MSM56V16800F-8ATS-K [OKI]

Synchronous DRAM, 2MX8, 6ns, CMOS, PDSO44, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-44;
MSM56V16800F-8ATS-K
型号: MSM56V16800F-8ATS-K
厂家: OKI ELECTRONIC COMPONETS    OKI ELECTRONIC COMPONETS
描述:

Synchronous DRAM, 2MX8, 6ns, CMOS, PDSO44, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-44

时钟 动态存储器 光电二极管 内存集成电路
文件: 总31页 (文件大小:3088K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FEDD56V16800F-01  
This version: November. 2000  
Previous version :  
1
Semiconductor  
MSM56V16800F  
2-Bank × 1,048,576-Word × 8-Bit SYNCHRONOUS DYNAMIC RAM  
DESCRIPTION  
The MSM56V16800F is a 2-Bank × 1,048,576-word × 8-bit Synchronous dynamic RAM fabricated in  
Oki’s silicon-gate CMOS technology. The device operates at 3.3V. The inputs and outputs are LVTTL  
compatible.  
FEATURES  
Silicon gate, quadruple polysilicon CMOS, 1-transistor memory cell  
2-Bank × 1,048,576-word × 8-bit configuration  
Single 3.3V power supply, ±0.3V tolerance  
Input : LVTTL compatible  
Output : LVTTL compatible  
Refresh : 4096 cycles/64ms  
Programmable data transfer mode  
- CAS Latency (1,2,3)  
- Burst Length (1,2,4,8,Full Page)  
- Data scramble (sequential, interleave)  
CBR auto-refresh, Self-refresh capability  
Packages:  
44-pin 400mil plastic TSOP (TypeII) (TSOPII44-P-400-0.80-1K)(Product : MSM56V16800F-xxTS-K)  
xx indicates speed rank.  
PRODUCT FAMILY  
Access Time (Max.)  
Max.  
Family  
Frequency  
t
t
AC3  
AC2  
MSM56V16800F-8A  
MSM56V16800F-10  
125MHz  
100MHz  
6ns  
9ns  
6ns  
9ns  
1/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
PIN CONFIGURATION (TOP VIEW)  
VCC  
1
44 VSS  
DQ1 2  
43 DQ8  
VSSQ 3  
42 VSSQ  
DQ2 4  
41 DQ7  
V
CCQ 5  
DQ3 6  
VSSQ 7  
DQ4 8  
VCCQ 9  
NC 10  
40 VCCQ  
39 DQ6  
38 VSSQ  
37 DQ5  
36 VCC  
35 NC  
34 NC  
Q
NC 11  
12  
13  
14  
15  
33 DQM  
32 CLK  
31 CKE  
30 NC  
29 A9  
28 A8  
27 A7  
26 A6  
25 A5  
WE  
CAS  
RAS  
CS  
A11 16  
A10 17  
A0 18  
A1 19  
A2 20  
A3 21  
VCC 22  
24 A4  
23 VSS  
44-Pin Plastic TSOP  
(K Type)  
Pin Name  
CLK  
Function  
System Clock  
Pin Name  
DQM  
DQi  
Function  
Data Input/ Output Musk  
Data Input/ Output  
CS  
Chip Select  
CKE  
Clock Enable  
VCC  
Power Supply (3.3V)  
Ground (0V)  
A0–A10  
A11  
Address  
VSS  
Bank Select Address  
Row Address Strobe  
Column Address Strobe  
Write Enable  
VCC  
Q
Q
Data Output Power Supply (3.3V)  
Data Output Ground (0V)  
No Connection  
RAS  
VSS  
CAS  
NC  
WE  
Note : The same power supply voltage must be provided to every V pin and V Q pin.  
CC  
CC  
The same GND voltage level must be provided to every V pin and V Q pin.  
SS  
SS  
2/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
PIN DESCRIPTION  
CLK  
Fetches all inputs at the “H” edge.  
Disables or enables device operation by asserting or deactivating all inputs except CLK, CKE,  
DQM.  
CS  
Masks system clock to deactivate the subsequent CLK operation.  
CKE  
If CKE is deactivated, system clock will be masked so that the subsequent CLK operation is  
deactivated. CKE should be asserted at least one cycle prior to a new command.  
Row & column multiplexed.  
Address  
A11  
Row address  
Column Address  
: RA0 – RA10  
: CA0 – CA8  
Slects bank to be activated during row address latch time and selects bank for precharge and  
read/write during column address latch time. A11=”L” : Bank A, A11=”H” : Bank B  
RAS  
CAS  
WE  
Functionality depends on the combination. For details, see the function truth table.  
Masks the read data of two clocks later when DQM is set “H” at the “H” edge of the clock signal.  
Masks the write data of the same clock when DQM is set “H” at the “H” edge of the clock signal.  
DQM  
DQi  
Data inputs/outputs are multiplexed on the same pin.  
3/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
BLOCK DIAGRAM  
CKE  
CLK  
Progra-  
ming  
Register  
Latency  
& Burst  
Controller  
I/O  
Controller  
CS  
RAS  
CAS  
WE  
Timing  
Register  
DQM  
Bank  
Controller  
A11  
Internal  
Col.  
Address  
Counter  
Input  
Data  
Input  
Buffers  
A0 - A11  
Register  
8
8
Column  
Address  
Buffers  
Column  
Decoders  
9
9
Sense  
Amplifiers  
DQ1  
- DQ8  
8
8
8
Read  
Data  
Output  
Buffers  
Internal  
Row  
Register  
Address  
Counter  
Row  
Decoders  
Word  
Drivers  
8Mb  
Memory  
Cells  
Row  
Address  
Buffers  
Row  
Decoders  
Word  
Drivers  
8Mb  
Memory  
Cells  
12  
12  
Sense  
Amplifiers  
Column  
Decoders  
4/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
ELECTRICAL CHARACTERISTICS  
ABSOLUTE MAXIMUM RATINGS  
(Voltages referenced to VSS  
)
Parameter  
Voltage on Any Pin Relative to VSS  
VCC Supply Voltage  
Symbol  
Value  
Unit  
V
VIN, VOUT  
–0.5 to VCC+ 0.5  
–0.5 to 4.6  
–55 to 150  
600  
VCC , VCC  
Tstg  
Q
V
Storage Temperature  
°C  
mW  
mA  
°C  
Power Dissipation  
PD*  
Short Circuit Output Current  
Operating Temperature  
IOS  
50  
Topr  
0 to 70  
*: Ta = 25°C  
RECOMMENDED OPERATIING CONDITIONS  
(Voltages referenced to VSS = 0V)  
Parameter  
Power Supply Voltage  
Input High Voltage  
Input Low Voltage  
Symbol  
VCC, VCC  
VIH  
Min.  
3.0  
Typ.  
3.3  
Max.  
3.6  
Unit  
V
Q
2.0  
VCC + 0.2  
0.8  
V
VIL  
0.3  
V
PIN CAPACITANCE  
(VBIAS = 1.4V, Ta = 25°C, f = 1 MHz)  
Parameter  
Symbol  
CCLK  
Min.  
2.5  
Max.  
4
Unit  
pF  
Input Capacitance (CLK)  
Input Capacitance  
CIN  
2.5  
4
5
pF  
pF  
(RAS, CAS, WE, CS, CKE, DQM, A0 - A11)  
Input/Output Capacitance (DQ1 - DQ8)  
COUT  
6.5  
5/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
DC CHARACTERISTICS  
MSM56V16800  
F-8A F-10  
Unit  
Note  
Condition  
CKE  
Parameter  
Symbol  
Bank  
Others  
Min.  
2.4  
Max.  
Min. Max.  
2.4  
Output High  
Voltage  
I
=
OH  
V
OH  
V
V
2.0mA  
Output Low  
Voltage  
I
=
OL  
V
OL  
I
LI  
0.4  
10  
10  
0.4  
2.0mA  
Input Leakage  
Current  
10  
10  
10  
10  
10  
10  
µA  
µA  
Output Leakage  
Current  
I
LO  
t
t
= Min.  
= Min.  
CC  
RC  
One Bank  
Active  
I
CKEVIH  
CKEVIH  
CKEVIH  
80  
115  
35  
70  
95  
30  
mA  
mA  
mA  
1,2  
1,2  
3
CC1  
No Burst  
Average Power  
Supply Current  
t
t
t
= Min.  
= Min.  
CC  
Both  
Banks  
Active  
(Operating)  
RC  
I
CC1D  
= Min.  
RRD  
No Burst  
Power Supply  
Current  
Both  
Banks  
Precharge  
I
t
t
= Min.  
= Min.  
CC2  
CC  
CC  
(Standby)  
Average Power  
Supply Current  
Both  
Banks  
Active  
I
CKEVIL  
3
3
mA  
2
CC3S  
(Clock  
Suspension)  
Average Power  
Supply Current  
One Bank  
Active  
I
I
I
I
I
CKEVIH  
CKEVIH  
CKEVIH  
CKEVIL  
CKEVIL  
t
t
= Min.  
= Min.  
40  
125  
80  
2
35  
100  
70  
2
mA  
mA  
mA  
mA  
mA  
3
1,2  
2
CC3  
CC4  
CC5  
CC6  
CC7  
CC  
CC  
(Active Standby)  
Both  
Banks  
Active  
Power Supply  
Current (Burst)  
Power Supply  
Current  
One Bank  
Active  
t
t
= Min.  
= Min.  
CC  
RC  
(Auto-Refresh)  
Average Power  
Supply Current  
Both  
Banks  
Precharge  
t
t
= Min.  
= Min.  
CC  
CC  
(Self-Refresh)  
Average Power  
Supply Current  
Both  
Banks  
2
2
Precharge  
(Power Down)  
Notes: 1. Measured with outputs open.  
2. The address and data can be changed once or left unchanged during one cycle.  
3. The address and data can be changed once or left unchanged during two cycle.  
6/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
Mode Set Address Keys  
CAS Latency  
Burst Type  
BT  
Burst Length  
A6  
0
A5  
0
A4  
0
CL  
Reserved  
1
A3  
0
A2  
0
A1  
0
A0  
0
BT = 0  
BT = 1  
Sequential  
Interleave  
1
2
4
8
1
2
4
8
0
0
1
1
0
0
1
0
1
0
2
0
1
0
0
1
1
3
0
1
1
1
0
0
Reserved  
Reserved  
Reserved  
Reserved  
1
0
0
Reserved  
Reserved  
Reserved  
Full Page  
Reserved  
Reserved  
Reserved  
Reserved  
1
0
1
1
0
1
1
1
0
1
1
0
1
1
1
1
1
1
Notes: A7, A8, A9, A10 and A11 should stay “L” during mode set cycle.  
MSM56V16800F support two methods of Power on Sequence.  
POWER ON SEQUENCE 1  
1. With inputs in NOP state, turn on the power supply and start the system clock.  
2. After the V voltage has reached the specified level, pause for 200µs or more with the input kept in  
CC  
NOP state.  
3. Issue the precharge all bank command.  
4. Apply a CBR auto-refresh eight or more times.  
5. Enter the mode register setting command.  
POWER ON SEQUENCE 2  
1. With inputs in NOP state, turn on the power supply and start the system clock.  
2. After the V voltage has reached the specified level, pause for 200µs or more with the input kept in  
CC  
NOP state.  
3. Issue the precharge all bank command.  
4. Enter the mode register setting command.  
5. Apply a CBR auto-refresh eight or more times.  
7/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
AC CHARACTERISTICS (1/2)  
Note1,2  
MSM56V16800  
F-8A  
MSM56V16800  
F-10  
Parameter  
CL = 3  
Symbol  
Unit Note  
Min.  
8
Max.  
Min.  
10  
Max.  
t
t
t
t
t
t
ns  
ns  
ns  
CC3  
CC2  
CC1  
AC3  
AC2  
AC1  
Clock Cycle Time  
CL = 2  
CL = 1  
CL = 3  
CL = 2  
CL = 1  
10  
20  
15  
30  
6
6
9
9
ns  
ns  
ns  
ns  
ns  
ns  
ns  
3,4  
3,4  
3,4  
4
Access Time from  
Clock  
16  
27  
Clock High Pulse Time  
Clock Low Pulse Time  
Input Setup Time  
t
3
3
2
1
3
3
3
1
CH  
t
4
CL  
t
SI  
HI  
Input Hold Time  
t
Output Low Impedance Time  
from Clock  
t
3
3
ns  
ns  
OLZ  
OHZ  
Output High Impedance Time  
from Clock  
t
8
8
Output Hold from Clock  
Random Read or Write Cycle Time  
RAS Precharge Time  
t
3
3
ns  
ns  
ns  
ns  
ns  
ns  
3
OH  
t
70  
20  
48  
20  
8
90  
30  
60  
30  
15  
RC  
t
RP  
RAS Pulse Width  
t
t
100,000  
100,000  
RAS  
RAS to CAS Delay Time  
Write Recovery Time  
RCD  
t
WR  
RAS to CAS Bank Active Delay  
t
20  
20  
ns  
ms  
ns  
RRD  
Time  
Refresh Time  
t
64  
3
64  
3
REF  
RDE  
Power-down Exit setup Time  
t
t
+1CLK  
t
+1CLK  
SI  
SI  
Input Level Transition Time  
CAS to CAS Delay Time (Min.)  
Clock Disable Time from CKE  
t
ns  
T
t
1
1
1
1
Cycle  
Cycle  
CCD  
t
CKE  
DOZ  
DOD  
Data Output High Impedance Time  
from DQM  
t
2
0
2
0
Cycle  
Cycle  
Dada Input Mask Time from DQM  
t
8/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
AC CHARACTERISTICS (2/2)  
Note1,2  
MSM56V16800  
F-8A  
MSM56V16800  
F-10  
Parameter  
Symbol  
Unit Note  
Min.  
Max.  
Min.  
Max.  
Data Input Mask Time from Write  
Command  
t
0
0
Cycle  
Cycle  
DWD  
Data Output High Impedance Time  
from Precharge Command  
t
CL  
CL  
ROH  
MRD  
OWD  
Active Command Input Time from  
Mode Register Set Command Input  
(Min.)  
t
2
2
2
2
Cycle  
Cycle  
Write Command Input Time from  
Outpput  
t
Notes: 1. AC measurements assume that tT = 1ns.  
2. The reference level for timing of input signals is 1.4V.  
3. Output load.  
Z=50Ω  
Output  
50pF (External Load)  
4. The access time is defined at 1.4V.  
5. If tT is longer than 1ns, then the reference level for timing of input signals is VIH and VIL.  
9/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
TIMING CHART  
Read & Write Cycle (Same Bank) @CAS Latency=2, Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
CLK  
tRC  
CKE  
CS  
tRP  
RAS  
CAS  
ADDR  
A11  
A10  
DQ  
tRCD  
Ra  
Ca0  
Rb  
Rb  
Cb0  
Ra  
tOH  
Qa0 Qa1 Qa2 Qa3  
Db0 Db1 Db2 Db3  
tWR  
tAC  
tOHZ  
WE  
DQM  
Row Active  
Read Command  
Row Active  
Precharge Command  
Write Command  
Precharge Command  
10/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
Single Bit Read-Write-Read Cycle (Same Page) @CAS Latency=2, Burst Length=4  
tCH  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
CLK  
CKE  
tCC  
tCL  
High  
CS  
tHI  
tSI  
RAS  
CAS  
ADDR  
A11  
A10  
DQ  
ICCD  
tSI  
tHI  
tSI  
tSI  
tSI  
Ra  
Ca  
Cb  
Cc  
tHI  
tHI  
BS  
BS  
BS  
Db  
BS  
BS  
Ra  
tHI  
tOHZ  
tAC  
Qa  
Qc  
tOLZ  
tSI  
tOH  
tHI  
lOWD  
WE  
tSI  
DQM  
Row Active  
Read Command  
Write Command  
Precharge Command  
Read Command  
11/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
*Note: 1. When CS is set “High” at a clock transition from “Low” to “High”, all inputs except CKE and DQM  
are invalid.  
2. When issuing an active, read or write command, the bank is selected by A11.  
A11  
0
Active, read or write  
Bank A  
1
Bank B  
3. The auto precharge function is enabled or disabled by the A10 input when the read or write command  
is issued.  
A10  
0
A11  
0
Operation  
After the end of burst, bank A holds the idle status.  
After the end of burst, bank A is precharged automatically.  
After the end of burst, bank B holds the idle status.  
After the end of burst, bank B is precharged automatically.  
1
0
0
1
1
1
4. When issuing a precharge command, the bank to be precharged is selected by the A10 and A11 inputs.  
A10  
0
A11  
0
Operation  
Bank A is precharged.  
0
1
Bank B is precharged.  
1
X
Both banks A and B are precharged.  
5. The input data and the write command are latched by the same clock (Write latency=0).  
6. The output is forced to high impedance by (1CLK+ tOHZ ) after DQM entry.  
12/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
Page Read & Write Cycle (Same Bank) @CAS Latency=2, Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
CLK  
High  
CKE  
CS  
Bank A Active  
RAS  
CAS  
ADDR  
A11  
A10  
DQ  
ICCD  
Ca0  
Cb0  
Cc0  
Cd0  
Qa0 Qa1 Qb0 Qb1  
Dc0 Dc1 Dd0  
lOWD  
tWR  
Note 2  
WE  
Note 1  
DQM  
Read Command  
Read Command  
Write Command  
Precharge Command  
Write Command  
*Note: 1. To write data before a burst read ends, DQM should be asserted three cycles prior to the write  
command to avoid bus contention.  
2. To assert row precharge before a burst write ends, wait tWR after the last write data input.  
Input data during the precharge input cycle will be masked internally.  
13/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
Read & Write Cycle with Auto Precharge @ Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
CLK  
CKE  
High  
CS  
RAS  
CAS  
ADDR  
A11  
A10  
tRRD  
Ra  
Ra  
Rb Ca  
Cb  
Rb  
WE  
CAS Latency=1  
DQ  
Qa0 Qa1 Qa2 Qa3  
Db0 Db1 Db2 Db3  
A-Bank Precharge Start  
DQM  
CAS Latency=2  
DQ  
Qa0 Qa1 Qa2 Qa3  
Db0 Db1 Db2 Db3  
A-Bank Precharge Start  
DQM  
CAS Latency=3  
DQ  
Qa0 Qa1 Qa2 Qa3  
Db0 Db1 Db2 Db3  
tWR  
A-Bank Precharge Start  
DQM  
Row Active  
(A-Bank)  
Row Active  
(B-Bank)  
B Bank Write with  
Auto Precharge  
B Bank Precharge  
Start Point  
A Bank Read with  
Auto Precharge  
14/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
Bank Interleave Random Row Read Cycle @CAS Latency=2, Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
CLK  
CKE  
High  
CS  
tRC  
RAS  
CAS  
ADDR  
A11  
A10  
DQ  
tRRD  
RAa  
CAa  
RBb  
CBb  
RAc  
CAc  
RAa  
RBb  
RAc  
QAa0 QAa1 QAa2 QAa3  
QBb1 QBb2 QBb3 QBb4  
QAc0 QAc1 QAc2 QAc3  
WE  
DQM  
Row Active  
(A-Bank)  
Read Command  
(B-Bank)  
Read Command  
(A-Bank)  
Row Active  
(B-Bank)  
Read Command  
(A-Bank)  
Row Active  
(A-Bank)  
Precharge Command  
(A-Bank)  
Precharge Command  
(B-Bank)  
15/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
Bank Interleave Random Row Write Cycle @CAS Latency=2, Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
CLK  
CKE  
High  
CS  
RAS  
CAS  
ADDR  
A11  
A10  
DQ  
RAa  
CAa  
RBb  
CBb  
RAc  
CAc  
RAa  
RBb  
RAc  
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3  
DAc0 DAc1  
WE  
DQM  
Row Active  
(A-Bank)  
Row Active  
(B-Bank)  
Precharge Command  
(A-Bank)  
Write Command  
(A-Bank)  
Precharge Command  
(A-Bank)  
Write Command  
(A-Bank)  
Precharge Command  
(B-Bank)  
Write Command  
(B-Bank)  
Row Active  
(A-Bank)  
16/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
Bank Interleave Page Read Cycle @CAS Latency=2, Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
CLK  
CKE  
High  
Note 1  
CS  
RAS  
CAS  
ADDR  
A11  
RAa  
CAa  
RBb  
CBb  
CAc  
CBd  
CAe  
A10  
RAa  
RBb  
DQ  
QAa0 QAa1 QAa2 QAa3 QBb0 QBb1 QBb2 QBb3 QAc0 QAc1 QBd0 QBd1 QAe0 QAe1  
IROH  
WE  
DQM  
Row Active  
(A-Bank)  
Row Active  
(B-Bank)  
Read Command  
(B-Bank)  
Precharge Command  
(A-Bank)  
Read Command  
(A-Bank)  
Read Command  
(B-Bank)  
Read Command  
(A-Bank)  
Read Command  
(A-Bank)  
*Note: 1. CS is ignored when RAS, CAS and WE are high at the same cycle.  
17/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
Bank Interleave Page Write Cycle @CAS Latency=2, Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
CLK  
High  
CKE  
CS  
RAS  
CAS  
ADDR  
A11  
A10  
DQ  
RAa  
CAa  
RBb  
CBb  
CAc  
CBd  
RAa  
RBb  
DAa0 DAa1 DAa2 DAa3 DBb0 DBb1 DBb2 DBb3 DAc0 DAc1 DBd0  
WE  
DQM  
Row Active  
(A-Bank)  
Row Active  
(B-Bank)  
Write Command  
(B-Bank)  
Precharge Command  
(Both Bank)  
Write Command  
(B-Bank)  
Write Command  
(A-Bank)  
Write Command  
(A-Bank)  
18/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
Bank Interleave Random Row Read/Write Cycle @CAS Latency=2, Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
CLK  
CKE  
High  
CS  
RAS  
CAS  
ADDR  
A11  
A10  
DQ  
RAa  
CAa  
RBb  
CBb  
RAc  
CAc  
RAa  
RBb  
RAc  
QAa0 QAa1 QAa2 QAa3  
QBb0 QBb1 QBb2 QBb3  
QAc0 QAc1 QAc2 QAc3  
WE  
DQM  
Row Active  
(A-Bank)  
Row Active  
(B-Bank)  
Write Command  
(B-Bank)  
Read Command  
(A-Bank)  
Read Command  
(A-Bank)  
Precharge Command  
(A-Bank)  
Row Active  
(A-Bank)  
19/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
Bank Interleave Page Read/Write Cycle @CAS Latency=2, Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
CLK  
CKE  
High  
CS  
RAS  
CAS  
ADDR  
A11  
A10  
DQ  
CAa0  
CBb0  
CAc0  
QAa0 QAa1 QAa2 QAa3  
DBb0 DBb1 DBb2 DBb3  
QAc0 QAc1 QAc2 QAc3  
WE  
DQM  
Read Command  
(A-Bank)  
Write Command  
(B-Bank)  
Read Command  
(A-Bank)  
20/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
Clock Suspension & DQM Operation Cycle @CAS Latency=2, Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
CLK  
CKE  
Note 1  
Note 1  
CS  
RAS  
CAS  
ADDR  
A11  
A10  
DQ  
Ra  
Ca  
Cb  
Cc  
Ra  
Qa0 Qa1  
Qa2  
Qb0 Qb1  
Dc0  
Dc2  
tOHZ  
tOHZ  
Note 3  
Note 2  
WE  
DQM  
CLOCK  
Suspension  
Read Command  
Write  
DQM  
Write DQM  
Read DQM  
Row Active  
Read Command  
Write  
CLOCK Suspension  
Read DQM  
Command  
*Note: 1. When Clock Suspension is asserted, the next clock cycle is ignored.  
2. When DQM are asserted, the read data after two clock cycles is masked.  
3. When DQM are asserted, the write data in the same clock cycle is masked.  
21/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
Read to Write Cycle (Same Bank) @CAS Latency=2, Burst Length=4  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
CLK  
CKE  
CS  
Note 1  
RAS  
CAS  
ADDR  
A11  
A10  
DQ  
tRCD  
Ra  
Ra  
Ca0  
Cb0  
Da0  
Db0 Db1 Db2 Db3  
tWR  
WE  
DQM  
Precharge Command  
Row Active  
Read Command  
Write Command  
*Note: 1. In Case CAS latency is 3, READ can be interrupted by WRITE.  
The minimum command interval is [burst length + 1] cycles.  
DQM must be high at least 3 clocks prior to the write command.  
22/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
Read Interruption by Precharge Command @Burst Length=8  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
CLK  
CKE  
High  
CS  
RAS  
CAS  
ADDR  
A11  
A10  
Ra  
Ra  
Ca  
WE  
Note 1  
CAS Latency=1  
DQ  
Qa0  
Qa4 Qa5  
Qa1 Qa2 Qa3  
lROH  
DQM  
CAS Latency=2  
Note 1  
DQ  
Qa0 Qa1 Qa2 Qa3 Qa4 Qa5  
lROH  
DQM  
Note 1  
CAS Latency=3  
DQ  
Qa3 Qa4 Qa5  
Qa0 Qa1 Qa2  
lROH  
DQM  
Row Active  
Read Command  
Precharge Command  
*Note: 1. if row precharge is asserted before a burst read ends, then the read data will not output after l  
ROH  
equals CAS latency.  
23/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
Burst Stop Command @Burst Length=8  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
CLK  
CKE  
High  
CS  
RAS  
CAS  
ADDR  
A11  
A10  
Ca  
Cb  
WE  
CAS Latency=1  
DQ  
Qa0 Qa1 Qa2 Qa3 Qa4  
Qb0 Qb1 Qb2 Qb3 Qb4  
Qb0 Qb1 Qb2 Qb3 Qb4  
Qb0 Qb1 Qb2 Qb3 Qb4  
DQM  
CAS Latency=2  
DQ  
Qa0 Qa1 Qa2 Qa3 Qa4  
DQM  
CAS Latency=3  
DQ  
Qa0 Qa1 Qa2 Qa3 Qa4  
DQM  
Read Command  
Burst Stop Command  
Write Command  
Burst Stop Command  
24/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
Power Down Mode @CAS Latency=2, Burst Length=4  
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15 16 17 18 19  
tSI  
0
CLK  
CKE  
Note 2  
tPDE  
tSI  
tSI  
Note 1  
t
REF (min.)  
CS  
RAS  
CAS  
ADDR  
A11  
A10  
Ra  
Ca  
Ra  
DQ  
Qa0 Qa1 Qa2  
WE  
DQM  
Power-down  
Entry  
Read Command  
Row  
Active  
Power-down  
Exit  
Clock  
Suspension  
Entry  
Clock  
Suspension Exit  
Precharge Command  
*Note: 1. When both banks are in precharge state, and if CKE is set low, then the MSM56V16800F enters  
power-down mode and maintains the mode while CKE is low.  
2. To release the circuit from power-down mode, CKE has to be set high for longer than tPDE (tSI + 1CLK).  
25/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
Self Refresh Cycle  
0
1
2
CLK  
CKE  
tRC  
tSI  
CS  
RAS  
CAS  
ADDR  
A11  
A10  
Ra  
BS  
Ra  
Hi-Z  
DQ  
WE  
DQM  
Self Refresh Entry  
Self Refresh Exit  
Row Active  
26/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
Mode Register Set Cycle  
Auto Refresh Cycle  
0
1
2
3
4
5
6
0
1
2
3
4
5
6
7
8
9
10 11  
CLK  
CKE  
High  
High  
CS  
lMRD  
tRC  
RAS  
CAS  
ADDR  
DQ  
Key  
Ra  
Hi - Z  
Hi - Z  
WE  
DQM  
MRS  
New Command  
Auto Refresh  
Auto Refresh  
27/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
FUNCTION TRUTH TABLE (Table 1) (1/2)  
Current  
BA  
ADDR  
Action  
CS RAS CAS WE  
State1  
Idle  
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
X
H
H
H
L
X
H
H
L
X
H
L
X
X
X
X
NOP  
NOP  
2
2
BA  
BA  
BA  
BA  
X
X
ILLEGAL  
ILLEGAL  
X
H
L
CA  
RA  
A10  
X
H
H
L
Row Active  
4
L
NOP  
5
L
H
L
Auto-Refresh or Self-Refresh  
L
L
L
OP Code Mode Register Write  
X
H
H
H
L
X
H
L
X
X
H
L
X
X
X
NOP  
NOP  
Row Active  
X
BA  
BA  
BA  
BA  
X
CA, A10 Read  
CA, A10 Write  
L
2
H
H
L
H
L
RA  
ILLEGAL  
L
A10  
Precharge  
ILLEGAL  
L
X
X
H
L
X
X
H
H
H
H
L
X
H
H
L
X
X
NOP (Continue Row Active after Burst ends)  
NOP (Continue Row Active after Burst ends)  
Term Burst --> Row Active  
Read  
X
X
X
X
3
H
L
BA  
BA  
BA  
BA  
X
CA, A10  
Term Burst, start new Burst Read  
3
L
CA, A10  
Term Burst, start new Burst Write  
2
H
H
L
H
L
RA  
ILLEGAL  
L
A10  
Term Burst, execute Row Precharge  
ILLEGAL  
L
X
X
H
L
X
X
H
H
H
H
L
X
H
H
L
X
X
NOP (Continue Row Active after Burst ends)  
NOP (Continue Row Active after Burst ends)  
Term Burst --> Row Active  
Write  
X
X
X
X
3
H
L
BA  
BA  
BA  
BA  
X
CA, A10  
Term Burst, start new Burst Read  
3
L
CA, A10  
Term Burst, start new Burst Write  
2
H
H
L
H
L
RA  
ILLEGAL  
3
L
A10  
Term Burst, execute Row Precharge  
L
X
X
H
L
X
ILLEGAL  
X
H
H
H
H
L
X
H
H
L
X
X
NOP (Continue Burst to End and enter Row Precharge)  
NOP (Continue Burst to End and enter Row Precharge)  
Read with  
Auto  
Precharge  
X
X
2
BA  
BA  
X
X
ILLEGAL  
2
H
L
CA, A10  
ILLEGAL  
L
X
ILLEGAL  
2
H
L
X
X
X
H
L
BA  
X
RA, A10  
ILLEGAL  
L
X
ILLEGAL  
X
H
H
H
X
H
H
L
X
X
NOP (Continue Burst to End and enter Row Precharge)  
NOP (Continue Burst to End and enter Row Precharge)  
Write with  
Auto  
Precharge  
X
X
X
2
BA  
BA  
ILLEGAL  
2
H
CA, A10  
ILLEGAL  
28/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
FUNCTION TRUTH TABLE (Table 2) (2/2)  
Current  
BA  
ADDR  
Action  
CS RAS CAS WE  
State1  
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
L
L
H
L
L
L
L
H
L
L
L
L
H
L
L
H
L
L
X
X
X
H
L
X
BA  
X
X
RA, A10  
X
ILLEGAL  
Write with  
Auto  
Precharge  
2
ILLEGAL  
ILLEGAL  
L
NOP --> Idle after t  
NOP --> Idle after t  
X
H
H
H
L
X
H
H
L
X
X
Precharge  
RP  
RP  
X
X
2
BA  
BA  
BA  
BA  
X
X
ILLEGAL  
2
X
H
L
CA  
RA  
A10  
X
ILLEGAL  
2
H
H
L
ILLEGAL  
4
L
NOP  
L
X
X
H
L
ILLEGAL  
NOP  
X
H
H
H
L
X
H
H
L
X
X
Write  
Recovery  
X
X
NOP  
2
BA  
BA  
BA  
BA  
X
X
ILLEGAL  
2
X
H
L
CA  
RA  
A10  
X
ILLEGAL  
2
H
H
L
ILLEGAL  
2
L
ILLEGAL  
L
X
X
H
L
ILLEGAL  
NOP --> Row Active after t  
NOP --> Row Active after t  
X
H
H
H
L
X
H
H
L
X
X
Row Active  
RCD  
RCD  
X
X
2
BA  
BA  
BA  
BA  
X
X
ILLEGAL  
2
X
H
L
CA  
RA  
A10  
X
ILLEGAL  
2
H
H
L
ILLEGAL  
2
L
ILLEGAL  
L
X
X
X
X
X
X
X
H
L
ILLEGAL  
NOP --> Idle after t  
RC  
NOP --> Idle after t  
RC  
X
H
H
L
X
H
L
X
X
Refresh  
X
X
X
X
ILLEGAL  
ILLEGAL  
ILLEGAL  
NOP  
H
L
X
X
L
X
X
X
H
H
H
L
X
H
H
L
X
X
Mode  
Register  
Access  
X
X
NOP  
X
X
ILLEGAL  
ILLEGAL  
ILLEGAL  
X
X
X
X
X
X
X
ABBREVIATIONS  
RA = Row Address BA = Bank Address NOP = No OPeration command  
CA = Column Address AP = Auto Precharge  
Notes :1. All inputs are enabled when CKE is set high for at least 1 cycle prior to the inputs.  
2. Illegal to bank in specified state, but may be legal in some cases depending on the state of bank  
selection.  
3. Satisfy the timing of lCCD and tWR to prevent bus contention.  
4. NOP to bank precharging or in idle state. Precharges activated bank by BA or A10.  
5. Illegal if any bank is not idle.  
29/31  
FEDD56V16800F-01  
1
Semiconductor  
MSM56V16800F  
FUNCTION TRUTH TABLE for CKE (Table 2)  
Current State (n) CKEn-1 CKEn  
ADDR Action  
INVALID  
Exit Self Refresh --> ABI  
CS RAS CAS WE  
H
L
X
H
H
H
H
H
L
X
H
L
X
X
H
H
H
L
X
X
H
H
L
X
X
H
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
Self Refresh  
L
Exit Self Refresh --> ABI  
ILLEGAL  
L
L
L
L
X
X
X
X
X
H
L
ILLEGAL  
L
L
X
X
X
X
H
H
L
ILLEGAL  
L
X
X
H
L
X
X
X
H
H
H
L
NOP (Maintain Self Refresh)  
INVALID  
H
L
X
H
H
H
H
H
L
Power Down  
Exit Power Down --> ABI  
Exit Power Down --> ABI  
ILLEGAL  
L
L
L
L
L
X
X
X
X
X
H
L
ILLEGAL  
ILLEGAL 6  
L
L
X
X
X
X
H
H
L
L
X
X
H
L
X
X
X
H
H
H
L
NOP (Continue power down mode)  
Refer to Table 1  
Enter Power Down  
Enter Power Down  
ILLEGAL  
All Banks Idle 6  
(ABI)  
H
H
H
H
H
H
H
H
L
H
L
L
L
L
L
L
X
L
ILLEGAL  
L
L
H
L
ILLEGAL  
L
L
L
H
L
Enter Self Refresh  
ILLEGAL  
L
L
L
L
L
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
X
NOP  
H
H
L
H
L
Refer to Operations in Table 1  
Begin Clock Suspend Next Cycle  
Enable Clock of Next Cycle  
Continue Clock Suspension  
Any State Other  
than Listed  
Above  
H
L
L
*Notes :6. Power-down and self-refresh can be entered only when all the banks are in an idle state.  
30/31  
FEDD56V16800F-01  
MSM56V16800F  
1
Semiconductor  
NOTICE  
1. The information contained herein can change without notice owing to product and/or technical improvements.  
Before using the product, please make sure that the information being referred to is up-to-date.  
2. The outline of action and examples for application circuits described herein have been chosen as an explanation  
for the standard action and performance of the product. When planning to use the product, please ensure that  
the external conditions are reflected in the actual circuit, assembly, and program designs.  
3. When designing your product, please use our product below the specified maximum ratings and within the  
specified operating ranges including, but not limited to, operating voltage, power dissipation, and operating  
temperature.  
4. Oki assumes no responsibility or liability whatsoever for any failure or unusual or  
unexpected operation resulting from misuse, neglect, improper installation, repair, alteration  
or accident, improper handling, or unusual physical or electrical stress including, but not  
limited to, exposure to parameters beyond the specified maximum ratings or operation  
outside the specified operating range.  
5. Neither indemnity against nor license of a third party’s industrial and intellectual property right, etc. is granted  
by us in connection with the use of the product and/or the information and drawings contained herein. No  
responsibility is assumed by us for any infringement of a third party’s right which may result from the use  
thereof.  
6. The products listed in this document are intended for use in general electronics equipment for commercial  
applications (e.g., office automation, communication equipment, measurement equipment, consumer  
electronics, etc.). These products are not authorized for use in any system or application that requires special or  
enhanced quality and reliability characteristics nor in any system or application where the failure of such  
system or application may result in the loss or damage of property, or death or injury to humans.  
Such applications include, but are not limited to, traffic and automotive equipment, safety devices, aerospace  
equipment, nuclear power control, medical equipment, and life-support systems.  
7. Certain products in this document may need government approval before they can be exported to particular  
countries. The purchaser assumes the responsibility of determining the legality of export of these products and  
will take appropriate and necessary steps at their own expense for these.  
8. No part of the contents contained herein may be reprinted or reproduced without our prior permission.  
Copyright 2001 Oki Electric Industry Co., Ltd.  
31/31  

相关型号:

MSM56V16800F-8TS-K

Synchronous DRAM, 2MX8, 6ns, CMOS, PDSO44, 0.400 INCH, 0.80 MM PITCH, PLASTIC, TSOP2-44
OKI

MSM5718B70

18-Megabit RDRAM (2M x 9)
OKI

MSM5718B70-50GS-K

Rambus DRAM, 2MX9, CMOS, PDSO36, 11 X 25 MM, 0.65 MM PITCH, PLASTIC, SHP-32/36
OKI

MSM5718B70-53GS-K

Rambus DRAM, 2MX9, CMOS, PDSO36, 11 X 25 MM, 0.65 MM PITCH, PLASTIC, SHP-32/36
OKI

MSM5718B70-60GS-K

Rambus DRAM, 2MX9, CMOS, PDSO36, 11 X 25 MM, 0.65 MM PITCH, PLASTIC, SHP-32/36
OKI

MSM5718C50

18Mb (2M x 9) & 64Mb (8M x 8) Concurrent RDRAM
OKI

MSM5718C50-53GS-K

Rambus DRAM, 2MX9, CMOS, PDSO36, 11 X 25 MM, 0.65 MM PITCH, PLASTIC, SHP-32/36
OKI

MSM58292

5-DIGIT STATIC LCD DRIVER
OKI

MSM58292B

5-DIGIT STATIC LCD DRIVER
OKI

MSM58292BGS-K

Liquid Crystal Driver, 7-Segment, CMOS, PQFP56, 9 X 10 MM, PLASTIC, QFP-56
OKI

MSM5832

MICROPROCESSOR REAL-TIME CLOCK/CALENDAR
OKI

MSM58321

REAL TIME CLOCK/CALENDAR
OKI