MSM6242B [OKI]

DIRECT BUS CONNECTED CMOS REAL TIME CLOCK/CALENDAR; 直通巴士连接的CMOS实时时钟/日历
MSM6242B
型号: MSM6242B
厂家: OKI ELECTRONIC COMPONETS    OKI ELECTRONIC COMPONETS
描述:

DIRECT BUS CONNECTED CMOS REAL TIME CLOCK/CALENDAR
直通巴士连接的CMOS实时时钟/日历

时钟
文件: 总18页 (文件大小:177K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
¡ Semiconductor  
MSM6242B  
DIRECT BUS CONNECTED CMOS REAL TIME CLOCK/CALENDAR  
DESCRIPTION  
The MSM6242B is a silicon gate CMOS Real  
Time Clock/Calendar for use in direct bus-  
connection Microprocessor/Microcomputer  
applications. An on-chip 32.768 KHz crystal  
oscillator time base is divided to provide ad-  
dressable 4-bit I/O data for SECONDS,  
MINUTES, HOURS, DAY OF WEEK, DATE,  
MONTHandYEAR. Dataaccessiscontrolled  
by 4-bit address, chip selects (CSO, CS1),  
WRITE, READ, and ALE. Control Registers  
D, E and F provide for 30 SECOND error  
adjustment, INTERRUPT REQUEST (IRQ  
FLAG) and BUSY status bits, clock STOP,  
HOLD, and RESET FLAG bits, 4 selectable  
INTERRUPTS rates are available at the STD.P  
(STANDARD PULSE) output utilizing Con-  
trol Register inputs T0, T1 and the ITRPT/  
STND (INTERRUPT/STANDARD). Mask-  
ing of the interrupt output (STD.P) can be  
accomplished via the MASK bit. The  
MSM6242B can operate in a 12/24 hour for-  
mat and Leap Year timing is automatic.  
The MSM6242B normally operates from a 5V  
±10% supply at –40 to 85°C. Battery backup  
operation down to 2.0V allows continuation  
of time keeping when main power is off. The  
MSM6242B is offered in a 18-pin plastic DIP  
and a 24-pin plastic Small Outline package.  
FEATURES  
DIRECT MICROPROCESSOR/MICROCONTROLLER BUS CONNECTION  
TIME  
MONTH  
12  
DATE  
31  
YEAR  
80  
DAY OF WEEK  
7
23:59:59  
4-bit data bus  
4-bit address bus  
READ, WRITE, ALE and CHIP SELECT  
INPUTS  
Status registers – IRQ and BUSY  
Selectable interrupt outputs – 1/64  
second, 1 second, 1 minute, 1 hour  
Interrupt masking  
12/24 hour format  
Auto leap year  
±30 second error correction  
Single 5V supply  
Battery backup down to VDD = 2.0V  
Low power dissipation:  
20µW max at VDD = 2V  
150µW max at VDD = 5V  
18 pin Plastic DIP (DIP18-P-300)  
24 Pin-V Plastic SOP (SOP24-P-430-VK)  
32.768 KHz crystal controlled operation  
23  
MSM6242B  
¡ Semiconductor  
FUNCTIONAL BLOCK DIAGRAM  
XT  
1 Hz  
30 ADJ HOLD  
32.768KHz  
OSC  
COUNTER  
XT  
BUSY  
bit  
RESET STOP  
bit  
bit  
bit  
bit  
30 sec  
24/12bit  
H1 H10  
ADJ bit  
S10  
D3  
D2  
D1  
D0  
S1  
D1  
W
MI1 MI10  
MO1MO10  
CE  
WR  
RD  
D10  
Y1 Y10  
A3  
A2  
A1  
A0  
STDP  
64Hz  
S1  
S
CF  
1-sec carry  
1-min carry  
1-hour carry  
CD  
CF  
CS0  
ALE  
CS1  
S1~W~Y10 are time counter register  
C0~CF are control register  
PIN CONFIGURATION  
Address input  
A0-A3:  
D0-D3:  
CSO , CS1:  
RD:  
WR:  
ALE:  
1
2
3
4
5
6
7
8
9
STD.P  
CS0  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
14  
13  
VDD  
XT  
XT  
NC  
CS1  
D0  
NC  
NC  
D1  
STD.P  
1
2
3
4
5
6
7
8
9
18 VDD  
Data input/output  
CHIP SELECTS 0,1  
READ enable  
CS0  
17  
XT  
NC  
16  
15  
14  
13  
ALE  
A0  
XT  
CS1  
D0  
ALE  
A0  
NC  
A1  
NC  
A2  
A3  
WRITE enable  
Address latch enable  
Standard pulse output  
XTAL oscillator input/output  
+5V supply  
A1  
STD.P:  
XT, XT:  
VDD:  
A2  
D1  
A3  
12 D2  
11 D3  
10 WR  
VSS:  
ground  
D2  
D3  
WR  
10  
11  
12  
RD  
GND  
RD  
GND  
18 pin Plastic DIP  
24 pin Plastic Small Outline  
Package  
24  
¡ Semiconductor  
MSM6242B  
REGISTER TABLE  
Address Input  
Address  
Data  
D1  
Count  
value  
Register  
Name  
Description  
Input  
A3 A2  
A1 A0  
D3  
S8  
*
D2  
S4  
D0  
S1  
1-second digit register  
10-second digit register  
1-minute digit register  
10-minute digit register  
1-hour digit register  
S1  
S10  
MI1  
MI10  
H1  
S2  
S20  
mi2  
mi20  
h2  
0
0
0
0
0
0
0
0
0
1
0
0
1
1
0
0
1
0
1
0
0 to 9  
0 to 5  
0 to 9  
0 to 5  
0 to 9  
0
1
2
3
4
S40  
mi4  
mi40  
h4  
S10  
mi1  
mi10  
h1  
mi8  
*
h8  
PM/  
AM  
0 to 2  
or 0 to 1  
PM/AM, 10-hour digit  
register  
1
0
1
H10  
h20  
h10  
5
0
*
d8  
*
d4  
*
d2  
d20  
mo2  
*
d1  
d10  
mo1  
MO10  
y1  
0 to 9  
0 to 3  
0 to 9  
0 to 1  
0 to 9  
0 to 9  
0 to 6  
D1  
D10  
MO1  
MO10  
Y1  
1-day digit register  
10-day digit register  
1-month digit register  
10-month digit register  
1-year digit register  
10-year digit register  
Week register  
6
7
8
9
A
B
C
0
0
1
1
1
1
1
1
1
0
0
0
0
1
1
1
0
0
1
1
0
0
1
0
1
0
1
0
mo8  
*
mo4  
*
y8  
y4  
y2  
y80  
*
y40  
w4  
y20  
w2  
y10  
Y10  
W
w1  
30  
sec.  
ADJ  
IRQ  
FLAG  
1
1
0
1
CD  
HOLD  
D
BUSY  
Control Register D  
ITRPT  
/STND  
CE  
CF  
t1  
t0  
MASK  
Control Register E  
Control Register F  
E
F
1
1
1
1
1
1
0
1
STOP REST  
TEST 24/12  
REST = RESET  
ITRPT/STND = INTERRUPT/STANDARD  
Note 1)  
Note 2)  
Note 3)  
Bit * does not exist (unrecognized during a write and held at "0" during a read).  
Be sure to mask the AM/PM bit when processing 10's of hour's data.  
BUSY bit is read only. The IRQ FLAG bit can only be set to a "0". Setting the IRQ FLAG to a "1" is done by  
hardware.  
Note 4)  
PM at 1 and AM at 0 for PM / AM bit.  
Figure 1. Register Table  
25  
MSM6242B  
¡ Semiconductor  
OSCILLATOR FREQUENCY DEVIATIONS  
0
1
0
Ta = 25°C  
-1  
-2  
-3  
-4  
-50  
5V  
2V  
-100  
20  
Ta (°C)  
40  
60  
80  
-60  
0
0
1
2
3
4
5
6
-40 -20  
V
DD (V)  
Figure 2. Frequency Deviation (PPM) vs Temperature  
Figure 3. Frequency Deviation (PPM) vs Voltage  
Note:  
1. The graghs above showing frequency deviation vs temperature/voltage are primarily characteristic of the  
MSM6242B with the oscillation circuit described below.  
XT  
XT  
Crystal: Type N0, P3 by kinseki (32.768 KHz)  
CG, CD: 22pF (Temperature Characteristics: 0)  
CG  
CD  
VDD  
26  
¡ Semiconductor  
MSM6242B  
ABSOLUTE MAXIMUM RATINGS  
Parameter  
Power Supply Voltage  
Input Voltage  
Symbol  
VDD  
Condition  
Rating  
Unit  
V
-0. 3 to 7  
VI  
Ta = 25°C  
-0.3 to VDD +0.3  
-0.3 to VDD +0.3  
-55 to +150  
V
VO  
Output Voltage  
V
TSTG  
Storage Temperature  
°C  
OPERATING CONDITIONS  
Parameter  
Power Supply Voltage  
Standby Supply Voltage  
Crystal Frequency  
Symbol  
VDD  
Condition  
Rating  
Unit  
4 to 6  
2 to 6  
V
VBAK  
f(XT)  
kHz  
°C  
32.768  
TOP  
Operating Temperature  
-40 to +85  
D.C. Characteristics  
(VDD = 5V 10ꢀ, TA = -40 ~ +85)  
Applicable  
Terminal  
Min.  
Typ.  
Parameter  
Symbol  
Condition  
Max.  
Unit  
"H" Input Voltage  
"L" Input Voltage  
VIH1  
VIL1  
2.2  
All input termin-  
als except CS1, XT  
V
0.8  
Input terminals  
other than  
D0 ~ D3, XT  
Input Leak Current  
ILK  
1
2
1/-1  
VI = VDD/0V  
µA  
V
Input Leak Current  
"L" Output Voltage  
"H" Output Voltage  
"L" Output Voltage  
ILK  
2.4  
10/-10  
0.4  
D0 ~ D3  
D0 ~ D3  
VOL  
1
IOL = 2.5mA  
IOH = -400µA  
IOL = 2.5mA  
V = VDD/0V  
VOH  
VOL  
IOFFLK  
CI  
2
0.4  
V
STD.P  
10  
µA  
OFF Leak Current  
Input Capacitance  
Input frequency  
1MHz  
All input  
terminals  
30  
10  
5
PF  
µA  
Current Con-  
sumption  
VDD  
5V  
=
f(xt)  
=
IDD  
1
2
32.768  
KHz  
~
VDD  
Current Con-  
sumption  
VDD  
2V  
=
CS1  
0
IDD  
~
4/5VDD  
"H" Input Voltage  
"L" Input Voltage  
VIH2  
VIL2  
VDD = 2 ~ 5.5V  
V
CS1  
1/5VDD  
27  
MSM6242B  
¡ Semiconductor  
SWITCHING CHARACTERISTICS  
(1) WRITE mode (ALE = VDD  
)
(VDD = 5V 10ꢀ Ta = -40 to +85°C)  
Parameter  
CS1 Set up Time  
CS1 Hold Time  
Symbol  
tC1S  
Condition  
Min.  
Max.  
Unit  
1000  
1000  
tC1H  
Address Stable Before  
WRITE  
tAW  
20  
10  
Address Stable After  
WRITE  
tWA  
ns  
WRITE Pulse Width  
Data Set up Time  
tWW  
tDS  
120  
100  
10  
Data Hold Time  
tDH  
RD / WR Recovery Time  
tRCV  
60  
CS1  
VIH2  
tC1H  
tC1S  
tAW  
A0 ~ A3  
VIH1  
VIL1  
VIH1  
VIH1 = 2.2V  
VIL1 = 0.8V  
VIH2 = 4/5VDD  
VIL2 = 1/5VDD  
CS0  
t
WA  
tWW  
tDS  
tRCV  
WR  
tDH  
D0 ~ D3  
(INPUT)  
VIH1  
VIL1  
Figure 4. Write Cycle — (ALE = VDD  
)
(2) WRITE mode (With use of ALE)  
(VDD = 5V 10ꢀ, Ta = -40 ~ +85°C)  
Parameter  
CS1 Set up Time  
Symbol  
tC1S  
tAS  
Condition  
Min.  
Max.  
Unit  
1000  
25  
Address Set up Time  
Address Hold Time  
ALE Pulse Width  
tAH  
25  
tAW  
40  
ns  
tALW  
tWW  
tWAL  
tDS  
ALE Before WRITE  
WRITE Pulse Width  
ALE After WRITE  
DATA Set up Time  
DATA Hold Time  
10  
120  
20  
100  
10  
tDH  
tC1H  
tRCV  
CS1 Hold Time  
1000  
60  
RD / WR Recovery Time  
28  
¡ Semiconductor  
MSM6242B  
tC1S  
tAS  
VIH2  
CS1  
tC1H  
VIH1  
VIL1  
VIH1  
VIL1  
VIH1  
VIL1  
VIH1  
VIL1  
A0 ~ A3  
VIH1 = 2.2V  
VIL1 = 0.8V  
VIH2 = 4/5VDD  
VIL2 = 1/5VDD  
CS0  
tAH  
ALE  
tAW  
tALW  
tWAL  
tWW  
tDS  
tRCV  
WR  
tDH  
D0 ~ D3  
(INPUT)  
Figure 5. Write Cycle — (With Use of ALE)  
(3) READ mode (ALE = VDD  
)
(VDD = 5V 10ꢀ, Ta = -40 to +85°C)  
Parameter  
CS1 Set up Time  
CS1 Hold Time  
Symbol  
tC1S  
Condition  
Min.  
1000  
1000  
Max.  
Unit  
tC1H  
Address Stable before  
READ  
tAR  
20  
ns  
Address Stable after  
READ  
tRA  
0
tRD  
tDR  
CL = 150pF  
RD to Data  
120  
Data Hold  
0
tRCV  
RD / WR Recovery Time  
60  
VIH2  
CS1  
tC1S  
tAR  
tRA  
tC1H  
VIH1 = 2.2V  
A0 ~ A3  
VIH1  
VIL1  
VIH1  
VIL1  
VIL1 = 0.8V  
VIH2 = 4/5VDD  
VIL2 = 1/5VDD  
VOH = 2.2V  
VOL = 0.8V  
CS0  
tRCV  
RD  
tDR  
tRD  
D0 ~ D3  
(OUTPUT)  
VOH  
VOL  
"Z"  
Figure 6. Read Cycle — (ALE = VDD  
)
29  
MSM6242B  
¡ Semiconductor  
(4) READ mode (With use of ALE)  
(VDD = 5V 10ꢀ, Ta = -40 to +85°C)  
Parameter  
CS1 Set up Time  
Address Set up Time  
Address Hold Time  
ALE Pulse Width  
ALE before READ  
ALE after READ  
RD to Data  
Symbol  
tC1S  
tAS  
Condition  
Min.  
1000  
25  
Max.  
Unit  
tAH  
25  
tAW  
40  
ns  
tALR  
tRAL  
tRD  
10  
10  
CL = 150pF  
120  
tDR  
DATA Hold  
0
tC1H  
tRCV  
CS1 Hold Time  
1000  
60  
RD / WR Recovery Time  
VIH2  
CS1  
tAH  
tAS  
tC1S  
tC1H  
VIH1  
VIL1  
VIH1  
VIL1  
VIH1  
VIL1  
VOH  
VOL  
A0 ~ A3  
VIH1 = 2.2V  
CS0  
VIL1 = 0.8V  
VIH2 = 4/5VDD  
VIL2 = 1/5VDD  
VOH = 2.2V  
VOL = 0.8V  
tAW  
ALE  
tRAL  
tALR  
tRD  
tRCV  
RD  
tDR  
D0 ~ D3  
(OUTPUT)  
" Z "  
Figure 7. Read Cycle — (With Use of ALE)  
30  
¡ Semiconductor  
MSM6242B  
PIN DESCRIPTION  
Pin No.  
Name  
Description  
RS  
14  
13  
12  
11  
4
GS  
19  
16  
15  
14  
5
D0  
D1  
D2  
D3  
A0  
A1  
A2  
A3  
Data Input/Output pins to be directly connected to a microcontroller bus for  
reading and writing of the clock/calendar's registers and control registers. D0 = LSB  
and D3 = MSB.  
Address input pin for use by a microcomputer to select internal clock/calendar's  
registers and control registers for Read/Write operations (See Function Table  
Figure 1). Address input pins A0-A3 are used in combination with ALE for  
addressing registers.  
5
7
6
9
7
10  
Address Latch Enable pin. This pin enables writing of address data when ALE = 1  
and CSO = 0; address data is latched when ALE = 0 Microcontroller/Micro-  
processors having an ALE output should connect to this pin; otherwise it should  
be connected at VDD  
ALE  
4
3
10  
8
Writing of data is performed by this pin.  
When CS1 = 1 and CSO = 0, D0 ~ D3 data is written into the register at the rising  
edge of WR.  
13  
11  
WR  
RD  
Reading of register data is accomplished using this pin. When CS1 = 1, CSO = 0  
and RD = 0, the data of this register is output to D0 ~ D3. If both RD and WR are  
set at 0 simaltaneously, RD is to be inhibited.  
2
2
CS0  
Chip Select pins. These pins enable/disable ALE, RD and WR operation. CSO  
and ALE work in combination with one another, while CS1 work independent  
with ALE. CS1 must be connected to power failure detection as shown in Figure  
18.  
15  
CS1  
20  
Output pin of N-CH OPEN DRAIN type. The output data is controlled by the  
D1 data content of CE register. This pin has a priority to CSO and CS1.  
Refer to Figure 9 and FUNCTIONAL DESCRIPTION OF REGISTERS.  
STD.P  
1
1
XT  
22  
23  
16  
17  
32.768 kHz crystal is to be connected to these pins.  
When an external clock of 32.768 kHz is to be used for MSM6242's oscillation  
source, either CMOS output or pull-up TTL output is to be input from XT, while  
XT should be left open.  
XT  
24  
12  
Power supply pin. +2 ~ +6V power is to be applied to this pin.  
Ground pin.  
VDD  
18  
9
GND  
VDD  
RFB 5M  
XT  
X'tal  
STD.P OUTPUT  
C1  
32.768 kHz  
N-CH  
VDD OR GND  
C2 XT  
C1 = C2 = 15 ~ 30pF  
The impedance of the crystal should be less than 30k  
Figure 8. Oscillator Circuit  
Figure 9.  
31  
MSM6242B  
¡ Semiconductor  
FUNCTIONAL DESCRIPTION OF REGISTERS  
S1, S10, MI1, MI10, H1, H10, D1, D10, MO1, MO10, Y1, Y10, W  
a) These are abbreviations for SECOND1, SECOND10, MINUTE1, MINUTE10, HOUR1,  
HOUR10, DAY1, DAY10, MONTH1, MONTH10, YEAR1, YEAR10, and WEEK. These  
values are in BCD notation.  
b) All registers are logically positive. For example, (S8, S4, S2, S1) = 1001 which means 9  
seconds.  
c) Ifdataiswrittenwhichisoutoftheclockregisterdatalimits, itcanresultinerroneousclock  
data being read back.  
d) PM/AM, h20, h10  
In the mode setting of 24-hour mode, PM/AM bit is ignored, while in the setting of 12-hour  
mode h20 is to be set. Otherwise it causes a discrepancy. In reading out the PM/AM bit in  
the24-hourmode,itiscontinuouslyreadoutas0. Inreadingouth bitinthe12-hourmode,  
0 is written into this bit first, then it is continuously read out as 02u0 nless 1 is being written  
into this bit.  
e) Registers Y1, Y10, and Leap Year. The MSM6242B is designed exclusively for the Christian  
Eraandiscapableofidentifyingaleapyearautomatically. Theresultofthesettingofanon-  
existant day of the month is shown in the following example: If the date February 29 or  
November 31, 1985, was written, it would be changed automatically to March 1, or  
December 1, 1985 at the exact time at which a carry pulse occurs for the day's digit.  
f) The Register W data limits are 0 – 6 (Tabel 1 shows a possible data definition).  
TABLE 1  
Day of Week  
Sunday  
w4  
0
w2  
0
w1  
0
Monday  
0
0
1
Tuesday  
Wednesday  
Thursday  
Friday  
0
0
1
1
1
1
0
0
0
1
0
1
1
1
0
Saturday  
Using HOLD Bit  
Not Using HOLD Bit  
Read Register  
1 ~ W  
HOLD Bit  
1
First  
S
Read BUSY Bit  
Data of  
S1 ~ W  
Register  
DATA  
*
NO  
HOLD Bit  
Busy Bit= O?  
YES  
Read Register  
S1 ~ W  
Second  
0
DATA1 = DATA2  
Write data into  
or Read data from  
registers S1 ~ W  
* In the inside of LSI, the CLEAR of BUSY bit is performed when  
HOLD bit = 0, but, if the period of HOLD bit =0 is extermely  
narrow as compared with the period of HOLD bit = 1, there is  
some case that the CLEAR of BUSY bit delays so that the  
BUSY bit can be cleared by sampling HOLD bit = 0 at approximate  
16KHz. It is recommended to allow an idling time of 62ms or more.  
Idling Time  
NO  
DATA1 = DATA2  
YES  
HOLD Bit  
0
Figure 10. Reading and Writing of Registers S1 ~ W  
32  
¡ Semiconductor  
MSM6242B  
Reading Method 3 when Not Using HOLD Bit  
Initialization only at power ON  
Reading Method 2 when Not Using HOLD Bit  
Initialization only at power ON  
*1 and *2 represent the minimum required  
*1 and *2 represent the minimum required  
time unit.  
time out.  
t1  
t0  
*1  
*2  
t1  
t0  
*1  
*2  
For example  
For example  
t1 = 0 and tO = 1 when required to a  
unit of second;  
t1 = 1 and tO = 0 when required to a  
unit of minute; and  
t1 = 1 and tO = 1 when required to a  
unit of hour;  
t1 = 0 and tO = 1 when required to a  
ITRPT/STNT  
MASK  
1
0
ITRPT/STNT  
MASK  
1
0
unit of second;  
t1 = 1 and tO = 0 when required to a  
unit of minute; and  
t1 = 1 and tO = 1 when required to a  
unit of hour;  
CPU senses the  
interruption.  
0
IRQ FLAG  
WAIT t  
REGISTER CD READ  
See Note  
below  
NO  
Retried the reading, since a  
carry occurred during the  
operation.  
IRQ FLAG = 1  
YES  
The other IC causes  
the interruption.  
TIME DATA READ  
The interruption is caused by  
this IC due to the occurrence  
of a carry.  
WAIT t  
REGISTER CD READ  
TIME DATA READ  
NO  
(Note)  
IRQ FLAG = 0  
Do this process within the following  
time requirements by combination  
between t1 and t0:  
The IRQ FLAG is cleared to  
read the next time data.  
0
IRQ FLAG  
YES  
Normal read  
t1 = 0 and tO = 1 . . . Less than 1 second  
t1 = 1 and tO = 0 . . . Less than 1 minute  
t1 = 1 and tO = 1 . . . Less than 1 hour  
END  
t
: 12 HOUR MODE . . . 35µS  
24 HOUR MODE . . . 3µS  
CD REGISTER (Control D Register)  
a) HOLD (D0) –  
Setting this bit to a "1" inhibits the 1Hz clock to the S1 counter, at which  
time the Busy status bit can be read. When Busy = 0, register's S ~ W  
can be read or written. During this procedure if a carry occurs t1he S1  
counterwillbeincrementedby1secondafterHOLD=0(thiscondition  
is guaranteed as long as HOLD = 1 does not exceed 1 second in  
duration). If CS1 = 0 then HOLD = 0 irrespective of any condition.  
Status bit which shows the interface condition with microcontroller/  
microprocessors. As for the method of writing into and reading from  
S1 ~ W (address φ ~ C), refer to the flow chart described in Figure 10.  
b) BUSY (D1) –  
c) IRQ FLAG (D2) – This status bit corresponds to the output level of the STD.P output.  
When STD.P = 0, then IRQ = 1; when STD.P = 1, then IRQ = 0. The IRQ  
FLAG indicates that an interrupt has occurred to the microcomputer if  
IRQ = 1. When D0 of register C (MASK) = 0, then the STD.P output  
changes according to the timingEset by D3 (t1) and D2 (t0) of register E.  
When D1 of register E (ITRPT/STND) = 1 (interrupt mode), the STD.P  
output remains low until the IRQ FLAG is written to a "0". When IRQ  
= 1 and timing for a new interrupt occurs, the new interrupt is ignored.  
When ITRPT/STND = 0 (Standard Pulse Output mode) the STD.P  
output remains low until either "0" is written to the IRQ FLAG;  
otherwise, the IRQ FLAG automatically goes to "0" after 7.8125ms.  
When writing the HOLD or 30 second adjust bits of register D, it is  
necessary to write the IRQ FLAG bit to a "1".  
d) ±30 ADJ (D3) –  
When 30-second adjustment is necessary, a "1" is written to bit D3  
during which time the internal clock registers should not be read from  
or written to 125µs after bit D3 = 1 it will automatically return to a "0",  
and at that time reading or writing of registers can occur.  
33  
MSM6242B  
¡ Semiconductor  
START  
START  
30-SECOND  
ADJ BIT = 1  
30-SECOND  
ADJ BIT = 1  
READ 30-SECOND  
ADJ BIT  
NO  
125µs PASS?  
YES  
END  
(B)  
NO  
30-SECOND  
ADJ BIT = 0?  
YES  
END  
(A)  
Figure 11. Writing 30-Second Adj. bit (Two Ways A, B)  
CE REGISTER (Control E Register)  
a) MASK (D0) –  
This bit controls the STD.P output. When MASK = 1, then STD.P  
= 1 (open); when MASK = 0, then STD.P = output mode. The  
relationship between the MASK bit and STD.P output is shown  
Figure 12.  
b) ITRPT/STND (D1) –  
The ITRPT/STND input is used to switch the STD.P output  
between its two modes of operation, interrupt and Standard  
timing waveforms. When ITRPT/STND = 0 a fixed cycle wave-  
form with a low-level pulse width of 7.8125ms is present at the  
STD.P output. At this time the MASK bit must equal 0, while the  
period in either mode is determined by T0 (D2) and T1 (D3) of  
Register E.  
c) T0 (D2), T1 (D3) –  
These two bits determine the period of the STD.P output in both  
interrupt and Fixed timing waveform modes. The tables below  
show the timing associated with the T0, T1 inputs as well as their  
relationship to INTRPT/STND and STD.P.  
"INTERRUPT" DOES  
NOT OCCUR BECAUSE  
MASK BIT IS "1"  
OUTPUT DOES NOT OCCUR  
AT LOW LEVEL BECAUSE  
MASK BIT IS "1"  
"1"  
"1"  
"1"  
"1"  
MASK BIT "0"  
STD.P OUTPUT  
"0"  
"0"  
"0"  
MASK BIT  
STD.P  
OUTPUT  
OPEN  
OPEN  
LOW LEVEL  
LOW LEVEL  
"INTERRUPT" TIMING  
OUTPUT TIMING  
AUTOMATIC RETURN  
WRITE "0" INTO IRQ FLAG BIT  
INTRT/STND BIT = "1"  
INTRT/STND BIT = "0"  
Figure 12.  
TABLE 2  
Duty CYCLE of "0" level when  
ITRPT/STND bit is "0".  
t1  
t0  
Period  
0
0
1
1
0
1
0
1
1/64 second  
1 second  
1 minute  
1 hour  
1/2  
1/128  
1/7680  
1/460800  
34  
¡ Semiconductor  
MSM6242B  
The timing of the STD.P output designated by T1 and T0 occurs the moment that a carry occurs to a clock digit.  
(EXAMPLE) WHEN t1 = 1, t0 = 1 and MASK = 0.  
PM1:00  
PM12:00  
OPEN  
LOW LEVEL  
WHEN ITRPT/STND  
BIT is "1"  
STD.P OUTPUT  
WHEN ITRPT/STND  
BIT is "0"  
OPEN  
LOW LEVEL  
d) The low-level pulse width of the fixed cycle waveform (ITRPT/STND = 0) is 7.8125ms  
independent of T0/T1 inputs.  
e) The fixed cycle waveform mode can be used for adjustment of the oscillator frequency time  
base. (See Figure 14).  
f) During ±30 second adjustment a carry can occur that will cause the STD.P output to go low  
when T0/T1 = 1,0 or 1,1. However, when T1/T0 = 0, 0 and ITRPT/STND = 0, carry does  
not occur and the STD.P output resumes normal operation.  
g) The STD.P output is held (frozen) at the point at which STOP = 1 while ITRPT/STND = 0.  
h) No STD.P output change occurs as a result of writing data to registers S1 ~ H1.  
CF REGISTER (Control F Register)  
a) REST (D0) –  
"RESET"  
This bit is used to clear the clock's internal divider/counter of less than a  
second. When REST = 1, the counter is Reset for the duration of REST. In  
order to release this counter from Reset, a "0" must be written to the REST  
bit. If CSI = 0 then REST = 0 automatically.  
b) STOP (D1) –  
The STOP FLAG Only inhibits carries into the 8192Hz divider stage.  
There may be up to 122µs delay before timing starts or stops after  
changing this flag; 1 = STOP/0 = RUN.  
"1"  
"1"  
"1"  
STOP BIT  
"0"  
"0"  
"0"  
"0"  
TIMING OF  
"CARRY"  
TO 8192Hz  
"CARRY" EXECUTED  
"CARRY" NOT EXECUTED  
Figure 13  
c) 24/12 (D2) –  
This bit is for selection of 24/12 hour time modes. If D2 = 1–24 hour mode  
is selected and the PM/AM bit is invalid. If D2 = 0–12 hour mode is  
selected and the PM/AM bit is valid.  
Setting of the 24/12 hour bit is as follows:  
1) REST bit = 1  
"24/HOUR/  
12 HOUR"  
2) 24/12 hour bit = 0 or 1  
3) REST bit = 0  
*
REST bit must = 1 to write to the 24/12 hour bit.  
d) TEST (D3) –  
When the TEST flag is a "1", the input to the SECONDS counter comes  
from the counter/divider stage instead of the 15th divider stage. This  
makes the SECONDS counter count at 5.4163KHz instead of 1Hz. When  
TEST=1(TestMode)theSTOP&REST(Reset)flagsdonotinhibitinternal  
counting. When Hold = 1 during Test (Test = 1) internal counting is  
inhibited; however, when the HOLD FLAG goes inactive (Hold = 0)  
counter updating is not guaranteed.  
35  
MSM6242B  
¡ Semiconductor  
TYPICAL APPLICATION INTERFACE WITH MSM6242B AND  
MICROCONTROLLERS  
MSM6242B  
MSM6242B  
8085  
AD3  
AD2  
AD1  
AD0  
8085  
A/D  
D3  
D2  
D1  
D0  
D3  
D2  
D1  
D0  
A8 ~ A12  
A3  
A3  
A2  
A1  
A0  
CS0  
A8 ~ A15  
S1  
S0  
IO/M  
A2  
A1  
A0  
CS0  
A8 ~ A15  
S1  
S0  
IO/M  
ALE  
RD  
WR  
ALE  
RD  
WR  
ALE  
RD  
WR  
R1  
R2  
R1  
R2  
RD  
WR  
MEMORY MAPPED  
I/O MAPPED  
Note : If 8085 does not enter into the state of HALT or HOLD during CS1 = "H" of  
MSM6242B, R1 and R2 are not required  
.
Figure 15.  
MSM6242B  
MSM6242B  
Z80  
MCS48  
D3  
D2  
D1  
D0  
D3  
D2  
D1  
D0  
BUS3  
BUS2  
BUS1  
BUS0  
D3  
D2  
D1  
D0  
A3  
A2  
A1  
A0  
A3  
A2  
A1  
A0  
A3  
A2  
A1  
A0  
DECODER  
DECODER  
CS0  
A4 ~ A15  
IORQ  
MREQ  
RD  
VDD  
BUS 4-7  
CS0  
ALE  
ALE  
RD  
WR  
ALE  
RD  
WR  
G1  
RD  
WR  
WR  
G2  
Note : It depends upon the switching  
characterisrics decided by a X'tal used  
for a Z80 that either of IORQ and MREQ  
is used.  
Figure 16.  
Figure 17.  
36  
¡ Semiconductor  
MSM6242B  
TYPICAL APPLICATIONS — INTERFACE WITH MSM80C49  
100µf  
3.9V  
4.7µf (tantalum)  
LITHIUM  
BATTERY  
(VFWD = < 0.3V)  
i.e. GERMANIUM  
DIODE  
26  
18  
18K  
22pf  
4.553 KHz  
22pf  
15pf  
VDD  
VDD  
17  
16  
1
3
2
3
6
11  
8
XT  
SDT.P  
X1  
X2  
INT  
ALE  
RD  
ALE  
RD  
32.768 KHz  
8
10  
10  
XT  
WR  
WR  
5-35pf  
MSM  
80C49RS  
MSM  
6242BRS  
4/14  
5/13  
6/12  
7/11  
2
12  
13  
14  
15  
19  
DB  
A/D0  
0
1
2
3
7
40  
VCC  
DB  
DB  
DB  
DB  
A/D1  
A/D2  
A/D3  
CS0  
1
T0  
38  
15  
CS1  
P27  
34  
9
TR1  
P
VSS  
17  
10K  
VSS  
20  
820  
TR1 = 2N2907  
TR2 = 2N2907  
TR3 = 2N2222  
= 1N4148  
1.8K  
TR3  
1.8K  
1.8K  
TR2  
220  
2
3
7
5
RS232  
1.8K  
1.8K  
DB25  
CONNECTOR  
10µf  
20  
RS232  
INTERFACE  
220  
5.2V  
Figure 18.  
37  
MSM6242B  
¡ Semiconductor  
APPLICATION NOTE  
1. Power Supply  
VDD = 5V  
STD.P  
START  
Power On  
Output = undifined  
TEST Bit  
REST Bit  
0
0
1* = 2*  
(1 or 0)  
24/12 Bit 1*  
STOP Bit  
1
REST Bit  
0
24/12 Bit 2*  
Set the current  
time  
HOLD Bit  
STOP Bit  
0
0
Start Operation  
2. Adjustment of Frequency  
VDD  
Screwdriver  
18 17 16  
VDD XT XT  
CD, CF = (0, 0, 0, 0)  
CE = (t1, t0, 0, 0)  
SDT.P  
c
d
VDD  
1
2
3
0.1 INCH  
b
Frequency  
counter  
2
1
Eye  
CD ~ CF are to be set at as described in the  
figure and the capacitor is to be adjusted  
to meet the settle frequency of t0 and t1.  
If the right oscillation can not be obtained,  
VDD XT XT  
1. Check the waveform of XT  
2. Check CD ~ CF content  
3. Check the noise  
0.3 INCH  
0.2 INCH  
1
2
a
a
b
: INHIBIT  
38  
¡ Semiconductor  
MSM6242B  
3. CH1 (Chip Select)  
VIH and V of CH has 3 functions.  
a) To acIcLomplis1h the interface with a microcontroller/microprocessor.  
b) To inhibit the control bus, data bus and address bus and to reduce input gate pass  
current in the stand-by mode.  
c) To protect internal data when the mode is moved to and from standby mode.  
To realize the above functions:  
a) More than 4/5 V shoud be applied to the MSM6242B for the interface with a  
microcontroller/DmDicroprocessor in 5V operation.  
b) In moving to the standby mode, 1/5 V should be applied so that all data buses should  
be disabled. In the standby mode, appDrDox. 0V should be applied.  
c) To and from the standby mode, obey following Timing chart.  
To Standby Mode  
From Standby Mode  
4V  
4 ~ 6V  
2 ~ 4V  
VDD  
4V  
2µs (MIN)  
2µs (MIN)  
VDD  
2
5
4
5
CS1  
VDD  
1
5
VDD  
CS0 : H  
or WR : H  
4. Set SDT.P at alarm mode  
Set alarm at 9:00  
MASK BIT  
0
ITRPT/STND BIT  
1
t1, t0  
1
Start interruption  
CPU Activation  
Read Register CD  
D2 = 1?  
NO  
YES  
Repeat  
Read H10 and  
H10 Cotent  
NO  
AM 9:00?  
YES  
CPU HALT  
or  
CPU STAND BY  
39  
MSM6242B  
¡ Semiconductor  
TYPICAL APPLICATION — POWER SUPPLY CIRCUIT  
RIPPLE  
OPERATING: 20mV P-P  
BATTERY BACKUP: 0mV  
VCE (SAT.) = 0.1V  
RL  
M
+5V  
+5V  
RL  
4.7µf  
22µf  
C
100  
VDD  
4.7µf  
VDD  
B
51K  
10K  
10K  
100Ω  
MSM  
6242B  
MSM  
6242B  
1.5 x 2 = 3V  
DRY CELLS  
1.2 x 3 = 3.6V  
Ni – Cd  
VSS  
VSS  
Figure 20.  
Figure 19.  
220Ω  
~
~
6.5V  
VDD  
100Ω  
RL  
D1  
+5V  
MSM  
6242B  
4.7µf  
1.2 x 3 = 3.6V  
Ni – Cd  
VSS  
Figure 21.  
4.7µF: tantalum  
SUPPLEMENTARY DESCRIPTION  
When "0" is written to the IRQ FLAG bit, the IRQ FLAG bit is cleared. However, if "0" is  
assigned to the IRQ FLAG bit when written to the other bits, the 30-sec ADJ bit and the  
HOLD bit, the IRQ FLAG = 1 and was generated before the writing and IRQ FLG = 1  
generated in a moment then will be cleared. To avoid this, always set "1" to the IRQ  
FLAG unless "0" is written to it intentionally. By writing "1" to it, the IRQ FLAG bit  
does not become "1".  
*
Since the IRQ FLAG bit becomes "1" in some cases when rewriting either of the t1, t0, or  
ITRPT/STND bit of register CE, be sure to write "0" to the IRQ FLAG bit after writing to  
make valid the IRQ FLAG = 1 to be generated after it.  
The relationship between SDT.P OUT and IRQ FLAG bit is shown below:  
open  
"L"  
STD.P OUT  
IRQ FLAG bit  
1
0
approx. 1.95 ms  
40  

相关型号:

MSM6242BGS

Real Time Clock, 1 Timer(s), CMOS, PDSO24, 0.430 INCH, PLASTIC, SOP-24
OKI

MSM6242BRS

Real Time Clock, 0 Timer(s), CMOS, PDIP18, 0.300 INCH, 2.54 MM PITCH, PLASTIC, DIP-18
OKI

MSM6250

CHIPSET SOLUTION
QUALCOMM

MSM6252

64words X Bit FIFO
OKI

MSM6255

DOT MATRIX LCD CONTROLLER
OKI

MSM6255GS-BK

Dot Matrix LCD Controller, 128 X 256 Characters, CMOS, PQFP80, 14 X 20 MM, 0.80 MM PITCH, PLASTIC, QFP-80
OKI

MSM6255GS-K

Dot Matrix LCD Controller, 128 X 256 Characters, CMOS, PQFP80, 14 X 20 MM, 0.80 MM PITCH, PLASTIC, QFP-80
OKI

MSM6255GS-V1K

Dot Matrix LCD Controller, 128 X 256 Characters, CMOS, PQFP80, 14 X 20 MM, PLASTIC, QFP-80
OKI

MSM6258GS-K

Speech Synthesizer With RCDG, 32.7s, CMOS, PQFP60, 15 X 19 MM, PLASTIC, QFP-60
OKI

MSM6258VGS-2K

Speech Synthesizer With RCDG, 32.7s, CMOS, PQFP44, 9 X 10 MM, PLASTIC, QFP-44
OKI

MSM6258VGS-K

Speech Synthesizer With RCDG, 32.7s, CMOS, PQFP44, 9 X 10 MM, PLASTIC, QFP-44
OKI

MSM6258VRS

Speech Synthesizer With RCDG, 32.7s, CMOS, PDIP40, 0.600 INCH, PLASTIC, DIP-40
OKI