC2, OSCR: Open  
Input from OSC1  
Clock Input  
Frequency  
fin  
fduty  
frf  
175  
45  
50  
400  
55  
kHz  
%
Input Clock Duty  
Note 5  
Note 6  
Note 6  
OSC1  
Input Clock Rise  
Time  
0.2  
0.2  
2.6  
µs  
Input Clock Fall Time  
fff  
µs  
V0, V1, V2, V3A,  
V3B, V4, GND  
-0x code  
-1x code  
-2x code  
1.4  
2.0  
kΩ  
V0, V1, V2, V3A,  
V3B, V4, GND  
LCD Bias Resistor  
RLB  
2.8  
7.0  
4.0  
5.2  
kΩ  
kΩ  
V0, V1, V2, V3A,  
V3B, V4, GND  
10.0  
13.0  
8/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
(GND = 0 V, VDD = 2.7 to 5.5 V, Ta = –40 to +85°C)  
Applicable  
Parameter  
Symbol  
VMUL  
Condition  
Min.  
1.8  
Typ.  
Max.  
2.75  
Unit  
V
pins  
Voltage Multiplier  
Input Voltage  
Note 7  
VIN  
VDD = 2.7 V, VIN = 2.25 V  
f = 175 kHz  
1/5  
bias  
(VDD–VIN)  
4.3  
× 2  
A capacitor for the voltage  
multiplier = 1 to 4.7 µF  
Voltage Multiplier  
Output Voltage  
VOUT  
V
VOUT  
VOUT load current = 54 µA  
1/4  
bias  
(VDD–VIN)  
BE = “H”  
4.3  
× 2  
Applied to LCD bias  
resistance of 10 k(TYP)  
only  
1/5  
bias  
VLCD1  
VLCD2  
2.7  
2.7  
5.5  
5.5  
Bias Voltage for  
Driving LCD  
V0–GND  
Note 8  
V
V0  
1/4  
bias  
Note 1: Applied to the voltage drop occurring between any of the V0, V1, V4 and GND pins and any of  
the common pins (COM1 to COM17) when the current of 4 µA flows in or flows out at one  
common pin.  
Also applied to the voltage drop occurring between any of the V0, V2, V3A (V3B) and GND pins  
and any of the segment pins (SEG1 to SEG100) when the current of 4 µA flows in or flows out at  
one segment pin.  
The current of 4 µA flows out when the output level is VDD or flows in when the output level is  
V5.  
Note 2: Applied to the current flowing into the VDD pin when the external clock (fOSC2 = fin = 270 kHz) is  
fed to the internal Rf oscillation or OSC1 under the following conditions:  
VDD = V0 = 5 V  
GND = 0 V,  
V1, V2, V3A (V3B) and V4: Open  
E/SHTB and BE: “L” (fixed)  
Other input pins: “L” or “H” (fixed)  
Other output pins: No load  
9/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Note 3:  
Note 4:  
OSC1  
OSC1  
OSC1  
OSCR3  
OSCR5  
OSC2  
OSCR3  
OSCR5  
OSC2  
OSCR3  
OSCR5  
OSC2  
Rf = 85 kΩ±2%  
The wire between OSC1 and Rf and the wire between The wire between OSCR3 and OSC2, or between OSCR5  
OSC2 and Rf should be as short as possible.  
Keep OSCR3 and OSCR5 open.  
and OSC2 should be as short as possible. Keep open  
between OSC1 and OSCR3, or between OSC1 and OSCR5.  
Note 5:  
tHW  
tLW  
VDD  
2
VDD  
2
VDD  
2
fIN  
waveform  
Applied to the pulses entering from the OSC1 pin  
fduty = tHW/(tHW + tLW) ×100 (%)  
Note 6:  
0.8VDD  
0.2VDD  
0.8VDD  
0.2VDD  
trf  
tff  
Applied to the pulses entering from the OSC1 pin  
Note 7: The maximum value of the voltage multiplier input voltage should be set at 2.75 V, and the  
minimum value of the voltage multiplier input voltage should be set by monitoring the voltage  
of V0 in actual use so that the voltage multiplier output voltage meets the specification for the  
bias voltage for driving LCD after contrast adjustment.  
Note 8: For 1/4 bias, V2 and V3B pins are short-circuited. V3A pin is open.  
For 1/5 bias, V3A and V3B pins are short-circuited. V2 pin is open.  
10/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
I/O Characteristics  
Parallel Interface Mode  
The timing for the input from the CPU and the timing for the output to the CPU are as shown below:  
1) WRITE MODE (Timing for input from the CPU)  
(VDD = 2.7 to 4.5 V, Ta = –40 to +85°C)  
Parameter  
RW/SI, RS0/CSB, RS1 Setup Time  
E/SHTB Pulse Width  
Symbol  
Min.  
40  
Typ.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tB  
tW  
tA  
tr  
450  
10  
RW/SI, RS0/CSB, RS1 Hold Time  
E/SHTB Rise Time  
125  
125  
E/SHTB Fall Time  
tf  
E/SHTB Pulse Width  
tL  
tC  
tI  
430  
1000  
195  
10  
E/SHTB Cycle Time  
DB0(SO) to DB7 Input Data Setup Time  
DB0(SO) to DB7 Input Data Hold Time  
tH  
(VDD = 4.5 to 5.5 V, Ta = –40 to +85°C)  
Parameter  
RW/SI, RS0/CSB, RS1 Setup Time  
E/SHTB Pulse Width  
Symbol  
Min.  
40  
Typ.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tB  
tW  
tA  
tr  
220  
10  
RW/SI, RS0/CSB, RS1 Hold Time  
E/SHTB Rise Time  
125  
125  
E/SHTB Fall Time  
tf  
E/SHTB Pulse Width  
tL  
tC  
tI  
220  
500  
60  
E/SHTB Cycle Time  
DB0(SO) to DB7 Input Data Setup Time  
DB0(SO) to DB7 Input Data Hold Time  
tH  
10  
VIH  
VIL  
VIH  
RS1, RS0/CSB  
VIL  
RW/SI  
VIL  
tA  
VIL  
tr  
tf  
tB  
tW  
tL  
VIH  
VIH  
E/SHTB  
VIL  
VIL  
VIL  
tH  
tI  
Input  
Data  
VIH  
VIL  
VIH  
VIL  
DB0(SO) to DB7  
tC  
11/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
2) READ MODE (Timing for output to the CPU)  
(VDD = 2.7 to 4.5 V, Ta = –40 to +85°C)  
Parameter  
RW/SI, RS1, RS0/CSB Setup Time  
E/SHTB Pulse Width  
Symbol  
Min.  
40  
Typ.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tB  
tW  
tA  
tr  
450  
10  
RW/SI, RS1, RS0/CSB Hold Time  
E/SHTB Rise Time  
125  
125  
E/SHTB Fall Time  
tf  
E/SHTB Pulse Width  
tL  
tC  
tD  
tO  
430  
1000  
E/SHTB Cycle Time  
DB0(SO) to DB7 Output Data Delay Time  
DB0(SO) to DB7 Output Data Hold Time  
350  
20  
Note: A load capacitance of each of DB0(SO) to DB7 must be 50 pF or less.  
(VDD = 4.5 to 5.5 V, Ta = –40 to +85°C)  
Parameter  
RW/SI, RS1, RS0/CSB Setup Time  
E/SHTB Pulse Width  
Symbol  
Min.  
40  
Typ.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
tB  
tW  
tA  
tr  
220  
10  
RW/SI, RS1, RS0/CSB Hold Time  
E/SHTB Rise Time  
125  
125  
E/SHTB Fall Time  
tf  
E/SHTB Pulse Width  
tL  
tC  
tD  
tO  
220  
500  
E/SHTB Cycle Time  
DB0(SO) to DB7 Output Data Delay Time  
DB0(SO) to DB7 Output Data Hold Time  
250  
20  
Note: A load capacitance of each of DB0(SO) to DB7 must be 50 pF or less.  
VIH  
VIL  
VIH  
RS1, RS0/CSB  
VIL  
VIH  
VIH  
RW/SI  
tr  
tf  
tB  
tW  
tA  
tL  
VIH  
VIH  
E/SHTB  
VIL  
tO  
VIL  
VIL  
tD  
0.8VDD  
0.8VDD  
0.2VDD  
Output  
Data  
DB0(SO) to DB7  
0.2VDD  
tC  
12/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Serial Interface Mode  
(VDD = 2.7 to 5.5 V, Ta = –40 to +85°C)  
Parameter  
Symbol  
tSCY  
tCSU  
tCH  
Min.  
500  
100  
100  
200  
60  
Typ.  
Max.  
Unit  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
E/SHTB Cycle Time  
RS0/CSB Setup Time  
RS0/CSB Hold Time  
RS0/CSB “H” Pulse Width  
E/SHTB Setup Time  
tCSWH  
tSSU  
tSH  
E/SHTB Hold Time  
200  
200  
200  
E/SHTB “H” Pulse Width  
E/SHTB “L” Pulse Width  
E/SHTB Rise Time  
tSWH  
tSWL  
tSR  
125  
125  
E/SHTB Fall Time  
tSF  
RW/Sl Setup Time  
tDISU  
tDIH  
tDOD  
tCDH  
100  
100  
RW/Sl Hold Time  
DB0(SO) Output Data Delay Time  
DB0(SO) Output Data Hold Time  
160  
0
tCSWH  
tSCY  
VIH  
VIH  
VIH  
RS0/CSB  
VIL  
VIL  
tSSU  
tSR  
tSF  
tSH  
VIH  
tSWL  
tSWH  
tCH  
VIH  
tCSU  
VIH  
E/SHTB  
RW/SI  
VIH  
tDIH  
VIH  
VIL  
tDISU  
VIL  
VIH  
VIL  
VIH  
VIL  
tDOD  
tDOD  
tCDH  
VOH  
VOH  
DB0(SO)  
VOL  
13/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
FUNCTIONAL DESCRIPTION  
Instruction Register (IR), Data Register (DR), and Expansion Instruction Register (ER)  
These registers are selected by setting the level of the Register Selection input pins RS0/CSB and RS1. The DR is  
selected when both RS0/CSB and RS1 are “H”. The IR is selected when RS0/CSB is “L” and RS1 is “H”. The ER  
is selected when both RS0/CSB and RS1 are “L”. (When RS0/CSB is “H” and RS1 is “L”, the ML9042 is not  
selected.)  
The IR stores an instruction code and sets the address code of the display data RAM (DDRAM) or the character  
generator RAM (CGRAM).  
The microcontroller (CPU) can write but cannot read the instruction code.  
The ER sets the display positions of the arbitrator and the address code of the arbitrator RAM (ABRAM).  
The CPU can write but cannot read the display positions of the arbitrator.  
The DR stores data to be written in the DDRAM, ABRAM and CGRAM and also stores data read from the  
DDRAM, ABRAM and CGRAM.  
The data written in the DR by the CPU is automatically written in the DDRAM, ABRAM or CGRAM.  
When an address code is written in the IR or ER, the data of the specified address is automatically transferred from  
the DDRAM, ABRAM or CGRAM to the DR. The data of the DDRAM, ABRAM and CGRAM can be checked  
by allowing the CPU to read the data stored in the DR.  
After the CPU writes data in the DR, the data of the next address in the DDRAM, ABRAM or CGRAM is selected  
to be ready for the next writing by the CPU. Similarly, after the CPU reads the data in the DR, the data of the next  
address in the DDRAM, ABRAM or CGRAM is set in the DR to be ready for the next reading by the CPU.  
Writing in or reading from these 3 registers is controlled by changing the status of the RW/SI pin.  
Table 1 RW/SI pin status and register operation  
RW/SI RS0/CSB RS1  
Operation  
L
H
L
L
L
H
H
H
H
L
Writing in the IR  
Reading the Busy flag (BF) and the address counter (ADC)  
Writing in the DR  
H
H
L
H
L
Reading from the DR  
Writing in the ER  
Disabled (Not in a busy state, not performing the reads.  
Note that the data bus goes into a high impedance state.)  
H
L
L
H
H
L
L
L
Disabled (Not in a busy state, not performing the writes)  
Disabled (Not in a busy state, not performing the reads.  
Note that the data bus goes into a high impedance state.)  
H
Busy Flag (BF)  
The status “1” of the Busy Flag (BF) indicates that the ML9042 is carrying out internal operation.  
When the BF is “1”, any new instruction is ignored.  
When RW/SI = “H”, RS0/CSB = “L” and RS1 = “H”, the data in the BF is output to the DB7.  
New instructions should be input when the BF is “0”.  
When the BF is “1”, the output code of the address counter (ADC) is undefined.  
14/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Address Counter (ADC)  
The address counter provides a read/write address for the DDRAM, ABRAM or CGRAM and also provides a  
cursor display address.  
When an instruction code specifying DDRAM, ABRAM or CGRAM address setting is input to the pre-defined  
register, the register selects the specified DDRAM, ABRAM or CGRAM and transfers the address code to the  
ADC. The address data in the ADC is automatically incremented (or decremented) by 1 after the display data is  
written in or read from the DDRAM, ABRAM or CGRAM.  
The data in the ADC is output to DB0(SO) to DB6 when RW/SI = “H”, RS0/CSB = “L”, RS1 = “H” and BF = “0”.  
Timing Generator  
The timing generator generates timing signals for the internal operation of the ML9042 activated by the instruction  
sent from the CPU or for the operation of the internal circuits of the ML9042 such as DDRAM, ABRAM,  
CGRAM and CGROM. Timing signals are generated so that the internal operation carried out for LCD displaying  
will not be interfered by the internal operation initiated by accessing from the CPU. For example, when the CPU  
writes data in the DDRAM, the display of the LCD not corresponding to the written data is not affected.  
15/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Display Data RAM (DDRAM)  
This RAM stores the 8-bit character codes (see Table 2).  
The DDRAM addresses correspond to the display positions (digits) of the LCD as shown below. The DDRAM  
addresses (to be set in the ADC) are represented in hexadecimal.  
DB6 DB5 DB4 DB3 DB2 DB1 DB0  
ADC  
MSB  
LSB  
Hexadecimal  
Hexadecimal  
(Example) Representation of DDRAM address = 12  
ADC  
0
0
1
0
0
1
0
1
2
1) Relationship between DDRAM addresses and display positions (1-line display mode)  
Digit  
1
Display position  
2
3
4
5
19 20  
12 13  
DD RAM address (hexadecimal)  
00 01 02 03 04  
Left  
end  
Right  
end  
In the 1-line display mode, the ML9042 can display up to 20 characters from digit 1 to digit 20. While the  
DDRAM has addresses “00” to “4F” for up to 80 character codes, the area not used for display can be used as a  
RAM area for general data. When the display is shifted by instruction, the relationship between the LCD  
display position and the DDRAM address changes as shown below:  
Digit  
1
2
3
4
19 20  
11 12  
(Display shifted to the right)  
4F 00 01 02  
Digit  
1
2
3
4
5
19 20  
13 14  
(Display shifted to the left) 01 02 03 04 05  
16/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
2) Relationship between DDRAM addresses and display positions (2-line display mode)  
In the 2-line mode, the ML9042 can display up to 40 characters (20 characters per line) from digit 1 to digit 20.  
Digit  
1
2
3
4
5
19 20  
12 13  
Display position  
DD RAM  
Line 1  
Line 2  
00 01 02 03 04  
address (hexadecimal)  
40 41 42 43 44  
52 53  
Note: The DDRAM address at digit 20 in the first line is not consecutive to the DDRAM address at  
digit 1 in the second line.  
When the display is shifted by instruction, the relationship between the LCD display position and the DDRAM  
address changes as shown below:  
Digit  
1
2
3
4
5
19 20  
11 12  
Line 1  
Line 2  
27 00 01 02 03  
(Display shifted to the right)  
(Display shifted to the left)  
67 40 41 42 43  
51 52  
Digit  
1
2
3
4
5
19 20  
13 14  
Line 1  
Line 2  
01 02 03 04 05  
41 42 43 44 45  
53 54  
17/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Character Generator ROM (CGROM)  
The CGROM generates character patterns (5 × 8 dots, 240 patterns) from the 8-bit character code signals in the  
DDRAM. The bank switching pin (ROM1S) can switch to the other ROM that generates character patterns (5 × 8  
dots, 240 patterns), allowing a total of 480 characters to be controlled.  
When the 8-bit character code corresponding to a character pattern in the CGROM is written in the DDRAM, the  
character pattern is displayed in the display position specified by the DDRAM address.  
Character codes 10 to FF are contained in the ROM area in the CG ROM.  
The general character generator ROM codes are 01/11/21.  
The relationship between character codes and general purpose character patterns in Bank0 (ROM0) and Bank1  
(ROM1) are indicated in Table 2-1 and Table 2-2, respectively.  
18/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Character Generator RAM (CGRAM)  
The CGRAM is used to generate user-specific character patterns that are not in the CGROM. CGRAM (64 bytes =  
512 bits) can store up to 8 character patterns (5 × 8 dots) .  
When displaying a character pattern stored in the CGRAM, write an 8-bit character code (00 to 07 or 08 to 0F;  
hex.) to the DDRAM. This enables outputting the character pattern to the LCD display position corresponding to  
the DDRAM address.  
The cursor or blink is also displayed even when a CGRAM or ABRAM address is set in the ADC. Therefore, the  
cursor or blink display should be inhibited while the ADC is holding a CGRAM or ABRAM address.  
The following describes how character patterns are written in and read from the CGRAM. (See Tables 2-1 and  
2-2.)  
(1) A method of writing character patterns to the CGRAM from the CPU  
The three CGRAM address bit weights 0 to 2 select one of the lines constituting a character pattern.  
First, set the mode to increment or decrement from the CPU, and then input the CGRAM address.  
Write each line of the character pattern in the CGRAM through DB0(SO) to DB7.  
The data lines DB0(SO) to DB7 correspond to the CGRAM data bit weights 0 to 7, respectively (see Table  
3-1). Input data “1” represents the ON status of an LCD dot and “0” represents the OFF status. Since the  
ADC is automatically incremented or decremented by 1 after the data is written to the CGRAM, it is not  
necessary to set the CGRAM address again.  
The bottom line of a character pattern (the CGRAM address bit weights 0 to 2 are all “1”, which means 7  
in hexadecimal) is the cursor line. The ON/OFF pattern of this line is ORed with the cursor pattern for  
displaying on the LCD. Therefore, the pattern data for the cursor position should be all zeros to display  
the cursor.  
Whereas the data given by the CGRAM data bit weights 0 to 4 is output to the LCD as display data, the  
data given by the CGRAM data bit weights 5 to 7 is not. Therefore, the CGRAM data bit weights 5 to 7  
can be used as a RAM area.  
(2) A method of displaying CGRAM character patterns on the LCD  
The CGRAM is selected when the higher-order 4 bits of a character code are all zeros. Since bit weight 3  
of a character code is not used, the character pattern “0” in Table 3-1 can be selected using the character  
code “00” or “08” in hexadecimal.  
When the 8-bit character code corresponding to a character pattern in the CGRAM is written to the  
DDRAM, the character pattern is displayed in the display position specified by the DDRAM address.  
(The DDRAM data bit weights 0 to 2 correspond to the CGRAM address bit weights 3 to 5, respectively.)  
19/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Arbitrator RAM (ABRAM)  
The arbitrator RAM (ABRAM) stores arbitrator display data.  
100 dots can be displayed in both 1-line and 2-line display modes. The arbitrator RAM has the addresses  
(hexadecimal) from “00” to “1F” and the valid display address area is from 00 to 19 (0H to 13H). The area of 20 to  
31 (14H to 1FH) not used for display can be used as a data RAM area for general data. Even if the display is shifted  
by instruction, the arbitrator display is not shifted.  
A capacity of 8 bits by 32 addresses (= 256 bits) is available for data write.  
First set the mode to increment or decrement from the CPU, and then input the ABRAM address.  
Write Display-ON data in the ABRAM through DB0(SO) to DB7.  
DB0(SO) to DB7 correspond to the ABRAM data bit weights 0 to 7 respectively. Input data “1” represents the ON  
status of an LCD dot and “0” represents the OFF status.  
Since ADC is automatically incremented or decremented by 1 after the data is written to the ABRAM, it is not  
necessary to set the ABRAM address again.  
Whereas ABRAM data bit weights 0 to 4 are output as display data to the LCD, the ABRAM data bit weights 5 to  
7 are not. These bits can be used as a RAM area.  
The cursor or blink is also displayed even when a CGRAM or ABRAM address is set in the ADC. Therefore, the  
cursor or blink display should be inhibited while the ADC is holding a CGRAM or ABRAM address.  
DB6 DB5 DB4 DB3 DB2 DB1 DB0  
MSB  
ADC  
LSB  
Hexadecimal  
Hexadecimal  
The arbitrator RAM can store a maximum of 100 dots of the arbitrator Display-ON data in units of 5 dots.  
The relationship with the LCD display positions is shown below.  
Relationship between display-ON  
data and segment pins  
Configuration of input display data  
Input data  
5XSn+1  
5XSn+5  
DB7 DB6 DB5 DB4 DB3 DB2 DB1 DB0  
*
*
*
E4 E3 E2 E1 E0  
* Don’t Care  
E4  
E0  
Display - ON data  
Sn = ABRAM address (0 to 19)  
20/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
21/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Note: The same CGRAM character patterns are displayed in Bank0 and Bank1.  
22/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Table 3-1 Relationship between CGRAM address bits, CGRAM data bits (character pattern)  
and DDRAM data bits (character code) in 5 × 7 dot character mode. (Examples)  
CG RAM  
address  
CG RAM data  
(Character pattern)  
DD RAM data  
(Character code)  
7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0  
5 4 3 2 1 0  
MSB  
LSB MSB  
LSB MSB  
0 1 1 1 0  
LSB  
× ××  
0 0 0 0 0 0  
1 0 0 0 1  
1 0 0 0 1  
1 0 0 0 1  
1 0 0 0 1  
1 0 0 0 1  
0 1 1 1 0  
0 0 0 0 0  
0 0 1  
0 1 0  
0 1 1  
1 0 0  
0 0 0 0 × 0 0 0  
1 0 1  
1 1 0  
1 1 1  
××× 1 0 0 0 1  
1 0 0 1 0  
1 0 1 0 0  
1 1 0 0 0  
1 0 1 0 0  
1 0 0 1 0  
1 0 0 0 1  
0 0 0 0 0  
0 0 1 0 0 0  
0 0 1  
0 1 0  
0 1 1  
0 0 0 0 × 0 0 1  
1 0 0  
1 0 1  
1 1 0  
1 1 1  
1 1 1 0 0 0 × ××  
0 0 1  
0 1 1 1 0  
0 0 1 0 0  
0 0 1 0 0  
0 0 1 0 0  
0 0 1 0 0  
0 0 1 0 0  
0 1 1 1 0  
0 0 0 0 0  
0 1 0  
0 1 1  
1 0 0  
0 0 0 0 × 1 1 1  
1 0 1  
1 1 0  
1 1 1  
×: Don’t Care  
23/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Cursor/Blink Control Circuit  
This circuit generates the cursor and blink of the LCD.  
The operation of this circuit is controlled by the program of the CPU.  
The cursor/blink display is carried out in the position corresponding to the DDRAM address set in the ADC  
(Address Counter).  
For example, when the ADC stores a value of “07” (hexadecimal), the cursor or blink is displayed as follows:  
DB6  
0
DB0  
1
ADC  
0
0
2
0
0
1
1
7
Digit  
1
3
4
5
6
7
8
9
19 20  
12 13  
In 1-line display mode  
00 01 02 03 04 05 06 07 08  
Cursor/blink position  
Digit  
1
2
3
4
5
6
7
8
9
19 20  
12 13  
First line  
00 01 02 03 04 05 06 07 08  
In 2-line display mode  
Second line 40 41 42 43 44 45 46 47 48  
52 53  
Cursor/blink position  
Note: The cursor or blink is also displayed even when a CGRAM or ABRAM address is set in  
the ADC. Therefore, the cursor or blink display should be inhibited while the ADC is  
holding a CGRAM or ABRAM address.  
24/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
LCD Display Circuit (COM1 to COM17, SEG1 to SEG100, SSR and CSR)  
The ML9042 has 17 common signal outputs and 100 segment signal outputs to display 20 characters (in the 1-line  
display mode) or 40 characters (in the 2-line display mode).  
The character pattern is converted into serial data and transferred in series through the shift register.  
The transfer direction of serial data is determined by the SSR bit. The shift direction of common signals is  
determined by the CSR bit. The following tables show the transfer and shift directions:  
SSR bit  
Transfer direction  
SEG1 SEG100  
SEG100 SEG1  
L
H
ABE bit  
CSR bit  
duty  
1/8  
AS bit  
L
Shift Direction  
COM1COM8  
COM1COM8  
COM1COM16  
COM1COM16  
COM8COM1  
COM8COM1  
COM16COM1  
COM16COM1  
COM1COM9  
COM1COM9  
COM1COM17  
COM1COM17  
COM9COM1  
COM9COM1  
COM17COM1  
COM17COM1  
Arbitrator’s common pin  
None  
L
L
L
L
1/8  
H
L
None  
L
L
1/16  
1/16  
1/8  
None  
L
L
H
L
None  
L
H
H
H
H
L
None  
L
1/8  
H
L
None  
L
1/16  
1/16  
1/9  
None  
L
H
L
None  
H
H
H
H
H
H
H
H
COM9  
COM1  
COM17  
COM1  
COM1  
COM9  
COM1  
COM17  
L
1/9  
H
L
L
1/17  
1/17  
1/9  
L
H
L
H
H
H
H
1/9  
H
L
1/17  
1/17  
H
* Refer to the Expansion Instruction Codes section about the ABE bit, SSR bit, CSR bit, and AS bit.  
Signals to be input to the SSR bit, CSR bit, ABE bit, and AS bit should be initially determined at power-on and be  
kept unchanged.  
25/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Built-in Reset Circuit  
The ML9042 is automatically initialized when the power is turned on.  
During initialization, the Busy Flag (BF) is “1” and the ML9042 does not accept any instruction from the CPU  
(other than the Read BF instruction).  
The Busy Flag is “1” for about 15 ms after the VDD becomes 2.7 V or higher.  
During this initialization, the ML9042 performs the following instructions:  
1) Display clearing  
2) CPU interface data length = 8 bits  
3) 1-line LCD display  
(DL = “1”)  
(N = “0”)  
4) ADC counting = Increment  
5) Display shifting = None  
(I/D = “1”)  
(S = “0”)  
6) Display = Off  
(D = “0”)  
7) Cursor = Off  
(C = “0”)  
8) Blinking = Off  
(B = “0”)  
9) Arbitrator = Displayed in the lower line  
10) Arbitrator = Not displayed  
11) Segment shift direction = SEG1 SEG100  
12) Common shift direction = COM1 COM17  
(AS = “0”)  
(ABE = “0”)  
(SSR = “0”)  
(CSR = “0”)  
To use the built-in reset circuit, the power supply conditions shown below should be satisfied. Otherwise, the  
built-in reset circuit may not work properly. In such a case, initialize the ML9042 with the instructions from the  
CPU. The use of a battery always requires such initialization from the CPU. (See “Initial Setting of Instructions”)  
2.7 V  
0.2 V  
0.2 V  
0.2 V  
tON  
tOFF  
1 ms tOFF  
0.1 ms tON 100 ms  
Figure 1 Power-on and Power-off Waveform  
26/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
I/F with CPU  
Parallel interface mode  
The ML9042 can transfer either 8 bits once or 4 bits twice on the data bus for interfacing with any 8-bit or 4-bit  
microcontroller (CPU).  
1) 8-bit interface data length  
The ML9042 uses all of the 8 data bus lines DB0(SO) to DB7 at a time to transfer data to and from the CPU.  
2) 4-bit interface data length  
The ML9042 uses only the higher-order 4 data bus lines DB4 to DB7 twice to transfer 8-bit data to and from the  
CPU.  
The ML9042 first transfers the higher-order 4 bits of 8-bit data (DB4 to DB7 in the case of 8-bit interface data  
length) and then the lower-order 4 bits of the data (DB0(SO) to DB3 in the case of 8-bit interface data length).  
The lower-order 4 bits of data should always be transferred even when only the transfer of the higher-order 4  
bits of data is required. (Example: Reading the Busy Flag)  
Two transfers of 4 bits of data complete the transfer of a set of 8-bit data. Therefore, when only one access is  
made, the following data transfer cannot be completed properly.  
27/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
RS1  
RS0/CSB  
RWB/SI  
E/SHTB  
Busy  
(Internal operation)  
No  
Busy  
DR7  
IR7  
IR6  
IR5  
IR4  
IR3  
IR2  
DB7  
Busy  
ADC6  
ADC5  
ADC4  
ADC3  
ADC2  
DR6  
DR5  
DR4  
DR3  
DR2  
DB6  
DB5  
DB4  
DB3  
DB2  
ADC1  
ADC0  
IR1  
IR0  
DR1  
DR0  
DB1  
DB0/(SO)  
Writing In IR  
(Instruction  
Register)  
Reading BF (Busy Flag)  
and ADC (Address Counter)  
Writing In DR  
(Data Register)  
Figure 2 8-Bit Data Transfer  
RS1  
RS0/CSB  
RWB/SI  
E/SHTB  
Busy  
(Internal operation)  
No  
Busy  
IR7  
IR6  
IR5  
IR4  
IR3  
ADC3  
DR7  
DR3  
DR2  
DB7  
DB6  
DB5  
DB4  
Busy  
ADC6  
ADC5  
ADC4  
IR2  
IR1  
IR0  
ADC2  
ADC1  
ADC0  
DR6  
DR5  
DR4  
DR1  
DR0  
Writing In IR  
(Instruction  
Register)  
Reading BF (Busy Flag)  
and ADC (Address Counter)  
Writing In DR  
(Data Register)  
Figure 3 4-Bit Data Transfer  
28/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Serial Interface Mode  
In the Serial I/F Mode, the ML9042 interfaces with the CPU via the RS0/CSB, E/SHTB, RW/SI, and DB0(SO)  
pins.  
Writing and reading operations are executed in units of 16 bits after the RS0/CSB signal falls down. If the RS0/CSB  
signal rises up before the completion of 16-bit unit access, this access is ignored.  
When the BF bit is “1”, the ML9042 cannot accept any other instructions. Before inputting a new instruction,  
check that the BF bit is “0”. Any access when the BF bit is “1” is ignored.  
Data format is LSB-first.  
Examples of Access in the Serial I/F Mode  
1) WRITE MODE  
RS0/CSB  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
1
E/SHTB  
BUSY  
(Internal operation)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
1
1
1
1
1
RS0 RS1  
1
R/W  
RWB/SI  
DB(SO)  
2) READ MODE  
RS0/CSB  
1
2
3
4
5
6
7
8
9
10  
11  
12  
13  
14  
15  
16  
1
E/SHTB  
BUSY  
(Internal operation)  
1
1
1
1
1
RS0 RS1  
1
R/W  
RWB/SI  
DB(SO)  
D0  
D1  
D2  
D3  
D4  
D5  
D6  
D7  
Note 1: Higher 5 bits of each instruction must be input at a “H” level.  
Note 2: Lower 8 bits are “don’t care” when the instructions in the READ MODE are set.  
Note 3: After one instruction is input, the next instruction must be input after the RS0/CSB pin is pulled at a “H”  
level.  
29/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Instruction Codes  
Table of Instruction Codes  
Code  
Execution  
Time  
f = 270 kHz  
Instruction  
RS0/ RW/  
Function  
DB0  
RS1  
DB7 DB6 DB5 DB4 DB3 DB2 DB1  
CSB SI  
(SO)  
Clears all the displayed digits of the  
LCD and sets the DDRAM address 00  
in the address counter. The arbitrator  
data is cleared.  
Display Clear  
Cursor Home  
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
X
S
1.52 ms  
1.52 ms  
37 µs  
Sets the DDRAM address 00 in the  
address counter and shifts the display  
back to the original. The content of the  
DDRAM remains unchanged.  
Determines the direction of movement  
of the cursor and whether or not to shift  
the display. This instruction is  
Entry Mode  
Setting  
0
1
1
I/D  
executed when data is written or read.  
Sets LCD display ON/OFF (D), cursor  
ON/OFF (C) or cursor-position  
character blinking ON/OFF (B).  
Display  
ON/OFF Control  
1
1
0
0
0
0
0
0
0
0
0
0
0
1
D
C
X
B
X
37 µs  
37 µs  
Moves the cursor or shifts the display  
without changing the content of the  
DDRAM.  
Cursor/Display  
Shift  
S/C R/L  
Sets the interface data length (DL), the  
number of display lines (N), the  
ABE SSR CSR arbitrator display (ABE), the segment  
data shift direction (SSR), or the  
Function Setting  
1
0
0
0
0
1
1
DL  
N
37 µs  
common data shift direction (CSR).  
Sets on CGRAM address. After that,  
CGRAM data is transferred to and from  
the CPU.  
CGRAM  
Address Setting  
1
1
1
0
0
0
0
0
1
0
1
ACG  
37 µs  
37 µs  
0 µs  
Sets a DDRAM address. After that,  
DDRAM data is transferred to and from  
the CPU.  
DDRAM  
Address Setting  
ADD  
ADC  
Reads the Busy Flag (indicating that  
the ML9042 is operating) and the  
content of the address counter.  
Busy Flag/  
Address Read  
BF  
Writes data in DDRAM, ABRAM or  
CGRAM.  
RAM Data Write  
RAM Data Read  
1
1
0
1
1
0
0
1
0
WRITE DATA  
READ DATA  
37 µs  
37 µs  
37 µs  
Reads data from DDRAM, ABRAM or  
CGRAM.  
Arbitrator  
Display Line Set  
0
0
0
1
0
1
0
0
0
1
AS Sets the arbitrator display line.  
Sets an ABRAM address. After that,  
ABRAM data is transferred to and from  
the CPU.  
ABRAM  
Address Setting  
0
0
0
AAB  
37 µs  
30/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
I/D = “1” (Increment)  
I/D = “0” (Decrement)  
DD RAM: Display data RAM  
The  
S = “1” (Shifts the display.)  
S/C = “1” (Shifts display.)  
R/L = “1” (Right shift)  
D/L = “1” (8-bit data)  
N = “1” (2 lines)  
execution  
time is  
dependent  
upon  
frequen-  
cies.  
CG RAM: Character generator RAM  
ABRAM: Arbitrator data RAM  
S/C = “0” (Moves the cursor.)  
R/L = “0” (Left shift)  
DL = “0” (4-bit data)  
N = “0” (1 line)  
ACG:  
ADD:  
CGRAM address  
DDRAM address  
(Corresponds to the cursor  
address)  
ABE = “1” (Arbitrator displayed)  
ABE = “0” (Arbitrator not displayed)  
SSR = “1” (Transfer direction: SEG100 SEG1)  
AAB:  
ADC:  
ABRAM address  
SSR = “0” (Transfer direction: SEG1 SEG100  
)
Address counter (Used by  
DDRAM, ABRAM and  
CGRAM)  
CSR = “1” (Transfer direction: COMn COM1)  
CSR = “0” (Transfer direction: COM1 COMn)  
BF = “1” (Busy)  
BF = “0” (Ready to accept  
an instruction)  
B = “1” (Enables blinking)  
C = “1” (Displays the cursor.)  
D = “1” (Displays a character pattern.)  
AS = “1” (Arbitrator Displays AS = “0” (Arbitrator Displays  
arbitrator on the  
upper line)  
arbitrator on the  
lower line)  
×: Don't Care  
31/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Instruction Codes  
An instruction code is a signal sent from the CPU to access the ML9042. The ML9042 starts operation as  
instructed by the code received. The busy status of the ML9042 is rather longer than the cycle time of the CPU,  
since the internal processing of the ML9042 starts at a timing which does not affect the display on the LCD. In the  
busy status (Busy Flag is “1”), the ML9042 cannot input the Busy Flag Read instruction only. Therefore, the CPU  
should ensure that the Busy Flag is “0” before sending an instruction code to the ML9042.  
1) Display Clear  
RS1  
1
RS0  
0
R/W  
DB7  
0
DB6  
0
DB5  
0
DB4  
0
DB3  
0
DB2  
0
DB1  
0
DB0  
1
0
Instruction Code:  
When this instruction is executed, the LCD display including arbitrator display is cleared and the I/D entry  
mode is set to “Increment”. The value of “S” (Display shifting) remains unchanged. The position of the cursor  
or blink being displayed moves to the left end of the LCD (or the left end of the line 1 in the 2-line display  
mode).  
Note: All DDRAM and ABRAM data turn to “20” and “00” in hexadecimal, respectively. The value of the  
address counter (ADC) turns to the one corresponding to the address “00” (hexadecimal) of the  
DDRAM.  
The execution time of this instruction is 1.52 ms (maximum) at an oscillation frequency of 270 kHz.  
2) Cursor Home  
RS1  
1
RS0  
0
R/W  
DB7  
0
DB6  
0
DB5  
0
DB4  
0
DB3  
0
DB2  
0
DB1  
1
DB0  
0
×
Instruction code:  
×: Don’t Care  
When this instruction is executed, the cursor or blink position moves to the left end of the LCD (or the left end  
of line 1 in the 2-line display mode). If the display has been shifted, the display returns to the original display  
position before shifting.  
Note: The value of the address counter (ADC) goes to the one corresponding to the address “00”  
(hexadecimal) of the DDRAM).  
The execution time of this instruction is 1.52 ms (maximum) at an oscillation frequency of 270 kHz.  
32/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
3) Entry Mode Setting  
RS1  
1
RS0  
0
R/W  
DB7  
0
DB6  
0
DB5  
0
DB4  
0
DB3  
0
DB2  
1
DB1  
I/D  
DB0  
S
0
Instruction code:  
(1) When the I/D is set, the cursor or blink shifts to the right by 1 character position (ID= “1”; increment) or to  
the left by 1 character position (I/D= “0”; decrement) after an 8-bit character code is written to or read  
from the DDRAM. At the same time, the address counter (ADC) is also incremented by 1 (when I/D =  
“1”; increment) or decremented by 1 (when I/D = “0”; decrement). After a character pattern is written to  
or read from the CGRAM, the address counter (ADC) is incremented by 1 (when I/D = “1”; increment) or  
decremented by 1 (when I/D = “0”; decrement).  
Also after data is written to or read from the ABRAM, the address counter (ADC) is incremented by 1  
(when I/D = “1”; increment) or decremented by 1 (when I/D = “0”; decrement).  
(2) When S = “1”, the cursor or blink stops and the entire display shifts to the left (I/D = “1”) or to the right  
(I/D = “0”) by 1 character position after a character code is written to the DDRAM.  
In the case of S = “1”, when a character code is read from the DDRAM, when a character pattern is  
written to or read from the CGRAM or when data is written to or read from the ABRAM, normal  
read/write is carried out without shifting of the entire display. (The entire display does not shift, but the  
cursor or blink shifts to the right (I/D = “1”) or to the left (I/D = “0”) by 1 character position.)  
When S = “0”, the display does not shift, but normal write/read is performed.  
Note: The execution time of this instruction is 37 µs (maximum) at an oscillation frequency of  
270 kHz.  
4) Display ON/OFF Control  
RS1  
1
RS0  
0
R/W  
DB7  
0
DB6  
0
DB5  
0
DB4  
0
DB3  
1
DB2  
D
DB1  
C
DB0  
B
0
Instruction code:  
(1) The “D” bit (DB2) of this instruction determines whether or not to display character patterns on the LCD.  
When the “D” bit is “1”, character patterns are displayed on the LCD.  
When the “D” bit is “0”, character patterns are not displayed on the LCD and the cursor/blinking also  
disappear.  
Note: Unlike the Display Clear instruction, this instruction does not change the character code in the  
DDRAM .  
(2) When the “C” bit (DB1) is “0”, the cursor turns off. When both the “C” and “D” bits are “1”, the cursor  
turns on.  
(3) When the “B” bit (DB0) is “0”, blinking is canceled. When both the “B” and “D” bits are “1”, blinking is  
performed.  
In the Blinking mode, all dots including those of the cursor, the character pattern and the cursor are  
alternately displayed.  
Note: The execution time of this instruction is 37 µs (maximum) at an oscillation frequency of  
270 kHz.  
33/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
5) Cursor/Display Shift  
RS1  
1
RS0  
0
R/W  
DB7  
0
DB6  
0
DB5  
0
DB4  
1
DB3  
S/C  
DB2  
R/L  
DB1  
DB0  
0
×
×
Instruction code:  
×: Don’t Care  
S/C = “0”, R/L = “0”  
S/C = “0”, R/L = “1”  
S/C = “1”, R/L = “0”  
This instruction shifts left the cursor and blink positions by 1 (decrements the  
content of the ADC by 1).  
This instruction shifts right the cursor and blink positions by 1 (increments the  
content of the ADC by 1).  
This instruction shifts left the entire display by 1 character position. The cursor  
and blink positions move to the left together with the entire display.  
The Arbitrator display is not shifted.  
(The content of the ADC remains unchanged.)  
S/C = “1”, R/L = “1”  
This instruction shifts right the entire display by 1 character position. The cursor  
and blink positions move to the right together with the entire display.  
The Arbitrator display is not shifted.  
(The content of the ADC remains unchanged.)  
In the 2-line mode, the cursor or blink moves from the first line to the second line when the cursor at digit 40  
(27; hex) of the first line is shifted right.  
When the entire display is shifted, the character pattern, cursor or blink will not move between the lines (from  
line 1 to line 2 or vice versa).  
Note: The execution time of this instruction is 37 µs at an oscillation frequency (OSC) of 270 kHz.  
6) Function Setting  
RS1  
1
RS0  
0
R/W  
DB7  
0
DB6  
0
DB5  
1
DB4  
DL  
DB3  
N
DB2  
DB1  
DB0  
0
ABE  
SSR  
CSR  
Instruction code:  
×: Don’t Care  
(1) When the “DL” bit (DB4) of this instruction is “1”, the data transfer to and from the CPU is performed  
once by the use of 8 bits DB7 to DB0.  
When the “DL” bit (DB4) of this instruction is “0”, the data transfer to and from the CPU is performed  
twice by the use of 4 bits DB7 to DB4.  
(2) The 2-line display mode is selected when the “N” bit (DB3) of this instruction is “1”. The 1-line display  
mode is selected when the “N” bit is “0”.  
The arbitrator is displayed when the “ABE” bit (DB2) of this instruction is “1”.  
The arbitrator is not displayed when the “ABE” bit (DB2) of this instruction is “0”.  
(3) The transfer direction of the segment signal output data is controlled.  
When the “SSR” bit (DB1) of this instruction is “1”, the data is transferred from SEG100 to SEG1  
.
When the “SSR” bit (DB1) of this instruction is “0”, the data is transferred from SEG1 to SEG100  
.
The transfer direction of the common signal output data is controlled.  
At 1/n duty,  
When the “CSR” bit (DB0) of this instruction is “1”, the data is transferred from COMn to COM1.  
When the “CSR” bit (DB0) of this instruction is “0”, the data is transferred from COM1 to COMn.  
After the ML9042 is powered on, this function setting should be carried out before execution of any  
instruction except the Busy Flag Read. After this function setting, no instructions other than the DL Set  
instruction can be executed. In the Serial I/F Mode, DL setting is ignored.  
34/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Number of  
display lines  
Number of  
biases  
Number of  
common signals  
N
ABE  
Font size  
Duty  
0
0
1
1
0
1
0
1
1
1
2
2
5 × 8  
5 × 8  
5 × 8  
5 × 8  
1/8  
1/9  
4
4
5
5
8
9
1/16  
1/17  
16  
17  
Note: The execution time of this instruction is 37 µs at an oscillation frequency (OSC) of 270  
kHz.  
7) CGRAM Address Setting  
RS1  
RS0  
0
R/W  
DB7  
0
DB6  
1
DB5  
C5  
DB4  
C4  
DB3  
C3  
DB2  
C2  
DB1  
C1  
DB0  
C0  
1
0
Instruction code:  
This instruction sets the CGRAM address to the data represented by the bits C5 to C0 (binary).  
The CGRAM addresses are valid until DDRAM or ABRAM addresses are set.  
The CPU writes or reads character patterns starting from the one represented by the CGRAM address bits C5 to  
C0 set in the instruction code at that time.  
Note: The execution time of this instruction is 37 µs at an oscillation frequency (OSC) of 270 kHz.  
8) DDRAM Address Setting  
RS1  
1
RS0  
0
R/W  
DB7  
1
DB6  
D6  
DB5  
D5  
DB4  
D4  
DB3  
D3  
DB2  
D2  
DB1  
D1  
DB0  
D0  
0
Instruction code:  
This instruction sets the DDRAM address to the data represented by the bits D6 to D0 (binary).  
The DDRAM addresses are valid until CGRAM or ABRAM addresses are set.  
The CPU writes or reads character codes starting from the one represented by the DDRAM address bits D6 to  
D0 set in the instruction code at that time.  
In the 1-line mode (the “N” bit is “0”), the DDRAM address represented by bits D6 to D0 (binary) should be in  
the range “00” to “4F” in hexadecimal.  
In the 2-line mode (the “N” bit is “1”), the DDRAM address represented by bits D6 to D0 (binary) should be in  
the range “00” to “27” or “40” to “67” in hexadecimal.  
If an address other than above is input, the ML9042 cannot properly write a character code in or read it from the  
DDRAM.  
Note: The execution time of this instruction is 37 µs at an oscillation frequency (OSC) of 270 kHz.  
9) DDRAM/ABRAM/CGRAM Data Write  
RS1  
1
RS0  
1
R/W  
DB7  
E7  
DB6  
E6  
DB5  
E5  
DB4  
E4  
DB3  
E3  
DB2  
E2  
DB1  
E1  
DB0  
E0  
0
Instruction code:  
A character code (E7 to E0) is written to the DDRAM, Display-ON data (E7 to E0) to the ABRAM or a character  
pattern (E7 to E0) to the CGRAM.  
The DDRAM, ABRAM or CGRAM is selected at the preceding address setting.  
After data is written, the address counter (ADC) is incremented or decremented as set by the Entry Mode  
Setting instruction (see 3).  
Note: The execution time of this instruction is 37 µs at an oscillation frequency (OSC) of 270 kHz.  
35/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
10) Busy Flag/Address Counter Read (Execution time: 0 µs)  
RS1  
1
RS0  
0
R/W  
DB7  
BF  
DB6  
O6  
DB5  
O5  
DB4  
O4  
DB3  
O3  
DB2  
O2  
DB1  
O1  
DB0  
O0  
1
Instruction code:  
The “BF” bit (DB7) of this instruction tells whether the ML9042 is busy in internal operation (BF = “1”) or not  
(BF = “0”).  
When the “BF” bit is “1”, the ML9042 cannot accept any other instructions. Before inputting a new instruction,  
check that the “BF” bit is “0”.  
When the “BF” bit is “0”, the ML9042 outputs the correct value of the address counter. The value of the  
address counter is equal to the DDRAM, ABRAM or CGRAM address. Which of the DDRAM, ABRAM and  
CGRAM addresses is set in the counter is determined by the preceding address setting.  
When the “BF” bit is “1”, the value of the address counter is not always correct because it may have been  
incremented or decremented by 1 during internal operation.  
11) DDRAM/ABRAM/CGRAM Data Read  
RS1  
1
RS0  
1
R/W  
DB7  
P7  
DB6  
P6  
DB5  
P5  
DB4  
P4  
DB3  
P3  
DB2  
P2  
DB1  
P1  
DB0  
P0  
1
Instruction code:  
A character code (P7 to P0) is read from the DDRAM, Display-ON data (P7 to P0) from the ABRAM or a  
character pattern (P7 to P0) from the CGRAM.  
The DDRAM, ABRAM or CGRAM is selected at the preceding address setting.  
After data is read, the address counter (ADC) is incremented or decremented as set by the Entry Mode Setting  
instruction (see 3).  
Note: Conditions for reading correct data  
(1) The DDRAM, ABRAM or CGRAM Setting instruction is input before this data read instruction is input.  
(2) When reading a character code from the DDRAM, the Cursor/Display Shift instruction (see 5) is input  
before this Data Read instruction is input.  
(3) When two or more consecutive RAM Data Read instructions are executed, the following read data is  
correct.  
Correct data is not output under conditions other than the cases (1), (2) and (3) above.  
Note: The execution time of this instruction is 37 µs at an oscillation frequency (OSC) of 270 kHz.  
36/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Expansion Instruction Codes  
The busy status of the ML9042 is rather longer than the cycle time of the CPU, since the internal processing of the  
ML9042 starts at a timing which does not affect the display on the LCD. In the busy status (Busy Flag is “1”), the  
ML9042 executes the Busy Flag Read instruction only. Therefore, the CPU should ensure that the Busy Flag is  
“0” before sending an expansion instruction code to the ML9042.  
1) Arbitrator Display Line Set  
RS1  
0
RS0  
0
R/W  
DB7  
0
DB6  
0
DB5  
0
DB4  
0
DB3  
0
DB2  
0
DB1  
1
DB0  
AS  
0
Expansion instruction code:  
This expansion instruction code sets the Arbitrator display line. The relationship between the status of this bit  
and the common outputs is as follows:  
For display examples, refer to LCD Drive Waveforms section.  
ABE bit  
CSR bit  
duty  
1/8  
AS bit  
L
Shift direction  
COM1COM8  
COM1COM8  
COM1COM16  
COM1COM16  
COM8COM1  
COM8COM1  
COM16COM1  
COM16COM1  
COM1COM9  
COM1COM9  
COM1COM17  
COM1COM17  
COM9COM1  
COM9COM1  
COM17COM1  
COM17COM1  
Arbitrator’s common pin  
None  
L
L
L
L
1/8  
H
L
None  
L
L
1/16  
1/16  
1/8  
None  
L
L
H
L
None  
L
H
H
H
H
L
None  
L
1/8  
H
L
None  
L
1/16  
1/16  
1/9  
None  
L
H
L
None  
H
COM9  
COM1  
COM17  
COM1  
COM1  
COM9  
COM1  
COM17  
H
L
1/9  
H
L
H
L
1/17  
1/17  
1/9  
H
L
H
L
H
H
H
H
H
H
1/9  
H
L
H
1/17  
1/17  
H
H
Note:  
The execution time of this instruction is 37 µs at an oscillation frequency (OSC) of  
270 kHz.  
2) ABRAM Address Setting  
RS1  
0
RS0  
0
R/W  
DB7  
0
DB6  
1
DB5  
1
DB4  
H4  
DB3  
H3  
DB2  
H2  
DB1  
H1  
DB0  
H0  
1
Expansion instruction code:  
This instruction sets the ABRAM address to the data represented by the bits H4 to H0 (binary).  
The ABRAM addresses are valid until CGRAM or DDRAM addresses are set.  
The CPU writes or reads the Display-ON data starting from the one represented by the ABRAM address bits H4  
to H0 set in the instruction code at that time.  
When the ABRAM address represented by bits H4 to H0 (binary) is in the range “00” to “13” in hexadecimal,  
data is output to the LCD as the arbitrator.  
Note: The execution time of this instruction is 37 µs at an oscillation frequency (OSC) of 270 kHz.  
37/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Examples of Combinations of ML9042 and LCD Panel  
(1) Driving the LCD of one 20-character line under the conditions of the 1-line display mode and no arbitrator  
display  
(1/8 duty, ABE = “0”, AS = “0” or “1”, CSR = “0”, SSR = “1”)  
COM1  
Character  
COM8  
SEG100  
SEG1  
ML9042  
COM9 to COM17 output Display-OFF common signals.  
(1/8 duty, ABE = “0”, AS = “0” or “1”, CSR = “1”, SSR = “0”)  
ML9042  
SEG1  
SEG100  
COM8  
COM1  
Character  
COM9 to COM17 output Display-OFF common signals.  
38/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
(2) Driving the LCD of one 20-character line under the conditions of the 1-line display mode and the arbitrator  
display  
(1/9 duty, ABE = “1”, AS = “0”, CSR = “0”, SSH = “1”)  
COM1  
Character  
COM8  
COM9  
Arbitrator  
SEG100  
ML9042  
SEG1  
COM10 to COM17 output Display-OFF common signals.  
(1/9 duty, ABE = “1”, AS = “1”, CSR = “0”, SSR = “1”)  
COM1  
COM2  
Arbitrator  
Character  
COM9  
SEG100  
ML9042  
SEG1  
COM10 to COM17 output Display-OFF common signals.  
39/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
(1/9 duty, ABE = “1”, AS = “0”, CSR = “1”, SSR = “0”)  
ML9042  
SEG100  
SEG1  
COM9  
Character  
Arbitrator  
COM2  
COM1  
COM10 to COM17 output Display-OFF common signals.  
(1/9 duty, ABE = “1”, AS = “1”, CSR = “1”, SSR = “0”)  
ML9042  
SEG100  
SEG1  
Arbitrator  
Character  
COM9  
COM8  
COM1  
COM10 to COM17 output Display-OFF common signals.  
40/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
(3) Driving the LCD of two 20-character lines under the conditions of the 2-line display mode and no arbitrator  
display  
(1/16 duty, ABE = “0”, AS = “0” or “1”, CSR = “0”, SSR = “1”)  
COM1  
Character  
COM8  
COM9  
Character  
COM16  
SEG100  
ML9042  
SEG1  
COM17 outputs Display-OFF common signal.  
(1/16 duty, ABE = “0”, AS = “0” or “1”, CSR = “1”, SSR = “0”)  
ML9042  
SEG100  
SEG1  
COM16  
Character  
Character  
COM9  
COM8  
COM1  
COM17 outputs Display-OFF common signal.  
41/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
(4) Driving the LCD of two 20-character lines under the conditions of the 2-line display mode and the arbitrator  
display  
(1/17 duty, ABE = “1”, AS = “0”, CSR = “0”, SSR = “1”)  
COM1  
Character  
COM8  
COM9  
Character  
COM16  
COM17  
Arbitrator  
SEG100  
ML9042  
SEG1  
(1/17 duty, ABE = “1”, AS = “1”, CSR = “0”, SSR = “1”)  
COM1  
COM2  
Arbitrator  
Character  
COM9  
COM10  
COM17  
Character  
SEG100  
SEG1  
ML9042  
42/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
(1/17 duty, ABE = “1”, AS = “0”, CSR = “1”, SSR = “0”)  
ML9042  
SEG100  
SEG1  
COM17  
Character  
COM10  
COM9  
Character  
Arbitrator  
COM2  
COM1  
(1/17 duty, ABE = “1”, AS = “1”, CSR = “1”, SSR = “0”)  
ML9042  
SEG100  
SEG1  
Arbitrator  
Character  
COM17  
COM16  
COM9  
COM8  
COM1  
Character  
43/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
EXAMPLES OF VLCD GENERATION CIRCUITS  
With 1/4 bias, a voltage multiplier  
BE  
VIN  
VDD  
Reference potential  
for voltage multiplier  
VC  
VCC  
+
VOUT  
V0  
V1  
ML9042  
+
V2  
V3A  
V3B  
V4  
GND  
With 1/4 bias, no voltage multiplier  
1) Apply VDD to VOUT and V0.  
2) Apply VDD to VOUT, and apply the V0 level to V0 externally.  
BE  
VIN  
VDD  
VC  
VCC  
VOUT  
V0  
V1  
V0 level  
ML9042  
V2  
V3A  
V3B  
V4  
GND  
44/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
With 1/5 bias, a voltage multiplier  
BE  
VIN  
VDD  
Reference potential  
for voltage multiplier  
VC  
VCC  
+
VOUT  
V0  
V1  
ML9042  
+
V2  
V3A  
V3B  
V4  
GND  
With 1/5 bias, no voltage multiplier  
1) Apply VDD to VOUT and V0.  
2) Apply VDD to VOUT, and apply the V0 level to V0 externally.  
BE  
VIN  
VDD  
VC  
VCC  
VOUT  
V0  
V1  
V0 level  
ML9042  
V2  
V3A  
V3B  
V4  
GND  
45/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
LCD Drive Waveforms  
The COM and SEG waveforms (AC signal waveforms for display) vary according to the duty (1/9 and 1/17 duties).  
See 1) and 2) below.  
The relationship between the duty ratio and the frame frequency is as follows:  
Duty ratio  
1/8  
Frame Frequency  
84.4 Hz  
1/9  
75.0 Hz  
1/16  
84.4 Hz  
1/17  
79.4 Hz  
Note: At an oscillation frequency (OSC) of 270 kHz  
1) COM and SEG Waveforms on 1/9 Duty (ABE = “1”)  
CSR=“H”  
CSR=“L”  
2
1
9
8
7
6
3
7
2
8
1
9
9
1
8
2
7
3
6
4
3
7
2
8
1
9
9
1
8
2
···  
···  
···  
···  
8
9 1 2 3 4  
COM1 (CSR = “L”, AS = “L”)  
COM2 (CSR = “L”, AS = “H”)  
COM9 (CSR = “H”, AS = “L”)  
COM8 (CSR = “H”, AS = “H”)  
(first character line)  
V0  
V1  
V2, V3B  
V4  
V5  
1 frame  
COM2 (CSR = “L”, AS = “L”)  
COM3 (CSR = “L”, AS = “H”)  
COM8 (CSR = “H”, AS = “L”)  
COM7 (CSR = “H”, AS = “H”)  
(second character line)  
V0  
V1  
V2, V3B  
V4  
V5  
COM8 (CSR = “L”, AS = “L”)  
COM9 (CSR = “L”, AS = “H”)  
COM2 (CSR = “H”, AS = “L”)  
COM1 (CSR = “H”, AS = “H”)  
(eighth character line)  
V0  
V1  
V2, V3B  
V4  
V5  
COM9 (CSR = “L”, AS = “L”)  
COM1 (CSR = “L”, AS = “H”)  
COM1 (CSR = “H”, AS = “L”)  
COM9 (CSR = “H”, AS = “H”)  
(arbitrator line)  
V0  
V1  
V2, V3B  
V4  
V5  
V0  
V1  
V2, V3B  
V4  
COM10 to  
COM17  
V5  
Display  
turning-off  
waveform  
V0  
V1  
SEG  
V2, V3B  
V4  
V5  
Display  
turning-on  
waveform  
46/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
2) COM and SEG Waveforms on 1/17 Duty (ABE = “1”)  
2 1 1716 15 14 13 12 11 10 9  
8
7
6
5
2
1 17 16 15 14  
CSR=“H”  
CSR=“L”  
···  
···  
16 17 1 9 10 11 12 13  
2
3
4
5
6
7
8
16 17 1  
2 3 4  
V0  
V1  
V2  
COM1 (CSR = “L”, AS = “L”)  
COM2 (CSR = “L”, AS = “H”)  
COM17 (CSR = “H”, AS = “L”)  
COM16 (CSR = “H”, AS = “H”)  
V3A (V3B  
)
V4  
V5  
(first character line)  
1 frame  
V0  
V1  
V2  
COM2 (CSR = “L”, AS = “L”)  
COM3 (CSR = “L”, AS = “H”)  
COM16 (CSR = “H”, AS = “L”)  
COM15 (CSR = “H”, AS = “H”)  
V3A (V3B  
)
V4  
V5  
(second character line)  
V0  
V1  
V2  
COM16 (CSR = “L”, AS = “L”)  
COM17 (CSR = “L”, AS = “H”)  
COM2 (CSR = “H”, AS = “L”)  
COM1 (CSR = “H”, AS = “H”)  
V3A (V3B  
)
V4  
V5  
(sixteenth character line)  
V0  
V1  
V2  
COM17 (CSR = “L”, AS = “L”)  
COM1 (CSR = “L”, AS = “H”)  
COM1 (CSR = “H”, AS = “L”)  
COM17 (CSR = “H”, AS = “H”)  
V3A (V3B  
)
V4  
V5  
(arbitrator line)  
Display  
turning-off  
waveform  
V0  
V1  
V2  
SEG  
V3A (V3B  
)
V4  
V5  
Display  
turning-on  
waveform  
47/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Initial Setting of Instructions  
(a) Data transfer from and to the CPU using 8 bits of DB0 to DB7  
1) Turn on the power.  
2) Wait for 15 ms or more after VDD has reached 2.7 V or higher.  
3) Set “8 bits” with the Function Setting instruction.  
4) Wait for 4.1 ms or more.  
5) Set “8 bits” with the Function Setting instruction.  
6) Wait for 100 µs or more.  
7) Set “8 bits” with the Function Setting instruction.  
8) Check the Busy Flag for No Busy (or wait for 100 µs or more).  
9) Set “8 bits”, “Number of LCD lines” and “Font size” with the Function Setting instruction.  
(After this, the number of LCD lines and the font size cannot be changed.)  
10) Check the Busy Flag for No Busy.  
11) Execute the Display ON/OFF control Instruction, Display Clear Instruction, Entry Mode Setting  
instruction and Arbitrator Display Line Setting Instruction.  
12) Check the Busy Flag for No Busy.  
13) Initialization is completed.  
An example of instruction code for 3), 5) and 7)  
RS1  
1
RS0  
0
R/  
W
DB7  
0
DB6  
0
DB5  
1
DB4  
1
DB3  
DB2  
DB1  
DB0  
0
×
×
×
×
×: Don’t Care  
(b) Data transfer from and to the CPU using 4 bits of DB4 to DB7  
1) Turn on the power.  
2) Wait for 15 ms or more after VDD has reached 2.7 V or higher.  
3) Set “8 bits” with the Function Setting instruction.  
4) Wait for 4.1 ms or more.  
5) Set “8 bits” with the Function Setting instruction.  
6) Wait for 100 µs or more.  
7) Set “8 bits” with the Function Setting instruction.  
8) Check the Busy Flag for No Busy (or wait for 100 µs or longer).  
9) Set “4 bits” with the Function Setting instruction.  
10) Wait for 100 µs or longer.  
11) Set “4 bits”, “Number of LCD lines” and “Font size” with the Function Setting instruction. (After this,  
the number of LCD lines and the font size cannot be changed.)  
12) Check the Busy Flag for No Busy.  
13) Execute the Display ON/OFF control Instruction, Display Clear Instruction, Entry Mode Setting  
instruction and Arbitrator Display Line Setting Instruction.  
14) Check the Busy Flag for No Busy.  
15) Initialization is completed.  
An example of instruction code for 3), 5) and 7)  
RS1  
1
RS0  
0
R/W  
DB7  
0
DB6  
0
DB5  
1
DB4  
1
0
48/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
An example of instruction code for 9)  
RS1  
1
RS0  
0
R/W  
DB7  
0
DB6  
0
DB5  
1
DB4  
0
0
*: From 11), input data twice by the use of 4-bit data.  
*: In 13), check the Busy Flag for No Busy before executing each instruction.  
(c) Data transfer from and to the CPU using the serial I/F  
1) Turn on the power.  
2) Wait for 15 ms or more after VDD has reached 2.7 V or higher.  
3) Check the busy flag for No Busy.  
4) Set “Number of LCD lines” and “Font size” with the Function Setting Instruction. (After this, the  
number of LCD lines and the font size cannot be changed.)  
5) Check the busy flag for No Busy.  
6) Execute the Display ON/OFF control Instruction, the Display Clear Instruction, the Entry Mode  
Instruction and the Arbitrator Display Line Setting Instruction.  
7) Check the busy flag for No Busy.  
8) Initialization is completed.  
*: In 6), check the Busy Flag for No Busy before executing each instruction.  
49/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
ML9042-xx CVWA/DVWA PAD CONFIGURATION  
Pad Layout  
Chip Size:  
Chip Thickness: 625±20 µm  
Bump Size: 100 × 44 µm  
7.8 × 1.8 mm  
Y
220  
115  
114  
221  
X
233  
101  
1
100  
Pad Coordinates  
Pad  
1
Symbol  
X (µm)  
Y (µm)  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
Pad  
21  
22  
23  
24  
25  
26  
27  
28  
29  
30  
31  
32  
33  
34  
35  
36  
37  
38  
39  
40  
Symbol  
DUMMY  
E/SHTB  
E/SHTB  
DUMMY  
DUMMY  
DB0/SO  
DB0/SO  
DUMMY  
DUMMY  
DB1  
X (µm)  
-2250  
-2175  
-2100  
-2025  
-1950  
-1875  
-1800  
-1725  
-1650  
-1575  
-1500  
-1425  
-1350  
-1275  
-1200  
-1125  
-1050  
-975  
Y (µm)  
DUMMY  
OSC2  
-3750  
-3675  
-3600  
-3525  
-3450  
-3375  
-3300  
-3225  
-3150  
-3075  
-3000  
-2925  
-2850  
-2775  
-2700  
-2625  
-2550  
-2475  
-2400  
-2325  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
2
OSCR5  
OSCR3  
OSC1  
3
4
5
DUMMYGND  
T1  
6
7
T2  
8
T3  
9
ROM1S  
DUMMYVDD  
RS1  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
DB1  
DUMMY  
DUMMY  
DB2  
RS1  
RSO/CSB  
RSO/CSB  
DUMMY  
DUMMY  
RW/SI  
DB2  
DUMMY  
DUMMY  
DB3  
RW/SI  
DB3  
-900  
DUMMY  
DUMMY  
-825  
50/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Pad  
41  
42  
43  
44  
45  
46  
47  
48  
49  
50  
51  
52  
53  
54  
55  
56  
57  
58  
59  
60  
61  
62  
63  
64  
65  
66  
67  
68  
69  
70  
71  
72  
73  
74  
75  
76  
77  
78  
79  
80  
Symbol  
X (µm)  
-750  
-675  
-600  
-525  
-450  
-375  
-300  
-225  
-150  
-75  
Y (µm)  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
–750  
Pad  
81  
Symbol  
V0  
X (µm)  
2250  
2325  
2400  
2475  
2550  
2625  
2700  
2775  
2850  
2925  
3000  
3075  
3150  
3225  
3300  
3375  
3450  
3525  
3600  
3675  
3750  
3750  
3750  
3750  
3750  
3750  
3750  
3750  
3750  
3750  
3750  
3750  
3750  
3750  
3675  
3605  
3535  
3465  
3395  
3325  
Y (µm)  
-750  
-750  
-750  
-750  
-750  
-750  
-750  
-750  
-750  
-750  
-750  
-750  
-750  
-750  
-750  
-750  
-750  
-750  
-750  
-750  
-462  
-392  
-322  
-252  
-182  
-112  
-42  
DUMMY  
DB4  
V0  
82  
DB4  
V0  
83  
DUMMY  
DUMMY  
DB5  
V0  
84  
V1  
85  
V2  
86  
DB5  
V2  
87  
DUMMY  
DUMMY  
DB6  
V3A  
88  
V3A  
89  
V3B  
90  
DB6  
0
V3B  
91  
DUMMY  
DUMMY  
DB7  
75  
V4  
92  
150  
VC  
93  
225  
VC  
94  
DB7  
300  
VC  
95  
DUMMYVDD  
SP  
375  
VC  
96  
450  
VCC  
97  
GND  
GND  
GND  
GND  
GND  
GND  
BE  
525  
VCC  
98  
600  
VCC  
99  
675  
DUMMY  
DUMMY  
COM17  
COM16  
COM15  
COM14  
COM13  
COM12  
COM11  
COM10  
COM9  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
SEG100  
SEG99  
SEG98  
100  
101  
102  
103  
104  
105  
106  
107  
108  
109  
110  
111  
112  
113  
114  
115  
116  
117  
118  
119  
120  
750  
825  
900  
975  
VDD  
1050  
1125  
1200  
1275  
1350  
1425  
1500  
1575  
1650  
1725  
1800  
1875  
1950  
2025  
2100  
2175  
VDD  
VDD  
VDD  
28  
VDD  
98  
VDD  
168  
TESTIN  
TESTIN  
TESTOUT  
TESTOUT  
VIN  
238  
308  
378  
448  
750  
VIN  
750  
VOUT  
750  
VOUT  
750  
V0  
750  
V0  
750  
51/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Pad  
121  
122  
123  
124  
125  
126  
127  
128  
129  
130  
131  
132  
133  
134  
135  
136  
137  
138  
139  
140  
141  
142  
143  
144  
145  
146  
147  
148  
149  
150  
151  
152  
153  
154  
155  
156  
157  
158  
159  
160  
Symbol  
X (µm)  
3255  
3185  
3115  
3045  
2975  
2905  
2835  
2765  
2695  
2625  
2555  
2485  
2415  
2345  
2275  
2205  
2135  
2065  
1995  
1925  
1855  
1785  
1715  
1645  
1575  
1505  
1435  
1365  
1295  
1225  
1155  
1085  
1015  
945  
Y (µm)  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
Pad  
161  
162  
163  
164  
165  
166  
167  
168  
169  
170  
171  
172  
173  
174  
175  
176  
177  
178  
179  
180  
181  
182  
183  
184  
185  
186  
187  
188  
189  
190  
191  
192  
193  
194  
195  
196  
197  
198  
199  
200  
Symbol  
SEG57  
SEG56  
SEG55  
SEG54  
SEG53  
SEG52  
SEG51  
SEG50  
SEG49  
SEG48  
SEG47  
SEG46  
SEG45  
SEG44  
SEG43  
SEG42  
SEG41  
SEG40  
SEG39  
SEG38  
SEG37  
SEG36  
SEG35  
SEG34  
SEG33  
SEG32  
SEG31  
SEG30  
SEG29  
SEG28  
SEG27  
SEG26  
SEG25  
SEG24  
SEG23  
SEG22  
SEG21  
SEG20  
SEG19  
SEG18  
X (µm)  
455  
Y (µm)  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
SEG97  
SEG96  
SEG95  
SEG94  
SEG93  
SEG92  
SEG91  
SEG90  
SEG89  
SEG88  
SEG87  
SEG86  
SEG85  
SEG84  
SEG83  
SEG82  
SEG81  
SEG80  
SEG79  
SEG78  
SEG77  
SEG76  
SEG75  
SEG74  
SEG73  
SEG72  
SEG71  
SEG70  
SEG69  
SEG68  
SEG67  
SEG66  
SEG65  
SEG64  
SEG63  
SEG62  
SEG61  
SEG60  
SEG59  
SEG58  
385  
315  
245  
175  
105  
35  
-35  
-105  
-175  
-245  
-315  
-385  
-455  
-525  
-595  
-665  
-735  
-805  
-875  
-945  
-1015  
-1085  
-1155  
-1225  
-1295  
-1365  
-1435  
-1505  
-1575  
-1645  
-1715  
-1785  
-1855  
-1925  
-1995  
-2065  
-2135  
-2205  
-2275  
875  
805  
735  
665  
595  
525  
52/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
Pad  
201  
202  
203  
204  
205  
206  
207  
208  
209  
210  
211  
212  
213  
214  
215  
216  
217  
218  
219  
220  
221  
222  
223  
224  
225  
226  
227  
228  
229  
230  
231  
232  
233  
Symbol  
SEG17  
SEG16  
SEG15  
SEG14  
SEG13  
SEG12  
SEG11  
SEG10  
SEG9  
X (µm)  
-2345  
-2415  
-2485  
-2555  
-2625  
-2695  
-2765  
-2835  
-2905  
-2975  
-3045  
-3115  
-3185  
-3255  
-3325  
-3395  
-3465  
-3535  
-3605  
-3675  
-3750  
-3750  
-3750  
-3750  
-3750  
-3750  
-3750  
-3750  
-3750  
-3750  
-3750  
-3750  
-3750  
Y (µm)  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
750  
448  
378  
308  
238  
168  
98  
SEG8  
SEG7  
SEG6  
SEG5  
SEG4  
SEG3  
SEG2  
SEG1  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
DUMMY  
COM1  
COM2  
COM3  
COM4  
COM5  
COM6  
COM7  
COM8  
DUMMY  
28  
-42  
-112  
-182  
-252  
-322  
-392  
53/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
ML9042-xx CVWA/DVWA ALIGNMENT MARK SPECIFICATION  
Alignment Mark Coordinates  
Y
A
B
....................................................................................................  
:
:
:
:
(0, 0)  
X
C
....................................................................................................  
Alignment Mark  
X (µm)  
–3770  
3770  
Y (µm)  
770  
A
B
C
770  
3770  
–770  
The coordinates (X, Y) indicate the distances to the center of an alignment mark (the center of the maximum  
outline of the L shape).  
Alignment Mark Layer  
Gold bump  
Alignment Mark Gold Bump Specification  
Symbol  
Parameter  
Mark  
Size (µm)  
a
b
Alignment Mark Width  
Alignment Mark Size  
A, B, C  
A, B, C  
30  
80  
b
a
b
+
a
54/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
ML9042-xx CVWA GOLD BUMP SPECIFICATION (HIGH HARDNESS)  
Gold Bump Specification  
(Unit: µm)  
Symbol  
Parameter  
Bump Pitch (I/O Section: Pitch Direction)  
Bump Size (I/O Section: Pitch Direction)  
Bump Size (I/O Section: Depth Direction)  
Bump-to-Bump Distance (I/O Section: Pitch Direction)  
Bump Size (L-mark Section: Length)  
Bump Size (L-mark Section: Width)  
Sliding of Total Bump Pitches  
MIN  
70  
40  
96  
22  
76  
26  
TYP  
MAX  
A
B
C
D
E
F
48  
104  
30  
84  
34  
2
44  
100  
26  
80  
30  
G
Bump Height  
10  
15  
20  
4
H
Bump Height Dispersion Inside Chip (Range)  
Bump Edge Height  
I
5
J
K
Shear Strength (g)  
27  
50  
130  
Bump Hardness (Hv: 25 g load)  
90  
Wafer Thickness; 625 ±20 µm  
Chip Size; 7.80 mm × 1.80 mm  
Top View and Cross Section View  
A
B
D
[I/O Section]  
[L-Alignment Mark]  
[Cross Section View]  
55/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
ML9042-xx CVWA GOLD BUMP SPECIFICATION (LOW HARDNESS)  
Gold Bump Specification  
(Unit: µm)  
Symbol  
Parameter  
Bump Pitch (I/O Section: Pitch Direction)  
Bump Size (I/O Section: Pitch Direction)  
Bump Size (I/O Section: Depth Direction)  
Bump-to-Bump Distance (I/O Section: Pitch Direction)  
Bump Size (L-mark Section: Length)  
Bump Size (L-mark Section: Width)  
Sliding of Total Bump Pitches  
MIN  
70  
40  
96  
22  
76  
26  
TYP  
MAX  
A
B
C
D
E
F
48  
104  
30  
84  
34  
2
44  
100  
26  
80  
30  
G
Bump Height  
10  
15  
20  
4
H
Bump Height Dispersion Inside Chip (Range)  
Bump Edge Height  
I
5
J
K
Shear Strength (g)  
27  
30  
80  
Bump Hardness (Hv: 25 g load)  
Wafer Thickness; 625 ±20 µm  
Chip Size; 7.80 mm × 1.80 mm  
Top View and Cross Section View  
A
B
D
[I/O Section]  
[L-Alignment Mark]  
[Cross Section View]  
56/58  
FEDL9042-01  
OKI Semiconductor  
ML9042-xx  
REVISION HISTORY  
Page  
Document  
No.  
Date  
Description  
Previous Current  
Edition  
Edition  
PEDL9042-01  
Jun. 16, 2003  
Preliminary first edition  
5
5
Changed descriptions of Symbols VC and VCC  
Changed DC Characteristics  
Condition  
VDD = 4.5 to 5.5VVDD = 4.0 to 5.5V  
Ta = 25°CTa =- 20 to 75°C  
Spec  
8
8
Min. 175 Typ. 270 Max. 365  
Min. 200 Typ. 270 Max. 351  
Min. 175 Typ. 270 Max. 365  
Min. 200 Typ. 280 Max. 364  
Added of table  
Partially changed figure of generation circuits  
(VC+)(VCC+) and V2,V3A,V3B  
Partially changed figure of generation circuits  
(VC+)(VCC+)  
FEDL9042-01  
Nov. 19, 2003  
25  
44  
25  
44  
45  
45  
57/58  
FEDL9042-01  
OKI Semiconductor  
NOTICE  
ML9042-xx  
1. The information contained herein can change without notice owing to product and/or technical improvements.  
Before using the product, please make sure that the information being referred to is up-to-date.  
2. The outline of action and examples for application circuits described herein have been chosen as an  
explanation for the standard action and performance of the product. When planning to use the product, please  
ensure that the external conditions are reflected in the actual circuit, assembly, and program designs.  
3. When designing your product, please use our product below the specified maximum ratings and within the  
specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating  
temperature.  
4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or unexpected operation  
resulting from misuse, neglect, improper installation, repair, alteration or accident, improper handling, or  
unusual physical or electrical stress including, but not limited to, exposure to parameters beyond the specified  
maximum ratings or operation outside the specified operating range.  
5. Neither indemnity against nor license of a third party’s industrial and intellectual property right, etc. is  
granted by us in connection with the use of the product and/or the information and drawings contained herein.  
No responsibility is assumed by us for any infringement of a third party’s right which may result from the use  
thereof.  
6. The products listed in this document are intended for use in general electronics equipment for commercial  
applications (e.g., office automation, communication equipment, measurement equipment, consumer  
electronics, etc.). These products are not, unless specifically authorized by Oki, authorized for use in any  
system or application that requires special or enhanced quality and reliability characteristics nor in any  
system or application where the failure of such system or application may result in the loss or damage of  
property, or death or injury to humans.  
Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace  
equipment, nuclear power control, medical equipment, and life-support systems.  
7. Certain products in this document may need government approval before they can be exported to particular  
countries. The purchaser assumes the responsibility of determining the legality of export of these products  
and will take appropriate and necessary steps at their own expense for these.  
8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.  
Copyright 2003 Oki Electric Industry Co., Ltd.  
58/58  

相关型号:

ML9042-XXDVWA

Dot Matrix LCD Driver, 17 X 100 Dots, CMOS, DIE-233
OKI

ML9044

DOT MATRIX LCD CONTROLLER DRIVER
OKI

ML9044-51BCVWA

Dot Matrix LCD Driver, 17 X 120 Dots, CMOS, 10.62 X 2.55 MM, GOLD BUMP, DIE-175
OKI

ML9044-XXACVWA

Dot Matrix LCD Driver, 17 X 120 Dots, CMOS, 10.62 X 2.55 MM, GOLD BUMP, DIE-189
OKI

ML9044-XXBCVWA

Dot Matrix LCD Driver, 17 X 120 Dots, CMOS, 10.62 X 2.55 MM, GOLD BUMP, DIE-175
OKI

ML9044A

DOT MATRIX LCD CONTROLLER DRIVER
OKI

ML9044A-51ACVWA

Dot Matrix LCD Driver, 17 X 120 Dots, CMOS, GOLD BUMP, DIE-189
OKI

ML9044A-XXACVWA

DOT MATRIX LCD CONTROLLER DRIVER
OKI

ML9044A-XXBCVWA

DOT MATRIX LCD CONTROLLER DRIVER
OKI

ML9044CVWA

Dot Matrix LCD Driver, 17 X 120 Dots, CMOS, GOLD BUMP, DIE-189
OKI

ML9050

132-Channel LCD Driver with Built-in RAM for LCD Dot Matrix Displays
OKI

ML9051

132-Channel LCD Driver with Built-in RAM for LCD Dot Matrix Displays
OKI