MSM64P155L-NGS-BK [OKI]

Microcontroller, 4-Bit, OTPROM, 0.066MHz, CMOS, PQFP100, QFP-100;
MSM64P155L-NGS-BK
型号: MSM64P155L-NGS-BK
厂家: OKI ELECTRONIC COMPONETS    OKI ELECTRONIC COMPONETS
描述:

Microcontroller, 4-Bit, OTPROM, 0.066MHz, CMOS, PQFP100, QFP-100

可编程只读存储器 时钟 微控制器 外围集成电路
文件: 总61页 (文件大小:274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
¡
MSM64P155  
User's Manual  
CMOS 4-bit microcontroller  
FIRST EDITION  
ISSUE DATE: Mar. 1996  
NOTICE  
1.  
The information contained herein can change without notice owing to product and/or  
technical improvements. Before using the product, please make sure that the information  
being referred to is up-to-date.  
2.  
The outline of action and examples for application circuits described herein have been  
chosen as an explanation for the standard action and performance of the product. When  
planning to use the product, please ensure that the external conditions are reflected in the  
actual circuit, assembly, and program designs.  
3.  
4.  
When designing your product, please use our product below the specified maximum  
ratings and within the specified operating ranges including, but not limited to, operating  
voltage, power dissipation, and operating temperature.  
Oki assumes no responsibility or liability whatsoever for any failure or unusual or  
unexpected operation resulting from misuse, neglect, improper installation, repair, alteration  
or accident, improper handling, or unusual physical or electrical stress including, but not  
limited to, exposure to parameters beyond the specified maximum ratings or operation  
outside the specified operating range.  
5.  
6.  
Neither indemnity against nor license of a third party’s industrial and intellectual property  
right, etc. is granted by us in connection with the use of the product and/or the information  
and drawings contained herein. No responsibility is assumed by us for any infringement  
of a third party’s right which may result from the use thereof.  
The products listed in this document are intended for use in general electronics equipment  
for commercial applications (e.g., office automation, communication equipment,  
measurement equipment, consumer electronics, etc.). These products are not authorized  
for use in any system or application that requires special or enhanced quality and reliability  
characteristics nor in any system or application where the failure of such system or  
application may result in the loss or damage of property, or death or injury to humans.  
Such applications include, but are not limited to, traffic and automotive equipment, safety  
devices, aerospace equipment, nuclear power control, medical equipment, and life-support  
systems.  
7.  
8.  
Certain products in this document may need government approval before they can be  
exported to particular countries. The purchaser assumes the responsibility of determining  
thelegalityofexportoftheseproductsandwilltakeappropriateandnecessarystepsattheir  
own expense for these.  
No part of the contents contained herein may be reprinted or reproduced without our prior  
permission.  
Copyright 1996 Oki Electric Industry Co., Ltd.  
Printed in Japan  
Preface  
MSM64P155 is a 4-bit microcontroller, which uses  
built-in one time PROM (OTP) in place of built-in mask  
ROM in MSM64155A.  
MSM64P155ismanufacturedwiththeN-wellEPROM  
process instead of the P-well CMOS process.  
That is why the polarity of MSM64P155's power  
supply is different than the polarity of the chip with the  
P-well CMOS structure.  
OTP version chips alone are not supplied to custom-  
ers.  
This manual explains the specific hardware of  
MSM64P155 and the differences from the mask ROM  
version of MSM64155A.  
See "MSM64155 User's Manual" for further reference  
relating to other hardware and instruction set.  
TABLE OF CONTENTS  
Chapter 1 General Description  
1.1 Overview .................................................................................................................1-1  
1.2 Features ..................................................................................................................1-1  
1.3 Block Diagram ........................................................................................................1-3  
1.4 Pin Configuration ....................................................................................................1-4  
1.5 Explanation of Pins .................................................................................................1-5  
1.5.1 Explanation of Each Pin................................................................................1-5  
1.5.2 PROM-Related Pins....................................................................................1-10  
1.5.3 Processing of Unused Pins ........................................................................1-11  
Chapter 2 Power Supply System  
2.1 Overview .................................................................................................................2-1  
2.2 Power Supply System Circuit Configuration ..........................................................2-2  
2.3 Logic Power Supply and Backup Circuits ..............................................................2-3  
2.3.1 Configuration of Logic Power Supply...........................................................2-3  
2.3.2 Operations of Optional 1.5V Logic Power Supply Circuits...........................2-4  
2.3.3 Operations of Optional 3.0V Logic Power Supply Circuits...........................2-4  
Chapter 3 Crystal Oscillation Circuit  
3.1 Overview .................................................................................................................3-1  
3.2 Configuration of Crystal Oscillation Circuit ............................................................3-1  
Chapter 4 PROM  
4.1 Overview .................................................................................................................4-1  
4.2 Explanation of Pins .................................................................................................4-1  
4.3 PROM Mode ...........................................................................................................4-3  
4.3.1 Setting the PROM Mode ..............................................................................4-3  
4.3.2 PROM Mode Functions ................................................................................4-3  
4.3.3 Connection to the EPROM Writer.................................................................4-4  
Chapter 5 TST3 Pin  
5.1 Overview .................................................................................................................5-1  
5.2 Registers To Be Changed By TST3 ........................................................................5-3  
Appendixes  
Appendix A Package Dimensional Drawing .................................................... Appendix-1  
Appendix B Electrical Characteristics ............................................................. Appendix-2  
Chapter 1  
GENERAL DESCRIPTION  
CHAPTER 1  
1.1  
                                            
GENERAL DESCRIPTION  
                                            
                                               
                                               
                                                 
                                                 
                                                    
                                                    
                                                      
                                                      
                                                         
                                                         
                                                           
                                                           
                                                              
                                                              
                                                                 
                                                                 
                                                                   
                                                                   
                                                                      
                                                                      
                                                                        
                                                                        
                                                                           
                                                                           
                                                                            
                                                                            
                                                                              
                                                                               
                                                                                 
                                                                                 
                                                                                  
                                                                                  
                                                                                    
                                                                                     
Overview  
MSM64P155 is a microcontroller which uses built-in one time PROM (OTP) in place of  
built-in ROM of MSM64155A.  
SincetheMSM64P155hasadifferentconfigurationofthemaskROMwithP-wellCMOS  
configuration, it is manufactured with the N-well EPROM process. That is why the  
polarity of the power source used for LCD bias generation is reversed, and the  
arrangement of additional circuits is different from the arrangement of this chip.  
In addition, unlike the mask ROM version, the PROM (OTP version) chip alone has no  
supply.  
For these reasons, this OTP version of MSM64P155 should be used mainly for  
verification of application program functions.  
TheMSM64P155hastwooperationmodes;microcontrolleroperationmodeandPROM  
mode. The microcontroller operation mode is a mode to make the same operation as  
a mask ROM and the PROM mode is a mode to write/read PROM.  
The descriptions on the microcontroller operation mode are omitted in this manual.  
Therefore, see "MSM64155A User's Manual". This manual explains different  
specifications from the mask ROM version in Chapters 2 and 3, and Chapter 4 explains  
the PROM mode.  
1.2  
Features  
1) A Rich Set of Instructions Including Byte Calculating Instructions  
• 148 types of instructions  
• Byte addition and subtraction, byte transmission, byte comparing instructions  
• Bit operation instructions  
• Data exchange instructions  
2) Rich Addressing Modes  
• Two types of indirect addressing modes for HL registers and XY registers  
• Bit operations for all data memory areas  
• Byte calculation for all data memory areas  
3) Operating Frequency  
:Crystal Oscillation at 32.768 kHz  
(minimum instruction execution time: 91µs)  
:RC Oscillation at about 32 kHz  
4) Built-In Program Memory :4064 bytes (PROM)  
5) Built-In Data Memory  
:256 nibbles  
1-1  
6) I/O Ports  
:a total of 18 ports  
• 4 bit input-output ports (selectable open drain output/CMOS output, selectable  
additional pull-down resistance input) ¥ 2  
• 2-bit input port (selectable additional pull-down resistance input)  
• 4-bit input port (selectable additional pull-down resistance input)  
• 4-bit output port (CMOS output)  
7) Melody Output: 2 outputs  
8) LCD Driver: a total of 64 drivers  
• Common driver ¥ 4  
• Segment driver ¥ 60  
• 1/4 duty, during 1/3 bias: 240 segments (60 ¥ 4)  
• 1/3 duty, during 1/3 bias: 180 segments (60 ¥ 3)  
9) Event Counter: 1 channel  
10) Interrupt Sources: 10 sources  
• Four external sources, four time base sources, two melody sources  
(When TST3="1", six time base sources)  
11) External Appearance  
• Flat package with 100 pins  
Product name:  
MSM64P155-NGS-BK (Blanked PROM)  
MSM64P155L-NGS-BK (Blanked PROM)  
MSM64P155-XXXGS-BK (Written PROM)  
MSM64P155L-XXXGS-BK (Written PROM)  
12) Operating Power Supply Voltage: (mask option)  
1.5 V : MSM64P155  
3.0 V : MSM64P155L  
13) Clock Generation Circuit (mask option)  
• Crystal/RC oscillation  
1-2  
BIAS  
TR2  
TR0  
ALU  
TR1  
PROGRAM  
COM1  
COM2  
COM3  
COM4  
DATA/ADDRESS  
PROM  
4064B  
PCH  
PCM PCL  
A11~A8  
C
A7~A0  
SEG0  
LCD  
RAM  
256N  
B
A
H
L
X
Y
DB7~0  
(8)  
(8)  
SEG59  
OSC0  
OSC1  
SP  
ROMR  
TIMING  
CONTROLLER  
CLK  
INTC  
MD0  
MD0  
MD0  
MD1  
4
RESET  
TBC  
RST  
TST  
INT  
INT  
INT  
TST1  
TST2  
TST3  
MD1  
MD1  
PORT ADDRESS  
DB7~0  
INT  
INT  
INT  
INT  
VSS  
CAPR  
PORT2  
EVENT  
PORT3  
PORT4  
PORT6  
PORT7  
Items inside the dotted  
line indicate the CPU core  
(nX-4/20).  
1.4  
Pin Configuration  
Figure 1-2 shows the pin configuration of MSM64P155.  
RESET  
OSC0  
OSC1  
VPP  
1
2
3
4
5
6
7
8
9
80 SEG11  
79 SEG12  
78 SEG13  
77 SEG14  
76 SEG15  
75 SEG16  
74 SEG17  
73 SEG18  
72 SEG19  
71 SEG20  
70 SEG21  
69 SEG22  
68 SEG23  
67 SEG24  
66 SEG25  
65 SEG26  
64 SEG27  
63 SEG28  
62 SEG29  
61 SEG30  
60 SEG31  
59 SEG32  
58 SEG33  
57 SEG34  
56 SEG35  
55 SEG36  
54 SEG37  
53 SEG38  
52 SEG39  
51 SEG40  
P2.3  
P2.2  
P2.1  
P2.0  
P3.1  
P3.0 10  
P4.3 11  
P4.2 12  
P4.1 13  
P4.0 14  
P6.3 15  
P6.2 16  
P6.1 17  
P6.0 18  
P7.3 19  
P7.2 20  
P7.1 21  
P7.0 22  
VSS 23  
MD0 24  
MD0 25  
MD1 26  
MD1 27  
TST3 28  
TST2 29  
TST1 30  
Note: Please do not connect anything to the NC pin.  
Figure 1-2 Pin Configuration of MSM64P155 (QFP)  
1-4  
1.5  
Explanation of Pins  
1.5.1 Explanation of Each Pin  
Table 1-1 shows basic functions of each of the MSM64P155 pins and Table 1-2 shows  
their secondary functions.  
Table 1-1 (a) Explanation of Pins (Basic Functions)  
Pin  
Name  
Pin Input/  
No. Output  
Type  
Function  
VSS  
23  
Digital 0V power supply  
Digital plus side power supply (for 1.5V specs)  
LCD drive bias output (for 3.0V specs)  
Digital plus side power supply (for 3.0V specs)  
LCD drive bias output (for 1.5V specs)  
LCD drive bias output (+4.5V)  
VDD1  
100  
Power  
Supply  
VDD2  
99  
VDD3  
C1  
98  
97  
96  
4
LCD drive bias generating condenser connection pin  
C2  
VPP  
Plus side power supply for PROM writing (+12.5V)  
Clock oscillation pin:  
OSC0  
2
3
Input  
Oscillation  
Test  
Connect to crystal oscillator (32.768 kHz) and condenser  
(10 pF~30 pF) or resistor (1MW) are connected.  
OSC1  
Output  
TST1  
TST2  
30  
29  
Input Input pin for tests  
These are pulled down to VSS internally.  
Input  
When this pin is set to "H" level, the 256Hz and 4Hz interrupts are  
enabled, and the MSM64P155 can be used as an OTP version of the  
MSM64152A, MSM64153A and MSM64158A.  
TST3  
28  
Input  
System reset input:  
When this pin reaches the level "L" "H", internal status initialization is  
conducted and instructions are executed from address 000H.  
Built-in pull-down resistance on VSS.  
Reset  
RESET  
1
Input  
1-5  
Table 1-1 (b) Explanation of Pins (Basic Functions)  
Pin  
Name  
Pin Input/  
Function  
Type  
No. Output  
P2.0  
P2.1  
P2.2  
P2.3  
8
7
6
5
Input 4-bit input port (port 2):  
This is a 4-bit input port permitting selection of the pull-down resistance  
input/high impedance input for each bit through the controller register  
of port 2 (P2CON).  
Its secondary functios are trigger input of capture circuits and an  
external interrupt function.  
Also, system reset is run when P2.0~P2.3 reach the "H" level.  
P3.0  
P3.1  
10  
9
Input 2-bit input port (port 3):  
This is a 2-bit input port permitting selection of the pull-down resistance  
input/high impedance input through the controller register of port 3  
(P3CON).  
Its secondary functions are input functions for the event counter by  
P3.1 and an external interrupt by P3.0.  
P4.0  
14 Output 4-bit output port (port 4):  
This is a 4-bit CMOS output port.  
P4.1  
P4.2  
P4.3  
P6.0  
13  
12  
11  
18  
Port  
Input/ 4-bit input/output port (port 6):  
Output  
This is a 4-bit input/output port permitting selection of input/output  
P6.1  
P6.2  
P6.3  
17  
16  
15  
through the controller register (P6CON) of port 6 (P6CON), selection  
of the pull-down resistance input/high impedance input during input,  
and selection of open drain output/CMOS output during output  
operations.  
Its secondary function is to allocate external interrupt functions.  
P7.0  
P7.1  
P7.2  
P7.3  
22  
21  
20  
19  
Input/ 4-bit input/output port (port 7):  
Output  
This is a 4-bit input/output port permitting selection of input/output  
through the controller register of port 7 (P7CON), selection of the  
pull-down resistance input/high impedance input during input, and  
selection of open drain output/CMOS output during output.  
Its secondary function is external interrupt function.  
MD0  
MD0  
MD1  
25 Output This is the output pin of melody driver 0.  
24 Output This is the reversed phase output pin for MD0 output.  
26 Output This is the output pin of melody driver 1.  
27 Output This is the reversed phase pin of MD1 output.  
95 Output These are the LCD common signal output pins.  
94 Output  
Melody  
Driver  
MD1  
COM1  
COM2  
COM3  
COM4  
LCD Driver  
93 Output  
92 Output  
1-6  
Table 1-1 (c) Explanation of Pins (Basic Functions)  
Pin  
Name  
Pin Input/  
Function  
Type  
No. Output  
SEG0  
SEG1  
91 Output  
90 Output  
89 Output  
88 Output  
87 Output  
86 Output  
85 Output  
84 Output  
83 Output  
82 Output  
81 Output  
80 Output  
79 Output  
78 Output  
77 Output  
76 Output  
75 Output  
74 Output  
73 Output  
72 Output  
71 Output  
70 Output  
69 Output  
68 Output  
67 Output  
66 Output  
65 Output  
64 Output  
63 Output  
62 Output  
61 Output  
60 Output  
59 Output  
58 Output  
57 Output  
56 Output  
LCD segment signal output pins  
SEG2  
SEG3  
SEG4  
SEG5  
SEG6  
SEG7  
SEG8  
SEG9  
SEG10  
SEG11  
SEG12  
SEG13  
SEG14  
SEG15  
SEG16  
SEG17  
SEG18  
SEG19  
SEG20  
SEG21  
SEG22  
SEG23  
SEG24  
SEG25  
SEG26  
SEG27  
SEG28  
SEG29  
SEG30  
SEG31  
SEG32  
SEG33  
SEG34  
SEG35  
LCD  
Driver  
1-7  
Table 1-1 (d) Explanation of Pins (Basic Functions)  
Pin  
Name  
Pin Input/  
Function  
Type  
No. Output  
SEG36  
SEG37  
SEG38  
SEG39  
SEG40  
SEG41  
SEG42  
SEG43  
SEG44  
SEG45  
SEG46  
SEG47  
SEG48  
SEG49  
SEG50  
(NC)  
55 Output  
54 Output  
53 Output  
52 Output  
51 Output  
50 Output  
49 Output  
48 Output  
47 Output  
46 Output  
45 Output  
44 Output  
43 Output  
42 Output  
41 Output  
LCD segment signal output pins  
LCD  
Driver  
40  
SEG51  
SEG52  
SEG53  
SEG54  
SEG55  
SEG56  
SEG57  
SEG58  
SEG59  
39 Output  
38 Output  
37 Output  
36 Output  
35 Output  
34 Output  
33 Output  
32 Output  
31 Output  
1-8  
Table 1-2 Explanation of Pins (Secondary Functions)  
Pin  
Name  
Pin Input/  
Function  
Type  
No. Output  
P2.0  
P2.1  
P2.2  
P2.3  
8
7
6
5
Input Secondary functions of P2.0~P2.3:  
An external interrupt input pin which enables reception through a  
modified level.  
Also enables selection between allowed/prohibited for each bit interrupt  
through the P2 interrupt enable register (P21E).  
The system reset mode is activated after all P2.0~P2.3 pins reached the  
"H" level for at least two seconds.  
Secondary functions of P2.0 and P2.1:  
Trigger input pin for capture circuits.  
External  
P3.0  
10  
Input Secondary function of P3.0:  
Interrupt  
External interrupt input pin  
Reception of rising and falling edge signal and rising/falling  
signal enable on both edges by external interrupt input pins.  
Input Secondary function of P6.0~P6.3:  
An external interrupt input pin which enables reception through  
a modified level.  
P6.0  
P6.1  
P6.2  
P6.3  
P7.0  
P7.1  
P7.2  
P7.3  
P3.1  
18  
17  
16  
15  
22  
21  
20  
19  
9
Input Secondary function of P7.0~P7.3:  
An external interrupt input pin which enables reception through  
a modified level.  
Event counter  
input  
Input Secondary function of P3.1:  
Input pin for event counter.  
1-9  
1.5.2 PROM-Related Pins  
Table 1-3 shows pins used to write program data to MSM64P155.  
Table 1-3 Explanation of Pins (PROM Functions)  
Pin  
Name  
Pin Input/  
Function  
Type  
No. Output  
VSS  
23 Output 0V power supply  
VDD1*  
100  
99  
4
Plus side power supply pin (+5V supplies)  
Plus side power supply pin (+5V supplies)  
PROM write power supply (+12.5V supplied)  
VDD2*  
VPP  
RESET  
1
Input PROM write setting pins  
PROM mode is set by H level input  
TST1  
30  
29  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
Input  
Input  
I/O  
TST2  
SEG0/D0  
SEG1/D1  
SEG2/D2  
SEG3/D3  
SEG4/D4  
SEG5/D5  
SEG6/D6  
SEG7/D7  
SEG8/CE  
SEG9/OE  
SEG10/A0  
SEG11/A1  
SEG12/A2  
SEG13/A3  
SEG14/A4  
SEG15/A5  
SEG16/A6  
SEG17/A7  
SEG18/A8  
SEG19/A9  
SEG20/A10  
SEG21/A11  
SEG22  
Pins for writing and reading of program data  
I/O  
I/O  
I/O  
I/O  
PROM  
Function  
I/O  
I/O  
I/O  
I/O  
PROM chip enable pin  
I/O  
PROM output enable signal  
Input Program address input pins  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input Normally input H level  
* PROM mode should be supplied with 5V both to VDD1 and VDD2.  
1-10  
1.5.3 Processing of Unused Pins  
Table 1-4 shows processing of unused pins.  
Table 1-4 Processing of Unused Pins  
Pin  
Recommended Pin Connection  
TST1~3  
Open  
P2.0~P2.3  
P3.0~P3.1  
P4.0~P4.3  
P6.0~P6.3  
"L" level or open  
"L" level or open  
Open  
For input setting: "L" level or open (initial value is input mode)  
For output setting: Open  
P7.0~P7.3  
For input setting: "L" level or open (initial value is input mode)  
For output setting: Open  
MD0, MD1  
MD0, MD1  
COM1~4  
Open  
Open  
Open  
SEG0~59  
1-11  
Chapter 2  
POWER SUPPLY SYSTEM  
CHAPTER 2 POWER SUPPLY SYSTEM  
2.1  
Overview  
MSM64P155 (OTP version) is manufactured using EPROM process for the N-well that  
is different from the P-well CMOS structure of the mask ROM of MSM64155A (mask  
ROM). Because of this, the polarity of the power supply system is completely reversed  
when compared to the mask ROM. In addition, note that the names of the power supply  
pins have also been changed.  
Table 2-1 shows a table of the power supply pin functions and Table 2-2 shows the  
differences between MSM64155A and MSM64P155.  
Table 2-1 List of Power Supply Pin Functions  
Pin  
Name  
Pin  
No.  
Input/  
Output  
Function  
VSS  
23  
0V power supply  
Plus side power supply (for 1.5V specifications)  
VDD1  
100  
Bias output for LCD drive (+1.5V)  
(for 3.0V specifications)  
VDD2  
99  
Plus side power supply (for 3.0V specifications)  
Bias output for LCD drive (+3.0V)  
(for 1.5V specifications)  
VDD3  
VPP  
98  
4
Bias output for LCD drive (+4.5V)  
Plus side power supply for PROM write (+12.5V)  
Table 2-2 Differences between MSM64P155 and MSM64155A  
MSM64P155  
VSS (0V)  
MSM64155A  
VDD (0V)  
Different from MSM64P155  
VDD1 (+1.5V)  
VDD2 (+3.0V)  
VDD3 (+4.5V)  
VPP (+12.5V)  
VSS1 (-1.5V)  
VSS2 (-3.0V)  
VSS3 (-4.5V)  
VSSL  
Power supply has reversed phase with 1.5V specifications  
Power supply has reversed phase with 3.0V specifications  
No external capacitor is required  
2-1  
2.2  
Power Supply System Circuit Configuration  
Figure 2-1 shows the circuit configuration of the power supply including the differences  
between MSM64P155 and MSM64155A.  
(Mask ROM)  
(OTP version)  
MSM64155A  
1.5V option  
MSM64P155  
1.5V option  
4
4
Condenser is  
unnecessary.  
VSSL  
VPP  
VDD3  
VDD2  
VDD1  
VSS  
98  
98  
99  
100  
23  
VSS3  
VSS2  
VSS1  
VDD  
99  
1.5V  
1.5V  
100  
23  
(a) Configuration of the power supply system with the 1.5V option  
(Mask ROM)  
(OTP version)  
MSM64155A  
3.0V option  
MSM64P155  
3.0V option  
4
4
Condenser is  
unnecessary.  
VSSL  
VPP  
VDD3  
VDD2  
VDD1  
VSS  
98  
98  
99  
100  
23  
VSS3  
VSS2  
VSS1  
VDD  
3.0V  
3.0V  
99  
120  
23  
(b) Configuration of the power supply system with the 3.0V option  
Figure 2-1 Power Supply System Circuit Configuration  
2-2  
2.3  
Logic Power Supply and Backup Circuits  
MSM64P155hasnobuilt-inlogicpowersupplyconstantvoltage(VR)orbackupcircuits.  
Internal logic is driven by the VDD1 level both for the 1.5V option and 3.0V option. The  
backup controller register (BUPCON) is identical to MSM64155A, it enables both  
readingandwriting, andthe0bit(BUPF)ofthebackupcontrollerregister(BUPCON)has  
no influence on the logic power source.  
2.3.1 Configuration of the Logic Power Supply  
Figure 2-2 shows the configuration of driving circuits of the logic power supply.  
MSM64P155 (1.5V option)  
VDD1  
VDDL  
1.5V  
Logic circuit  
VSS  
Ca  
VSS  
MSM64P155L (3.0V option)  
VDD2  
VDD1  
Bias generating circuit (+1.5V)  
VDDL  
3.0V  
Ca  
Logic circuit  
VSS  
Cb  
VSS  
Figure 2-2 Logic Power Supply Driving Circuits  
2-3  
2.3.2 Operations of Optional 1.5V Logic Power Supply Circuits  
1.5V optional logic power supply circuits are supplied as a power source with ordinary  
logic circuits for IC power supply voltage VDD1.  
2.3.3 Operations of Optional 3.0V Logic Power Supply Circuits  
With the 3.0V option, IC power supply voltage VDD2 is supplied to the logic circuit in the  
system reset mode, and 1/2 descending power output voltage is supplied for other  
modes.  
Figure 2-3 shows the logic supply status for the system reset mode.  
RESET0  
(internal reset signal)  
Crystal oscillation output  
32.768 kHz  
0.5sec  
3.0V  
VDD2  
VDD1  
Logic power source  
VSS  
VDD2  
1.5V  
Figure 2-3 Logic Power Supply Status for System Reset Mode (3.0V Option)  
2-4  
Chapter 3  
CRYSTAL OSCILLATION  
CIRCUIT  
CHAPTER 3 CRYSTAL OSCILLATION CIRCUIT  
3.1  
Overview  
The Crystal oscillation circuit, oscillating at 32.768 kHz, can be fine-adjusted with an  
external capacitor, but since the phase of the power supply of MSM64P155 is reversed  
against MSM64155A, location of the attachment position of an external capacitor CG  
is placed between the VSS and OSC0 pin.  
If RC oscillation is selected by mask option, use an external 1MW resistor like the  
MSM64155A.  
3.2  
Configuration of Crystal Oscillation Circuit  
Figure3-1showstheconfigurationsoftheCrystaloscillationcircuitbothforMSM64155A  
(mask ROM) and MSM64P155.  
MSM64155A (Mask ROM)  
VDD  
32.768 kHz  
Crystal oscillation circuit  
CG  
OSC0  
Time base clock  
(32.768 kHz)  
32.768 kHz  
crystal  
VDD  
VSSL  
Rf  
CD  
OSC1  
(a) Configuration of Crystal Oscillation Circuit for MSM64155A  
MSM64P155 (OTP version)  
Logic power source  
CG  
OSC0  
VSS  
Time base clock  
(32.768 kHz)  
32.768 kHz  
crystal  
Rf  
OSC1  
CD  
VSS  
(b) Configuration of Crystal Oscillation Circuit for MSM64P155  
Figure 3-1 Configurations of Crystal Oscillation Circuit  
3-1  
Chapter 4  
PROM  
CHAPTER 4 PROM  
4.1  
Overview  
MSM64P155 uses built-in PROM as program memory. The capacity of this PROM is  
4064bytesthatomitted32bytesfromthe0FE0Haddresstothe0FFFHaddress,forming  
the test data area of the mask ROM.  
In order to write the program data to this PROM, MSM64P155 uses a special adapter  
(OTP 64155F-100) which is connected to a general EPROM writer for writing. See the  
adapter manual for further reference.  
4.2  
Explanation of Pins  
Table 4-1 shows PROM-related pins of MSM64P155.  
Table 4-1 (a) PROM Related Pins  
Pin  
Name  
Pin  
No.  
Input/  
Output  
Note  
VSS  
VDD1  
VDD2  
VPP  
23  
100  
99  
4
0V power supply  
Plus side power supply pin (+5V supplied)  
Plus side power supply pin (+5V supplied)  
Power supply for PROM writing (+12.5V supplied)  
PROM mode setting pins  
RESET  
TST1  
TST2  
1
Input  
Input  
Input  
PROM mode is activated when the "H" level is input to these pins.  
30  
29  
4-1  
Table 4-1 (b) PROM-Related Pins  
Pin  
Name  
Pin  
No.  
Input/  
Output  
Function  
Program data write and read pins  
SEG0/D0  
SEG1/D1  
SEG2/D2  
SEG3/D3  
SEG4/D4  
SEG5/D5  
SEG6/D6  
SEG7/D7  
SEG8/CE  
SEG9/OE  
SEG10/A0  
SEG11/A1  
SEG12/A2  
SEG13/A3  
SEG14/A4  
SEG15/A5  
SEG16/A6  
SEG17/A7  
SEG18/A8  
SEG19/A9  
SEG20/A10  
SEG21/A11  
SEG22  
91  
90  
89  
88  
87  
86  
85  
84  
83  
82  
81  
80  
79  
78  
77  
76  
75  
74  
73  
72  
71  
70  
69  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
I/O  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
Input  
PROM chip enable pin  
PROM output enable signal  
Program address input pins  
Normally input "H" level  
4-2  
4.3  
PROM Mode  
MSM64P155 has two different modes; PROM mode used to write to PROM and read  
from PROM and microcontroller operation mode used to execute programs written to  
PROM.WhenMSM64P155issetinthePROMmode,itsimplyoperatesasPROM.These  
operations are explained under PROM mode.  
4.3.1 Setting the PROM Mode  
Setting of the PROM mode is done with RESET, TST1, and TST2, listed in Table 4-2.  
When the PROM mode is set, LCD pins become PROM-related pins.  
Table 4-2 PROM Mode Setting  
RESET  
TST1  
TST2  
MODE  
H
H
H
PROM Mode  
4.3.2 PROM Mode Functions  
PROM Mode functions are shown in Table 4-3.  
Table 4-3 PROM Mode Functions  
VDD1  
VDD2  
MODE  
CE  
OE  
VPP  
D7~D0  
Program data output  
Read  
L
L
L
H
L
5V  
5V  
5V  
5V  
Program  
12.5V  
12.5V  
Program data input  
Program data output  
Program Verify  
H
4-3  
4.3.3 Connection to the EPROM Writer  
Use the MSM64P155 dedicated adaptor (OTP64155F-100) when writing the program  
data with a commercial general-purpose EPROM writer.  
Set a ROM type for the EPROM writer to the 27C256 type Intel fast-writing mode  
(V =12.5V, Program pulse width=1ms).  
PP  
Set the write addresses of 0000H to 0FDFH.  
4-4  
Chapter 5  
TST3 PIN  
CHAPTER 5 TST3 PIN  
5.1  
Overview  
In the MSM64P155, when the TST pin is set to "H" level, the 256Hz and 4Hz interrupt  
sources are added.  
The two added interrupt sources enable the MSM64P155 to be used as an OTP version  
of the MSM64152A, MSM64153A or MSM64158A.  
Table 5-1 lists the interrupt sources when TST3="H" and Figure 5-1 shows the interrupt  
control equivalent circuit.  
Table 5-1 Interrupt sources (TST3="H")  
No.  
Interrupt source  
Melody 0 interrupt  
Symbol  
MD0INT  
MD1INT  
P3INT  
Interrupt start address  
1
2
023H  
026H  
029H  
02CH  
02FH  
032H  
038H  
03BH  
03EH  
041H  
044H  
047H  
Melody 1 interrupt  
Port 3 external interrupt  
Port 2 external interrupt  
Port 6 external interrupt  
Port 7 external interrupt  
256Hz interrupt  
3
4
P2INT  
5
P6INT  
6
P7INT  
7
256HzINT  
128HzINT  
32HzINT  
16HzINT  
4HzINT  
1HzINT  
8
128Hz interrupt  
9
32Hz interrupt  
10  
11  
12  
16Hz interrupt  
4Hz interrupt  
1Hz interrupt  
If two or more different interrupts occur at the same time, an interrupt with a smaller  
interrupt start address number is serviced first.  
When the TST3 pin is open or set to "L" level, the contents of interrupt sources are the  
same as those of the MSM64155A.  
5-1  
Interrupt  
request  
signals  
Interrupt  
request  
registers  
Interrupt  
enable  
registers  
IRQ0  
IRQ0.1  
IE0  
IE0.1  
MD0INT  
MD1INT  
P3INT  
QMD0  
QMD1  
QP3  
EMD0  
EMD1  
EP3  
IRQ0.2  
IRQ0.3  
IE0.2  
IE0.3  
IRQ1  
IE1  
IRQ1.0  
IRQ1.1  
IRQ1.2  
IE1.0  
IE1.1  
IE1.2  
P2INT  
P6INT  
P7INT  
QP2  
QP6  
QP7  
EP2  
EP6  
EP7  
Interrupt  
Vector  
Address  
IRQ2  
IE2  
Interrupt  
Request  
IRQ2.0  
IRQ2.1  
IRQ2.2  
IRQ2.3  
IE2.0  
IE2.1  
IE2.2  
IE2.3  
256HzINT  
128HzINT  
32HzINT  
16HzINT  
Q256Hz  
Q128Hz  
Q32Hz  
Q16Hz  
E256Hz  
E128Hz  
E32Hz  
E16Hz  
IRQ3  
IE3  
IRQ3.0  
IE3.0  
IE3.1  
4HzINT  
1HzINT  
TST3  
Q4Hz  
Q1Hz  
E4Hz  
E1Hz  
IRQ3.1  
MI  
Figure 5-1 Interrupt Control Equivalent Circuit  
5-2  
5.2  
Registers To Be Changed By TST3  
When the TST3 pin is set to "H" level, the 256Hz interrupt and 4Hz interrupt are added  
to the interrupt request registers (IRQ2, IRQ3) and interrupt enable registers (IE2, IE3),  
respectively.  
b
b
2
b
1
b
0
3
IRQ2 (3EH)  
(R/W)  
Q16Hz  
Q32Hz  
Q128Hz Q256Hz  
16 Hz Interrupt Request Flag  
0: Not requested (initial value)  
1: Requested  
32 Hz Interrupt Request Flag  
0: Not requested (initial value)  
1: Requested  
128 Hz Interrupt Request Flag  
0: Not requested (initial value)  
1: Requested  
256 Hz Interrupt Request Flag  
0: Not requested (initial value)  
1: Requested  
Bit 3: Q16Hz  
Set to "1" at the falling edge of a 16Hz output from the time base counter.  
Bit 2: Q32Hz  
Set to "1" at the falling edge of a 32Hz output from the time base counter.  
Bit 1: Q128Hz  
Set to "1" at the falling edge of a 128Hz output from the time base counter.  
Bit 0: Q256Hz  
Set to "1" at the falling edge of a 256Hz output from the time base counter.  
5-3  
b
3
b
2
b
1
b
0
IRQ3 (3FH)  
(R/W)  
—*  
—*  
Q1Hz  
Q4Hz  
1 Hz Interrupt Request Flag  
0: Not requested (initial value)  
1: Requested  
4 Hz Interrupt Request Flag  
0: Not requested (initial value)  
1: Requested  
*Researved bit: Fixed to "1". Write is disabled.  
Bit 1: Q1Hz  
Set to "1" at the falling edge of a 1Hz output from the time base counter.  
Bit 0: Q4Hz  
Set to "1" at the falling edge of a 4Hz output from the time base counter.  
b
3
b
2
b
1
b
0
IE2 (3AH)  
(R/W)  
E16Hz  
E32Hz  
E128Hz E256Hz  
16 Hz Interrupt Enable Flag  
0: Disabled (initial value)  
1: Enabled  
32 Hz Interrupt Enable Flag  
0: Disabled (initial value)  
1: Enabled  
128 Hz Interrupt Enable Flag  
0: Disabled (initial value)  
1: Enabled  
256 Hz Interrupt Enable Flag  
0: Disabled (initial value)  
1: Enabled  
5-4  
b
3
b
2
b
1
b
0
IE3 (3BH)  
(R/W)  
—*  
—*  
E1Hz  
E4Hz  
1 Hz Interrupt Enable Flag  
0: Disabled (initial value)  
1: Enabled  
4 Hz Interrupt Enabled Flag  
0: Disabled (initial value)  
1: Enabled  
*Researved bit: Fixed to "1". Write is disabled.  
Table 5-2 lists the registers to be changed by TST3  
Table 5-2 TST3-Related Registers  
Initial value after  
system reset  
Name  
Symbol  
Address Read/Write Byte access  
TST3="0"  
or OPEN  
TST3="1"  
0H  
Interrupt Enable Register 2  
Interrupt Enable Register 3  
Interrupt Request Register 2  
Interrupt Request Register 3  
IE2  
IE3  
3AH  
3BH  
3EH  
3FH  
R/W  
R/W  
R/W  
R/W  
1H  
0DH  
1H  
Yes  
Yes  
0CH  
IRQ2  
IRQ3  
0H  
0DH  
0CH  
5-5  
APPENDIXES  
APPENDIX A PACKAGE DIMENSIONAL DRAWING  
MSM64P155-NGS-BK  
MSM64P155L-NGS-BK  
MSM64P155-XXXGS-BK  
MSM64P155L-XXXGS-BK  
Figure A-1 100-Pin QFP  
Appendix-1  
APPENDIX B ELECTRICAL CHARACTERISTICS  
(1) For 1.5V Specifications in the microcontroller operation mode  
Product Name: MSM64P155  
Absolute Maximum Rating  
(VSS=0V)  
Parameter  
Power supply voltage 1  
Power supply voltage 2  
Power supply voltage 3  
Input voltage 1  
Symbol  
VDD1  
Condition  
Ta=25°C  
Rating  
–0.3~+2.0  
Unit  
V
VDD2  
Ta=25°C  
–0.3~+4.0  
V
VDD3  
Ta=25°C  
–0.3~+5.5  
V
VIN1  
VDD1 system input, Ta=25°C  
VDD1 system output, Ta=25°C  
VDD2 system output, Ta=25°C  
VDD3 system output, Ta=25°C  
–0.3~VDD1+0.3  
–0.3~VDD1+0.3  
–0.3~VDD2+0.3  
–0.3~VDD3+0.3  
–55~+125  
V
Output voltage 1  
VOUT1  
VOUT2  
VOUT3  
TSTG  
V
Output voltage 2  
V
Output voltage 3  
V
Storage temperature  
°C  
Recommended Operating Conditions  
(VSS=0V)  
Parameter  
Symbol  
TOPE  
Condition  
Range  
0~65  
Unit  
°C  
Operating temperature  
Operating voltage  
Crystal oscillator  
VDD1  
1.35~1.7  
V
fXT  
30~35  
kHz  
frequency  
RC OSC external resistance  
ROS  
1M±10%  
W
Appendix-2  
DC Characteristics  
(Unless otherwise specified, VSS=0V, VDD1=1.5V, Ta=0~65˚C).  
(1/5)  
Measure-  
Min. Typ. Max. Unit  
ment  
Parameter  
Symbol  
Condition  
circuit  
VDD2 voltage  
VDD2  
VDD3  
Ca, C12=1µF Cb=0.1µF  
Ca, C12=1µF Cb=0.1µF  
Within 5 seconds from the  
2.8 3.0 3.2  
4.3 4.5 4.7  
V
V
VDD3 voltage  
XTOSC oscillation  
beginning voltage  
XTOSC oscillation  
maintaining voltage  
XTOSC external  
capacity  
VSTA  
VHOLD  
CG  
1.45  
1.35  
10  
30  
20  
V
V
beginning of oscillations after reset  
1
pF  
pF  
XTOSC internal  
capacity  
CD  
10  
15  
15  
40  
CROSC oscillation frequency  
fCR  
ROS=1MW  
75 kHz  
Note: "XTOSC" indicates crystal oscillation circuits at 32.768 kHz.  
"CROSC" indicates RC oscillation circuits at 32 kHz.  
Appendix-3  
DC Characteristics (32.768 kHz Crystal Oscillation)  
(Unless otherwise specified, VSS=0V, VDD1=1.5V, Ta=0~65˚C).  
(2/5)  
Measure-  
Parameter  
Symbol  
Condition  
Typ. Max. Unit  
Min.  
ment  
circuit  
Consumption current 1  
Consumption current 2  
IDD1  
IDD2  
CPU is in the HALT mode  
2
10 µA  
1
µA  
CPU is in the operating mode  
75 100  
DC Characteristics (RC Oscillation)  
(Unless otherwise specified, VSS=0V, VDD1=1.5V, Ta=0~65˚C).  
(3/5)  
Measure-  
Typ. Max. Unit  
Min.  
ment  
Parameter  
Symbol  
Condition  
circuit  
Consumption current 1  
Consumption current 2  
IDD1  
IDD2  
CPU is in the HALT mode  
3
20 µA  
1
µA  
CPU is in the operating mode  
100 200  
Appendix-4  
DC Characteristics  
(Unless otherwise specified, VSS=0V, VDD1=1.5V, VDD2=3.0V, VDD3=4.5V, Ta=0~65˚C).  
(4/5)  
Measure-  
ment  
Parameter  
Symbol  
IOH1  
Condition  
VOH1=VDD1-0.5V  
VOL1=+0.5V  
Min. Typ. Max. Unit  
–2.0 –0.6 –0.1 mA  
0.1 0.6 2.0 mA  
circuit  
Output current 1  
(P4.0~P4.3)  
(MD0, MD0)  
(MD1, MD1)  
IOL1  
IOH2  
VOH2=VDD3-0.2V (VDD3 level)  
VOMH2=VDD2+0.2V (VDD2 level)  
4
–4 µA  
µA  
–4 µA  
µA  
–4 µA  
µA  
IOMH2  
Output current 2  
(SEG0~SEG59)  
(COM1~COM4)  
IOMH2S VOMH2S=VDD2-0.2V(VDD2 level)  
4
2
IOML2  
IOML2S  
IOL2  
VOML2=VDD1+0.2V (VDD1 level)  
VOML2S=VDD1-0.2V(VDD1 level)  
4
VOL2=+0.2V  
(VSS level)  
Output current 3  
(P6.0~P6.3)  
IOH3  
VOH3=VDD1–0.5V  
VOL3=+0.5V  
VOH=VDD1  
VOL=VSS  
–5.0 –2.1 –0.3 mA  
0.1 0.7 2.0 mA  
IOL3  
(P7.0~P7.3)  
Output leak  
(P6.0~P6.3)  
(P7.0~P7.3)  
IOOH  
IOOL  
0.3 µA  
µA  
–0.3  
Appendix-5  
DC Characteristics  
(Unless otherwise specified, VSS=0V, VDD1=1.5V, VDD2=3.0V, VDD3=4.5V, Ta=0~65˚C)  
(5/5)  
Measure-  
Parameter  
Symbol  
IIH1  
Condition  
Min. Typ. Max. Unit  
ment  
circuit  
VIH=VDD1 (for pull-down)  
1
0
20 100 µA  
Input current 1  
(P2.0~P2.3)  
(P3.0~P3.1)  
(P6.0~P6.3)  
(P7.0~P7.3)  
IIH1Z  
IIL1  
VIH1=VDD1 (for high impedance)  
1
0
µA  
µA  
3
VIL1=VSS  
–1  
Input current 2  
(TST1, TST2)  
Input current 3  
(TST3)  
IIH2  
IIL2  
IIH3  
IIL3  
IIH4  
IIL4  
VIH2=VDD1  
VIL3=VSS  
VIH3=VDD1  
VIL2=VSS  
VIH4=VDD1  
VIL4=VSS  
50 200 800 µA  
–1  
0.3  
–1  
2
1
0
5
µA  
µA  
µA  
µA  
µA  
8
0
Input current 4  
(RESET)  
30  
0
–1  
Input voltage 1  
(P2.0~P2.3)  
(P3.0~P3.1)  
(P6.0~P6.3)  
(P7.0~P7.3)  
(TST1, TST2, TST3)  
(RESET)  
VIH1  
VIL1  
1.2  
0
1.5  
0.3  
V
V
4
Appendix-6  
Measurement Circuit 1 (1)  
OSC1  
Crystal  
C12  
OSC0  
C1  
CG  
VSS  
C2  
VSS VDD1 VDD2  
VDD3  
Cb  
Ca, C12  
Cb  
Crystal  
CG  
: 1 mF  
: 0.1 mF  
: 32.768 kHz  
: 15 pF  
Ca  
A
V
V
Measurement Circuit 1 (2)  
OSC1  
ROS  
C12  
OSC0  
C1  
C2  
VSS VDD1 VDD2  
VDD3  
Cb  
Ca  
: 20 mF  
Cb, C12  
ROS  
: 0.1 mF ~ 0.2 mF  
: 1MW  
Ca  
A
V
V
Appendix-7  
Measurement Circuit 2  
(Note 2)  
A
Input pins  
Output pin  
VIH  
(Note 1)  
VIL  
VSS VDD1 VDD2 VDD3  
Measurement Circuit 3  
(Note 3)  
Output pin  
A
Input pins  
VSS VDD1 VDD2 VDD3  
Appendix-8  
Measurement Circuit 4  
Waveform  
monitoring  
Input pins  
Output pin  
VIH  
(Note 3)  
VIL  
VSS VDD1 VDD2 VDD3  
Note 1 Input logic for specified mode  
Note 2 Repeated on specified output pin  
Note 3 Repeated on specified input pin  
Appendix-9  
(2) For 3.0V Specifications  
Product Name: MSM64P155L  
Absolute Maximum Ratings  
(VSS=0V)  
Parameter  
Symbol  
VDD1  
Condition  
Ta=25°C  
Rating  
–0.3~+2.0  
Unit  
V
Power supply voltage 1  
Power supply voltage 2  
Power supply voltage 3  
Input voltage 1  
VDD2  
Ta=25°C  
–0.3~+4.0  
V
VDD3  
Ta=25°C  
–0.3~+5.5  
V
VIN1  
VDD2 system input, Ta=25°C  
VDD2 system output, Ta=25°C  
VDD3 system output, Ta=25°C  
–0.3~VDD2+0.3  
–0.3~VDD2+0.3  
–0.3~VDD3+0.3  
–55~+125  
V
Output voltage 1  
VOUT1  
VOUT2  
TSTG  
V
Output voltage 2  
V
Storage temperature  
°C  
Recommended Operating Conditions  
(VSS=0V)  
Parameter  
Symbol  
Condition  
Range  
Unit  
°C  
Operating temperature  
Operating voltage  
Crystal oscillator  
TOPE  
VDD2  
0~65  
V
2.7~3.5  
30~66  
fXT  
kHz  
frequency  
RC OSC external resistance  
ROS  
W
1M±10%  
Appendix-10  
DC Characteristics  
(Unless otherwise specified, VSS=0V, VDD2=3.0V, Ta=0~65˚C).  
(1/5)  
Measure-  
ment  
Parameter  
Symbol  
Condition  
Min. Typ. Max. Unit  
circuit  
VDD1 voltage  
VDD1  
VDD3  
Ca=1µF Cb, C12=0.1µF  
Ca=1µF Cb, C12=0.1µF  
Within 5 seconds from the  
1.3 1.5 1.7  
4.3 4.5 4.7  
V
V
VDD3 voltage  
XTOSC oscillation  
beginning voltage  
XTOSC oscillation  
maintaining voltage  
XTOSC external  
capacitance  
VSTA  
VHOLD  
CG  
2.7  
2.7  
10  
30  
V
V
beginning of oscillations after reset  
1
pF  
pF  
XTOSC internal  
CD  
10  
15  
15 20  
capacitance  
CROSC oscilaltion frequency  
fCR  
ROS=1MW  
40 75 kHz  
Note: "XTOSC" indicates crystal oscillation circuits at 32.768 kHz.  
"CROSC" indicates RC oscillation circuits at 32 kHz.  
Appendix-11  
DC Characteristics (32.768 kHz Crystal Oscillation)  
(Unless otherwise specified, VSS=0V, VDD2=3.0V, Ta=0~65˚C).  
(2/5)  
Measure-  
ment  
Parameter  
Symbol  
Condition  
Unit  
Min. Typ. Max.  
circuit  
Consumption current 1  
Consumption current 2  
IDD1  
IDD2  
CPU is in the HALT mode  
1
5
µA  
µA  
1
CPU is in the operating mode  
35 50  
DC Characteristics (RC Oscillation)  
(Unless otherwise specified, VSS=0V, VDD2=3.0V, Ta=0~65˚C).  
(3/5)  
Measure-  
ment  
Parameter  
Symbol  
Condition  
Unit  
Min. Typ. Max.  
circuit  
Consumption current 1  
Consumption current 2  
IDD1  
IDD2  
CPU is in the HALT mode  
3
15 µA  
1
µA  
CPU is in the operating mode  
50 100  
Appendix-12  
DC Characteristics  
(Unless otherwise specified, VSS=0V, VDD1=1.5V, VDD2=3.0V, VDD3=4.5V, Ta=0~65˚C).  
(4/5)  
Measure-  
Parameter  
Symbol  
IOH1  
Condition  
VOH1=VDD2–0.5V  
VOL1=+0.5V  
Min. Typ. Max. Unit  
ment  
circuit  
Output current 1  
(P4.0~P4.3)  
(MD0, MD0)  
(MD1, MD1)  
–6 –1.8 –0.7 mA  
IOL1  
0.7 1.8  
6
mA  
IOH2  
IOMH2  
IOMH2S  
IOML2  
VOH2=VDD3–0.2V (VDD3 level)  
VOMH2=VDD2+0.2V (VDD2 level)  
VOMH2S=VDD2–0.2V(VDD2 level)  
4
–4 µA  
µA  
–4 µA  
µA  
–4 µA  
µA  
Output current 2  
(SEG0~SEG59)  
(COM1~COM4)  
2
VOML2=VDD1+0.2V (VDD1 level)  
4
IOML2S VOML2S=VDD1–0.2V(VDD1 level)  
IOL2  
IOH3  
VOL2=+0.2V  
(VSS level)  
4
Output current 3  
(P6.0~P6.3)  
VOH3=VDD2–0.5V  
–1.8 –6 –2 mA  
0.7 1.6 6.0 mA  
IOL3  
VOL3=+0.5V  
VOH=VDD2  
(P7.0~P7.3)  
Output leak  
(P6.0~P6.3)  
(P7.0~P7.3)  
IOOH  
0.3 µA  
µA  
IOOL  
VOL=VSS  
–0.3  
Appendix-13  
DC Characteristics  
(Unless otherwise specified, VSS=0V, VDD1=1.5V, VDD2=3.0V, VDD3=4.5V, Ta=0~65˚C).  
(5/5)  
Measure-  
Min. Typ. Max.  
Parameter  
Symbol  
Condition  
Unit  
ment  
circuit  
IIH1  
VIH1=VDD2 (for pull-down) 50 100 300 µA  
Input current 1  
(P2.0~P2.3), (P3.0~P3.1)  
(P6.0~P6.3), (P7.0~P7.3)  
Input current 2  
(TST1, TST2)  
IIH1Z  
VIH1=VDD2 (for high impedance)  
0
1
µA  
IIL1  
IIH2  
IIL2  
IIH3  
IIL3  
IIH4  
IIL4  
VIL1=VSS  
VIH2=VDD2  
VIL2=VSS  
VIH3=VDD2  
VIL3=VSS  
VIH4=VDD2  
VIL4=VSS  
–1  
0
6
µA  
mA  
µA  
µA  
µA  
0.4 1.5  
–1  
0.5  
–1  
20  
–1  
3
0
3
Input current 3  
(TST3)  
10  
0
Input current 4  
(RESET)  
80 300 µA  
0
µA  
Input voltage 1  
(P2.0~P2.3)  
(P3.0~P3.1)  
(P6.0~P6.3)  
(P7.0~P7.3)  
(TST1, TST2, TST3)  
(RESET)  
VIH1  
VIL1  
2.4  
0
3.0  
V
4
0.6  
V
Appendix-14  
Measurement Circuit 1 (1)  
OSC1  
Crystal  
C12  
OSC0  
C1  
CG  
VSS  
C2  
VSS VDD2 VDD1  
VDD3  
Cb  
Ca  
: 1 mF  
Cb, C12  
Crystal  
CG  
: 0.1 mF  
: 32.768 kHz  
: 15 pF  
Ca  
A
V
V
Measurement Circuit 1 (2)  
OSC1  
ROS  
C12  
OSC0  
C1  
C2  
VSS VDD2 VDD1  
VDD3  
Cb  
Ca  
Cb, C12  
ROS  
: 20 mF  
: 0.1 mF  
: 1MW  
Ca  
A
V
V
Appendix-15  
Measurement Circuit 2  
(Note 2)  
A
Input pins  
Output pin  
VIH  
(Note 1)  
VIL  
VSS VDD1 VDD2 VDD3  
Measurement Circuit 3  
(Note 3)  
Output pin  
A
Input pins  
VSS VDD1 VDD2 VDD3  
Appendix-16  
Measurement Circuit 4  
Waveform  
monitoring  
Input pins  
Output pin  
VIH  
(Note 3)  
VIL  
VSS VDD1 VDD2 VDD3  
Note 1 Input logic for specified mode  
Note 2 Repeated on specified output pin  
Note 3 Repeated on specified input pin  
Appendix-17  
(3) PROM Operations (Common Specifications for 1.5V and 3.0V)  
Absolute Maximum Ratings  
(VSS=0V)  
Unit  
V
Parameter  
PROM power source  
voltage  
Symbol  
Condition  
VCC=VDD1=VDD2  
Ta=25°C  
Rating  
VCC  
–0.3~+6.7  
Program voltage  
PROM input voltage  
VPP  
VI  
Ta=25°C  
–0.3~+14.0  
V
V
VCC system input  
Ta=25°C  
–0.3~VCC+0.3  
PROM output voltage  
Storage temperature  
VO  
VCC system output  
Ta=25°C  
–0.3~VCC+0.3  
–55~+125  
V
TSTG  
°C  
Recommended Operating Conditions  
(VSS=0V)  
Parameter  
Symbol  
Condition  
Range  
Unit  
Operating temperature  
VCC power supply  
voltage  
TOPEP  
0~65  
°C  
VCC  
VPP  
VCC=VDD1=VDD2  
4.75~5.25  
V
VPP power supply  
voltage  
In read  
4.75~5.25  
V
In write  
VCC=VDD1=VDD2  
12.0~13.0  
4~VCC  
0~1  
V
V
V
VIH  
VIL  
Input voltage  
Appendix-18  
<Read Operation>  
DC Characteristics  
(Unless otherwise specified, VDD1=VDD2=5V±5%, Ta=25˚C±5˚C)  
Parameter  
Symbol  
Condition  
Min.  
Typ.  
Max.  
Unit  
VCC=VDD1=VDD2  
CE=VIH  
VCC supply voltage (Standby)  
VCC supply voltage (Operation)  
Input voltage  
ICC1  
35  
mA  
VCC=VDD1=VDD2  
CE=VIL  
VCC=VDD1=VDD2  
ICC2  
100  
mA  
VIH  
VIL  
4
0
VCC  
1
V
V
VCC=VDD1=VDD2  
VOH=VCC-0.5V  
VOL=0.5V  
IOH  
IOL  
–2  
–0.7  
0.7  
–0.2  
2
mA  
mA  
Output current  
0.2  
AC Characteristics  
(Unless otherwise specified, VCC=5V±5%, VPP=VCC, Ta=0˚C~70˚C)  
Parameter  
Symbol  
tACC  
tCE  
Condition  
OE=CE=VIL  
Min. Typ. Max. Unit  
Address access time  
CE access time  
0
120  
120  
50  
ns  
ns  
ns  
ns  
OE=VIL  
CE=VIL  
CE=VIL  
OE access time  
tOE  
Output disable time  
tDF  
40  
Measurement Conditions:  
Input pulse level .................... 0.45V~4.55V  
During rising/falling input....... 5 ns  
Threshold level ...................... input 0.8V, 2V/output 0.8V, 2V  
Appendix-19  
Timing Diagram  
Address input  
CE  
tCE  
OE  
tDF  
tOE  
tACC  
Data output  
Appendix-20  
<Write Operation>  
DC Characteristics  
(Unlessotherwisespecified,VSS=0V,VDD1=VDD2=5V±5%,VPP=12.5V±0.5V,Ta=25˚C±5˚C)  
Parameter  
Symbol  
IPP  
Condition  
Min.  
4
Typ.  
Max.  
50  
Unit  
mA  
mA  
V
VPP power supply voltage  
VCC power supply current  
CE=VIL  
100  
VCC  
1
ICC  
VCC=VDD1=VDD2  
VCC=VDD1–VDD2  
VIH  
Input voltage  
VIL  
0
V
VCC=VDD1=VDD2  
VOH=VCC-0.5V  
VOL=0.5V  
–0.2  
2
IOH  
IOL  
–2  
–0.7  
0.7  
mA  
mA  
Output current  
0.2  
AC Characteristics  
(Unlessotherwisespecified,VSS=0V,VDD1=VDD2=5V±5%,VPP=12.5V±0.5V,Ta=25˚C±5˚C)  
Parameter  
Symbol  
tAS  
Condition  
Min. Typ. Max. Unit  
Address setup time  
OE setup time  
Data setup time  
2
2
2
0
2
0
2
µs  
µs  
µs  
µs  
µs  
ns  
µs  
tOES  
tDS  
Address hold time  
tAH  
Data hold time  
tDH  
OE output floating delay time  
VPP power source setup time  
Initial program pulse width  
tDFP  
tVS  
130  
tPW  
VDD1=VDD2  
6V±0.25V  
VDD1=VDD2  
6V±0.25V  
0.95 1.0 1.05 ms  
Additional program pulse width  
tOPW  
tOE  
2.85  
78.75 ms  
150 ns  
OE output effective delay time  
Measurement Conditions:  
Input pulse level .................... 0.45V~4.55V  
During rising/falling input....... less than 20 ns  
Threshold level ...................... input 0.8V, 2V/output 0.8V, 2V  
Appendix-21  
Program Timing Diagram  
Address input  
Address N  
tAH  
tAS  
Data input/output  
VPP  
Data Input  
Data Output  
tDFP  
tDH  
tOE  
tDS  
tVS  
CE  
OE  
tOES  
tPW  
tOPW  
Appendix-22  
MSM64P155  
User's Manual  
First Edition:  
March 1996  
© 1996 Oki Electric Industry Co., Ltd.  

相关型号:

MSM64P155L-XXXGS-BK

Microcontroller, 4-Bit, OTPROM, 0.032768MHz, CMOS, PQFP100, 14 X 20 MM, 0.65 MM PITCH, PLASTIC, QFP-100
OKI

MSM64P164

4-Bit Microcontroller with Built-in RC Oscillation Type A/D Converter and LCD Driver
OKI

MSM64P164-XXXGS-BK

Microcontroller, 4-Bit, OTPROM, 0.4MHz, CMOS, PQFP80, 14 X 20 MM, 0.80 MM PITCH, PLASTIC, QFP-80
OKI

MSM64P164-XXXGS-K

Microcontroller, 4-Bit, OTPROM, 0.066MHz, CMOS, PQFP80, QFP-80
OKI

MSM64P164-XXXGS-V1K

Microcontroller, 4-Bit, OTPROM, 0.066MHz, CMOS, PQFP80, QFP-80
OKI

MSM64Q424

Built-in 256/512-Bit EEPROM and LCD Driver 4-Bit Microcontroller
OKI

MSM64Q424-NGS-K

Built-in 256/512-Bit EEPROM and LCD Driver 4-Bit Microcontroller
OKI

MSM6500

MSM6500⑩ CHIPSET SOLUTION
QUANTUM

MSM6502B

Low-power and Built-in LCD Driver 4-Bit Microcontroller
OKI

MSM6502B-XXXGS-2K

Low-power and Built-in LCD Driver 4-Bit Microcontroller
OKI

MSM6502B-XXXGS-K

Low-power and Built-in LCD Driver 4-Bit Microcontroller
OKI

MSM6512

Low-power and Built-in LCD Driver 4-Bit Microcontroller
OKI