R88D-WN02L-ML2 [OMRON]

SERVO DRIVER 2.1A 115V LOAD;
R88D-WN02L-ML2
型号: R88D-WN02L-ML2
厂家: OMRON ELECTRONICS LLC    OMRON ELECTRONICS LLC
描述:

SERVO DRIVER 2.1A 115V LOAD

驱动
文件: 总414页 (文件大小:6029K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Cat. No. I544-E1-06  
USER’S MANUAL  
OMNUC WSERIES  
MODELS R88M-W@  
(AC Servomotors)  
MODELS R88D-WN@-ML2  
(AC Servo Drivers)  
AC SERVOMOTORS/SERVO DRIVERS  
WITH BUILT-IN MECHATROLINK-II COMMUNICATIONS  
Thank you for choosing this OMNUC W-series product. Proper use and handling of the prod-  
uct will ensure proper product performance, will length product life, and may prevent possible  
accidents.  
Please read this manual thoroughly and handle and operate the product with care.  
1.To ensure safe and proper use of your OMRON Servomotors and Servo Drivers, please read this manual  
(Cat. No. I544-E1) to gain sufficient knowledge of the products, safety information, and precautions before  
actual use.  
2.The products are illustrated without covers and shieldings to enable showing better detail in this manual.  
For actual use of the products, make sure to use the covers and shieldings as specified.  
3.Copies of this manual and other related manuals must be delivered to the actual end users of the products.  
4.Please keep a copy of this manual close at hand for future reference.  
5.If a product has been left unused for a long time, please consult with your OMRON sales representative.  
NOTICE  
1.This manual describes the functions of the product and relations with other products. You  
should assume that anything not described in this manual is not possible.  
2.Although care has been given in documenting the product, please contact your  
OMRON representative if you have any suggestions on improving this manual.  
3.The product contains dangerous high voltages inside. Turn OFF the power and wait for at least  
five minutes to allow power to discharge before handling or working with the product. Never  
attempt to disassemble the product.  
4.We recommend that you add the following precautions to any instruction manuals you prepare  
for the system into which the product is being installed.  
• Precautions on the dangers of high-voltage equipment.  
• Precautions on touching the terminals of the product even after power has been turned  
OFF. (These terminals are live even with the power turned OFF.)  
5.Specifications and functions may be changed without notice in order to improve product per-  
formance.  
6.Positive and negative rotation of AC Servomotors described in this manual are defined as look-  
ing at the end of the output shaft of the motor as follows: counterclockwise rotation is positive  
and clockwise rotation is negative.  
7.Do not perform withstand-voltage or other megameter tests on the product. Doing so may  
damage internal components.  
8.Servomotors and Servo Drivers have a finite service life. Be sure to keep replacement prod-  
ucts on hand and to consider the operating environment and other conditions affecting the ser-  
vice life.  
9.The OMNUC W Series can control both incremental and absolute encoders. Differences in  
functions or specifications according to the encoder type are indicated in this manual. Be sure  
to check the model that is being used, and follow the relevant specifications.  
• Servomotors with incremental encoders:  
• Servomotors with absolute encoders:  
R88M-W@H-@  
R88M-W@T-@  
Items to Check After Unpacking  
1.Check the following items after removing the product from the package:  
• Has the correct product been delivered (i.e., the correct model number and specifications)?  
• Has the product been damaged in shipping?  
• Are any screws or bolts loose?  
USER’S MANUAL  
OMNUC WSERIES  
MODELS R88M-W@  
(AC Servomotors)  
MODELS R88D-WN@-ML2  
(AC Servo Drivers)  
AC SERVOMOTORS/SERVO DRIVERS  
WITH BUILT-IN MECHATROLINK-II COMMUNICATIONS  
Notice:  
OMRON products are manufactured for use according to proper procedures by a qualified operator  
and only for the purposes described in this manual.  
The following conventions are used to indicate and classify precautions in this manual. Always heed  
the information provided with them. Failure to heed precautions can result in injury to people or dam-  
age to property.  
!DANGER Indicates an imminently hazardous situation which, if not avoided, will result in  
death or serious injury. Additionally, there may be severe property damage.  
!WARNING Indicates a potentially hazardous situation which, if not avoided, could result in  
death or serious injury. Additionally, there may be severe property damage.  
!Caution  
Indicates a potentially hazardous situation which, if not avoided, may result in  
minor or moderate injury, or property damage.  
OMRON Product References  
All OMRON products are capitalized in this manual. The word “Unit” is also capitalized when it refers to  
an OMRON product, regardless of whether or not it appears in the proper name of the product.  
The abbreviation “Ch,which appears in some displays and on some OMRON products, often means  
“word” and is abbreviated “Wd” in documentation in this sense.  
The abbreviation “PC” means Programmable Controller and is not used as an abbreviation for anything  
else.  
Visual Aids  
The following headings appear in the left column of the manual to help you locate different types of  
information.  
Note Indicates information of particular interest for efficient and convenient operation of the product.  
OMRON, 2004  
All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or  
by any means, mechanical, electronic, photocopying, recording, or otherwise, without the prior written permission of  
OMRON.  
No patent liability is assumed with respect to the use of the information contained herein. Moreover, because OMRON is con-  
stantly striving to improve its high-quality products, the information contained in this manual is subject to change without  
notice. Every precaution has been taken in the preparation of this manual. Nevertheless, OMRON assumes no responsibility  
for errors or omissions. Neither is any liability assumed for damages resulting from the use of the information contained in  
this publication.  
General Warnings  
Observe the following warnings when using the OMNUC Servomotor and Servo Driver and all con-  
nected or peripheral devices.  
This manual may include illustrations of the product with protective covers removed in order to  
describe the components of the product in detail. Make sure that these protective covers are on the  
product before use.  
Consult your OMRON representative when using the product after a long period of storage.  
!WARNING Always connect the frame ground terminals of the Servo Driver and the Servomo-  
tor to a class-3 ground (to 100 or less). Not connecting to a class-3 ground may  
result in electric shock.  
!WARNING Do not touch the inside of the Servo Driver. Doing so may result in electric shock.  
!WARNING Do not remove the front cover, terminal covers, cables, Parameter Units, or  
optional items while the power is being supplied. Doing so may result in electric  
shock.  
!WARNING Installation, operation, maintenance, or inspection must be performed by autho-  
rized personnel. Not doing so may result in electric shock or injury.  
!WARNING Wiring or inspection must not be performed for at least five minutes after turning  
OFF the power supply. Doing so may result in electric shock.  
!WARNING Do not damage, press, or put excessive stress or heavy objects on the cables.  
Doing so may result in electric shock.  
!WARNING Do not touch the rotating parts of the Servomotor in operation. Doing so may  
result in injury.  
!WARNING Do not modify the product. Doing so may result in injury or damage to the product.  
!WARNING Provide an appropriate stopping device on the machine side to secure safety. (A  
holding brake is not a stopping device for securing safety.) Not doing so may result  
in injury.  
!WARNING Provide an external emergency stopping device that allows an instantaneous stop  
of operation and power interruption. Not doing so may result in injury.  
!WARNING Do not come close to the machine immediately after resetting momentary power  
interruption to avoid an unexpected restart. (Take appropriate measures to secure  
safety against an unexpected restart.) Doing so may result in injury.  
!Caution  
Use the Servomotors and Servo Drivers in a specified combination. Using them  
incorrectly may result in fire or damage to the products.  
!Caution  
Do not store or install the product in the following places. Doing so may result in  
fire, electric shock, or damage to the product.  
• Locations subject to direct sunlight.  
• Locations subject to temperatures or humidity outside the range specified in the specifi-  
cations.  
• Locations subject to condensation as the result of severe changes in temperature.  
• Locations subject to corrosive or flammable gases.  
• Locations subject to dust (especially iron dust) or salts.  
• Locations subject to shock or vibration.  
• Locations subject to exposure to water, oil, or chemicals.  
!Caution  
Do not touch the Servo Driver radiator, regeneration resistor, or Servomotor while  
the power is being supplied or soon after the power is turned OFF. Doing so may  
result in a skin burn due to the hot surfaces.  
Storage and Transportation Precautions  
!Caution  
!Caution  
!Caution  
Do not hold the product by the cables or motor shaft while transporting it. Doing so  
may result in injury or malfunction.  
Do not place any load exceeding the figure indicated on the product. Doing so  
may result in injury or malfunction.  
Use the motor eye-bolts only for transporting the Motor. Using them for transport-  
ing the machinery may result in injury or malfunction.  
Installation and Wiring Precautions  
!Caution  
!Caution  
!Caution  
!Caution  
!Caution  
Do not step on or place a heavy object on the product. Doing so may result in  
injury.  
Do not cover the inlet or outlet ports and prevent any foreign objects from entering  
the product. Doing so may result in fire.  
Be sure to install the product in the correct direction. Not doing so may result in  
malfunction.  
Provide the specified clearances between the Servo Driver and the control panel  
or with other devices. Not doing so may result in fire or malfunction.  
Do not apply any strong impact. Doing so may result in malfunction.  
!Caution  
!Caution  
Be sure to wire correctly and securely. Not doing so may result in motor runaway,  
injury, or malfunction.  
Be sure that all the mounting screws, terminal screws, and cable connector  
screws are tightened to the torque specified in the relevant manuals. Incorrect  
tightening torque may result in malfunction.  
!Caution  
!Caution  
!Caution  
Use crimp terminals for wiring. Do not connect bare stranded wires directly to ter-  
minals. Connection of bare stranded wires may result in burning.  
Always use the power supply voltage specified in the User's Manual. An incorrect  
voltage may result in malfunction or burning.  
Take appropriate measures to ensure that the specified power with the rated volt-  
age and frequency is supplied. Be particularly careful in places where the power  
supply is unstable. An incorrect power supply may result in malfunction.  
!Caution  
!Caution  
Install external breakers and take other safety measures against short-circuiting in  
external wiring. Insufficient safety measures against short-circuiting may result in  
burning.  
Take appropriate and sufficient countermeasures when installing systems in the  
following locations:  
• Locations subject to static electricity or other forms of noise.  
• Locations subject to strong electromagnetic fields and magnetic fields.  
• Locations subject to possible exposure to radioactivity.  
• Locations close to power supplies.  
!Caution  
Do not reverse the polarity of the battery when connecting it. Reversing the polar-  
ity may damage the battery or cause it to explode.  
Operation and Adjustment Precautions  
!Caution  
!Caution  
!Caution  
!Caution  
Confirm that no adverse effects will occur in the system before performing the test  
operation. Not doing so may result in equipment damage.  
Check the newly set parameters for proper execution before actually running  
them. Not doing so may result in equipment damage.  
Do not make any extreme adjustments or setting changes. Doing so may result in  
unstable operation and injury.  
Separate the Servomotor from the machine, check for proper operation, and then  
connect to the machine. Not doing so may cause injury.  
!Caution  
!Caution  
When an alarm occurs, remove the cause, reset the alarm after confirming safety,  
and then resume operation. Not doing so may result in injury.  
Do not use the built-in brake of the Servomotor for ordinary braking. Doing so may  
result in malfunction.  
Maintenance and Inspection Precautions  
!Caution  
Resume operation only after transferring to the new Unit the contents of the data  
required for operation. Not doing so may result in an unexpected operation.  
!Caution  
Do not attempt to disassemble, repair, or modify any Units. Any attempt to do so  
may result in malfunction, fire, or electric shock.  
Warning Labels  
Warning labels are pasted on the product as shown in the following illustration. Be sure to follow the  
instructions given there.  
Warning label  
Precautions for Safe Use  
Dispose of the product and batteries according to local ordinances as they apply.  
Have qualified specialists properly dispose of used batteries as industrial waste.  
Read and Understand this Manual  
Please read and understand this manual before using the product. Please consult your OMRON  
representative if you have any questions or comments.  
Warranty and Limitations of Liability  
WARRANTY  
OMRON's exclusive warranty is that the products are free from defects in materials and workmanship for a  
period of one year (or other period if specified) from date of sale by OMRON.  
OMRON MAKES NO WARRANTY OR REPRESENTATION, EXPRESS OR IMPLIED, REGARDING NON-  
INFRINGEMENT, MERCHANTABILITY, OR FITNESS FOR PARTICULAR PURPOSE OF THE  
PRODUCTS. ANY BUYER OR USER ACKNOWLEDGES THAT THE BUYER OR USER ALONE HAS  
DETERMINED THAT THE PRODUCTS WILL SUITABLY MEET THE REQUIREMENTS OF THEIR  
INTENDED USE. OMRON DISCLAIMS ALL OTHER WARRANTIES, EXPRESS OR IMPLIED.  
LIMITATIONS OF LIABILITY  
OMRON SHALL NOT BE RESPONSIBLE FOR SPECIAL, INDIRECT, OR CONSEQUENTIAL DAMAGES,  
LOSS OF PROFITS OR COMMERCIAL LOSS IN ANY WAY CONNECTED WITH THE PRODUCTS,  
WHETHER SUCH CLAIM IS BASED ON CONTRACT, WARRANTY, NEGLIGENCE, OR STRICT  
LIABILITY.  
In no event shall the responsibility of OMRON for any act exceed the individual price of the product on which  
liability is asserted.  
IN NO EVENT SHALL OMRON BE RESPONSIBLE FOR WARRANTY, REPAIR, OR OTHER CLAIMS  
REGARDING THE PRODUCTS UNLESS OMRON'S ANALYSIS CONFIRMS THAT THE PRODUCTS  
WERE PROPERLY HANDLED, STORED, INSTALLED, AND MAINTAINED AND NOT SUBJECT TO  
CONTAMINATION, ABUSE, MISUSE, OR INAPPROPRIATE MODIFICATION OR REPAIR.  
Application Considerations  
SUITABILITY FOR USE  
OMRON shall not be responsible for conformity with any standards, codes, or regulations that apply to the  
combination of products in the customer's application or use of the products.  
At the customer's request, OMRON will provide applicable third party certification documents identifying  
ratings and limitations of use that apply to the products. This information by itself is not sufficient for a  
complete determination of the suitability of the products in combination with the end product, machine,  
system, or other application or use.  
The following are some examples of applications for which particular attention must be given. This is not  
intended to be an exhaustive list of all possible uses of the products, nor is it intended to imply that the uses  
listed may be suitable for the products:  
• Outdoor use, uses involving potential chemical contamination or electrical interference, or conditions or  
uses not described in this manual.  
• Nuclear energy control systems, combustion systems, railroad systems, aviation systems, medical  
equipment, amusement machines, vehicles, safety equipment, and installations subject to separate  
industry or government regulations.  
• Systems, machines, and equipment that could present a risk to life or property.  
Please know and observe all prohibitions of use applicable to the products.  
NEVER USE THE PRODUCTS FOR AN APPLICATION INVOLVING SERIOUS RISK TO LIFE OR  
PROPERTY WITHOUT ENSURING THAT THE SYSTEM AS A WHOLE HAS BEEN DESIGNED TO  
ADDRESS THE RISKS, AND THAT THE OMRON PRODUCTS ARE PROPERLY RATED AND  
INSTALLED FOR THE INTENDED USE WITHIN THE OVERALL EQUIPMENT OR SYSTEM.  
PROGRAMMABLE PRODUCTS  
OMRON shall not be responsible for the user's programming of a programmable product, or any  
consequence thereof.  
Disclaimers  
CHANGE IN SPECIFICATIONS  
Product specifications and accessories may be changed at any time based on improvements and other  
reasons.  
It is our practice to change model numbers when published ratings or features are changed, or when  
significant construction changes are made. However, some specifications of the products may be changed  
without any notice. When in doubt, special model numbers may be assigned to fix or establish key  
specifications for your application on your request. Please consult with your OMRON representative at any  
time to confirm actual specifications of purchased products.  
DIMENSIONS AND WEIGHTS  
Dimensions and weights are nominal and are not to be used for manufacturing purposes, even when  
tolerances are shown.  
PERFORMANCE DATA  
Performance data given in this manual is provided as a guide for the user in determining suitability and does  
not constitute a warranty. It may represent the result of OMRON's test conditions, and the users must  
correlate it to actual application requirements. Actual performance is subject to the OMRON Warranty and  
Limitations of Liability.  
ERRORS AND OMISSIONS  
The information in this manual has been carefully checked and is believed to be accurate; however, no  
responsibility is assumed for clerical, typographical, or proofreading errors, or omissions.  
Table of Contents  
Chapter 1. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1-1  
1-1 Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1-2 System Configuration. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1-3 Servo Driver Nomenclature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1-4 Applicable Standards and Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1-5 System Block Diagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1-2  
1-4  
1-5  
1-6  
1-7  
Chapter 2. Standard Models and Specifications. . . . . . . . . . . . . . . .  
2-1  
2-1 Standard Models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2-2 Servo Driver and Servomotor Combinations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2-3 External and Mounted Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2-4 Servo Driver Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2-5 Servomotor Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2-6 Cable and Connector Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
2-2  
2-16  
2-18  
2-50  
2-71  
2-93  
2-7 External Regeneration Resistor Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-121  
2-8 Absolute Encoder Backup Battery Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-122  
2-9 Reactor Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-124  
2-10 MECHATROLINK-II Repeater Specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2-126  
Chapter 3. System Design and Installation . . . . . . . . . . . . . . . . . . . .  
3-1  
3-1 Installation Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3-2 Wiring. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3-3 Regenerative Energy Absorption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
3-4 Adjustments and Dynamic Braking When Load Inertia Is Large . . . . . . . . . . . . . . . . . . . . .  
3-3  
3-8  
3-32  
3-39  
Chapter 4. Operation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4-1  
4-1 Operational Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4-2 Preparing for Operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4-3 User Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4-4 Operation Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4-5 Trial Operation Procedure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4-6 Making Adjustments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4-3  
4-4  
4-8  
4-75  
4-96  
4-98  
4-7 Advanced Adjustment Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-103  
4-8 Using Displays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-130  
4-9 Using Monitor Output . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4-132  
Chapter 5. Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5-1  
5-1 Measures when Trouble Occurs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5-2 Alarms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5-3 Troubleshooting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5-4 Overload Characteristics (Electronic Thermal Characteristics) . . . . . . . . . . . . . . . . . . . . . . .  
5-5 Periodic Maintenance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5-6 Replacing the Absolute Encoder Battery (ABS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
5-2  
5-6  
5-12  
5-43  
5-45  
5-47  
Table of Contents  
Chapter 6. Appendix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6-1  
6-1 Connection Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6-2 Parameter Setting Tables. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6-3 Restrictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
6-2  
6-3  
6-21  
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
I-1  
Revision History . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . R-1  
Chapter 1  
Introduction  
1-1 Features  
1-2 System Configuration  
1-3 Servo Driver Nomenclature  
1-4 Applicable Standards and Models  
1-5 System Block Diagrams  
Introduction  
Chapter 1  
1-1 Features  
OMNUC W-series AC Servo Drivers with built-in MECHATROLINK-II Communications  
are designed specifically for use with the MECHATROLINK-II high-speed motion field  
network.  
Combining these Servo Drivers with MECHATROLINK-II-compatible Motion Control  
Units (CS1W-MCH71 or CJ1W-MCH71) or Position Control Units (CJ1W-NCF71) is an  
easy way to create a high-speed servo control system with a communications link  
between the Servo Drivers and the Controllers.  
Data Transfer by MECHATROLINK-II Communications  
When a Servo Driver is combined with a MECHATROLINK-II-compatible Motion Control Unit (CS1W-  
MCH71 or CJ1W-MCH71) or Position Control Unit (CJ1W-NCF71), all control data is transferred  
between the Servo Driver and the Controller by means of data communications.  
Control commands are transferred by means of data communications, so Servomotor performance is  
not limited by control interface specifications, such as response frequencies for input pulses and  
encoder feedback pulses. This allows the Servomotor to perform to its fullest capacity.  
Moreover, system data control is simplified by having all Servo Driver parameters and monitor data  
managed by the host controller.  
Built-in Communications Interface  
The MECHATROLINK-II communications interface has been built into the Servo Driver. In compari-  
son with earlier W-series Servo Drivers, in which the MECHATROLINK-II Application Module is  
installed, only 60% of the installation surface area is required. (for 200-V/100-W Servo Drivers). This  
allows a great saving of space in the control panel.  
W-series Servomotor Compatibility  
A W-series Servomotor can be used as is, including the encoder cable and power cable, so the sys-  
tem can be upgraded without changing the structural design.  
The W-series product line offers 3,000-r/min Servomotors (Cylinder-style: 50-W to 3-kW; Flat-style:  
100-W to 1.5-kw), 1,000-r/min Servomotors (300-W to 2-kW), and 1,500-r/min Servomotors (450-W  
to 1.8-kW). Also, IP67 (waterproof) Servomotors can be connected in the same way.  
High-speed, High-precision Motion Control Capability  
A less-deviation control function and a predictive control function are provided to shorten the Servo-  
motor's settling time and achieving high tracking capability.  
The W-series Servomotors handle motion control with increased speed and precision, including syn-  
chronous control in combination with CS1W-MCH71 or CJ1W-MCH71 Motion Control Units.  
1-2  
Introduction  
Chapter 1  
Regenerative Power Processing  
In addition to the built-in regenerative power processing function using regeneration resistance,  
external regeneration resistance can also be connected, allowing the W Series to be used for appli-  
cations with high regenerative energy on vertical axes.  
Conformity to Standards  
The W Series conforms to EC Directives (both low-voltage and EMC) as well as to UL and cUL  
requirements, thereby assisting the user in meeting required standards.  
High-frequency Current Countermeasures  
On Servo Drivers of 1 kW and above, a current reactor connection terminal is provided to assist the  
user in controlling high-frequency current.  
1-3  
Introduction  
Chapter 1  
1-2 System Configuration  
Controller (MECHATROLINK-II Type)  
NCF71  
MLK  
RUN  
ERC  
ERH  
ERM  
B
A
UNIT  
No.  
E
0
8
F
1
7
3 2  
6
MLK  
MECHATRO  
LINK-II  
PA205R  
POWER  
SYSMAC  
RUN  
ERR/ALM  
CJ1G-CPU44  
CJ1W-NCF71  
INH  
PRPHL  
PROGRAMMABLE  
CONTROLLER  
COMM  
OPEN  
MCPWR  
BUSY  
L1  
Position Control Unit  
AC100-24  
0V  
INPUT  
L2/N  
PERIPH  
ERAL  
RUN  
OUTPUT  
AC240V  
DC24V  
PORT  
MCH71  
R88D-WN@@@-ML2  
OMNUC W-series AC  
Servo Driver with built-  
in MECHATROLINK-II  
Communications  
B
A
D
E
0
8
F
1
7
4 3 2  
6
SYSMAC CJ1  
Programmable Controller  
CJ1W-MCH71  
Motion Control Unit  
MECHATRO  
LINK-II  
Controller (MECHATROLINK-II Type)  
MCH71  
RU  
N
ERC  
ER1  
ER2  
SSI  
ERH  
ER3  
ER4  
MLK  
UNIT  
No.  
T.B.  
SSI  
INC  
ABS  
I/O  
MLK  
R88M-W@  
OMNUC W-series  
AC Servomotor  
SYSMAC CS1  
Programmable Controller  
CS1W-MCH71  
Motion Control Unit  
1-4  
Introduction  
Chapter 1  
1-3 Servo Driver Nomenclature  
With Top Cover Open  
Analog Monitor Connector (CN5)  
Motor rotation speeds, torque  
command values, etc., can be  
monitored using a special cable.  
Panel Display  
ON  
Displays Servomotor status with  
a 7-segment LED display.  
1
2
3
4
DIP Switch  
Used for MECHATROLINK-II  
communications settings.  
POWER  
COM  
Power Indicator (POWER)  
Lit when the control power is  
being supplied.  
Model Number  
Communications Indicator (COM)  
Lit when MECHATROLINK-II  
communications are in progress.  
200V  
R88D-WN01H-ML2  
Rotary Switch (SW1)  
AC SERVO DRIVER  
POWER  
COM  
Used for setting MECHATROLINK-II  
node address.  
100W  
Input voltage  
Charge Indicator  
SW1  
Lit when the main-circuit is powered.  
Also, for Servo Drivers of 1 kW or less,  
the indicator lights dimly when only the  
control power supply is ON. Even after  
the power is turned OFF, it remains lit  
as long as an electric charge remains in  
the main-circuit capacitor, so do not  
touch the Servo Driver's terminals  
during this period.  
C
N
6
Top cover  
CHARGE  
A/B  
MECHATROLINK-II Communications  
Connectors (CN6A, CN6B)  
Connect either a special cable for  
a MECHATROLINK-II system or  
a Terminating Resister.  
Main-circuit Power Terminals  
These are the input terminals for  
the main-circuit power supply.  
C
N
3
Control Power Terminals  
These are input terminals for the  
control power supply.  
Personal Computer Connector (CN3)  
This is the connector for  
communications with a personal  
computer.  
Regenerative Resistance Terminals  
These are terminals for external  
regenerative resistance.  
I/O Signal Connector (CN1)  
C
N
1
This is the connector for  
command input signals and  
sequence I/O signals.  
U
V
Nameplate (Side Panel)  
The nameplate shows the Servo  
Driver model number and ratings.  
W
Servomotor Connector Terminals  
These are connector terminals  
for Servomotor power line.  
C
N
2
Encoder Connector (CN2)  
This is the connector for the  
encoder provided for the  
Servomotor.  
C
N
4
Ground Terminals  
Expansion Connector (CN4)  
This is a supplementary  
connector for future expansion. It  
cannot presently be used, so do  
not connect anything to it.  
These are ground terminals for  
preventing electrical shock.  
Connect to 100 or less.  
1-5  
Introduction  
Chapter 1  
1-4 Applicable Standards and Models  
EC Directives  
EC Directive  
Product  
Applicable standard  
Remarks  
Low Voltage AC Servo Drivers EN50178  
Safety requirements for electrical equipment for  
measurement, control, and laboratory use.  
AC Servomotors IEC60034-8  
Rotating electrical machines.  
EN60034-1, -5, -9  
EMC  
AC Servo Drivers EN55011 class A group 1 Limits and methods for measuring radio distur-  
and AC Servo-  
motors  
bance characteristics of industrial, scientific, and  
medical (ISM) radio-frequency equipment.  
EN61000-6-2  
Electromagnetic compatibility generic immunity  
standard in industrial environments  
Note Installation under the conditions specified in 3-2-5 Wiring for Conformity to EMC Directives is  
required to conform to EMC Directives.  
UL/cUL Standards  
Standards  
UL  
Product  
AC Servo Drivers UL508C  
AC Servomotors UL1004  
AC Servo Drivers cUL C22.2 No. 14  
AC Servomotors cUL C22.2 No. 100  
Applicable standard  
File No.  
E179149  
Remarks  
Power conversion equipment  
Electric motors  
E179189  
E179149  
E179189  
cUL  
Industrial control equipment  
Motors and generators  
1-6  
Introduction  
Chapter 1  
1-5 System Block Diagrams  
100 V AC: R88D-WNA5L-ML2/WN01L-ML2/-WL02L-ML2/-WN04L-ML2  
Single-phase 100 to 115 V  
+10%/15% (50/60 Hz)  
B1/  
B2  
Noise  
filter  
Servomotor  
M
1KM  
Varistor  
L1  
L2  
U
V
CHARGE  
W
Dynamic  
brake circuit  
Temperature  
detection  
Gate drive over-  
current protection  
Current  
detection  
Voltage  
detection  
Gate  
drive  
Voltage  
detection  
Relay  
drive  
CN2  
PG  
CN10  
Varistor  
L1C  
L2C  
CN5  
CN1  
5 V  
Analog monitor  
output  
Control  
power  
supply  
Analog voltage  
conversion  
15 V  
ASIC (PWM  
control, etc.)  
Encoder output  
5 V  
12 V  
Power Power Open for  
OFF ON servo alarm  
Control I/O  
I/O  
I/F  
1KM  
CPU (position,  
speed calculations,  
etc.)  
CN6A  
CN6B  
1Ry  
1KM  
Surge  
protector  
Status indicator  
MECHATROLINK-II  
CN3  
Personal computer  
200 V AC: R88D-WNA5H-ML2/WN01H-ML2/-WL02H-ML2/-WN04H-ML2  
Single-phase 200 to 230 V  
+10%/15% (50/60 Hz)  
B1/  
B2  
Noise  
filter  
Servomotor  
M
1KM  
Varistor  
L1  
L2  
U
V
CHARGE  
W
Dynamic  
brake circuit  
Current  
detection  
Temperature  
detection  
Gate drive over-  
current protection  
Voltage  
detection  
Voltage  
detection  
Gate  
drive  
Relay  
drive  
CN2  
PG  
CN10  
Varistor  
L1C  
L2C  
CN5  
CN1  
Control  
power  
supply  
5 V  
Analog voltage  
conversion  
Analog monitor  
output  
15 V  
ASIC (PWM  
control, etc.)  
Encoder output  
5 V  
12 V  
Power Power Open for  
OFF ON servo alarm  
I/O  
I/F  
Control I/O  
1KM  
CPU (position,  
speed calculations,  
etc.)  
CN6A  
CN6B  
1Ry  
1KM  
Surge  
Status indicator  
protector  
MECHATROLINK-II  
CN3  
Personal computer  
1-7  
Introduction  
Chapter 1  
200 V AC: R88D-WN05H-ML2/WN10H-ML2  
Three-phase 200 to 230 V  
+10%/15% (50/60 Hz)  
B1/  
B2 B3  
Noise  
filter  
Servomotor  
U
1KM  
Varistor  
L1  
L2  
L3  
V
CHARGE  
M
W
Dynamic  
brake circuit  
1
2
Current  
detection  
Gate  
drive  
Voltage  
detection  
Voltage  
detection  
Temperature  
detection  
Relay  
drive  
Gate drive over-  
current protection  
CN2  
PG  
CN10  
Varistor  
L1C  
L2C  
CN5  
CN1  
5 V  
Control  
power  
supply  
Analog voltage  
conversion  
Analog monitor  
output  
ASIC (PWM  
control, etc.)  
15 V  
Encoder output  
5 V  
12 V  
Power Power Open for  
OFF ON servo alarm  
CPU (position,  
speed calculations,  
etc.)  
Control I/O  
I/O  
I/F  
1KM  
CN6A  
CN6B  
1Ry  
1KM  
Surge  
protector  
Status indicator  
MECHATROLINK-II  
CN3  
Personal computer  
200 V AC: R88D-WN08H-ML2  
Single-phase 200 to 230 V  
+10%/15% (50/60 Hz)  
B1/  
B2 B3  
Noise  
filter  
1KM  
Servomotor  
M
Varistor  
L1  
L2  
L3  
U
V
CHARGE  
W
1
2
Dynamic  
brake circuit  
Current  
detection  
Gate  
drive  
Temperature  
detection  
Voltage  
detection  
Relay  
drive  
Voltage  
detection  
Gate drive over-  
current protection  
CN2  
PG  
CN10  
Varistor  
L1C  
L2C  
CN5  
CN1  
Control  
power  
supply  
5 V  
Analog voltage  
conversion  
Analog monitor  
output  
15 V  
ASIC (PWM  
control, etc.)  
Encoder output  
5 V  
12 V  
Power Power Open for  
OFF ON servo alarm  
Control I/O  
I/O  
I/F  
1KM  
CPU (position,  
speed calculations,  
etc.)  
CN6A  
CN6B  
1Ry  
1KM  
Surge  
protector  
Status indicator  
MECHATROLINK-II  
CN3  
Personal computer  
1-8  
Introduction  
Chapter 1  
200 V AC: R88D-WN15H-ML2/-WN20H-ML2/-WN30H-ML2  
Three-phase 200 to 230 V  
+10%/15% (50/60 Hz)  
B1/  
B2 B3  
Noise  
filter  
Servomotor  
U
1KM  
Varistor  
L1  
L2  
L3  
V
CHARGE  
M
W
Dynamic  
brake circuit  
1
2
Gate drive over-  
current protection  
Current  
detection  
Gate  
drive  
Voltage  
detection  
Voltage  
detection  
Relay  
drive  
CN2  
PG  
CN10  
Varistor  
L1C  
L2C  
CN5  
5 V  
Analog voltage  
conversion  
Analog monitor  
Control  
power  
supply  
15 V  
ASIC (PWM  
control, etc.)  
output  
CN1  
Encoder output  
5 V  
12 V  
Power Power Open for  
OFF ON servo alarm  
Control I/O  
CN6A  
I/O  
I/F  
CPU (position,  
speed calculations,  
etc.)  
1KM  
1Ry  
1KM  
Surge  
protector  
Status indicator  
MECHATROLINK-II  
CN6B  
CN3  
Personal computer  
1-9  
Introduction  
Chapter 1  
1-10  
Chapter 2  
Standard Models and  
Specifications  
2-1 Standard Models  
2-2 Servo Driver and Servomotor Combinations  
2-3 External and Mounted Dimensions  
2-4 Servo Driver Specifications  
2-5 Servomotor Specifications  
2-6 Cable and Connector Specifications  
2-7 External Regeneration Resistor Specifications  
2-8 Absolute Encoder Backup Battery Specifications  
2-9 Reactor Specifications  
2-10 MECHATROLINK-II Repeater Specifications  
Standard Models and Specifications  
Chapter 2  
2-1 Standard Models  
Note Required when using a Servomotor with  
an absolute encoder. The cable and con-  
nector are included.  
Servo Drivers  
Specifications  
Model  
Single-phase 50 W  
R88D-WNA5L-ML2  
100 V AC  
100 W R88D-WN01L-ML2  
200 W R88D-WN02L-ML2  
400 W R88D-WN04L-ML2  
Reactors  
Specifications  
Model  
For R88D-WNA5L-ML2/01L-ML2/ R88A-PX5053  
02H-ML2  
Single-phase  
200 V AC  
50 W  
R88D-WNA5H-ML2  
100 W R88D-WN01H-ML2  
200 W R88D-WN02H-ML2  
400 W R88D-WN04H-ML2  
750 W R88D-WN08H-ML2  
500 W R88D-WN05H-ML2  
1.0 kW R88D-WN10H-ML2  
1.5 kW R88D-WN15H-ML2  
2.0 kW R88D-WN20H-ML2  
3.0 kW R88D-WN30H-ML2  
For R88D-WN02L-ML2/04H-ML2  
For R88D-WN04L-ML2/08H-ML2  
R88A-PX5054  
R88A-PX5056  
For R88D-WNA5H-ML2/01H-ML2 R88A-PX5052  
For R88D-WT04H-ML2 R88A-PX5069  
Three-phase  
200 V AC  
For R88D-WN05H-ML2/10H-ML2 R88A-PX5061  
For R88D-WN15H-ML2/20H-ML2 R88A-PX5060  
For R88D-WN30H-ML2  
R88A-PX5059  
Front-panel Brackets  
Specifications  
Model  
Peripheral Cables and  
Connectors  
For R88D-WNA5L-ML2 to 04L-  
ML2  
R88A-TK05W  
Specifications  
Model  
1 m R88A-CMW001S  
For R88D-WNA5H-ML2 to 10H-  
ML2  
R88A-TK05W  
R88A-TK06W  
Analog Monitor Cable  
(CN5)  
For R88D-WN15H-ML2  
Computer Moni- DOS/V 2 m R88A-CCW002P2  
tor Cable (CN3)  
For R88D-WN20H-ML2/30H-ML2 R88A-TK07W  
Control I/O Connector (CN1)  
Encoder Connector (CN2)  
R88A-CNW01C  
R88A-CNW01R  
Note Required when mounting a Servo Driver  
from the front panel.  
Encoder Connector for Motor R88A-CNW02R  
End  
Absolute Encoder Battery  
Cable (with Battery)  
R88A-CRWC0R3C  
Note In order to use a personal computer to  
monitor a Servo Driver and set its parame-  
ters, Computer Monitor Cable and Com-  
puter Monitor Software are required.  
Please ask an OMRON representative for  
details.  
Absolute Encoder Backup  
Battery  
Specifications  
Model  
R88A-BAT01W  
1,000 mA·h, 3.6 V  
2-2  
Standard Models and Specifications  
Chapter 2  
Standard Encoder Cables (for  
Incremental and Absolute  
Encoders)  
Standard Power Cable  
Power Cable for 3,000-r/min  
Servomotors  
Specifications  
Model  
Specifications  
Model  
Without brake  
For 3,000-r/  
30 to  
min Servomo- 750 W  
tors  
3 m R88A-CRWA003C  
5 m R88A-CRWA005C  
10 m R88A-CRWA010C  
15 m R88A-CRWA015C  
20 m R88A-CRWA020C  
30 m R88A-CRWA030C  
40 m R88A-CRWA040C  
50 m R88A-CRWA050C  
3 m R88A-CRWB003N  
5 m R88A-CRWB005N  
10 m R88A-CRWB010N  
15 m R88A-CRWB015N  
20 m R88A-CRWB020N  
30 m R88A-CRWB030N  
40 m R88A-CRWB040N  
50 m R88A-CRWB050N  
With brake  
30 to  
750 W  
3 m  
5 m  
R88A-CAWA003S R88A-CAWA003B  
R88A-CAWA005S R88A-CAWA005B  
10 m R88A-CAWA010S R88A-CAWA010B  
15 m R88A-CAWA015S R88A-CAWA015B  
20 m R88A-CAWA020S R88A-CAWA020B  
30 m R88A-CAWA030S R88A-CAWA030B  
40 m R88A-CAWA040S R88A-CAWA040B  
50 m R88A-CAWA050S R88A-CAWA050B  
1 to  
3 kW  
1 to  
2 kW  
3 m  
5 m  
R88A-CAWC003S R88A-CAWC003B  
R88A-CAWC005S R88A-CAWC005B  
10 m R88A-CAWC010S R88A-CAWC010B  
15 m R88A-CAWC015S R88A-CAWC015B  
20 m R88A-CAWC020S R88A-CAWC020B  
30 m R88A-CAWC030S R88A-CAWC030B  
40 m R88A-CAWC040S R88A-CAWC040B  
50 m R88A-CAWC050S R88A-CAWC050B  
For 3,000-r/  
min Flat-style to  
Servomotors  
100 W 3 m R88A-CRWA003C  
3 kW  
3 m  
5 m  
R88A-CAWD003S R88A-CAWD003B  
R88A-CAWD005S R88A-CAWD005B  
5 m R88A-CRWA005C  
10 m R88A-CRWA010C  
15 m R88A-CRWA015C  
20 m R88A-CRWA020C  
30 m R88A-CRWA030C  
40 m R88A-CRWA040C  
50 m R88A-CRWA050C  
300 W 3 m R88A-CRWB003N  
1.5 kW  
10 m R88A-CAWD010S R88A-CAWD010B  
15 m R88A-CAWD015S R88A-CAWD015B  
20 m R88A-CAWD020S R88A-CAWD020B  
30 m R88A-CAWD030S R88A-CAWD030B  
40 m R88A-CAWD040S R88A-CAWD040B  
50 m R88A-CAWD050S R88A-CAWD050B  
For 1,000-r/  
min Servomo- to  
tors  
5 m R88A-CRWB005N  
10 m R88A-CRWB010N  
15 m R88A-CRWB015N  
Power Cable for 3,000-r/min Flat-style  
2.0 kW  
Servomotors  
For 1,500-r/  
min Servomo- to  
tors  
450 W  
Specifications  
Model  
Without brake  
1.8 kW 20 m R88A-CRWB020N  
30 m R88A-CRWB030N  
40 m R88A-CRWB040N  
50 m R88A-CRWB050N  
With brake  
100 to  
750 W  
3 m  
5 m  
R88A-CAWA003S R88A-CAWA003B  
R88A-CAWA005S R88A-CAWA005B  
10 m R88A-CAWA010S R88A-CAWA010B  
15 m R88A-CAWA015S R88A-CAWA015B  
20 m R88A-CAWA020S R88A-CAWA020B  
30 m R88A-CAWA030S R88A-CAWA030B  
40 m R88A-CAWA040S R88A-CAWA040B  
50 m R88A-CAWA050S R88A-CAWA050B  
2-3  
Standard Models and Specifications  
Chapter 2  
Power Cable for 1,500-r/min  
Specifications  
Model  
Without brake  
Servomotors  
With brake  
1.5 kW  
3 m  
5 m  
R88A-CAWB003S R88A-CAWB003B  
R88A-CAWB005S R88A-CAWB005B  
Specifications  
Model  
Without brake  
With brake  
10 m R88A-CAWB010S R88A-CAWB010B  
15 m R88A-CAWB015S R88A-CAWB015B  
20 m R88A-CAWB020S R88A-CAWB020B  
30 m R88A-CAWB030S R88A-CAWB030B  
40 m R88A-CAWB040S R88A-CAWB040B  
50 m R88A-CAWB050S R88A-CAWB050B  
450 to  
3 m  
5 m  
R88A-CAWC003S R88A-CAWC003B  
R88A-CAWC005S R88A-CAWC005B  
1.3 kW  
10 m R88A-CAWC010S R88A-CAWC010B  
15 m R88A-CAWC015S R88A-CAWC015B  
20 m R88A-CAWC020S R88A-CAWC020B  
30 m R88A-CAWC030S R88A-CAWC030B  
40 m R88A-CAWC040S R88A-CAWC040B  
50 m R88A-CAWC050S R88A-CAWC050B  
Power Cable for 1,000-r/min  
1.8 kW  
3 m  
5 m  
R88A-CAWD003S R88A-CAWD003B  
R88A-CAWD005S R88A-CAWD005B  
Servomotors  
Specifications  
Model  
Without brake  
10 m R88A-CAWD010S R88A-CAWD010B  
15 m R88A-CAWD015S R88A-CAWD015B  
20 m R88A-CAWD020S R88A-CAWD020B  
30 m R88A-CAWD030S R88A-CAWD030B  
40 m R88A-CAWD040S R88A-CAWD040B  
50 m R88A-CAWD050S R88A-CAWD050B  
With brake  
300 to  
900 W  
3 m  
5 m  
R88A-CAWC003S R88A-CAWC003B  
R88A-CAWC005S R88A-CAWC005B  
10 m R88A-CAWC010S R88A-CAWC010B  
15 m R88A-CAWC015S R88A-CAWC015B  
20 m R88A-CAWC020S R88A-CAWC020B  
30 m R88A-CAWC030S R88A-CAWC030B  
40 m R88A-CAWC040S R88A-CAWC040B  
50 m R88A-CAWC050S R88A-CAWC050B  
Encoder Cables for Robot  
Cables (for Incremental and  
Absolute Encoders)  
1.2 to  
2 kW  
3 m  
5 m  
R88A-CAWD003S R88A-CAWD003B  
R88A-CAWD005S R88A-CAWD005B  
10 m R88A-CAWD010S R88A-CAWD010B  
15 m R88A-CAWD015S R88A-CAWD015B  
20 m R88A-CAWD020S R88A-CAWD020B  
30 m R88A-CAWD030S R88A-CAWD030B  
40 m R88A-CAWD040S R88A-CAWD040B  
50 m R88A-CAWD050S R88A-CAWD050B  
Specifications  
Model  
For 3,000-r/  
30 to  
min Servomo- 750 W  
tors  
3 m R88A-CRWA003CR  
5 m R88A-CRWA005CR  
10 m R88A-CRWA010CR  
15 m R88A-CRWA015CR  
20 m R88A-CRWA020CR  
30 m R88A-CRWA030CR  
40 m R88A-CRWA040CR  
50 m R88A-CRWA050CR  
3 m R88A-CRWB003NR  
5 m R88A-CRWB005NR  
10 m R88A-CRWB010NR  
15 m R88A-CRWB015NR  
20 m R88A-CRWB020NR  
30 m R88A-CRWB030NR  
40 m R88A-CRWB040NR  
50 m R88A-CRWB050NR  
1 to  
3 kW  
2-4  
Standard Models and Specifications  
Chapter 2  
Specifications  
3 kW  
Model  
Without brake  
Specifications  
Model  
With brake  
For 3,000-r/ 100 W 3 m R88A-CRWA003CR  
min Flat-style to  
Servomotors 1.5 kW  
3 m R88A-CAWD003SR R88A-CAWD003BR  
5 m R88A-CAWD005SR R88A-CAWD005BR  
10 m R88A-CAWD010SR R88A-CAWD010BR  
15 m R88A-CAWD015SR R88A-CAWD015BR  
20 m R88A-CAWD020SR R88A-CAWD020BR  
30 m R88A-CAWD030SR R88A-CAWD030BR  
40 m R88A-CAWD040SR R88A-CAWD040BR  
50 m R88A-CAWD050SR R88A-CAWD050BR  
5 m R88A-CRWA005CR  
10 m R88A-CRWA010CR  
15 m R88A-CRWA015CR  
20 m R88A-CRWA020CR  
30 m R88A-CRWA030CR  
40 m R88A-CRWA040CR  
50 m R88A-CRWA050CR  
For 1,000-r/  
300 W 3 m R88A-CRWB003NR  
min Servomo- to  
5 m R88A-CRWB005NR  
10 m R88A-CRWB010NR  
15 m R88A-CRWB015NR  
Power Cable for 3,000-r/min Flat-style  
tors  
2.0 kW  
450 W  
Servomotors  
For 1,500-r/  
min Servomo- to  
tors  
Specifications  
Model  
Without brake  
1.8 kW 20 m R88A-CRWB020NR  
30 m R88A-CRWB030NR  
40 m R88A-CRWB040NR  
50 m R88A-CRWB050NR  
With brake  
100 to  
750 W  
3 m R88A-CAWA003SR R88A-CAWA003BR  
5 m R88A-CAWA005SR R88A-CAWA005BR  
10 m R88A-CAWA010SR R88A-CAWA010BR  
15 m R88A-CAWA015SR R88A-CAWA015BR  
20 m R88A-CAWA020SR R88A-CAWA020BR  
30 m R88A-CAWA030SR R88A-CAWA030BR  
40 m R88A-CAWA040SR R88A-CAWA040BR  
50 m R88A-CAWA050SR R88A-CAWA050BR  
Power Cable for Robot Cables  
Power Cable for 3,000-r/min  
Servomotors  
1.5 kW 3 m R88A-CAWB003SR R88A-CAWB003BR  
5 m R88A-CAWB005SR R88A-CAWB005BR  
10 m R88A-CAWB010SR R88A-CAWB010BR  
15 m R88A-CAWB015SR R88A-CAWB015BR  
20 m R88A-CAWB020SR R88A-CAWB020BR  
30 m R88A-CAWB030SR R88A-CAWB030BR  
40 m R88A-CAWB040SR R88A-CAWB040BR  
50 m R88A-CAWB050SR R88A-CAWB050BR  
Specifications  
Model  
Without brake  
With brake  
30 to  
3 m R88A-CAWA003SR R88A-CAWA003BR  
5 m R88A-CAWA005SR R88A-CAWA005BR  
10 m R88A-CAWA010SR R88A-CAWA010BR  
15 m R88A-CAWA015SR R88A-CAWA015BR  
20 m R88A-CAWA020SR R88A-CAWA020BR  
30 m R88A-CAWA030SR R88A-CAWA030BR  
40 m R88A-CAWA040SR R88A-CAWA040BR  
50 m R88A-CAWA050SR R88A-CAWA050BR  
3 m R88A-CAWC003SR R88A-CAWC003BR  
5 m R88A-CAWC005SR R88A-CAWC005BR  
10 m R88A-CAWC010SR R88A-CAWC010BR  
15 m R88A-CAWC015SR R88A-CAWC015BR  
20 m R88A-CAWC020SR R88A-CAWC020BR  
30 m R88A-CAWC030SR R88A-CAWC030BR  
40 m R88A-CAWC040SR R88A-CAWC040BR  
50 m R88A-CAWC050SR R88A-CAWC050BR  
750 W  
Power Cable for 1,000-r/min  
Servomotors  
1 to  
2 kW  
Specifications  
Model  
Without brake  
With brake  
300 to  
900 W  
3 m R88A-CAWC003SR R88A-CAWC003BR  
5 m R88A-CAWC005SR R88A-CAWC005BR  
10 m R88A-CAWC010SR R88A-CAWC010BR  
15 m R88A-CAWC015SR R88A-CAWC015BR  
20 m R88A-CAWC020SR R88A-CAWC020BR  
30 m R88A-CAWC030SR R88A-CAWC030BR  
40 m R88A-CAWC040SR R88A-CAWC040BR  
50 m R88A-CAWC050SR R88A-CAWC050BR  
2-5  
Standard Models and Specifications  
Chapter 2  
Specifications  
Model  
Without brake  
With brake  
1.2 to  
2 kW  
3 m R88A-CAWD003SR R88A-CAWD003BR  
5 m R88A-CAWD005SR R88A-CAWD005BR  
10 m R88A-CAWD010SR R88A-CAWD010BR  
15 m R88A-CAWD015SR R88A-CAWD015BR  
20 m R88A-CAWD020SR R88A-CAWD020BR  
30 m R88A-CAWD030SR R88A-CAWD030BR  
40 m R88A-CAWD040SR R88A-CAWD040BR  
50 m R88A-CAWD050SR R88A-CAWD050BR  
Power Cable for 1,500-r/min  
Servomotors  
Specifications  
Model  
Without brake  
With brake  
450 to  
1.3 kW  
3 m R88A-CAWC003SR R88A-CAWC003BR  
5 m R88A-CAWC005SR R88A-CAWC005BR  
10 m R88A-CAWC010SR R88A-CAWC010BR  
15 m R88A-CAWC015SR R88A-CAWC015BR  
20 m R88A-CAWC020SR R88A-CAWC020BR  
30 m R88A-CAWC030SR R88A-CAWC030BR  
40 m R88A-CAWC040SR R88A-CAWC040BR  
50 m R88A-CAWC050SR R88A-CAWC050BR  
1.8 kW 3 m R88A-CAWD003SR R88A-CAWD003BR  
5 m R88A-CAWD005SR R88A-CAWD005BR  
10 m R88A-CAWD010SR R88A-CAWD010BR  
15 m R88A-CAWD015SR R88A-CAWD015BR  
20 m R88A-CAWD020SR R88A-CAWD020BR  
30 m R88A-CAWD030SR R88A-CAWD030BR  
40 m R88A-CAWD040SR R88A-CAWD040BR  
50 m R88A-CAWD050SR R88A-CAWD050BR  
2-6  
Standard Models and Specifications  
Chapter 2  
Servomotors  
Specifications  
Model  
With incremental encoder  
With absolute encoder  
Straight shaft without  
key  
Straight shaft with key  
Straight shaft without  
Straight shaft with key  
key  
3,000-r/min Servomotors  
Without 200 V 50 W  
brake  
R88M-W05030H  
R88M-W05030H-S1  
R88M-W10030H-S1  
R88M-W20030H-S1  
R88M-W40030H-S1  
R88M-W75030H-S1  
R88M-W1K030H-S2  
R88M-W1K530H-S2  
R88M-W2K030H-S2  
R88M-W3K030H-S2  
R88M-W05030H-BS1  
R88M-W10030H-BS1  
R88M-W20030H-BS1  
R88M-W40030H-BS1  
R88M-W75030H-BS1  
R88M-W1K030H-BS2  
R88M-W1K530H-BS2  
R88M-W2K030H-BS2  
R88M-W3K030H-BS2  
R88M-W05030T  
R88M-W10030T  
R88M-W20030T  
R88M-W40030T  
R88M-W75030T  
R88M-W1K030T  
R88M-W1K530T  
R88M-W2K030T  
R88M-W3K030T  
R88M-W05030T-B  
R88M-W10030T-B  
R88M-W20030T-B  
R88M-W40030T-B  
R88M-W75030T-B  
R88M-W1K030T-B  
R88M-W1K530T-B  
R88M-W2K030T-B  
R88M-W3K030T-B  
R88M-W05030T-S1  
R88M-W10030T-S1  
R88M-W20030T-S1  
R88M-W40030T-S1  
R88M-W75030T-S1  
R88M-W1K030T-S2  
R88M-W1K530T-S2  
R88M-W2K030T-S2  
R88M-W3K030T-S2  
R88M-W05030T-BS1  
R88M-W10030T-BS1  
R88M-W20030T-BS1  
R88M-W40030T-BS1  
R88M-W75030T-BS1  
R88M-W1K030T-BS2  
R88M-W1K530T-BS2  
R88M-W2K030T-BS2  
R88M-W3K030T-BS2  
100 W R88M-W10030H  
200 W R88M-W20030H  
400 W R88M-W40030H  
750 W R88M-W75030H  
1 kW  
R88M-W1K030H  
1.5 kW R88M-W1K530H  
2 kW  
3 kW  
R88M-W2K030H  
R88M-W3K030H  
R88M-W05030H-B  
With  
brake  
200 V 50 W  
100 W R88M-W10030H-B  
200 W R88M-W20030H-B  
400 W R88M-W40030H-B  
750 W R88M-W75030H-B  
1 kW  
R88M-W1K030H-B  
1.5 kW R88M-W1K530H-B  
2 kW  
3 kW  
R88M-W2K030H-B  
R88M-W3K030H-B  
3,000-r/min Flat-style Servomotors  
Without 200 V 100 W R88M-WP10030H  
R88M-WP10030H-S1  
R88M-WP10030T  
R88M-WP20030T  
R88M-WP40030T  
R88M-WP75030T  
R88M-WP1K530T  
R88M-WP10030T-B  
R88M-WP20030T-B  
R88M-WP40030T-B  
R88M-WP75030T-B  
R88M-WP1K530T-B  
R88M-WP10030T-S1  
R88M-WP20030T-S1  
R88M-WP40030T-S1  
R88M-WP75030T-S1  
R88M-WP1K530T-S1  
R88M-WP10030T-BS1  
R88M-WP20030T-BS1  
R88M-WP40030T-BS1  
R88M-WP75030T-BS1  
R88M-WP1K530T-BS1  
brake  
200 W R88M-WP20030H  
R88M-WP20030H-S1  
R88M-WP40030H-S1  
R88M-WP75030H-S1  
R88M-WP1K530H-S1  
R88M-WP10030H-BS1  
R88M-WP20030H-BS1  
R88M-WP40030H-BS1  
R88M-WP75030H-BS1  
R88M-WP1K530H-BS1  
400 W R88M-WP40030H  
750 W R88M-WP75030H  
1.5 kW R88M-WP1K530H  
With  
brake  
200 V 100 W R88M-WP10030H-B  
200 W R88M-WP20030H-B  
400 W R88M-WP40030H-B  
750 W R88M-WP75030H-B  
1.5 kW R88M-WP1K530H-B  
1,000-r/min Servomotors  
Without 200 V 300 W R88M-W30010H  
R88M-W30010H-S2  
R88M-W60010H-S2  
R88M-W90010H-S2  
R88M-W1K210H-S2  
R88M-W2K010H-S2  
R88M-W30010H-BS2  
R88M-W60010H-BS2  
R88M-W90010H-BS2  
R88M-W1K210H-BS2  
R88M-W2K010H-BS2  
R88M-W30010T  
R88M-W60010T  
R88M-W90010T  
R88M-W1K210T  
R88M-W2K010T  
R88M-W30010T-B  
R88M-W60010T-B  
R88M-W90010T-B  
R88M-W1K210T-B  
R88M-W2K010T-B  
R88M-W30010T-S2  
R88M-W60010T-S2  
R88M-W90010T-S2  
R88M-W1K210T-S2  
R88M-W2K010T-S2  
R88M-W30010T-BS2  
R88M-W60010T-BS2  
R88M-W90010T-BS2  
R88M-W1K210T-BS2  
R88M-W2K010T-BS2  
brake  
600 W R88M-W60010H  
900 W R88M-W90010H  
1.2 kW R88M-W1K210H  
2 kW  
R88M-W2K010H  
With  
brake  
200 V 300 W R88M-W30010H-B  
600 W R88M-W60010H-B  
900 W R88M-W90010H-B  
1.2 kW R88M-W1K210H-B  
2 kW  
R88M-W2K010H-B  
2-7  
Standard Models and Specifications  
Chapter 2  
1,500-r/min Servomotors  
Without 200 V 450 W ---  
---  
---  
---  
---  
---  
---  
---  
---  
R88M-W45015T  
R88M-W85015T  
R88M-W1K315T  
R88M-W1K815T  
R88M-W45015T-B  
R88M-W85015T-B  
R88M-W1K315T-B  
R88M-W1K815T-B  
R88M-W45015T-S2  
brake  
850 W ---  
R88M-W85015T-S2  
R88M-W1K315T-S2  
R88M-W1K815T-S2  
R88M-W45015T-BS2  
R88M-W85015T-BS2  
R88M-W1K315T-BS2  
R88M-W1K815T-BS2  
1.3 kW ---  
1.8 kW ---  
With  
brake  
200 V 450 W ---  
850 W ---  
1.3 kW ---  
1.8 kW ---  
IP67 (Waterproof) Servomotors  
Specifications  
Model  
With incremental encoder  
With absolute encoder  
Straight shaft without  
key  
Straight shaft with key  
Straight shaft without  
key  
Straight shaft with key  
3,000-r/min Servomotors  
Without 200 V 1 kW  
brake  
R88M-W1K030H-O  
R88M-W1K030H-OS2  
R88M-W1K530H-OS2  
R88M-W2K030H-OS2  
R88M-W3K030H-OS2  
R88M-W1K030H-BOS2  
R88M-W1K530H-BOS2  
R88M-W2K030H-BOS2  
R88M-W3K030H-BOS2  
R88M-W1K030T-O  
R88M-W1K530T-O  
R88M-W2K030T-O  
R88M-W3K030T-O  
R88M-W1K030T-BO  
R88M-W1K530T-BO  
R88M-W2K030T-BO  
R88M-W3K030T-BO  
R88M-W1K030T-OS2  
R88M-W1K530T-OS2  
R88M-W2K030T-OS2  
R88M-W3K030T-OS2  
R88M-W1K030T-BOS2  
R88M-W1K530T-BOS2  
R88M-W2K030T-BOS2  
R88M-W3K030T-BOS2  
1.5 kW R88M-W1K530H-O  
2 kW  
3 kW  
R88M-W2K030H-O  
R88M-W3K030H-O  
R88M-W1K030H-BO  
With  
brake  
200 V 1 kW  
1.5 kW R88M-W1K530H-BO  
2 kW  
3 kW  
R88M-W2K030H-BO  
R88M-W3K030H-BO  
3,000-r/min Flat-style Servomotors  
Without 200 V 100 W R88M-WP10030H-W  
R88M-WP10030H-WS1  
R88M-WP10030T-W  
R88M-WP20030T-W  
R88M-WP40030T-W  
R88M-WP75030T-W  
R88M-WP10030T-WS1  
R88M-WP20030T-WS1  
R88M-WP40030T-WS1  
R88M-WP75030T-WS1  
R88M-WP1K530T-WS1  
R88M-WP10030T-BWS1  
R88M-WP20030T-BWS1  
R88M-WP40030T-BWS1  
R88M-WP75030T-BWS1  
R88M-WP1K530T-BWS1  
brake  
200 W R88M-WP20030H-W  
R88M-WP20030H-WS1  
R88M-WP40030H-WS1  
R88M-WP75030H-WS1  
400 W R88M-WP40030H-W  
750 W R88M-WP75030H-W  
1.5 kW R88M-WP1K530H-W  
R88M-WP1K530H-WS1 R88M-WP1K530T-W  
R88M-WP10030H-BWS1 R88M-WP10030T-BW  
R88M-WP20030H-BWS1 R88M-WP20030T-BW  
R88M-WP40030H-BWS1 R88M-WP40030T-BW  
R88M-WP75030H-BWS1 R88M-WP75030T-BW  
R88M-WP1K530H-BWS1 R88M-WP1K530T-BW  
With  
brake  
200 V 100 W R88M-WP10030H-BW  
200 W R88M-WP20030H-BW  
400 W R88M-WP40030H-BW  
750 W R88M-WP75030H-BW  
1.5 kW R88M-WP1K530H-BW  
1,000-r/min Servomotors  
Without 200 V 300 W R88M-W30010H-O  
R88M-W30010H-OS2  
R88M-W60010H-OS2  
R88M-W90010H-OS2  
R88M-W1K210H-OS2  
R88M-W2K010H-OS2  
R88M-W30010H-BOS2  
R88M-W60010H-BOS2  
R88M-W90010H-BOS2  
R88M-W1K210H-BOS2  
R88M-W2K010H-BOS2  
R88M-W30010T-O  
R88M-W60010T-O  
R88M-W90010T-O  
R88M-W1K210T-O  
R88M-W2K010T-O  
R88M-W30010T-BO  
R88M-W60010T-BO  
R88M-W90010T-BO  
R88M-W1K210T-BO  
R88M-W2K010T-BO  
R88M-W30010T-OS2  
R88M-W60010T-OS2  
R88M-W90010T-OS2  
R88M-W1K210T-OS2  
R88M-W2K010T-OS2  
R88M-W30010T-BOS2  
R88M-W60010T-BOS2  
R88M-W90010T-BOS2  
R88M-W1K210T-BOS2  
R88M-W2K010T-BOS2  
brake  
600 W R88M-W60010H-O  
900 W R88M-W90010H-O  
1.2 kW R88M-W1K210H-O  
2 kW  
R88M-W2K010H-O  
With  
brake  
200 V 300 W R88M-W30010H-BO  
600 W R88M-W60010H-BO  
900 W R88M-W90010H-BO  
1.2 kW R88M-W1K210H-BO  
2 kW  
R88M-W2K010H-BO  
2-8  
Standard Models and Specifications  
Chapter 2  
1,500-r/min Servomotors  
Without 200 V 450 W ---  
---  
---  
---  
---  
---  
---  
---  
---  
R88M-W45015TO  
R88M-W85015TO  
R88M-W1K315TO  
R88M-W1K815TO  
R88M-W45015T-BO  
R88M-W85015T-BO  
R88M-W1K315T-BO  
R88M-W1K815T-BO  
R88M-W45015T-OS2  
R88M-W85015T-OS2  
R88M-W1K315T-OS2  
R88M-W1K815T-OS2  
R88M-W45015T-BOS2  
R88M-W85015T-BOS2  
R88M-W1K315T-BOS2  
R88M-W1K815T-BOS2  
brake  
850 W ---  
1.3 kW ---  
1.8 kW ---  
With  
brake  
200 V 450 W ---  
850 W ---  
1.3 kW ---  
1.8 kW ---  
Servomotors with Gears  
Combination Table for Servomotors with Standard Gears  
Standard Gears are highly accurate gears, with a maximum backlash of 3 degrees. The standard  
shaft is a straight shaft with a key. (Models without keys can also be manufactured for 3,000-r/min  
motors from 30 to 750 W and for 3,000-r/min flat-style motors. Models without keys have a suffix of -  
G@@B.)  
Note A check mark in a box indicates that the two models can be combined. If the box is unchecked,  
then the models cannot be combined.  
3,000-r/min Servomotors  
Specifications  
Basic model  
Gear (deceleration rate)  
1/5  
1/9  
1/11  
1/20  
1/21  
1/29  
1/33  
1/45  
-G05BJ  
-G09BJ  
-G11BJ  
-G20BJ  
-G21BJ  
-G29BJ  
-G33BJ  
-G45BJ  
200 V 50 W  
R88M-W05030H/T  
Yes  
Yes  
Yes  
Yes  
100 W R88M-W10030H/T  
200 W R88M-W20030H/T  
400 W R88M-W40030H/T  
750 W R88M-W75030H/T  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1 kW  
R88M-W1K030H/T  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1.5 kW R88M-W1K530H/T  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
2 kW  
3 kW  
R88M-W2K030H/T  
R88M-W3K030H/T  
3,000-r/min Flat-style Servomotors  
Specifications  
Basic model  
Gear (deceleration rate)  
1/5  
1/9  
-G09BJ  
1/11  
-G11BJ  
Yes  
1/20  
1/21  
1/29  
-G29BJ  
1/33  
-G33BJ  
Yes  
1/45  
-G45BJ  
-G05BJ  
-G20BJ  
-G21BJ  
200 V 100 W R88M-WP10030H/T  
200 W R88M-WP20030H/T  
400 W R88M-WP40030H/T  
750 W R88M-WP75030H/T  
1.5 kW R88M-WP1K530H/T  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
2-9  
Standard Models and Specifications  
Chapter 2  
1,000-r/min Servomotors  
Specifications  
Basic model  
Gear (deceleration rate)  
1/5  
1/9  
1/11  
1/20  
1/21  
1/29  
1/33  
1/45  
-G05BJ  
-G09BJ  
-G11BJ  
-G20BJ  
-G21BJ  
-G29BJ  
-G33BJ  
-G45BJ  
200 V 300 W R88M-W30010H/T  
600 W R88M-W60010H/T  
900 W R88M-W90010H/T  
1.2 kW R88M-W1K210H/T  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
2 kW  
R88M-W2K010H/T  
1,500-r/min Servomotors  
Specifications  
Basic model  
Gear (deceleration rate)  
1/5  
-G05BJ  
Yes  
1/9  
-G09BJ  
Yes  
1/11  
1/20  
1/21  
1/29  
-G29BJ  
Yes  
1/33  
1/45  
-G45BJ  
Yes  
-G11BJ  
-G20BJ  
-G21BJ  
-G33BJ  
200 V 450 W R88M-W45015T  
850 W R88M-W85015T  
1.3 kW R88M-W1K315T  
1.8 kW R88M-W1K815T  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Combination Table for Servomotors with Economy Gears  
Economy Gears are low-cost gears, with a maximum backlash of 45 degrees. The shaft is a straight  
shaft with key. Models without keys are not available.  
Note 1. The 1,000-r/min and 1,500-r/min Servomotors cannot be combined with Economy Gears.  
Note 2. A check mark in a box indicates that the two models can be combined. If the box is un-  
checked, then the models cannot be combined.  
3,000-r/min Servomotors  
Specifications  
Basic model  
Gear (deceleration rate)  
1/5  
1/9  
1/15  
1/25  
-G05CJ  
-G09CJ  
-G15C  
-G25CJ  
200 V 50 W  
R88M-W05030H/T  
100 W R88M-W10030H/T  
200 W R88M-W20030H/T  
400 W R88M-W40030H/T  
750 W R88M-W75030H/T  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
1 kW  
R88M-W1K030H/T  
1.5 kW R88M-W1K530H/T  
2 kW  
3 kW  
R88M-W2K030H/T  
R88M-W3K030H/T  
2-10  
Standard Models and Specifications  
Chapter 2  
3,000-r/min Flat-style Servomotors  
Specifications  
Basic model  
Gear (deceleration rate)  
1/5  
1/9  
1/15  
1/25  
-G05CJ  
-G09CJ  
-G15C  
-G25CJ  
200 V 100 W R88M-WP10030H/T  
200 W R88M-WP20030H/T  
400 W R88M-WP40030H/T  
750 W R88M-WP75030H/T  
1.5 kW R88M-WP1K530H/T  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
Yes  
2-11  
Standard Models and Specifications  
Chapter 2  
Servomotors with Standard Gears (Straight Shaft with Key)  
3,000-r/min Servomotors  
Specifications  
Model  
With incremental encoder  
Without brake With brake  
With absolute encoder  
Without brake  
With brake  
200 V 50 W  
1/5  
R88M-W05030H-G05BJ R88M-W05030H-BG05BJ R88M-W05030T-G05BJ  
R88M-W05030H-G09BJ R88M-W05030H-BG09BJ R88M-W05030T-G09BJ  
R88M-W05030H-G21BJ R88M-W05030H-BG21BJ R88M-W05030T-G21BJ  
R88M-W05030H-G33BJ R88M-W05030H-BG33BJ R88M-W05030T-G33BJ  
R88M-W10030H-G05BJ R88M-W10030H-BG05BJ R88M-W10030T-G05BJ  
R88M-W10030H-G11BJ R88M-W10030H-BG11BJ R88M-W10030T-G11BJ  
R88M-W10030H-G21BJ R88M-W10030H-BG21BJ R88M-W10030T-G21BJ  
R88M-W10030H-G33BJ R88M-W10030H-BG33BJ R88M-W10030T-G33BJ  
R88M-W20030H-G05BJ R88M-W20030H-BG05BJ R88M-W20030T-G05BJ  
R88M-W20030H-G11BJ R88M-W20030H-BG11BJ R88M-W20030T-G11BJ  
R88M-W20030H-G21BJ R88M-W20030H-BG21BJ R88M-W20030T-G21BJ  
R88M-W20030H-G33BJ R88M-W20030H-BG33BJ R88M-W20030T-G33BJ  
R88M-W40030H-G05BJ R88M-W40030H-BG05BJ R88M-W40030T-G05BJ  
R88M-W40030H-G11BJ R88M-W40030H-BG11BJ R88M-W40030T-G11BJ  
R88M-W40030H-G21BJ R88M-W40030H-BG21BJ R88M-W40030T-G21BJ  
R88M-W40030H-G33BJ R88M-W40030H-BG33BJ R88M-W40030T-G33BJ  
R88M-W75030H-G05BJ R88M-W75030H-BG05BJ R88M-W75030T-G05BJ  
R88M-W75030H-G11BJ R88M-W75030H-BG11BJ R88M-W75030T-G11BJ  
R88M-W75030H-G21BJ R88M-W75030H-BG21BJ R88M-W75030T-G21BJ  
R88M-W75030H-G33BJ R88M-W75030H-BG33BJ R88M-W75030T-G33BJ  
R88M-W05030T-BG05BJ  
R88M-W05030T-BG09BJ  
R88M-W05030T-BG21BJ  
R88M-W05030T-BG33BJ  
R88M-W10030T-BG05BJ  
R88M-W10030T-BG11BJ  
R88M-W10030T-BG21BJ  
R88M-W10030T-BG33BJ  
R88M-W20030T-BG05BJ  
R88M-W20030T-BG11BJ  
R88M-W20030T-BG21BJ  
R88M-W20030T-BG33BJ  
R88M-W40030T-BG05BJ  
R88M-W40030T-BG11BJ  
R88M-W40030T-BG21BJ  
R88M-W40030T-BG33BJ  
R88M-W75030T-BG05BJ  
R88M-W75030T-BG11BJ  
R88M-W75030T-BG21BJ  
R88M-W75030T-BG33BJ  
1/9  
1/21  
1/33  
100 W 1/5  
1/11  
1/21  
1/33  
200 W 1/5  
1/11  
1/21  
1/33  
400 W 1/5  
1/11  
1/21  
1/33  
750 W 1/5  
1/11  
1/21  
1/33  
1/5  
1 kW  
R88M-W1K030H-G05BJ R88M-W1K030H-BG05BJ R88M-W1K030T-G05BJ R88M-W1K030T-BG05BJ  
R88M-W1K030H-G09BJ R88M-W1K030H-BG09BJ R88M-W1K030T-G09BJ R88M-W1K030T-BG09BJ  
R88M-W1K030H-G20BJ R88M-W1K030H-BG20BJ R88M-W1K030T-G20BJ R88M-W1K030T-BG20BJ  
R88M-W1K030H-G29BJ R88M-W1K030H-BG29BJ R88M-W1K030T-G29BJ R88M-W1K030T-BG29BJ  
R88M-W1K030H-G45BJ R88M-W1K030H-BG45BJ R88M-W1K030T-G45BJ R88M-W1K030T-BG45BJ  
R88M-W1K530H-G05BJ R88M-W1K530H-BG05BJ R88M-W1K530T-G05BJ R88M-W1K530T-BG05BJ  
R88M-W1K530H-G09BJ R88M-W1K530H-BG09BJ R88M-W1K530T-G09BJ R88M-W1K530T-BG09BJ  
R88M-W1K530H-G20BJ R88M-W1K530H-BG20BJ R88M-W1K530T-G20BJ R88M-W1K530T-BG20BJ  
R88M-W1K530H-G29BJ R88M-W1K530H-BG29BJ R88M-W1K530T-G29BJ R88M-W1K530T-BG29BJ  
R88M-W1K530H-G45BJ R88M-W1K530H-BG45BJ R88M-W1K530T-G45BJ R88M-W1K530T-BG45BJ  
R88M-W2K030H-G05BJ R88M-W2K030H-BG05BJ R88M-W2K030T-G05BJ R88M-W2K030T-BG05BJ  
R88M-W2K030H-G09BJ R88M-W2K030H-BG09BJ R88M-W2K030T-G09BJ R88M-W2K030T-BG09BJ  
R88M-W2K030H-G20BJ R88M-W2K030H-BG20BJ R88M-W2K030T-G20BJ R88M-W2K030T-BG20BJ  
R88M-W2K030H-G29BJ R88M-W2K030H-BG29BJ R88M-W2K030T-G29BJ R88M-W2K030T-BG29BJ  
R88M-W2K030H-G45BJ R88M-W2K030H-BG45BJ R88M-W2K030T-G45BJ R88M-W2K030T-BG45BJ  
R88M-W3K030H-G05BJ R88M-W3K030H-BG05BJ R88M-W3K030T-G05BJ R88M-W3K030T-BG05BJ  
R88M-W3K030H-G09BJ R88M-W3K030H-BG09BJ R88M-W3K030T-G09BJ R88M-W3K030T-BG09BJ  
R88M-W3K030H-G20BJ R88M-W3K030H-BG20BJ R88M-W3K030T-G20BJ R88M-W3K030T-BG20BJ  
R88M-W3K030H-G29BJ R88M-W3K030H-BG29BJ R88M-W3K030T-G29BJ R88M-W3K030T-BG29BJ  
R88M-W3K030H-G45BJ R88M-W3K030H-BG45BJ R88M-W3K030T-G45BJ R88M-W3K030T-BG45BJ  
1/9  
1/20  
1/29  
1/45  
1.5 kW 1/5  
1/9  
1/20  
1/29  
1/45  
1/5  
2 kW  
3 kW  
1/9  
1/20  
1/29  
1/45  
1/5  
1/9  
1/20  
1/29  
1/45  
2-12  
Standard Models and Specifications  
Chapter 2  
3,000-r/min Flat-style Servomotors  
Specifications  
Model  
With incremental encoder  
With absolute encoder  
Without brake With brake  
Without brake  
With brake  
200 V 100 W 1/5  
1/11  
R88M-WP10030H-G05BJ R88M-WP10030H-BG05BJ R88M-WP10030T-G05BJ R88M-WP10030T-BG05BJ  
R88M-WP10030H-G11BJ R88M-WP10030H-BG11BJ R88M-WP10030T-G11BJ R88M-WP10030T-BG11BJ  
R88M-WP10030H-G21BJ R88M-WP10030H-BG21BJ R88M-WP10030T-G21BJ R88M-WP10030T-BG21BJ  
R88M-WP10030H-G33BJ R88M-WP10030H-BG33BJ R88M-WP10030T-G33BJ R88M-WP10030T-BG33BJ  
R88M-WP20030H-G05BJ R88M-WP20030H-BG05BJ R88M-WP20030T-G05BJ R88M-WP20030T-BG05BJ  
R88M-WP20030H-G11BJ R88M-WP20030H-BG11BJ R88M-WP20030T-G11BJ R88M-WP20030T-BG11BJ  
R88M-WP20030H-G21BJ R88M-WP20030H-BG21BJ R88M-WP20030T-G21BJ R88M-WP20030T-BG21BJ  
R88M-WP20030H-G33BJ R88M-WP20030H-BG33BJ R88M-WP20030T-G33BJ R88M-WP20030T-BG33BJ  
R88M-WP40030H-G05BJ R88M-WP40030H-BG05BJ R88M-WP40030T-G05BJ R88M-WP40030T-BG05BJ  
R88M-WP40030H-G11BJ R88M-WP40030H-BG11BJ R88M-WP40030T-G11BJ R88M-WP40030T-BG11BJ  
R88M-WP40030H-G21BJ R88M-WP40030H-BG21BJ R88M-WP40030T-G21BJ R88M-WP40030T-BG21BJ  
R88M-WP40030H-G33BJ R88M-WP40030H-BG33BJ R88M-WP40030T-G33BJ R88M-WP40030T-BG33BJ  
R88M-WP75030H-G05BJ R88M-WP75030H-BG05BJ R88M-WP75030T-G05BJ R88M-WP75030T-BG05BJ  
R88M-WP75030H-G11BJ R88M-WP75030H-BG11BJ R88M-WP75030T-G11BJ R88M-WP75030T-BG11BJ  
R88M-WP75030H-G21BJ R88M-WP75030H-BG21BJ R88M-WP75030T-G21BJ R88M-WP75030T-BG21BJ  
R88M-WP75030H-G33BJ R88M-WP75030H-BG33BJ R88M-WP75030T-G33BJ R88M-WP75030T-BG33BJ  
1/21  
1/33  
200 W 1/5  
1/11  
1/21  
1/33  
400 W 1/5  
1/11  
1/21  
1/33  
750 W 1/5  
1/11  
1/21  
1/33  
1.5 kW 1/5  
R88M-WP1K530H-  
G05BJ  
R88M-WP1K530H-  
BG05BJ  
R88M-WP1K530T-G05BJ R88M-WP1K530T-  
BG05BJ  
1/11  
1/21  
1/33  
R88M-WP1K530H-  
G11BJ  
R88M-WP1K530H-  
BG11BJ  
R88M-WP1K530T-G11BJ R88M-WP1K530T-  
BG11BJ  
R88M-WP1K530H-  
G21BJ  
R88M-WP1K530H-  
BG21BJ  
R88M-WP1K530T-G21BJ R88M-WP1K530T-  
BG21BJ  
R88M-WP1K530H-  
G33BJ  
R88M-WP1K530H-  
BG33BJ  
R88M-WP1K530T-G33BJ R88M-WP1K530T-  
BG33BJ  
2-13  
Standard Models and Specifications  
Chapter 2  
1,000-r/min Servomotors  
Specifications  
Model  
With incremental encoder  
With absolute encoder  
Without brake  
With brake  
Without brake  
With brake  
200 V 300 W 1/5  
1/9  
R88M-W30010H-G05BJ R88M-W30010H-BG05BJ R88M-W30010T-G05BJ  
R88M-W30010H-G09BJ R88M-W30010H-BG09BJ R88M-W30010T-G09BJ  
R88M-W30010H-G20BJ R88M-W30010H-BG20BJ R88M-W30010T-G20BJ  
R88M-W30010H-G29BJ R88M-W30010H-BG29BJ R88M-W30010T-G29BJ  
R88M-W30010H-G45BJ R88M-W30010H-BG45BJ R88M-W30010T-G45BJ  
R88M-W60010H-G05BJ R88M-W60010H-BG05BJ R88M-W60010T-G05BJ  
R88M-W60010H-G09BJ R88M-W60010H-BG09BJ R88M-W60010T-G09BJ  
R88M-W60010H-G20BJ R88M-W60010H-BG20BJ R88M-W60010T-G20BJ  
R88M-W60010H-G29BJ R88M-W60010H-BG29BJ R88M-W60010T-G29BJ  
R88M-W60010H-G45BJ R88M-W60010H-BG45BJ R88M-W60010T-G45BJ  
R88M-W90010H-G05BJ R88M-W90010H-BG05BJ R88M-W90010T-G05BJ  
R88M-W90010H-G09BJ R88M-W90010H-BG09BJ R88M-W90010T-G09BJ  
R88M-W90010H-G20BJ R88M-W90010H-BG20BJ R88M-W90010T-G20BJ  
R88M-W90010H-G29BJ R88M-W90010H-BG29BJ R88M-W90010T-G29BJ  
R88M-W90010H-G45BJ R88M-W90010H-BG45BJ R88M-W90010T-G45BJ  
R88M-W30010T-BG05BJ  
R88M-W30010T-BG09BJ  
R88M-W30010T-BG20BJ  
R88M-W30010T-BG29BJ  
R88M-W30010T-BG45BJ  
R88M-W60010T-BG05BJ  
R88M-W60010T-BG09BJ  
R88M-W60010T-BG20BJ  
R88M-W60010T-BG29BJ  
R88M-W60010T-BG45BJ  
R88M-W90010T-BG05BJ  
R88M-W90010T-BG09BJ  
R88M-W90010T-BG20BJ  
R88M-W90010T-BG29BJ  
R88M-W90010T-BG45BJ  
1/20  
1/29  
1/45  
600 W 1/5  
1/9  
1/20  
1/29  
1/45  
900 W 1/5  
1/9  
1/20  
1/29  
1/45  
1.2 kW 1/5  
R88M-W1K210H-G05BJ R88M-W1K210H-BG05BJ R88M-W1K210T-G05BJ R88M-W1K210T-BG05BJ  
R88M-W1K210H-G09BJ R88M-W1K210H-BG09BJ R88M-W1K210T-G09BJ R88M-W1K210T-BG09BJ  
R88M-W1K210H-G20BJ R88M-W1K210H-BG20BJ R88M-W1K210T-G20BJ R88M-W1K210T-BG20BJ  
R88M-W1K210H-G29BJ R88M-W1K210H-BG29BJ R88M-W1K210T-G29BJ R88M-W1K210T-BG29BJ  
R88M-W1K210H-G45BJ R88M-W1K210H-BG45BJ R88M-W1K210T-G45BJ R88M-W1K210T-BG45BJ  
R88M-W2K010H-G05BJ R88M-W2K010H-BG05BJ R88M-W2K010T-G05BJ R88M-W2K010T-BG05BJ  
R88M-W2K010H-G09BJ R88M-W2K010H-BG09BJ R88M-W2K010T-G09BJ R88M-W2K010T-BG09BJ  
R88M-W2K010H-G20BJ R88M-W2K010H-BG20BJ R88M-W2K010T-G20BJ R88M-W2K010T-BG20BJ  
1/9  
1/20  
1/29  
1/45  
1/5  
2 kW  
1/9  
1/20  
1,500-r/min Servomotors  
Specifications  
Model  
With incremental encoder  
Without brake With brake  
With absolute encoder  
Without brake  
With brake  
200 V 450 W 1/5  
1/9  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
R88M-W45015T-G05BJ  
R88M-W45015T-G09BJ  
R88M-W45015T-G20BJ  
R88M-W45015T-G29BJ  
R88M-W45015T-G45BJ  
R88M-W85015T-G05BJ  
R88M-W85015T-G09BJ  
R88M-W85015T-G20BJ  
R88M-W85015T-G29BJ  
R88M-W85015T-G45BJ  
R88M-W45015T-BG05BJ  
R88M-W45015T-BG09BJ  
R88M-W45015T-BG20BJ  
R88M-W45015T-BG29BJ  
R88M-W45015T-BG45BJ  
R88M-W85015T-BG05BJ  
R88M-W85015T-BG09BJ  
R88M-W85015T-BG20BJ  
R88M-W85015T-BG29BJ  
R88M-W85015T-BG45BJ  
1/20  
1/29  
1/45  
850 W 1/5  
1/9  
1/20  
1/29  
1/45  
1.3 kW 1/5  
R88M-W1K315T-G05BJ R88M-W1K315T-BG05BJ  
R88M-W1K315T-G09BJ R88M-W1K315T-BG09BJ  
R88M-W1K315T-G20BJ R88M-W1K315T-BG20BJ  
R88M-W1K315T-G29BJ R88M-W1K315T-BG29BJ  
R88M-W1K315T-G45BJ R88M-W1K315T-BG45BJ  
R88M-W1K815T-G05BJ R88M-W1K815T-BG05BJ  
R88M-W1K815T-G09BJ R88M-W1K815T-BG09BJ  
R88M-W1K815T-G20BJ R88M-W1K815T-BG20BJ  
R88M-W1K815T-G29BJ R88M-W1K815T-BG29BJ  
1/9  
1/20  
1/29  
1/45  
1.8 kW 1/5  
1/9  
1/20  
1/29  
2-14  
Standard Models and Specifications  
Servomotors with Economy Gears (Straight Shaft with Key)  
3,000-r/min Servomotors  
Chapter 2  
Specifications  
Model  
With incremental encoder  
Without brake With brake  
With absolute encoder  
Without brake  
With brake  
200 V 100 W 1/5  
1/9  
R88M-W10030H-G05CJ R88M-W10030H-BG05CJ R88M-W10030T-G05CJ  
R88M-W10030H-G09CJ R88M-W10030H-BG09CJ R88M-W10030T-G09CJ  
R88M-W10030H-G15CJ R88M-W10030H-BG15CJ R88M-W10030T-G15CJ  
R88M-W10030H-G25CJ R88M-W10030H-BG25CJ R88M-W10030T-G25CJ  
R88M-W20030H-G05CJ R88M-W20030H-BG05CJ R88M-W20030T-G05CJ  
R88M-W20030H-G09CJ R88M-W20030H-BG09CJ R88M-W20030T-G09CJ  
R88M-W20030H-G15CJ R88M-W20030H-BG15CJ R88M-W20030T-G15CJ  
R88M-W20030H-G25CJ R88M-W20030H-BG25CJ R88M-W20030T-G25CJ  
R88M-W40030H-G05CJ R88M-W40030H-BG05CJ R88M-W40030T-G05CJ  
R88M-W40030H-G09CJ R88M-W40030H-BG09CJ R88M-W40030T-G09CJ  
R88M-W40030H-G15CJ R88M-W40030H-BG15CJ R88M-W40030T-G15CJ  
R88M-W40030H-G25CJ R88M-W40030H-BG25CJ R88M-W40030T-G25CJ  
R88M-W75030H-G05CJ R88M-W75030H-BG05CJ R88M-W75030T-G05CJ  
R88M-W75030H-G09CJ R88M-W75030H-BG09CJ R88M-W75030T-G09CJ  
R88M-W75030H-G15CJ R88M-W75030H-BG15CJ R88M-W75030T-G15CJ  
R88M-W75030H-G25CJ R88M-W75030H-BG25CJ R88M-W75030T-G25CJ  
R88M-W10030T-BG05CJ  
R88M-W10030T-BG09CJ  
R88M-W10030T-BG15CJ  
R88M-W10030T-BG25CJ  
R88M-W20030T-BG05CJ  
R88M-W20030T-BG09CJ  
R88M-W20030T-BG15CJ  
R88M-W20030T-BG25CJ  
R88M-W40030T-BG05CJ  
R88M-W40030T-BG09CJ  
R88M-W40030T-BG15CJ  
R88M-W40030T-BG25CJ  
R88M-W75030T-BG05CJ  
R88M-W75030T-BG09CJ  
R88M-W75030T-BG15CJ  
R88M-W75030T-BG25CJ  
1/15  
1/25  
200 W 1/5  
1/9  
1/15  
1/25  
400 W 1/5  
1/9  
1/15  
1/25  
750 W 1/5  
1/9  
1/15  
1/25  
3,000-r/min Flat-style Servomotors  
Specifications  
Model  
With incremental encoder  
Without brake With brake  
With absolute encoder  
Without brake With brake  
200 V 100 W 1/5  
1/9  
R88M-WP10030H-G05CJ R88M-WP10030H-BG05CJ R88M-WP10030T-G05CJ R88M-WP10030T-BG05CJ  
R88M-WP10030H-G09CJ R88M-WP10030H-BG09CJ R88M-WP10030T-G09CJ R88M-WP10030T-BG09CJ  
R88M-WP10030H-G15CJ R88M-WP10030H-BG15CJ R88M-WP10030T-G15CJ R88M-WP10030T-BG15CJ  
R88M-WP10030H-G25CJ R88M-WP10030H-BG25CJ R88M-WP10030T-G25CJ R88M-WP10030T-BG25CJ  
R88M-WP20030H-G05CJ R88M-WP20030H-BG05CJ R88M-WP20030T-G05CJ R88M-WP20030T-BG05CJ  
R88M-WP20030H-G09CJ R88M-WP20030H-BG09CJ R88M-WP20030T-G09CJ R88M-WP20030T-BG09CJ  
R88M-WP20030H-G15CJ R88M-WP20030H-BG15CJ R88M-WP20030T-G15CJ R88M-WP20030T-BG15CJ  
R88M-WP20030H-G25CJ R88M-WP20030H-BG25CJ R88M-WP20030T-G25CJ R88M-WP20030T-BG25CJ  
R88M-WP40030H-G05CJ R88M-WP40030H-BG05CJ R88M-WP40030T-G05CJ R88M-WP40030T-BG05CJ  
R88M-WP40030H-G09CJ R88M-WP40030H-BG09CJ R88M-WP40030T-G09CJ R88M-WP40030T-BG09CJ  
R88M-WP40030H-G15CJ R88M-WP40030H-BG15CJ R88M-WP40030T-G15CJ R88M-WP40030T-BG15CJ  
R88M-WP40030H-G25CJ R88M-WP40030H-BG25CJ R88M-WP40030T-G25CJ R88M-WP40030T-BG25CJ  
R88M-WP75030H-G05CJ R88M-WP75030H-BG05CJ R88M-WP75030T-G05CJ R88M-WP75030T-BG05CJ  
R88M-WP75030H-G09CJ R88M-WP75030H-BG09CJ R88M-WP75030T-G09CJ R88M-WP75030T-BG09CJ  
R88M-WP75030H-G15CJ R88M-WP75030H-BG15CJ R88M-WP75030T-G15CJ R88M-WP75030T-BG15CJ  
R88M-WP75030H-G25CJ R88M-WP75030H-BG25CJ R88M-WP75030T-G25CJ R88M-WP75030T-BG25CJ  
1/15  
1/25  
200 W 1/5  
1/9  
1/15  
1/25  
400 W 1/5  
1/9  
1/15  
1/25  
750 W 1/5  
1/9  
1/15  
1/25  
2-15  
Standard Models and Specifications  
Chapter 2  
2-2 Servo Driver and Servomotor Combinations  
The tables in this section show the possible combinations of OMNUC W-series Servo  
Drivers (with built-in MECHATROLINK-II communications) and Servomotors. No other  
combinations are possible.  
Note The boxes (-@) at the ends of the model numbers are for options such as shaft type, brake,  
waterproofing, decelerator, and so on.  
3,000-r/min Servomotors and Servo Drivers  
Voltage  
Servomotor  
Servo Driver  
Rated  
output  
With incremental  
With absolute  
encoder  
encoder  
200 V  
50 W  
R88M-W05030H-@  
R88M-W05030T-@  
R88M-W10030T-@  
R88M-W20030T-@  
R88M-W40030T-@  
R88M-W75030T-@  
R88M-W1K030T-@  
R88M-W1K530T-@  
R88M-W2K030T-@  
R88M-W3K030T-@  
R88D-WNA5H-ML2/A5L-M2  
R88D-WN01H-ML2/01L-ML2  
R88D-WN02H-ML2/02L-ML2  
R88D-WN04H-ML2/04L-ML2  
R88D-WN08H-ML2  
100 W R88M-W10030H-@  
200 W R88M-W20030H-@  
400 W R88M-W40030H-@  
750 W R88M-W75030H-@  
1 kW  
R88M-W1K030H-@  
R88D-WN10H-ML2  
1.5 kW R88M-W1K530H-@  
2 kW  
3 kW  
R88D-WN15H-ML2  
R88M-W2K030H-@  
R88M-W3K030H-@  
R88D-WN20H-ML2  
R88D-WN30H-ML2  
3,000-r/min Flat-style Servomotors and Servo Drivers  
Voltage  
Servomotor  
With incremental  
encoder  
Servo Driver  
Rated  
output  
With absolute  
encoder  
200 V  
100 W R88M-WP10030H-@  
200 W R88M-WP20030H-@  
400 W R88M-WP40030H-@  
750 W R88M-WP75030H-@  
R88M-WP10030T-@  
R88M-WP20030T-@  
R88M-WP40030T-@  
R88M-WP75030T-@  
R88D-WN01H-ML2/01L-ML2  
R88D-WN02H-ML2/02L-ML2  
R88D-WN04H-ML2/04L-ML2  
R88D-WN08H-ML2  
1.5 kW R88M-WP1K530H-@ R88M-WP1K530T-@  
R88D-WN15H-ML2  
1,000-r/min Servomotors and Servo Drivers  
Voltage  
Servomotor  
With incremental  
encoder  
Servo Driver  
Rated  
output  
With absolute  
encoder  
200 V  
300 W R88M-W30010H-@  
600 W R88M-W60010H-@  
900 W R88M-W90010H-@  
1.2 kW R88M-W1K210H-@  
R88M-W30010T-@  
R88M-W60010T-@  
R88M-W90010T-@  
R88M-W1K210T-@  
R88M-W2K010T-@  
R88D-WN05H-ML2  
R88D-WN10H-ML2  
R88D-WN10H-ML2  
R88D-WN15H-ML2  
R88D-WN20H-ML2  
2 kW  
R88M-W2K010H-@  
2-16  
Standard Models and Specifications  
Chapter 2  
1,500-r/min Servomotors and Servo Drivers  
Voltage  
Servomotor  
With incremental  
encoder  
Servo Driver  
Rated  
output  
With absolute  
encoder  
200 V  
450 W ---  
850 W ---  
1.3 kW ---  
1.8 kW ---  
R88M-W45015T-@  
R88M-W85015T-@  
R88M-W1K315T-@  
R88M-W1K815T-@  
R88D-WN05H-ML2  
R88D-WN10H-ML2  
R88D-WN15H-ML2  
R88D-WN20H-ML2  
2-17  
Standard Models and Specifications  
Chapter 2  
2-3 External and Mounted Dimensions  
2-3-1 AC Servo Drivers  
Single-phase 100 V: R88D-WNA5L-ML2/-WN01L-ML2/-WN02L-ML2  
(50 to 200 W)  
Single-phase 200 V: R88D-WNA5H-ML2/-WN01H-ML2/-WN02H-ML2  
(50 to 200 W)  
Wall Mounting  
External dimensions  
Mounted dimensions  
(6)  
Mounting Holes  
Two M-4 holes  
(4.5)  
SW1  
C
N
6
CN6  
CN3  
CHARGE  
A/B  
L1  
L2  
C
N
3
L1C  
L2C  
B1/+  
B2  
Terminal  
Block  
CN1  
C
N
1
U
V
W
C
N
2
CN2  
CN4  
C
N
4
Ground terminals  
Two M4 screws  
5
8
32 0.5  
45  
Nameplate  
(Mounting  
pitch)  
(18)  
45  
(75)  
130  
2-18  
Standard Models and Specifications  
Chapter 2  
Front Panel Mounting (Using Mounting Brackets)  
External dimensions  
Mounted dimensions  
(6)  
22.5 2  
105.5  
Mounting Holes  
Two M-4 holes  
(7.5)  
(25.5)  
1.5  
36  
19.5  
(4.5)  
5 dia.  
CN6  
CN3  
CN1  
SW1  
C
N
6
CHARGE  
A/B  
L1  
L2  
L1C  
C
N
3
L2C  
B1/+  
B2  
Terminal  
Block  
C
N
1
U
V
W
CN2  
CN4  
C
N
2
C
N
4
Ground  
terminals  
Two M4  
screws  
Nameplate  
130  
(18)  
5
45  
(25.5)  
19.5  
(75)  
Single-phase 100 V: R88D-WN04L-ML2 (400 W)  
Wall Mounting  
External dimensions  
Mounted dimensions  
Mounting Holes  
Three M-4 holes  
(6)  
Air flow  
(4)  
CN6  
Terminal  
Block  
C
N
6
SW1  
CHARGE  
A/B  
CN3  
L1  
L2  
Air flow  
C
N
3
L1C  
L2C  
B1/  
CN1  
B2  
C
N
1
CN2  
U
C
N
CN4  
2
V
W
C
N
4
Ground terminals  
Two M4 screws  
Nameplate  
Cooling fan  
180  
6
58 0.5  
(Mounting pitch)  
70  
(6)  
Air flow  
70  
18  
(75)  
2-19  
Standard Models and Specifications  
Chapter 2  
Front Panel Mounting (Using Mounting Brackets)  
External dimensions  
Mounted dimensions  
(6)  
24.5  
2
(15.5)  
5 dia.  
Mounting Holes  
Two M-4 holes  
18.5  
36.5  
36  
(33.5)  
(4)  
Air flow  
CN6  
Terminal  
Block  
CN3  
Air flow  
CN1  
CN2  
CN4  
Nameplate  
Cooling fan  
18  
Air flow  
5
(
75  
)
180  
36.5  
(33.5)  
Ground terminals  
Two M4 screws  
70  
70  
Single-phase 200 VAC: R88D-WN04H-ML2 (400 W)  
Wall Mounting  
External dimensions  
Mounted dimensions  
Mounting Holes  
Two M-4 holes  
(6)  
(4)  
CN6  
CN3  
CN1  
SW1  
C
N
6
CHARGE  
A/B  
L1  
L2  
C
N
3
L1C  
L2C  
B1/+  
B2  
Terminal  
Block  
C
N
1
U
V
W
CN2  
CN4  
C
N
2
C
N
4
Ground terminals  
Two M4 screws  
(8)  
10  
47 0.5  
Nameplate  
65  
(18)  
(Mounting pitch)  
(75)  
130  
2-20  
Standard Models and Specifications  
Chapter 2  
Front Panel Mounting (Using Mounting Brackets)  
External dimensions  
Mounted dimensions  
Mounting Holes  
Two M-4 holes  
(7.5)  
(25.5)  
(6)  
22.5 2  
105.5  
21.5  
39.5  
36  
(4)  
5 dia.  
CN6  
CN3  
CN1  
Terminal  
Block  
CN2  
CN4  
Nameplate  
Ground  
terminals  
Two M4  
screws  
(18)  
5
(25.5)  
39.5  
(75)  
130  
20  
45  
65  
Single-phase 200 VAC: R88D-WN08HML2 (750 W)  
Three-phase 200 VAC: R88D-WN05H-ML2/-WN10H-ML2 (500 W to 1 kW)  
Wall Mounting  
External dimensions  
Mounted dimensions  
Mounting Holes  
(6)  
Air flow  
Three M-4 holes  
(4)  
Terminal  
Block  
CN6  
C
N
6
SW1  
CHARGE  
A/B  
CN3  
L1  
L2  
L2  
Air flow  
C
N
3
L1C  
L2C  
CN1  
+
B1/  
B2  
B3  
1
C
N
1
2
CN2  
CN4  
U
V
C
N
2
W
C
N
4
Nameplate  
Cooling fan  
180  
Ground terminals  
Two M4 screws  
6
58 0.5  
(Mounting pitch)  
70  
(6)  
Air flow  
18  
(75)  
70  
2-21  
Standard Models and Specifications  
Chapter 2  
Front Panel Mounting (Using Mounting Brackets)  
External dimensions  
Mounted dimensions  
(6)  
24.5  
2
Mounting Holes  
Two M-4 holes  
(15.5)  
18.5  
36.5  
36  
(33.5)  
5 dia.  
(4)  
Air flow  
CN6  
Terminal  
Block  
CN3  
Air flow  
CN1  
CN2  
CN4  
Nameplate  
Cooling fan  
18  
Air flow  
5
(75)  
180  
Ground terminals  
Two M4 screws  
(33.5)  
36.5  
70  
70  
Three-phase 200 V: R88D-WN15H-ML2 (1.5 kW)  
Wall Mounting  
External dimensions  
Mounted dimensions  
Mounting Holes  
(6)  
Three M-4 holes  
(4)  
CHARGE  
CN6  
CN3  
C
N
SW1  
L1  
6
Terminal  
Block  
A/B  
L2  
L1  
L3  
L1C  
L2C  
C
N
3
B1/  
B2  
B3  
+
CN1  
-
-
1
2
C
N
1
U
V
CN2  
CN4  
W
C
N
2
C
N
4
Ground terminals  
Two M4 screws  
Nameplate  
(5)  
5
80 0.5  
(Mounting pitch)  
90  
18  
(75)  
90  
180  
2-22  
Standard Models and Specifications  
Chapter 2  
Front Panel Mounting (Using Mounting Brackets)  
Mounted Dimensions  
External Dimensions  
Mounting Holes  
Four M-4 holes  
Air flow  
(6)  
Two, 5 dia.  
CN6  
CHARGE  
C
SW1  
N
6
L1  
A/B  
L2  
CN3  
CN1  
L3  
L1C  
L2C  
B1/+  
B2  
C
N
3
B3  
Terminal  
blocks  
- 1  
C
N
1
- 2  
U
V
CN2  
CN4  
Ground terminals  
Two M4 screws  
W
C
N
2
C
N
4
Nameplate  
2
5
(20)  
(Mounting pitch)  
20  
50 0.5  
18 24.5  
Air flow  
(20)  
20  
50  
(75)  
180  
(5)  
(2.2)  
90  
Three-phase 200 V: R88D-WN20H-ML2/-WN30H-ML2 (2 to 3 kW)  
Wall Mounting  
External dimensions  
Mounted dimensions  
Mounting Holes  
Four M-4 holes  
(6)  
(4)  
CN6  
CN3  
CN1  
CN2  
CN4  
Nameplate  
Ground ter-  
minals Two  
M4 screws  
Terminal Block  
M4 screws  
90 0.5  
(5)  
5
(Mounting pitch)  
100  
100  
(75)  
180  
2-23  
Standard Models and Specifications  
Chapter 2  
Front Panel Mounting (Using Mounting Brackets)  
Mounted dimensions  
External dimensions  
100  
2.2  
Mounting Holes  
Four M-4 holes  
25  
50  
Two, 5 dia.  
(6)  
24.5  
2
Air flow  
Terminal  
Block  
CHARGE  
CN6  
CN3  
C
N
6
SW1  
A/B  
C
N
3
CN1  
C
N
1
CN2  
CN4  
C
N
2
C
N
4
Nameplate  
5
Air flow  
50  
(25)  
27.2  
50 0.5  
(5)  
(75)  
2.2  
25  
180  
Ground terminals  
Two M4 screws  
(Mounting pitch)  
102.2  
102.2  
2-24  
Standard Models and Specifications  
2-3-2 AC Servomotors  
Chapter 2  
3,000-r/min Servomotors without a Brake  
200 V AC: 50 W/100 W  
R88M-W05030H(-S1)/-W10030H(-S1) [Incremental]  
R88M-W05030T(-S1)/-W10030T(-S1) [Absolute]  
Dimensions (mm)  
Model  
300 30  
LL  
77  
S
b
2
3
h
2
3
t1  
M
l
R88M-W05030@-@  
R88M-W10030@-@  
6h6  
8h6  
1.2  
1.8  
M2.5  
M3  
5
6
94.5  
Dimensions of shaft end with key (-S1)  
h
6 dia.  
19.5  
7 dia.  
20  
21.5  
Two, 4.3 dia.  
5
300 30  
14  
t1  
Dimensions of shaft end with key and tap (-S2)  
h
M (effective depth: l)  
5
2.5  
25  
40  
LL  
14  
t1  
3,000-r/min Servomotors with a Brake  
200 V AC: 50 W/100 W  
R88M-W05030H-B(S1)/-W10030H-B(S1) [Incremental]  
R88M-W05030T-B(S1)/-W10030T-B(S1) [Absolute]  
Dimensions (mm)  
Model  
300 30  
LL  
S
b
h
2
3
t1  
M
l
R88M-W05030@-B@  
R88M-W10030@-B@  
108.5  
135  
6h6  
8h6  
2
3
1.2  
1.8  
M2.5  
M3  
5
6
Dimensions of shaft end with key (-BS1)  
h
6 dia.  
19.5  
7 dia.  
27  
300 30  
21.5  
Two, 4.3 dia.  
5
14  
t1  
Dimensions of shaft end with key and  
tap (-BS2)  
M (effective  
depth: l)  
h
5
2.5  
25  
40  
LL  
14  
t1  
2-25  
Standard Models and Specifications  
Chapter 2  
3,000-r/min Servomotors without a Brake  
200 V AC: 200 W/400 W/750 W  
R88M-W20030H(-S1)/-W40030H(-S1)/-W75030H(-S1) [Incremental]  
R88M-W20030T(-S1)/-W40030T(-S1)/-W75030T(-S1) [Absolute]  
Dimensions (mm)  
Model  
300 30  
LL  
LR  
30  
C
D1  
70  
70  
90  
D2  
G
6
6
8
Z
5.5  
5.5  
7
S
QK  
20  
20  
30  
R88M-W20030@-@  
R88M-W40030@-@  
R88M-W75030@-@  
96.5  
60  
60  
80  
50h7  
50h7  
70h7  
14h6  
14h6  
16h6  
124.5 30  
145 40  
Dimensions of output section of  
750-W Servomotors  
6 dia.  
13  
7 dia.  
20  
21.5  
300 30  
Four, Z dia.  
2
Dimensions of shaft end with key (-S1)  
5
3
QK  
Dimensions of shaft end with key  
and tap (-S2)  
G
3
C
LL  
LR  
5
M5  
(effective depth: 8)  
3
QK  
2-26  
Standard Models and Specifications  
Chapter 2  
3,000-r/min Servomotors with a Brake  
200 V AC: 200 W/400 W/750 W  
R88M-W20030H-B(S1)/-W40030H-B(S1)/-W75030H-B(S1) [Incremental]  
R88M-W20030T-B(S1)/-W40030T-B(S1)/-W75030T-B(S1) [Absolute]  
Dimensions (mm)  
Model  
300 30  
LL  
LR  
30  
30  
C
D1  
70  
70  
90  
D2  
G
6
6
8
Z
5.5  
5.5  
7
S
QK  
20  
20  
30  
R88M-W20030@-B@  
R88M-W40030@-B@  
R88M-W75030@-B@  
136  
164  
60  
60  
80  
50h7  
50h7  
70h7  
14h6  
14h6  
16h6  
189.5 40  
Dimensions of output section of  
750-W Servomotors  
6 dia.  
13  
7 dia.  
300 30  
27  
21.5  
Four, Z dia.  
2
Dimensions of shaft end with key  
(-BS1)  
5
3
QK  
G
3
C
Dimensions of shaft end with key  
and tap (-BS2)  
LL  
LR  
5
M5  
(effective depth: 8)  
3
QK  
2-27  
Standard Models and Specifications  
Chapter 2  
3,000-r/min Servomotors without a Brake  
200 V AC: 1 kW/1.5 kW/2 kW/3 kW  
R88M-W1K030H(-S2)/-W1K5030H(-S2)/-W2K030H(-S2)/-W3K030H(-S2) [Incremental]  
R88M-W1K030T(-S2)/-W1K5030T(-S2)/-W2K030T(-S2)/-W3K030T(-S2) [Absolute]  
LL  
LR  
G
F
C
Four, Z dia.  
2
KB1  
KB2  
Dimensions of shaft end with key (-S2)  
M8  
Dimensions (mm)  
D1 D2  
(effective depth: 16)  
Model  
LL  
LR KB1 KB2 KL1 KL2  
76 128  
C
D3  
F
3
6
G
Z
7
9
S
QK  
R88M-W1K030@-@  
R88M-W1K530@-@  
R88M-W2K030@-@  
R88M-W3K030@-@  
149  
175 45 102 154 96 88 100 115 95h7 130  
198 125 177  
199 63 124 178 114 88 130 145 110h7 165  
10  
12  
24h6 32  
28h6 50  
QK  
4
7
Note: The external dimensions are the same for IP67 (waterproof) models (-O@).  
2-28  
Standard Models and Specifications  
3,000-r/min Servomotors with a Brake  
200 V AC: 1 kW/1.5 kW/2 kW/3 kW  
Chapter 2  
R88M-W1K030H-B(S2)/-W1K5030H-B(S2)/-W2K030H-B(S2)/-W3K030H-B(S2)  
[Incremental]  
R88M-W1K030T-B(S2)/-W1K5030T-B(S2)/-W2K030T-B(S2)/-W3K030T-B(S2)  
[Absolute]  
LL  
LR  
G
F
C
Four, Z dia.  
2
KB1  
KB2  
Dimensions of shaft end with key (-BS2)  
M8  
Dimensions (mm)  
D1 D2  
(effective depth: 16)  
Model  
LL  
LR KB1 KB2 KL1 KL2  
67 171  
C
D3  
F
3
6
G
Z
7
9
S
QK  
R88M-W1K030@-B@  
R88M-W1K530@-B@  
R88M-W2K030@-B@  
R88M-W3K030@-B@  
193  
219 45 93 197 102 88 100 115 95h7 130  
242 116 220  
237 63 114 216 119 88 130 145 110h7 165  
10  
12  
24h6 32  
28h6 50  
QK  
4
7
Note: The external dimensions are the same for IP67 (waterproof) models (-BO@).  
2-29  
Standard Models and Specifications  
Chapter 2  
3,000-r/min Flat-style Servomotors without a Brake  
200 V AC: 100 W/200 W/400 W/750 W/1.5 kW  
R88M-WP10030H(-S1)/-WP20030H(-S1)/-WP40030H(-S1)/-WP75030H(-S1)/  
-WP1K530H(-S1) [Incremental]  
R88M-WP10030T(-S1)/-WP20030T(-S1)/-WP40030T(-S1)/-WP75030T(-S1)/  
-WP1K530T(-S1) [Absolute]  
Model  
Dimensions (mm)  
With key (shaft  
end dimensions)  
Waterproof type  
(flange dimensions)  
Basic servomotor dimensions  
Cable lead-in section  
Tap  
LL  
62  
LR  
C
D1  
D2  
F
3
G
6
Z
S
QK  
b
3
h
3
t1 W1 W2 DW1 DW2 A1 A2 A3 A4 A5  
M
l
R88M-WP10030@-@  
R88M-WP20030@-@  
R88M-WP40030@-@  
R88M-WP75030@-@  
R88M-WP1K530@-@  
25 60 70 50h7  
5.5 8h6 14  
1.8  
1
4
39  
22  
M3  
M5  
M6  
6
67  
18  
28  
21 14  
38 19  
30 80 90 70h7  
3
8
7
14h6 16  
5
5
3
3.5  
7
49  
35  
87  
9
25  
8
86.5  
114.5  
16h6  
22  
5
6
5
6
3
40 120 145 110h7 3.5 10 10  
1.5  
7
77  
55  
19h6  
3.5  
10  
300 30  
Dimensions of shaft end with  
Dimensions of shaft end with key  
key (-@S1)  
and tap (-@S2)  
h
h
M
(effective depth: l)  
A3  
A4  
13  
QK  
t1  
QK  
t1  
300 30  
IP67 (-W@) flange dimensions  
A5  
G
F
C
Four, Z dia.  
W1  
W2  
LL  
LR  
2-30  
Standard Models and Specifications  
Chapter 2  
3,000-r/min Flat-style Servomotors with a Brake  
200 V AC: 100 W/200 W/400 W/750 W/1.5 kW  
R88M-WP10030H-B(S1)/-WP20030H-B(S1)/-WP40030H-B(S1)/-WP75030H-B(S1)/  
-WP1K530H-B(S1) [Incremental]  
R88M-WP10030T-B(S1)/-WP20030T-B(S1)/-WP40030T-B(S1)/-WP75030T-B(S1)/  
-WP1K530T-B(S1) [Absolute]  
Model  
Dimensions (mm)  
With key (shaft  
end dimensions)  
Waterproof type  
(flange dimensions)  
Basic servomotor dimensions  
Cable lead-in section  
Tap  
LL  
91  
LR  
C
D1  
D2  
F
3
G
6
Z
S
QK  
b
3
h
3
t1 W1 W2 DW1 DW2 A1 A2 A3 A4 A5  
M
l
R88M-WP10030@-B@  
R88M-WP20030@-B@  
R88M-WP40030@-B@  
R88M-WP75030@-B@  
R88M-WP1K530@-B@  
25 60 70 50h7  
5.5 8h6 14  
1.8  
1
4
39  
22  
M3  
M5  
M6  
6
98.5  
118.5  
120  
148  
18  
28  
21 23  
38 26  
30 80 90 70h7  
3
8
7
14h6 16  
5
5
3
3.5  
7
49  
35  
9
25  
8
16h6  
22  
5
6
5
6
3
40 120 145 110h7 3.5 10 10  
1.5  
7
77  
55  
19h6  
3.5  
10  
300 30  
Dimensions of shaft end with  
Dimensions of shaft end with key  
key (-B@S1)  
and tap (-B@S2)  
h
h
M
(effective depth: l)  
A3  
A4  
QK  
t1  
QK  
t1  
13  
300 30  
IP67 (-BW@) flange dimensions  
A5  
G
F
C
Four, Z dia.  
W1  
W2  
LL  
LR  
2-31  
Standard Models and Specifications  
1,000-r/min Servomotors without a Brake  
200 V AC: 300 W/600 W/900 W/1.2 kW/2.0 kW  
Chapter 2  
R88M-W30010H(-S2)/-W60010H(-S2)/-W90010H(-S2)/-W1K210H(-S2)/-W2K010H(-S2)  
[Incremental]  
R88M-W30010T(-S2)/-W60010T(-S2)/-W90010T(-S2)/-W1K210T(-S2)/-W2K010T(-S2)  
[Absolute]  
Dimensions of output section of  
300-W to 900-W Servomotors  
LL  
LR  
G
F
C
12  
Dimensions of shaft end with  
key (-S2)  
M (Effective depth: l)  
Four, Z dia.  
KB1  
QK  
t1  
h
KB2  
Dimensions (mm)  
Model (mm)  
LL  
LR  
KB1 KB2 KL1  
KL2  
C
D1  
D2  
D3  
F
G
Z
9
S
QK  
25  
b
h
5
6
8
t1  
3
M
l
R88M-W30010@-@  
R88M-W60010@-@  
R88M-W90010@-@  
R88M-W1K210@-@  
R88M-W2K010@-@  
138  
161  
185  
166  
192  
65  
88  
117  
140  
164  
144  
170  
19h6  
5
6
58  
79  
109  
140  
88  
88  
130  
145  
110h7  
165  
6
12  
M5  
12  
112  
89  
22h6  
3.5  
5
0
+0.01  
0
180  
200 114.3  
230  
3.2  
18 13.5 35  
60  
10  
M12  
25  
0.025  
115  
Note: The external dimensions are the same for IP67 (waterproof) models (-O@).  
2-32  
Standard Models and Specifications  
Chapter 2  
1,000-r/min Servomotors with a Brake  
200 V AC: 300 W/600 W/900 W/1.2 kW/2.0 kW  
R88M-W30010H-B(S2)/-W60010H-B(S2)/-W90010H-B(S2)/-W1K210H-B(S2)/  
-W2K010H-B(S2) [Incremental]  
R88M-W30010T-B(S2)/-W60010T-B(S2)/-W90010T-B(S2)/-W1K210T-B(S2)/  
-W2K010T-B(S2) [Absolute]  
Dimensions of output section of  
300-W to 900-W Servomotors  
LL  
LR  
G
F
C
12  
Dimensions of shaft end with  
key (-BS2)  
M (Effective depth: l)  
Four, Z dia.  
QK  
t1  
h
KB1  
KB2  
Dimensions (mm)  
Model (mm)  
LL  
LR  
58  
KB1 KB2 KL1  
KL2  
88  
C
D1  
D2  
D3  
F
G
Z
9
S
QK  
25  
b
5
h
5
6
8
t1  
3
M
l
R88M-W30010@-B@  
R88M-W60010@-B@  
R88M-W90010@-B@  
R88M-W1K210@-B@  
R88M-W2K010@-B@  
176  
199  
223  
217  
243  
56  
79  
154  
177  
201  
195  
221  
19h6  
120  
146  
130  
145  
110h7  
165  
6
12  
M5  
12  
103  
79  
22h6  
6
3.5  
5
0
+0.01  
0
79  
88  
180  
200 114.3  
230  
3.2  
18 13.5 35  
60  
10  
M12  
25  
0.025  
105  
Note: The external dimensions are the same for IP67 (waterproof) models (-BO@).  
2-33  
Standard Models and Specifications  
Chapter 2  
1,500-r/min Servomotors without a Brake  
200 V AC: 450 W/850 W/1.3 kW/1.8 kW  
R88M-W45015T(-S2)/-W85015T(-S2)/-W1K315T(-S2)/-W1K815T(-S2) [Absolute]  
Dimensions of output section of  
450-W to 1.3-kW Servomotors  
LL  
LR  
G
F
C
12  
Dimensions of shaft end with  
key (-S2)  
M (Effective depth: l)  
Four, Z dia.  
QK  
t1  
h
KB1  
KB2  
Dimensions (mm)  
Model (mm)  
LL  
LR  
KB1 KB2 KL1  
KL2  
C
D1  
D2  
D3  
165  
230  
F
G
Z
9
S
QK  
25  
60  
b
5
h
5
t1  
3
M
l
R88M-W45015T-@  
R88M-W85015T-@  
R88M-W1K315T-@  
R88M-W1K815T-@  
138  
161  
185  
166  
65  
88  
117  
140  
164  
144  
19h6  
58  
109  
140  
88  
88  
130  
145  
110h7  
0
6
12  
M5  
12  
25  
112  
89  
22h6  
6
6
8
3.5  
5
+0.01  
0
79  
180  
200 114.3  
3.2  
18 13.5 35  
10  
M12  
0.025  
Note: The external dimensions are the same for IP67 (waterproof) models (O@).  
2-34  
Standard Models and Specifications  
1,500-r/min Servomotors with a Brake  
200 V AC: 450 W/850 W/1.3 kW/1.8 kW  
Chapter 2  
R88M-W45015T-B(S2)/-W85015T-B(S2)/-W1K315T-B(S2)/-W1K815T-B(S2) [Absolute]  
Dimensions of output section of  
450-W to 1.3-kW Servomotors  
LL  
LR  
G
F
C
12  
Dimensions of shaft end with  
key (-BS2)  
M (Effective depth: l)  
Four, Z dia.  
QK  
t1  
h
KB1  
KB2  
Dimensions (mm)  
Model (mm)  
LL  
LR  
58  
79  
KB1 KB2 KL1  
KL2  
88  
C
D1  
D2  
D3  
165  
230  
F
G
Z
9
S
QK  
b
5
h
5
t1  
3
M
l
R88M-W45015T-B@  
R88M-W85015T-B@  
R88M-W1K315T-B@  
R88M-W1K815T-B@  
176  
199  
223  
217  
56  
79  
154  
177  
201  
195  
19h6  
120  
146  
130  
180  
145  
110h7  
0
6
12  
25  
60  
M5  
12  
25  
103  
79  
22h6  
6
6
8
3.5  
5
+0.01  
0
88  
200 114.3  
3.2  
18 13.5 35  
10  
M12  
0.025  
Note: The external dimensions are the same for IP67 (waterproof) models (-BO@).  
2-35  
Standard Models and Specifications  
Chapter 2  
2-3-3 AC Servomotors with Gears  
AC Servomotors with Standard Gears  
3,000-r/min Servomotors (30 to 750 W) with Standard Gears  
Model  
Dia-  
gram  
No.  
Dimensions (mm)  
LL  
LM  
LR  
C1  
C2 D1  
D2  
D3  
D4  
D5  
D6  
WOB* WB*  
50 W  
1/5  
1/9  
R88M-W05030@-@G05BJ  
R88M-W05030@-@G09BJ  
1, 1-1  
1, 1-2  
77  
108.5 28  
108.5 29  
55  
60  
40  
80  
70  
56  
55.5  
64.5  
64.5  
64.5  
64.5  
64.5  
84  
40  
---  
77  
60  
70  
40  
40  
40  
40  
40  
40  
40  
60  
60  
60  
60  
60  
60  
60  
60  
80  
80  
80  
80  
95  
80  
80  
80  
80  
80  
65  
50  
40  
40  
40  
40  
59  
59  
59  
59  
59  
59  
59  
59  
59  
84  
59  
59  
84  
84  
---  
8
1/21 R88M-W05030@-@G21BJ  
1/33 R88M-W05030@-@G33BJ  
77  
108.5 46  
108.5 46  
60  
70  
(92)  
(92)  
(92)  
(92)  
65  
77  
60  
70  
65  
8
100 W 1/5  
R88M-W10030@-@G05BJ  
94.5  
94.5  
94.5  
94.5  
96.5  
96.5  
96.5  
96.5  
135  
135  
135  
135  
136  
136  
136  
136  
29  
46  
55  
55  
38  
55  
63  
63  
38  
63  
71  
71  
60  
70  
65  
8
1/11 R88M-W10030@-@G11BJ  
1/21 R88M-W10030@-@G21BJ  
1/33 R88M-W10030@-@G33BJ  
60  
70  
65  
8
74  
90  
(120) 105  
(120) 105  
(120) 105  
(120) 105  
(139) 120  
(139) 120  
(120) 105  
(139) 120  
(158) 135  
(158) 135  
(139) 120  
(158) 135  
(192) 165  
(192) 165  
85  
9
74  
90  
85  
84  
9
200 W 1/5  
R88M-W20030@-@G05BJ  
1/11 R88M-W20030@-@G11BJ  
1/21 R88M-W20030@-@G21BJ  
1/33 R88M-W20030@-@G33BJ  
2
2
2
74  
90  
85  
84  
9
74  
90  
85  
84  
9
84  
105  
105  
90  
100  
100  
85  
96  
12  
12  
9
84  
96  
400 W 1/5  
R88M-W40030@-@G05BJ  
1/11 R88M-W40030@-@G11BJ  
1/21 R88M-W40030@-@G21BJ  
1/33 R88M-W40030@-@G33BJ  
124.5 164  
124.5 164  
124.5 164  
124.5 164  
74  
84  
84  
105  
120  
120  
105  
120  
145  
145  
100  
115  
115  
100  
115  
140  
140  
96  
12  
14  
14  
12  
14  
16  
16  
105  
105  
84  
112  
114  
96  
750 W 1/5  
R88M-W75030@-@G05BJ  
1/11 R88M-W75030@-@G11BJ  
1/21 R88M-W75030@-@G21BJ  
1/33 R88M-W75030@-@G33BJ  
145  
145  
145  
145  
189.5 42  
189.5 71  
189.5 78  
189.5 78  
105  
142  
142  
112  
134  
134  
Note The values in parentheses are reference values.  
Diagram 1  
Diagram 1-1  
Four, Z dia.  
Key dimensions  
M (Effective depth: l)  
t1  
h
QK  
G
F
C1 × C1  
Diagram 1-2  
Four, RD6  
C1 × C1  
T
E1  
E2  
LL  
LM  
LR  
Four, Z dia.  
2-36  
Standard Models and Specifications  
Chapter 2  
Note WOB and WB mean “without brake” and “with brake” respectively.  
Dimensions (mm)  
Model  
E1  
E2  
F
G
S
T
Z
Key dimensions  
t1  
QK  
20  
b
h
M
l
27  
35  
6
8
8
8
8
8
8
9
9
9
9
9
14  
16  
16  
16  
16  
16  
20  
20  
20  
20  
25  
25  
20  
25  
32  
32  
25  
32  
40  
40  
25  
28  
28  
28  
28  
28  
36  
36  
36  
36  
42  
42  
36  
42  
58  
58  
42  
58  
82  
82  
5.5  
5
5
5
5
5
5
5
6
6
6
6
7
7
6
7
8
8
7
8
8
8
3
3
3
3
3
3
M4  
8
R88M-W05030@-@G05BJ  
R88M-W05030@-@G09BJ  
R88M-W05030@-@G21BJ  
R88M-W05030@-@G33BJ  
R88M-W10030@-@G05BJ  
R88M-W10030@-@G11BJ  
R88M-W10030@-@G21BJ  
R88M-W10030@-@G33BJ  
R88M-W20030@-@G05BJ  
R88M-W20030@-@G11BJ  
R88M-W20030@-@G21BJ  
R88M-W20030@-@G33BJ  
R88M-W40030@-@G05BJ  
R88M-W40030@-@G11BJ  
R88M-W40030@-@G21BJ  
R88M-W40030@-@G33BJ  
R88M-W75030@-@G05BJ  
R88M-W75030@-@G11BJ  
R88M-W75030@-@G21BJ  
R88M-W75030@-@G33BJ  
1/5  
50 W  
30  
30  
30  
30  
30  
38  
38  
38  
38  
44  
44  
38  
44  
60  
60  
44  
60  
85  
85  
38  
39  
39  
39  
39  
48  
48  
48  
48  
55  
55  
48  
55  
72  
72  
55  
72  
102  
102  
6.6  
6.6  
6.6  
6.6  
6.6  
9
25  
25  
25  
25  
25  
32  
32  
32  
32  
36  
36  
32  
36  
50  
50  
36  
50  
70  
70  
5
M4  
M4  
M4  
M4  
M4  
M5  
M5  
M5  
M5  
M6  
M6  
M5  
M6  
M8  
M8  
M6  
M8  
M10  
M10  
8
1/9  
5
8
1/21  
1/33  
1/5  
5
8
5
8
100 W  
200 W  
400 W  
750 W  
5
8
1/11  
1/21  
1/33  
1/5  
7.5  
7.5  
7.5  
7.5  
12  
10  
10  
10  
10  
12  
12  
10  
12  
13  
13  
12  
13  
15  
15  
6
3.5  
3.5  
3.5  
3.5  
4
10  
10  
10  
10  
12  
12  
10  
12  
16  
16  
12  
16  
20  
20  
9
6
9
6
9
6
1/11  
1/21  
1/33  
1/5  
9
8
12  
9
8
4
7.5  
12  
9
6
3.5  
4
9
8
1/11  
1/21  
1/33  
1/5  
14  
11  
11  
9
10  
10  
8
5
12.5  
12  
5
4
14  
11  
14  
14  
10  
12  
12  
5
1/11  
1/21  
1/33  
10  
5
10  
5
Diagram 2  
Key dimensions  
M (Effective depth: l)  
t1  
h
QK  
G
F
C1 × C1  
Four, RD6  
T
E1  
E2  
Four, Z dia.  
LL  
LM  
LR  
2-37  
Standard Models and Specifications  
Chapter 2  
3,000-r/min Servomotors (1 to 5 kW) with Standard Gears  
Model  
Dia-  
gram  
No.  
Dimensions (mm)  
LL  
LM  
LR  
C1 C2 D1  
D2  
D3  
D4  
D5  
WOB*  
149  
149  
149  
149  
149  
175  
175  
175  
175  
175  
198  
198  
198  
198  
198  
199  
199  
199  
199  
199  
WB*  
193  
1 kW  
1/5  
1/9  
R88M-W1K030@-@G05BJ  
R88M-W1K030@-@G09BJ  
1
154  
100  
140  
140  
---  
100  
185  
185  
245  
245  
245  
185  
245  
245  
245  
310  
185  
245  
245  
310  
310  
245  
245  
310  
310  
310  
160  
130  
94  
91  
193  
193  
193  
193  
219  
219  
219  
219  
219  
242  
242  
242  
242  
242  
237  
237  
237  
237  
237  
166  
207  
207  
217  
154  
203  
207  
207  
238  
154  
203  
207  
228  
238  
201  
228  
253  
253  
263  
100  
140  
140  
140  
100  
140  
140  
140  
160  
100  
140  
140  
160  
160  
140  
140  
160  
160  
160  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
100  
130  
130  
130  
130  
130  
160  
220  
220  
220  
160  
220  
220  
220  
280  
160  
220  
220  
280  
280  
220  
220  
280  
280  
280  
130  
190  
190  
190  
130  
190  
190  
190  
240  
130  
190  
190  
240  
240  
190  
190  
240  
240  
240  
94  
91  
1/20 R88M-W1K030@-@G20BJ  
1/29 R88M-W1K030@-@G29BJ  
1/45 R88M-W1K030@-@G45BJ  
2
135  
135  
135  
94  
130  
130  
130  
91  
---  
---  
1.5 kW 1/5  
1/9  
R88M-W1K530@-@G05BJ  
R88M-W1K530@-@G09BJ  
1
2
140  
---  
135  
135  
135  
186  
94  
130  
130  
130  
182  
91  
1/20 R88M-W1K530@-@G20BJ  
1/29 R88M-W1K530@-@G29BJ  
1/45 R88M-W1K530@-@G45BJ  
---  
---  
---  
2 kW  
3 kW  
1/5  
1/9  
R88M-W2K030@-@G05BJ  
R88M-W2K030@-@G09BJ  
1
2
140  
---  
135  
135  
186  
186  
135  
135  
186  
186  
186  
130  
130  
182  
182  
130  
130  
182  
182  
182  
1/20 R88M-W2K030@-@G20BJ  
1/29 R88M-W2K030@-@G29BJ  
1/45 R88M-W2K030@-@G45BJ  
---  
---  
---  
1/5  
1/9  
R88M-W3K030@-@G05BJ  
R88M-W3K030@-@G09BJ  
2
---  
---  
1/20 R88M-W3K030@-@G20BJ  
1/29 R88M-W3K030@-@G29BJ  
1/45 R88M-W3K030@-@G45BJ  
---  
---  
---  
Diagram 1  
Key dimensions  
t1  
QK  
h
G
F
Four, Z dia.  
T
E3  
E1  
LL  
LM  
LR  
C1 × C1  
2-38  
Standard Models and Specifications  
Chapter 2  
Note WOB and WB mean “without brake” and “with brake” respectively.  
Dimensions (mm)  
Model  
E1  
E3  
F
G
S
T
Z
IE  
Key dimensions  
QK  
47  
b
h
t1  
57  
20  
3
3
5
5
5
3
5
5
5
5
3
5
5
5
5
5
5
5
5
5
12  
35  
35  
50  
50  
50  
35  
50  
50  
50  
60  
35  
50  
50  
60  
60  
50  
50  
60  
60  
60  
55  
55  
75  
75  
75  
55  
75  
75  
75  
90  
55  
75  
75  
90  
90  
75  
75  
90  
90  
90  
12  
12  
12  
12  
12  
12  
12  
12  
12  
14  
12  
12  
12  
14  
14  
12  
12  
14  
14  
14  
---  
---  
10  
10  
14  
14  
14  
10  
14  
14  
14  
18  
10  
14  
14  
18  
18  
14  
14  
18  
18  
18  
8
5
5
R88M-W1K030@-@G05BJ  
R88M-W1K030@-@G09BJ  
R88M-W1K030@-@G20BJ  
R88M-W1K030@-@G29BJ  
R88M-W1K030@-@G45BJ  
R88M-W1K530@-@G05BJ  
R88M-W1K530@-@G09BJ  
R88M-W1K530@-@G20BJ  
R88M-W1K530@-@G29BJ  
R88M-W1K530@-@G45BJ  
R88M-W2K030@-@G05BJ  
R88M-W2K030@-@G09BJ  
R88M-W2K030@-@G20BJ  
R88M-W2K030@-@G29BJ  
R88M-W2K030@-@G45BJ  
R88M-W3K030@-@G05BJ  
R88M-W3K030@-@G09BJ  
R88M-W3K030@-@G20BJ  
R88M-W3K030@-@G29BJ  
R88M-W3K030@-@G45BJ  
1/5  
1 kW  
1.5 kW  
2 kW  
3 kW  
57  
77  
77  
77  
57  
77  
77  
77  
92  
57  
77  
77  
92  
92  
77  
77  
92  
92  
92  
20  
33  
33  
33  
20  
33  
33  
33  
38  
20  
33  
33  
38  
38  
33  
33  
38  
38  
38  
12  
15  
15  
15  
12  
15  
15  
15  
18  
12  
15  
15  
18  
18  
15  
15  
18  
18  
18  
47  
65  
65  
65  
47  
65  
65  
65  
78  
47  
65  
65  
78  
78  
65  
65  
78  
78  
78  
8
1/9  
137  
137  
137  
---  
9
5.5  
5.5  
5.5  
5
1/20  
1/29  
1/45  
1/5  
9
9
8
137  
137  
137  
171  
---  
9
5.5  
5.5  
5.5  
7
1/9  
9
1/20  
1/29  
1/45  
1/5  
9
11  
8
5
137  
137  
171  
171  
137  
137  
171  
171  
171  
9
5.5  
5.5  
7
1/9  
9
1/20  
1/29  
1/45  
1/5  
11  
11  
9
7
5.5  
5.5  
7
9
1/9  
11  
11  
11  
1/20  
1/29  
1/45  
7
7
Diagram 2  
Key dimensions  
QK  
t1  
h
G
F
Six, Z dia.  
T
E3  
E1  
LL  
LM  
LR  
2-39  
Standard Models and Specifications  
Chapter 2  
3,000-r/min Flat-style Servomotors (100 W to 1.5 kW) with Standard Gears  
Model  
Dia-  
gram  
No.  
Dimensions (mm)  
LL  
LM  
LR  
C1  
C2  
D1  
D2  
D3  
D4  
D5  
D6  
WOB* WB*  
100 W 1/5  
R88M-WP10030@-@G05BJ  
1
62  
91  
46  
60  
70  
60  
(92)  
(92)  
80  
80  
65  
64.5  
64.5  
84  
40  
8
8
9
9
9
9
1/11 R88M-WP10030@-@G11BJ  
1/21 R88M-WP10030@-@G21BJ  
1/33 R88M-WP10030@-@G33BJ  
62  
91  
46  
55  
55  
56  
56  
64  
64  
60  
70  
60  
65  
40  
59  
59  
59  
59  
59  
59  
59  
59  
59  
84  
59  
59  
84  
84  
84  
84  
135  
135  
62  
91  
74  
90  
60  
(120) 105  
(120) 105  
(120) 105  
(120) 105  
(139) 120  
(139) 120  
(120) 105  
(139) 120  
(158) 135  
(158) 135  
(139) 120  
(158) 135  
(192) 165  
(192) 165  
(158) 135  
(192) 165  
85  
62  
91  
74  
90  
60  
85  
84  
200 W 1/5  
R88M-WP20030@-@G05BJ  
1/11 R88M-WP20030@-@G11BJ  
1/21 R88M-WP20030@-@G21BJ  
1/33 R88M-WP20030@-@G33BJ  
1
1
1
67  
98.5  
98.5  
98.5  
98.5  
74  
90  
80  
85  
84  
67  
74  
90  
80  
85  
84  
67  
84  
105  
105  
90  
80  
100  
100  
85  
96  
12  
12  
9
67  
84  
80  
96  
400 W 1/5  
R88M-WP40030@-@G05BJ  
1/11 R88M-WP40030@-@G11BJ  
1/21 R88M-WP40030@-@G21BJ  
1/33 R88M-WP40030@-@G33BJ  
87  
118.5 56  
118.5 64  
118.5 71  
118.5 72  
74  
80  
84  
87  
84  
105  
120  
120  
105  
120  
145  
145  
120  
145  
170  
170  
80  
100  
115  
115  
100  
115  
140  
140  
115  
140  
165  
165  
96  
12  
14  
14  
12  
14  
16  
16  
14  
16  
---  
---  
87  
105  
105  
84  
80  
112  
114  
96  
87  
80  
750 W 1/5  
R88M-WP75030@-@G05BJ  
1/11 R88M-WP75030@-@G11BJ  
1/21 R88M-WP75030@-@G21BJ  
1/33 R88M-WP75030@-@G33BJ  
86.5  
86.5  
86.5  
86.5  
120  
120  
120  
120  
64  
72  
88  
88  
72  
88  
94  
94  
120  
120  
120  
120  
120  
120  
120  
120  
105  
142  
142  
105  
142  
156  
156  
112  
134  
134  
114  
134  
163  
163  
1.5 kW 1/5  
R88M-WP1K530@-@G05BJ  
1/11 R88M-WP1K530@-@G11BJ  
1/21 R88M-WP1K530@-@G21BJ  
1/33 R88M-WP1K530@-@G33BJ  
1
2
114.5 148  
114.5 148  
114.5 148  
114.5 148  
215  
215  
190  
190  
Note The values in parentheses are reference values.  
Diagram 1  
Key dimensions  
M (Effective depth: l)  
QK  
t1  
h
G
F
C1 × C1  
Four, RD6  
T
Four, Z dia.  
E1  
E2  
LL  
LM  
LR  
2-40  
Standard Models and Specifications  
Chapter 2  
Note WOB and WB mean “without brake” and “with brake” respectively.  
Dimensions (mm)  
Model  
E1  
E2  
F
G
S
T
Z
Key dimensions  
t1  
QK  
25  
b
h
M
l
30  
39  
8
8
9
9
16  
16  
20  
20  
20  
20  
25  
25  
20  
25  
32  
32  
25  
32  
40  
40  
32  
40  
45  
45  
28  
28  
36  
36  
36  
36  
42  
42  
36  
42  
58  
58  
42  
58  
82  
82  
58  
82  
82  
82  
6.6  
5
5
5
6
6
6
6
7
7
6
7
8
8
7
8
8
8
8
8
9
9
3
3
M4  
8
R88M-WP10030@-@G05BJ 1/5  
R88M-WP10030@-@G11BJ 1/11  
R88M-WP10030@-@G21BJ 1/21  
R88M-WP10030@-@G33BJ 1/33  
R88M-WP20030@-@G05BJ 1/5  
R88M-WP20030@-@G11BJ 1/11  
R88M-WP20030@-@G21BJ 1/21  
R88M-WP20030@-@G33BJ 1/33  
R88M-WP40030@-@G05BJ 1/5  
R88M-WP40030@-@G11BJ 1/11  
R88M-WP40030@-@G21BJ 1/21  
R88M-WP40030@-@G33BJ 1/33  
R88M-WP75030@-@G05BJ 1/5  
R88M-WP75030@-@G11BJ 1/11  
R88M-WP75030@-@G21BJ 1/21  
R88M-WP75030@-@G33BJ 1/33  
R88M-WP1K530@-@G05BJ 1/5  
R88M-WP1K530@-@G11BJ 1/11  
R88M-WP1K530@-@G21BJ 1/21  
R88M-WP1K530@-@G33BJ 1/33  
100 W  
200 W  
400 W  
750 W  
1.5 kW  
30  
38  
38  
38  
38  
44  
44  
38  
44  
60  
60  
44  
60  
85  
85  
60  
85  
86  
86  
39  
6.6  
9
25  
32  
32  
32  
32  
36  
36  
32  
36  
50  
50  
36  
50  
70  
70  
50  
70  
70  
70  
5
M4  
M5  
8
48  
7.5  
7.5  
7.5  
7.5  
12  
10  
10  
10  
10  
12  
12  
10  
12  
13  
13  
12  
13  
15  
15  
13  
15  
16  
16  
6
3.5  
3.5  
3.5  
3.5  
4
10  
10  
10  
10  
12  
12  
10  
12  
16  
16  
12  
16  
20  
20  
16  
20  
20  
20  
48  
9
6
M5  
48  
9
6
M5  
48  
9
6
M5  
55  
9
8
M6  
55  
12  
9
8
4
M6  
48  
7.5  
12  
9
6
3.5  
4
M5  
55  
9
8
M6  
72  
14  
11  
11  
9
10  
10  
8
5
M8  
72  
12.5  
12  
5
M8  
55  
4
M6  
72  
14  
11  
14  
14  
11  
14  
14  
14  
10  
12  
12  
10  
12  
14  
14  
5
M8  
102  
102  
72  
10  
5
M10  
M10  
M8  
10  
5
12.5  
10  
5
102  
105  
105  
5
M10  
M10  
M10  
16  
5.5  
5.5  
16  
Diagram 2  
Key dimensions  
M (Effective depth: l)  
F
G
t1  
h
QK  
Four, Z dia.  
T
E1  
E2  
LL  
LM  
LR  
C1 × C1  
2-41  
Standard Models and Specifications  
Chapter 2  
1,000-r/min Servomotors (300 to 3 kW) with Standard Gears  
Model  
Dia-  
gram  
No.  
Dimensions (mm)  
LL  
LM  
LR  
C1 C2 D1  
D2  
D3  
D4  
D5  
WOB*  
138  
138  
138  
138  
138  
161  
161  
161  
161  
161  
185  
185  
185  
185  
185  
166  
166  
166  
166  
166  
192  
192  
192  
WB*  
176  
300 W 1/5  
1/9  
R88M-W30010@-@G05BJ  
R88M-W30010@-@G09BJ  
1
156  
100  
140  
140  
140  
---  
130  
185  
185  
185  
245  
245  
185  
185  
245  
245  
310  
185  
245  
245  
310  
310  
245  
245  
310  
310  
310  
245  
245  
310  
160  
130  
94  
91  
176  
176  
176  
176  
199  
199  
199  
199  
199  
223  
223  
223  
223  
223  
217  
217  
217  
217  
217  
243  
243  
243  
168  
187  
213  
223  
156  
168  
213  
213  
244  
156  
209  
213  
234  
244  
203  
230  
255  
255  
265  
203  
230  
255  
100  
100  
140  
140  
100  
100  
140  
140  
160  
100  
140  
140  
160  
160  
140  
140  
160  
160  
160  
140  
140  
160  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
180  
180  
180  
180  
180  
180  
180  
180  
160  
160  
220  
220  
160  
160  
220  
220  
280  
160  
220  
220  
280  
280  
220  
220  
280  
280  
280  
220  
220  
280  
130  
130  
190  
190  
130  
130  
190  
190  
240  
130  
190  
190  
240  
240  
190  
190  
240  
240  
240  
190  
190  
240  
94  
91  
1/20 R88M-W30010@-@G20BJ  
1/29 R88M-W30010@-@G29BJ  
1/45 R88M-W30010@-@G45BJ  
94  
91  
2
1
2
135  
135  
94  
130  
130  
91  
---  
600 W 1/5  
1/9  
R88M-W60010@-@G05BJ  
R88M-W60010@-@G09BJ  
140  
140  
---  
94  
91  
1/20 R88M-W60010@-@G20BJ  
1/29 R88M-W60010@-@G29BJ  
1/45 R88M-W60010@-@G45BJ  
135  
135  
186  
94  
130  
130  
182  
91  
---  
---  
900 W 1/5  
1/9  
R88M-W90010@-@G05BJ  
R88M-W90010@-@G09BJ  
1
2
140  
---  
135  
135  
186  
186  
135  
135  
186  
186  
186  
135  
135  
186  
130  
130  
182  
182  
130  
130  
182  
182  
182  
130  
130  
182  
1/20 R88M-W90010@-@G20BJ  
1/29 R88M-W90010@-@G29BJ  
1/45 R88M-W90010@-@G45BJ  
---  
---  
---  
1.2 kW 1/5  
1/9  
R88M-W1K210@-@G05BJ  
R88M-W1K210@-@G09BJ  
2
2
---  
---  
1/20 R88M-W1K210@-@G20BJ  
1/29 R88M-W1K210@-@G29BJ  
1/45 R88M-W1K210@-@G45BJ  
---  
---  
---  
2 kW  
1/5  
1/9  
R88M-W2K010@-@G05BJ  
R88M-W2K010@-@G09BJ  
---  
---  
1/20 R88M-W2K010@-@G20BJ  
---  
Diagram 1  
Key dimensions  
t1  
QK  
h
G
F
Four, Z dia.  
T
E3  
E1  
LL  
LM  
LR  
C1 × C1  
2-42  
Standard Models and Specifications  
Chapter 2  
Note WOB and WB mean “without brake” and “with brake” respectively.  
Dimensions (mm)  
Model  
E1  
E3  
F
G
S
T
Z
IE  
Key dimensions  
QK  
47  
b
h
t1  
57  
20  
3
3
3
5
5
3
3
5
5
5
3
5
5
5
5
5
5
5
5
5
5
5
5
12  
35  
35  
35  
50  
50  
35  
35  
50  
50  
60  
35  
50  
50  
60  
60  
50  
50  
60  
60  
60  
50  
50  
60  
55  
55  
55  
75  
75  
55  
55  
75  
75  
90  
55  
75  
75  
90  
90  
75  
75  
90  
90  
90  
75  
75  
90  
12  
12  
12  
12  
12  
12  
12  
12  
12  
14  
12  
12  
12  
14  
14  
12  
12  
14  
14  
14  
12  
12  
14  
---  
---  
---  
10  
10  
10  
14  
14  
10  
10  
14  
14  
18  
10  
14  
14  
18  
18  
14  
14  
18  
18  
18  
14  
14  
18  
8
5
5
5
R88M-W30010@-@G05BJ  
R88M-W30010@-@G09BJ  
R88M-W30010@-@G20BJ  
R88M-W30010@-@G29BJ  
R88M-W30010@-@G45BJ  
R88M-W60010@-@G05BJ  
R88M-W60010@-@G09BJ  
R88M-W60010@-@G20BJ  
R88M-W60010@-@G29BJ  
R88M-W60010@-@G45BJ  
R88M-W90010@-@G05BJ  
R88M-W90010@-@G09BJ  
R88M-W90010@-@G20BJ  
R88M-W90010@-@G29BJ  
R88M-W90010@-@G45BJ  
R88M-W1K210@-@G05BJ  
R88M-W1K210@-@G09BJ  
R88M-W1K210@-@G20BJ  
R88M-W1K210@-@G29BJ  
R88M-W1K210@-@G45BJ  
R88M-W2K010@-@G05BJ  
R88M-W2K010@-@G09BJ  
R88M-W2K010@-@G20BJ  
1/5  
300 W  
600 W  
900 W  
1.2 kW  
2 kW  
57  
57  
77  
77  
57  
57  
77  
77  
92  
57  
77  
77  
92  
92  
77  
77  
92  
92  
92  
77  
77  
92  
20  
20  
33  
33  
20  
20  
33  
33  
38  
20  
33  
33  
38  
38  
33  
33  
38  
38  
38  
33  
33  
38  
12  
12  
15  
15  
12  
12  
15  
15  
18  
12  
15  
15  
18  
18  
15  
15  
18  
18  
18  
15  
15  
18  
47  
47  
65  
65  
47  
47  
65  
65  
78  
47  
65  
65  
78  
78  
65  
65  
78  
78  
78  
65  
65  
78  
8
1/9  
8
1/20  
1/29  
1/45  
1/5  
137  
137  
---  
9
5.5  
5.5  
5
9
8
---  
8
5
1/9  
137  
137  
171  
---  
9
5.5  
5.5  
7
1/20  
1/29  
1/45  
1/5  
9
11  
8
5
137  
137  
171  
171  
137  
137  
171  
171  
171  
137  
137  
171  
9
5.5  
5.5  
7
1/9  
9
1/20  
1/29  
1/45  
1/5  
11  
11  
9
7
5.5  
5.5  
7
9
1/9  
11  
11  
11  
9
1/20  
1/29  
1/45  
1/5  
7
7
5.5  
5.5  
7
9
1/9  
11  
1/20  
Diagram 2  
Key dimensions  
QK  
t1  
h
G
F
Six, Z dia.  
T
E3  
E1  
LL  
LM  
LR  
2-43  
Standard Models and Specifications  
Chapter 2  
1,500-r/min Servomotors (450 W to 4.4 kW) with Standard Gears  
Model  
Dia-  
gram  
No.  
Dimensions (mm)  
LL  
LM  
LR  
C1 C2 D1  
D2  
D3  
D4  
D5  
WOB*  
138  
138  
138  
138  
138  
161  
161  
161  
161  
161  
185  
185  
185  
185  
185  
166  
166  
166  
166  
WB*  
176  
450 W 1/5  
1/9  
R88M-W45015T-@G05BJ  
R88M-W45015T-@G09BJ  
1
156  
100  
140  
140  
---  
130  
185  
185  
245  
245  
245  
185  
185  
245  
245  
310  
245  
245  
245  
310  
310  
245  
245  
310  
310  
160  
130  
94  
91  
176  
176  
176  
176  
199  
199  
199  
199  
199  
223  
223  
223  
223  
223  
217  
217  
217  
217  
168  
213  
213  
223  
156  
168  
213  
213  
244  
182  
209  
213  
234  
244  
203  
230  
255  
255  
100  
140  
140  
140  
100  
100  
140  
140  
160  
140  
140  
140  
160  
160  
140  
140  
160  
160  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
130  
180  
180  
180  
180  
160  
220  
220  
220  
160  
160  
220  
220  
280  
220  
220  
220  
280  
280  
220  
220  
280  
280  
130  
190  
190  
190  
130  
130  
190  
190  
240  
190  
190  
190  
240  
240  
190  
190  
240  
240  
94  
91  
1/20 R88M-W45015T-@G20BJ  
1/29 R88M-W45015T-@G29BJ  
1/45 R88M-W45015T-@G45BJ  
2
135  
135  
135  
94  
130  
130  
130  
91  
---  
---  
850 W 1/5  
1/9  
R88M-W85015T-@G05BJ  
R88M-W85015T-@G09BJ  
1
2
140  
140  
---  
94  
91  
1/20 R88M-W85015T-@G20BJ  
1/29 R88M-W85015T-@G29BJ  
1/45 R88M-W85015T-@G45BJ  
135  
135  
186  
135  
135  
135  
186  
186  
135  
135  
186  
186  
130  
130  
182  
130  
130  
130  
182  
182  
130  
130  
182  
182  
---  
---  
1.3 kW 1/5  
1/9  
R88M-W1K315T-@G05BJ  
R88M-W1K315T-@G09BJ  
2
2
---  
---  
1/20 R88M-W1K315T-@G20BJ  
1/29 R88M-W1K315T-@G29BJ  
1/45 R88M-W1K315T-@G45BJ  
---  
---  
---  
1.8 kW 1/5  
1/9  
R88M-W1K815T-@G05BJ  
R88M-W1K815T-@G09BJ  
---  
---  
1/20 R88M-W1K815T-@G20BJ  
1/29 R88M-W1K815T-@G29BJ  
---  
---  
Diagram 1  
Key dimensions  
t1  
QK  
h
G
F
Four, Z dia.  
T
E3  
E1  
LL  
LM  
LR  
C1 × C1  
2-44  
Standard Models and Specifications  
Chapter 2  
Note WOB and WB mean “without brake” and “with brake” respectively.  
Dimensions (mm)  
Model  
E1  
E3  
F
G
S
T
Z
IE  
Key dimensions  
QK  
47  
b
h
t1  
57  
20  
3
3
5
5
5
3
3
5
5
5
5
5
5
5
5
5
5
5
5
12  
35  
35  
50  
50  
50  
35  
35  
50  
50  
60  
50  
50  
50  
60  
60  
50  
50  
60  
60  
55  
55  
75  
75  
75  
55  
55  
75  
75  
90  
75  
75  
75  
90  
90  
75  
75  
90  
90  
12  
12  
12  
12  
12  
12  
12  
12  
12  
14  
12  
12  
12  
14  
14  
12  
12  
14  
14  
---  
---  
10  
10  
14  
14  
14  
10  
10  
14  
14  
18  
14  
14  
14  
18  
18  
14  
14  
18  
18  
8
5
5
R88M-W45015T-@G05BJ  
R88M-W45015T-@G09BJ  
R88M-W45015T-@G20BJ  
R88M-W45015T-@G29BJ  
R88M-W45015T-@G45BJ  
R88M-W85015T-@G05BJ  
R88M-W85015T-@G09BJ  
R88M-W85015T-@G20BJ  
R88M-W85015T-@G29BJ  
R88M-W85015T-@G45BJ  
R88M-W1K315T-@G05BJ  
R88M-W1K315T-@G09BJ  
R88M-W1K315T-@G20BJ  
R88M-W1K315T-@G29BJ  
R88M-W1K315T-@G45BJ  
R88M-W1K815T-@G05BJ  
R88M-W1K815T-@G09BJ  
R88M-W1K815T-@G20BJ  
R88M-W1K815T-@G29BJ  
1/5  
450 W  
850 W  
1.3 kW  
1.8 kW  
57  
77  
77  
77  
57  
57  
77  
77  
92  
77  
77  
77  
92  
92  
77  
77  
92  
92  
20  
33  
33  
33  
20  
20  
33  
33  
38  
33  
33  
33  
38  
38  
33  
33  
38  
38  
12  
15  
15  
15  
12  
12  
15  
15  
18  
15  
15  
15  
18  
18  
15  
15  
18  
18  
47  
65  
65  
65  
47  
47  
65  
65  
78  
65  
65  
65  
78  
78  
65  
65  
78  
78  
8
1/9  
137  
137  
137  
---  
9
5.5  
5.5  
5.5  
5
1/20  
1/29  
1/45  
1/5  
9
9
8
---  
8
5
1/9  
137  
137  
171  
137  
137  
137  
171  
171  
137  
137  
171  
171  
9
5.5  
5.5  
7
1/20  
1/29  
1/45  
1/5  
9
11  
9
5.5  
5.5  
5.5  
7
9
1/9  
9
1/20  
1/29  
1/45  
1/5  
11  
11  
9
7
5.5  
5.5  
7
9
1/9  
11  
11  
1/20  
1/29  
7
Diagram 2  
Key dimensions  
QK  
t1  
h
G
F
Six, Z dia.  
T
E3  
E1  
LL  
LM  
LR  
2-45  
Standard Models and Specifications  
Chapter 2  
AC Servomotors with Economy Gears  
3,000-r/min Servomotors (100 to 750 W) with Economy Reduction Gears  
Model  
Dia-  
gram  
No.  
Dimensions (mm)  
LL  
LM  
LR C1 C2  
D2  
D3  
D4  
WOB*  
94.5  
94.5  
94.5  
94.5  
96.5  
96.5  
96.5  
96.5  
124.5  
124.5  
124.5  
124.5  
145  
WB*  
135  
100 W 1/5  
1/9  
R88M-W10030@-@G05CJ  
R88M-W10030@-@G09CJ  
1
67.5  
32  
32  
32  
50  
32  
50  
50  
50  
50  
50  
50  
61  
50  
61  
61  
75  
52  
40  
40  
40  
40  
60  
60  
60  
60  
60  
60  
60  
60  
80  
80  
80  
80  
60  
50  
45  
135  
67.5  
78  
52  
52  
78  
52  
78  
78  
78  
78  
78  
78  
98  
78  
98  
98  
125  
60  
50  
50  
70  
50  
70  
70  
70  
70  
70  
70  
90  
70  
90  
90  
110  
45  
45  
62  
45  
62  
62  
62  
62  
62  
62  
75  
62  
75  
75  
98  
1/15 R88M-W10030@-@G15CJ  
1/25 R88M-W10030@-@G25CJ  
135  
60  
135  
92  
90  
200 W 1/5  
1/9  
R88M-W20030@-@G05CJ  
R88M-W20030@-@G09CJ  
2
2
2
136  
72.5  
89.5  
100  
100  
89.5  
89.5  
100  
104  
93.5  
97.5  
110  
135  
60  
136  
90  
1/15 R88M-W20030@-@G15CJ  
1/25 R88M-W20030@-@G25CJ  
136  
90  
136  
90  
400 W 1/5  
1/9  
R88M-W40030@-@G05CJ  
R88M-W40030@-@G09CJ  
164  
90  
164  
90  
1/15 R88M-W40030@-@G15CJ  
1/25 R88M-W40030@-@G25CJ  
164  
90  
164  
115  
90  
750 W 1/5  
1/9  
R88M-W75030@-@G05CJ  
R88M-W75030@-@G09CJ  
189.5  
189.5  
189.5  
189.5  
145  
115  
115  
135  
1/15 R88M-W75030@-@G15CJ  
1/25 R88M-W75030@-@G25CJ  
145  
145  
Model  
Dimensions (mm)  
E1  
E3  
F
S
T
Z
l
Key dimensions  
QK  
16  
b
h
t1  
2.5  
100 W 1/5  
1/9  
R88M-W10030@-@G05CJ  
R88M-W10030@-@G09CJ  
22  
22  
22  
33  
22  
33  
33  
33  
33  
33  
33  
43  
33  
43  
43  
58  
10  
3
3
3
3
3
3
3
3
3
3
3
5
3
5
5
5
12  
12  
12  
19  
12  
19  
19  
19  
19  
19  
19  
24  
19  
24  
24  
32  
20  
20  
20  
30  
20  
30  
30  
30  
30  
30  
30  
40  
30  
40  
40  
55  
M5  
12  
12  
12  
20  
12  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
4
4
4
6
4
6
6
6
6
6
6
8
6
8
8
10  
4
4
4
6
4
6
6
6
6
6
6
7
6
7
7
8
10  
10  
17  
10  
17  
17  
17  
17  
17  
17  
18  
17  
18  
18  
17  
M5  
M5  
M6  
M5  
M6  
M6  
M6  
M6  
M6  
M6  
M8  
M6  
M8  
M8  
M10  
16  
16  
22  
16  
22  
22  
22  
22  
22  
22  
30  
22  
30  
30  
45  
2.5  
2.5  
3.5  
2.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
4
1/15 R88M-W10030@-@G15CJ  
1/25 R88M-W10030@-@G25CJ  
200 W 1/5  
1/9  
R88M-W20030@-@G05CJ  
R88M-W20030@-@G09CJ  
1/15 R88M-W20030@-@G15CJ  
1/25 R88M-W20030@-@G25CJ  
400 W 1/5  
1/9  
R88M-W40030@-@G05CJ  
R88M-W40030@-@G09CJ  
1/15 R88M-W40030@-@G15CJ  
1/25 R88M-W40030@-@G25CJ  
750 W 1/5  
1/9  
R88M-W75030@-@G05CJ  
R88M-W75030@-@G09CJ  
3.5  
4
1/15 R88M-W75030@-@G15CJ  
1/25 R88M-W75030@-@G25CJ  
4
5
Note WOB and WB mean “without brake” and “with brake” respectively.  
2-46  
Standard Models and Specifications  
Chapter 2  
Diagram 1  
Key dimensions  
QK  
t1  
h
E3  
Four, Z dia.  
F
(Effective depth: l)  
T
E1  
C1 × C1  
LL  
LM  
LR  
Diagram 2  
Key dimensions  
QK  
t1  
h
E3  
Four, Z dia.  
(Effective depth: l)  
F
T
E1  
C1 × C1  
LL  
LM  
LR  
2-47  
Standard Models and Specifications  
Chapter 2  
3,000-r/min Flat-style Servomotors (100 to 750 W) with Economy Gears  
Model  
Dimensions (mm)  
LL  
LM  
LR C1 C2  
D2  
D3  
D4  
WOB*  
WB*  
91  
100 W 1/5  
1/9  
R88M-WP10030@-@G05CJ 62  
R88M-WP10030@-@G09CJ 62  
72.5  
32  
32  
32  
50  
32  
50  
50  
50  
50  
50  
50  
61  
50  
61  
61  
75  
52  
60  
60  
50  
45  
91  
72.5  
78  
52  
52  
78  
52  
78  
78  
78  
78  
78  
78  
98  
78  
98  
98  
125  
60  
60  
50  
50  
70  
50  
70  
70  
70  
70  
70  
70  
90  
70  
90  
90  
110  
45  
45  
62  
45  
62  
62  
62  
62  
62  
62  
75  
62  
75  
75  
98  
1/15 R88M-WP10030@-@G15CJ 62  
1/25 R88M-WP10030@-@G25CJ 62  
91  
60  
60  
91  
92  
60  
90  
200 W 1/5  
1/9  
R88M-WP20030@-@G05CJ 67  
R88M-WP20030@-@G09CJ 67  
98.5  
98.5  
98.5  
98.5  
118.5  
118.5  
118.5  
118.5  
120  
72.5  
89.5  
100  
100  
89.5  
89.5  
100  
104  
93.5  
97.5  
110  
135  
80  
60  
80  
90  
1/15 R88M-WP20030@-@G15CJ 67  
1/25 R88M-WP20030@-@G25CJ 67  
80  
90  
80  
90  
400 W 1/5  
1/9  
R88M-WP40030@-@G05CJ 87  
R88M-WP40030@-@G09CJ 87  
80  
90  
80  
90  
1/15 R88M-WP40030@-@G15CJ 87  
1/25 R88M-WP40030@-@G25CJ 87  
80  
90  
80  
115  
90  
750 W 1/5  
1/9  
R88M-WP75030@-@G05CJ 86.5  
R88M-WP75030@-@G09CJ 86.5  
120  
120  
120  
120  
120  
115  
115  
135  
1/15 R88M-WP75030@-@G15CJ 86.5  
1/25 R88M-WP75030@-@G25CJ 86.5  
120  
120  
Model  
Dimensions (mm)  
E1  
E3  
F
S
T
Z
l
Key dimensions  
QK  
16  
b
h
t1  
100 W 1/5  
1/9  
R88M-WP10030@-@G05CJ 22  
R88M-WP10030@-@G09CJ 22  
10  
3
3
3
3
3
3
3
3
3
3
3
5
3
5
5
5
12  
12  
12  
19  
12  
19  
19  
19  
19  
19  
19  
24  
19  
24  
24  
32  
20  
20  
20  
30  
20  
30  
30  
30  
30  
30  
30  
40  
30  
40  
40  
55  
M5  
12  
12  
12  
20  
12  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
20  
4
4
4
6
4
6
6
6
6
6
6
8
6
8
8
10  
4
4
4
6
4
6
6
6
6
6
6
7
6
7
7
8
2.5  
10  
10  
17  
10  
17  
17  
17  
17  
17  
17  
18  
17  
18  
18  
17  
M5  
M5  
M6  
M5  
M6  
M6  
M6  
M6  
M6  
M6  
M8  
M6  
M8  
M8  
M10  
16  
16  
22  
16  
22  
22  
22  
22  
22  
22  
30  
22  
30  
30  
45  
2.5  
2.5  
3.5  
2.5  
3.5  
3.5  
3.5  
3.5  
3.5  
3.5  
4
1/15 R88M-WP10030@-@G15CJ 22  
1/25 R88M-WP10030@-@G25CJ 33  
200 W 1/5  
1/9  
R88M-WP20030@-@G05CJ 22  
R88M-WP20030@-@G09CJ 33  
1/15 R88M-WP20030@-@G15CJ 33  
1/25 R88M-WP20030@-@G25CJ 33  
400 W 1/5  
1/9  
R88M-WP40030@-@G05CJ 33  
R88M-WP40030@-@G09CJ 33  
1/15 R88M-WP40030@-@G15CJ 33  
1/25 R88M-WP40030@-@G25CJ 43  
750 W 1/5  
1/9  
R88M-WP75030@-@G05CJ 33  
R88M-WP75030@-@G09CJ 43  
3.5  
4
1/15 R88M-WP75030@-@G15CJ 43  
1/25 R88M-WP75030@-@G25CJ 58  
4
5
Note WOB and WB mean “without brake” and “with brake” respectively.  
2-48  
Standard Models and Specifications  
Chapter 2  
Diagram  
Key dimensions  
QK  
t1  
h
E3  
Four, Z dia.  
(Effective depth: l)  
F
T
E1  
C1 × C1  
LL  
LM  
LR  
2-49  
Standard Models and Specifications  
Chapter 2  
2-4 Servo Driver Specifications  
R88D-WN@-ML2/OMNUC W-series AC Servo Drivers (with Built-in  
MECHATROLINK-II Communications)  
Referring to 2-2 Servo Driver and Servomotor Combinations, select a Servo Driver to match the Ser-  
vomotor that is being used.  
2-4-1 General Specifications  
Item  
Specifications  
Ambient operating temperature 0° to 55°C  
Ambient operating humidity  
90% max. (with no condensation)  
Ambient storage temperature 20° to 85°C  
Ambient storage humidity  
90% max. (with no condensation)  
Storage and operating atmo-  
sphere  
No corrosive gasses.  
Vibration resistance  
10 to 55 Hz in X, Y, and Z directions with 0.1-mm double amplitude; acceler-  
2
ation: 4.9 m/s max.  
2
Impact resistance  
Acceleration 19.6 m/s max., in X, Y, and Z directions, three times  
Insulation resistance  
Dielectric strength  
Between power line terminals and case: 0.5 Mmin. (at 500 V DC)  
Between power line terminals and case: 1,500 V AC for 1 min at 50/60 Hz  
Between each control signal and case: 500 V AC for 1 min  
Built into panel (IP10).  
Protective structure  
EC directives EMC directive EN55011 class A group 1  
EN61000-6-2  
Low-voltage  
directive  
EN50178  
UL standards  
cUL standards  
UL508C  
cUL C22.2 No. 14  
Note 1. The above items reflect individual evaluation testing. The results may differ under compound  
conditions.  
Note 2. Absolutely do not conduct a withstand voltage test with a Megger tester on the Servo Driver.  
If such tests are conducted, internal elements may be damaged.  
2-50  
Standard Models and Specifications  
Chapter 2  
Note 3. Depending on the operating conditions, some Servo Driver parts will require maintenance.  
Refer to 5-5 Periodic Maintenance for details.  
Note 4. The service life of the Servo Driver is 50,000 hours at an average ambient temperature of  
40°C at 80% of the rated torque.  
2-4-2 Performance Specifications  
Control Specifications  
100-V AC Input Type  
Item  
Model R88D-  
WNA5L-ML2 WN01L-ML2 WN02L-ML2 WN04L-ML2  
Continuous output current (rms)  
0.66 A  
0.91 A  
2.8 A  
2.1 A  
6.5 A  
2.8 A  
8.5 A  
Momentary maximum output current (rms) 2.1 A  
Input power Main circuits  
Single-phase 100/115 V AC (85 to 127 V) 50/60 Hz  
Single-phase 100/115 V AC (85 to 127 V) 50/60 Hz  
supply  
Control circuits  
Heating  
value  
Main circuits  
5.2 W  
12 W  
13 W  
16.4 W  
13 W  
24 W  
13 W  
Control circuits  
13 W  
Control method  
All-digital Servo  
Inverter method  
PWM method based on IGBT  
10.667 kHz  
PWM frequency  
Weight  
Approx. 0.7 kg Approx. 0.7 kg Approx. 0.7 kg Approx. 1.4 kg  
Maximum applicable Servomotor wattage  
50 W  
100 W  
W10030H  
W10030T  
WP10030H  
WP10030T  
---  
200 W  
W20030H  
W20030T  
WP20030H  
WP20030T  
---  
400 W  
W40030H  
W40030T  
WP40030H  
WP40030T  
---  
Applicable  
Servomotor  
(R88M-)  
3,000-r/min  
[Incremental] W05030H  
[Absolute] W05030T  
[Incremental] ---  
[Absolute] ---  
[Incremental] ---  
3,000-r/min  
Flat-style  
1,000-r/min  
[Absolute]  
[Absolute]  
---  
---  
---  
---  
1,500-r/min  
---  
---  
---  
---  
Performance Speed control range  
Load fluctuation rate  
1:5,000  
0.01% max. at 0% to 100% (at rated rotation speed)  
0% at rated voltage 10% (at rated rotation speed)  
Voltage fluctuation rate  
Temperature fluctuation rate 0.1% max. at 0 to 50°C (at rated rotation speed)  
Frequency characteristics  
600 Hz (at the same load as the rotor inertia)  
Torque control repeatability  
1%  
2-51  
Standard Models and Specifications  
Chapter 2  
200-V AC Input Type (Single-phase Input)  
Item  
Model R88D-  
WNA5H-ML2 WN01H-ML2 WN02H-ML2 WN04H-ML2 WN08H-ML2  
Continuous output current (rms)  
0.66 A  
2.1 A  
0.91 A  
2.8 A  
2.1 A  
6.5 A  
2.8 A  
8.5 A  
5.5 A  
Momentary maximum output cur-  
rent (rms)  
16.9 A  
Input  
power  
supply  
Main circuits  
Single-phase 200/230 V AC (170 to 253 V) 50/60 Hz  
Single-phase 200/230 V AC (170 to 253 V) 50/60 Hz  
Control circuits  
Heating  
value  
Main circuits  
4.6 W  
6.7 W  
13 W  
13.3 W  
13 W  
20 W  
13 W  
47 W  
15 W  
Control circuits  
13 W  
PWM frequency  
Weight  
10.667 kHz  
Approx.  
0.7 kg  
Approx.  
0.7 kg  
Approx.  
0.7 kg  
Approx.  
0.9 kg  
Approx.  
1.4 kg  
Maximum applicable Servomotor  
wattage  
50 W  
100 W  
200 W  
400 W  
750 W  
Applica-  
ble Servo- min  
motor  
3,000-r/  
[Incremen- W05030H  
tal]  
W10030H  
W20030H  
W40030H  
W75030H  
[Absolute] W05030T  
W10030T  
W20030T  
W40030T  
W75030T  
(R88M-)  
3,000-r/  
min Flat-  
style  
[Incremen- ---  
tal]  
WP10030H WP20030H WP40030H WP75030H  
WP10030T WP20030T WP40030T WP75030T  
[Absolute] ---  
1,000-r/  
min  
[Incremen- ---  
tal]  
---  
---  
---  
---  
[Absolute] ---  
[Absolute] ---  
---  
---  
---  
---  
---  
---  
---  
---  
1,500-r/  
min  
Control method  
Inverter method  
All-digital Servo  
PWM method based on IGBT  
1:5,000  
Perfor-  
mance  
Speed control range  
Load fluctuation rate  
Voltage fluctuation rate 0% at rated voltage 10% (at rated rotation speed)  
0.01% max. at 0% to 100% (at rated rotation speed)  
Temperature fluctua-  
tion rate  
0.1% max. at 0 to 50°C (at rated rotation speed)  
Frequency characteris- 600 Hz (at the same load as the rotor inertia)  
tics  
Torque control repeat-  
ability  
1%  
2-52  
Standard Models and Specifications  
Chapter 2  
200-V AC Input Type (Three-phase Input)  
Item  
Model R88D-  
WN05H-ML2 WN10H-ML2 WN15H-ML2 WN20H-ML2 WN30H-ML2  
Continuous output current (rms)  
3.8 A  
7.6 A  
11.6 A  
28.0 A  
18.5 A  
42.0 A  
18.9 A  
56.0 A  
Momentary maximum output cur-  
rent (rms)  
11.0 A  
17.0 A  
Input  
power  
supply  
Main circuits  
Three-phase 200/230 V AC (170 to 253 V) 50/60 Hz  
Single-phase 200/230 V AC (170 to 253 V) 50/60 Hz  
Control circuits  
Heating  
value  
Main circuits  
27 W  
55 W  
92 W  
120 W  
15 W  
155 W  
15 W  
Control circuits  
15 W  
15 W  
15 W  
PWM frequency  
Weight  
10.667 kHz  
8.000 kHz  
4.000 kHz  
Approx.  
1.4 kg  
Approx.  
1.4 kg  
Approx.  
2.1 kg  
Approx.  
2.8 kg  
Approx.  
2.8 kg  
Maximum applicable Servomotor  
wattage  
500 W  
1 kW  
1.5 kW  
2 kW  
3 kW  
Applica-  
ble Servo- min  
motor  
3,000-r/  
[Incremen- ---  
tal]  
W1K030H  
W1K530H  
W2K030H  
W3K030H  
[Absolute] ---  
W1K030T  
---  
W1K530T  
W2K030T  
W3K030T  
---  
(R88M-)  
3,000-r/  
min Flat-  
type  
[Incremen- ---  
tal]  
WP1K530H ---  
WP1K530T ---  
[Absolute] ---  
---  
---  
---  
1,000-r/  
min  
[Incremen- W30010H  
tal]  
W60010H  
W90010H  
W1K210H  
W1K210T  
W1K315T  
W2K010H  
[Absolute] W30010T  
W60010T  
W90010T  
W2K010T  
W1K815T  
---  
---  
1,500-r/  
min  
[Absolute] W45015T  
W85015T  
Control method  
Inverter method  
All-digital Servo  
PWM method based on IGBT  
1:5,000  
Perfor-  
mance  
Speed control range  
Load fluctuation rate  
Voltage fluctuation rate 0% at rated voltage 10% (at rated rotation speed)  
0.01% max. at 0% to 100% (at rated rotation speed)  
Temperature fluctua-  
tion rate  
0.1% max. at 0 to 50°C (at rated rotation speed)  
Frequency characteris- 600 Hz (See note.)  
tics  
400 Hz (See note.)  
Torque control repeat-  
ability  
1%  
Note At a load inertia equivalent to the Servomotor's rotor inertia.  
2-53  
Standard Models and Specifications  
Chapter 2  
Protective and Diagnostic Functions  
Error detection function  
Contents  
Parameter checksum error 1  
Parameter format error 1  
The Servo Driver's internal parameter data is abnormal.  
The Servo Driver's internal parameter data is abnormal.  
System parameter checksum The Servo Driver's internal parameter data is abnormal.  
error 1  
Parameter password error 1  
Parameter checksum error 2  
The Servo Driver's internal parameter data is abnormal.  
The Servo Driver's internal parameter data is abnormal.  
System parameter checksum The Servo Driver's internal parameter data is abnormal.  
error 2  
Main circuit detection error  
Parameter setting error 1  
Parameter setting error 2  
There is an error in the detection data for the power supply circuit.  
A parameter value exceeds the setting range.  
A parameter value exceeds the setting range.  
Dividing pulse output setting  
error  
The encoder divider rate setting is out of range or the set conditions are not  
satisfied.  
Parameter combination error  
Combination error  
A combination of multiple parameters is set out of range.  
The combined capacity of the Servomotor and the Servo Driver is unsuit-  
able.  
Servo ON command invalid  
alarm  
After a function for executing Servo ON by means of Computer Monitor Soft-  
ware was used, an attempt was made to execute Servo ON using a host  
command.  
Overcurrent or overheating of An overcurrent has occurred, or the Servo Driver's radiation shield has over-  
radiation shield  
heated.  
Regeneration error  
The regeneration resistor is disconnected or the regeneration transistor is  
faulty.  
Regeneration overload  
The regenerative energy exceeds the regeneration resistance.  
Main circuit power supply set- The method for providing power to the main circuit does not match the  
ting error  
Pn001 setting.  
Overvoltage  
Low voltage  
Overspeed  
The main-circuit DC voltage is abnormally high.  
The main-circuit DC voltage is low.  
The Servomotor's rotation speed is abnormally high.  
Dividing pulse output over-  
speed  
The Servomotor rotation speed upper limit set for the encoder divider rate  
setting (Pn212) was exceeded.  
Vibration alarm  
Abnormal vibration was detected in the Servomotor rotation speed.  
The inertia ratio was in error during auto-tuning.  
Auto-tuning alarm  
Overload (momentary maxi-  
mum load)  
Operated for several seconds to several tens of seconds at a torque greatly  
exceeding the rating.  
Overload (continual maximum Operated continually at a torque exceeding the rating.  
load)  
DB overload  
During DB (dynamic braking) operation, rotation energy exceeds the DB  
capacity.  
Inrush resistance overload  
The main-circuit power supply has frequently and repeatedly been turned  
ON and OFF.  
Overheat  
The Servo Driver's radiation shield overheated.  
Encoder backup error  
The encoder power supply was completely down, and position data was  
cleared.  
Encoder checksum error  
Encoder battery error  
Encoder data error  
The encoder memory checksum results are in error.  
The absolute encoder backup battery voltage has dropped.  
The encoder's internal data is in error.  
2-54  
Standard Models and Specifications  
Chapter 2  
Error detection function  
Contents  
Encoder overspeed  
The encoder rotated at high speed when the power was ON.  
The encoder's internal temperature is too high.  
The phase-U current detector is in error.  
The phase-V current detector is in error.  
The current detector is in error.  
Encoder overheat  
Current detection error 1  
Current detection error 2  
Current detection error 3  
MECHATROLINK communica- The MECHATROLINK communications ASIC is in error.  
tions ASIC error 1  
MECHATROLINK communica- A fatal error occurred in the MECHATROLINK communications ASIC.  
tions ASIC error 2  
System alarm 0  
System alarm 1  
System alarm 2  
System alarm 3  
System alarm 4  
Runaway detected  
Multi-turn data error  
Servo Driver internal program error 0 occurred.  
Servo Driver internal program error 1 occurred.  
Servo Driver internal program error 2 occurred.  
Servo Driver internal program error 3 occurred.  
Servo Driver internal program error 4 occurred.  
Servomotor runaway occurred.  
Absolute encoder multi-turn data was cleared or could not be set correctly.  
Encoder communications error No communication possible between the encoder and Servo Driver.  
Encoder communications posi- An error occurred in the encoder's position data calculations.  
tion data error  
Encoder communications timer An error occurred in the timer for communications between the encoder and  
error  
Servo Driver.  
Encoder parameter error  
Encoder echo-back error  
Multi-turn limit discrepancy  
Deviation counter overflow  
Encoder parameters are corrupted.  
The contents of communications with the encoder are wrong.  
The multi-turn limits for the encoder and the Servo Driver do not match.  
Position deviation pulses exceeded the level set for Pn520.  
Deviation counter overflow  
alarm at Servo ON  
When Servo ON was executed, the accumulated number of position devia-  
tion pulses reached or exceeded the number set for Pn526.  
Deviation counter overflow  
alarm by speed limit at Servo  
ON  
If Servo ON is executed with position deviation pulses accumulated, the  
speed is limited by the setting in Pn529. A command pulse was input during  
this period, without the limit being cleared, and the setting in Pn520 was  
exceeded.  
COM alarm 0  
COM alarm 1  
COM alarm 2  
COM alarm 7  
COM alarm 8  
COM alarm 9  
Servo Driver COM error 0 occurred.  
Servo Driver COM error 1 occurred.  
Servo Driver COM error 2 occurred.  
Servo Driver COM error 7 occurred.  
Servo Driver COM error 8 occurred.  
Servo Driver COM error 9 occurred.  
MECHATROLINK-II transmis- There is an error in the setting for the MECHATROLINK-II communications  
sion cycle setting error transmission cycle.  
MECHATROLINK-II synchroni- A synchronization error occurred during MECHATROLINK-II communica-  
zation error tions.  
MECHATROLINK-II synchroni- A synchronization failure occurred during MECHATROLINK-II communica-  
zation failure tions.  
MECHATROLINK-II communi- Communications errors occurred consecutively during MECHATROLINK-II  
cations error communications.  
MECHATROLINK-II transmis- An error occurred in the transmission cycle during MECHATROLINK-II com-  
sion cycle error munications.  
2-55  
Standard Models and Specifications  
Chapter 2  
Error detection function  
Contents  
Servo Driver DRV error 0 occurred.  
Servo Driver DRV error 1 occurred.  
DRV alarm 0  
DRV alarm 1  
DRV alarm 2  
Servo Driver DRV error 2 occurred.  
Internal command error  
Missing phase detected  
A command error occurred in the Servo Driver.  
One phase from the three-phase main circuit power supply is not connect-  
ing.  
2-4-3 Terminal Block Specifications  
Symbol  
Function  
Condition  
L1  
Main circuits power  
supply input  
R88D-WN@H-ML2 (50 to 400 W):  
Single-phase 200/230 VAC (170 to 253 V), 50/60 Hz (No L3 terminal)  
L2  
L3  
R88D-WN08H-ML2 (750 W):  
Single-phase 200/230 VAC (170 to 253 V), 50/60 Hz  
Note: The L3 terminal is not used, so do not connect it.  
R88D-WN@H-ML2 (500 W to 3.0 kW):  
Single-phase 200/230 VAC (170 to 253 V), 50/60 Hz  
R88D-WN@L-ML2 (50 to 400 W):  
Single-phase 100/115 VAC (85 to 127 V), 50/60 Hz (No L3 terminal)  
DC Reactor terminal  
for power supply har- Normally short-circuit between 1 and 2.  
monic control  
R88D-WN@H-ML2 (500 W to 3.0 kW)  
1  
2  
If harmonic control measures are required, connect a DC Reactor  
between 1 and 2.  
Main circuit positive  
terminal  
Used for DC power supply input.  
The R88D-WN@H-ML2 (500 W to 3.0 kW) does not have a terminal.  
Use the 2 terminal.  
B1/ +  
Main circuit negative  
terminal  
L1C  
L2C  
Control circuits power R88D-WN@H-ML2: Single-phase 200/230 V AC (170 to 253 V AC)  
supply input  
50/60 Hz  
R88D-WN@L-ML2: Single-phase 100/115 V AC (85 to 127 V AC)  
50/60 Hz  
External regeneration R88D-WN@H-ML2 (50 to 400 W)  
resistance connection R88D-WN@L-ML2 (50 to 400 W)  
B1/ +  
B2  
B3  
terminal  
This terminal does not normally need to be connected. If regenerative  
energy is high, connect an External Regeneration Resistor between B1  
and B2. (There is no B3 terminal.)  
R88D-WN@H-ML2 (500 W to 3.0 kW)  
Short-circuit between B2 and B3. If regenerative energy is high, remove  
the short bar between B2 and B3 and connect an External Regeneration  
Resistor between B1 and B2.  
U
V
Servomotor connec-  
tion terminals  
Red  
These are the terminals for outputs to the Servomotor. Be  
sure to wire these terminals correctly.  
White  
Blue  
W
Green/  
Yellow  
Frame ground  
This is the ground terminal. Ground to a minimum of 100 (class-3).  
2-56  
Standard Models and Specifications  
Chapter 2  
2-4-4 Communications Specifications (CN6)  
MECHATROLINK-II Communications Specifications  
Item  
Specifications  
Communications specifications MECHATROLINK-II  
Baud rate  
10 Mbps  
Maximum transmission dis-  
tance  
50 m (See note.)  
Minimum distance between  
nodes  
0.5 m  
Transmission medium  
2-core shielded twisted-pair cable  
Number of connected devices 30 Slaves max.  
Topology  
Bus  
Transmission time  
Communications method  
Encoding  
250 µs to 8 ms  
Master/Slave total synchronization method  
Manchester encoding  
Data length  
Either 17 or 32 bytes can be selected.  
Note This is the total length of cable for connecting between devices. The maximum length will vary  
depending on the number of devices connected. For details, refer to the section on wiring in 2-  
6-1 MECHATROLINK-II Communications Cable Specifications.  
The following table shows whether or not a Communications Repeater is required in various combi-  
nations of numbers of connected MECHATROLINK-II devices and maximum transmission distances.  
Maximum transmission distance  
0 to 30 m  
Repeater not required  
Repeater not required  
Repeater required  
30 to 50 m  
Repeater not required  
Repeater required  
Number of con-  
nected devices  
1 to 15  
16  
17 to 30  
Repeater required  
Maximum transmission  
distance  
OMRON model number  
Yaskawa Electric model number  
Communications Repeater FNY-REP2000  
JEPMC-REP2000  
System Configuration  
The following diagram shows the basic system configuration. For details on the number of devices  
that can be connected, refer to Transmission Time below.  
2-57  
Standard Models and Specifications  
Chapter 2  
Connection Example: Connecting to a SYSMAC CS1W-MCH71, CJ1W-MCH71, or  
CJ1W-NCF71  
Host  
Servo Driver  
Servo Driver  
M
M
Servomotor  
Servomotor  
MECHATROLINK-II Communications Setup  
This section describes the required switch settings for MECHATROLINK-II communications.  
Communications Specifications  
MECHATROLINK-II communications specifications are set using DIP switch SW2. The settings are  
shown below. Changes to settings go into effect when the power is turned ON again.  
Bit  
Bit 1  
Name  
Setting  
Contents  
Default setting  
Reserved for system. ON  
Reserved for system. ON  
Node address setting OFF  
ON  
---  
---  
ON  
ON  
Bit 2  
Bit 3  
Node address: 40H + SW1 OFF  
Node address: 50H + SW1  
Bit 4  
Reserved for system. OFF  
---  
OFF  
ON  
OFF  
1
2
3
4
SW2 (default setting)  
4
5
3
2
6
1
7
0
8
F
9
A
E
D
B
C
SW1 (default setting)  
Transmission Time  
The following table shows the transmission times that can be used with the Servo Driver, and the  
number of nodes that can be connected.  
2-58  
Standard Models and Specifications  
Chapter 2  
Transmission time and number of connectable devices  
Number of  
connectable  
devices  
Transmission time  
0.25 ms 0.5 ms 1.0 ms 1.5 ms 2.0 ms 2.5 ms 3.0 ms 3.5 ms 4.0 ms  
(See  
note 1.)  
0
3
8
14  
20  
25  
30  
30  
30  
Note 1. When the transmission time is 0.25 ms, set a communications time that is a multiple of  
0.5 ms.  
Note 2. If the actual number of connected devices is less than the possible number, the extra words  
can be used as communications retry words. The number of communication retries equals  
the number of connectable devices minus the number of devices actually connected plus 1.  
Note 3. When there are no communications retries, the number of connectable devices equals the  
normal number of connectable devices plus 1.  
Note 4. When a C2 Master is connected, the number of connectable devices equals the normal  
number of connectable devices minus 1.  
The node address is set as shown in the following table, using the rotary switch (SW1) and the DIP  
switch (bit 3 of SW2). Changes in settings go into effect when the power is turned ON again. The  
default setting for the node address is 41H (bit 3 of SW2: OFF; SW1: 1).  
Node address settings  
SW2 bit 3  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
OFF  
SW1  
Node address  
Disabled  
SW2 bit 3  
ON  
SW1  
Node address  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
50H  
51H  
52H  
53H  
54H  
55H  
56H  
57H  
58H  
59H  
41H  
42H  
43H  
44H  
45H  
46H  
47H  
48H  
49H  
4AH  
4BH  
4CH  
4DH  
4EH  
4FH  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
ON  
5AH  
5BH  
5CH  
5DH  
5EH  
5FH  
ON  
ON  
ON  
ON  
ON  
2-59  
Standard Models and Specifications  
Chapter 2  
2-4-5 I/O Signal Specifications (CN1)  
External Signal Processing  
Servo Driver  
3
4
ALM  
3.3 k  
6
7
24 VDC  
Alarm output  
ALMCOM  
+24VIN  
Forward rotation  
drive prohibit  
See note 4.  
1
3.3 k  
3.3 k  
POT  
NOT  
SO1+  
Maximum  
operating  
voltage:  
Brake interlock  
2
SO1−  
30 V DC  
Reverse rotation  
drive prohibit  
See note 4.  
23  
Maximum  
output current:  
50 mA  
3.3 k  
3.3 k  
SO2+  
8
24  
SO2−  
See note 4.  
25  
Origin return  
deceleration switch  
SO3+  
3.3 k  
3.3 k  
DEC  
9
26  
SO3−  
See note 4.  
External latch signal 1  
EXT1  
3.3 k  
3.3 k  
17  
18  
20  
19  
21  
22  
+A  
10  
11  
12  
Encoder A  
phase outputs  
A  
Line driver  
output  
EIA-RS422A  
conforming  
(Load  
resistance:  
220 min.)  
External latch signal 2  
EXT2  
+B  
3.3 k  
3.3 k  
Encoder B  
phase outputs  
B  
+Z  
Z  
External latch signal 3  
EXT3  
Encoder Z  
phase outputs  
3.3 k  
3.3 k  
General-purpose  
signal terminal  
3.3 k  
SI0 13  
16 GND  
Ground common  
BAT  
14  
FG  
Shell  
15  
Frame ground  
BATGND  
Backup battery  
2.8 V to 4.5 V  
Note 1. The inputs at pins 7 to 12 and the outputs at pins 1,2, and 23 to 26 can be changed by pa-  
rameter settings. The settings in the diagram are the defaults.  
Note 2. Connect pin Nos. 14 and 15 when providing an external backup power supply for the abso-  
lute encoder.  
Note 3. The general-purpose input at pin No. 13 can be monitored through MECHATROLINK-II.  
Note 4. An automatic reset fuse is provided to protect output. If the fuse is activated for overcurrent,  
it will automatically reset after a fixed period of time has lapsed without current flowing.  
2-60  
Standard Models and Specifications  
Control I/O Signals  
Chapter 2  
CN1 Control Inputs  
Pin No.  
Signal name  
Function  
Contents  
This is the deceleration input for origin return.  
Control  
mode  
7 to 9  
DEC (9) [SI3]  
Origin return  
deceleration  
switch signal  
All  
POT (7) [SI1]  
NOT (8) [SI2)]  
Forward drive pro- Forward rotation overtravel input.  
hibit input  
All  
All  
Reverse drive pro- Reverse rotation overtravel input.  
hibit input  
10 to 12 EXT1 (10) [SI4] External latch sig- This is the external signal input for latching the All  
nal 1  
present feedback pulse counter.  
EXT2 (11) [SI5] External latch sig-  
nal 2  
EXT3 (12) [SI6] External latch sig-  
nal 3  
6
+24VIN  
Sequence signal  
control power sup- for sequence inputs (pin Nos. 7 to 13).  
ply  
This is the 24-VDC power supply input terminal All  
14  
15  
BAT  
Backup battery  
inputs  
These are the battery connection terminals for All [abso-  
the absolute encoder power backup.  
lute]  
BATGND  
Note: Connect the battery either to these termi-  
nals or to the absolute encoder battery  
cable.  
13  
(Not allocated) General-purpose This terminal can be monitored in the MECHA- All  
[SI0] input TROLINK-II I/O monitor field.  
Note 1. Input signal DEC, POT, and NOT functions can be allocated to pin Nos. 7 to 13 [SI0 to SI6]  
by setting parameters Pn50A, Pn50B, and Pn511.  
Note 2. Input signal EXT1, EXT2, and EXT3 functions can be allocated to pin Nos. 10 to 12 [SI4 to  
SI6] by setting Pn511.  
Note 3. The general-purpose input at pin No. 13 [SI0] can be monitored through MECHATROLINK-  
II.  
Note 4. The numbers in parentheses ( ) show the default pin number allocations. The terminal name  
is shown in brackets [ ].  
2-61  
Standard Models and Specifications  
Chapter 2  
CN1 Control Outputs  
Pin No.  
Signal name  
Function  
Contents  
Control  
mode  
3
ALM  
Alarm output  
When an alarm is generated for the Servo  
Driver, the output is OFF.  
All  
4
ALMCOM  
INP1  
1 to 2  
23 to 26  
Positioning com-  
pleted output 1  
ON when the position deviation is within the  
positioning completed range (Pn500).  
Position  
Position  
INP1COM  
INP2  
Positioning com-  
pleted output 2  
ON when the position deviation is within the  
positioning completed range (Pn504).  
INP2COM  
VCMP  
Speed conformity ON when the Servomotor speed error is within Speed  
output  
the speed conformity signal output range  
(Pn503).  
VCMPCOM  
TGON  
Servomotor rota-  
tion detection out- exceeds the value set for the Servomotor rota-  
put  
ON when the Servomotor rotation speed  
Speed  
TGONCOM  
tion detection speed (Pn502).  
Note: TGON is always ON when the encoder of  
the Servo Driver is not connected.  
READY  
Servo ready output ON if no errors are discovered after powering  
the main circuits.  
All  
READYCOM  
CLIMT  
Current limit detec- ON if the output current is limited.  
tion output  
All  
CLIMTCOM  
VLIMT  
Speed limit detec- ON if the speed is limited.  
tion output  
Torque  
VLIMTCOM  
BKIR (1) [SO1+] Brake interlock  
Holding brake timing signals are output accord- All  
ing to user parameters Pn506, Pn507, and  
Pn508.  
output  
BKIRCOM (2)  
[SO1]  
WARN  
Warning output  
outputs  
ON when an overload warning or regeneration All  
overload warning is detected.  
WARNCOM  
(Not allocated) General-purpose Allocations are set by the user parameters.  
(23) [SO2+]  
All  
(Not allocated)  
(24) [SO2]  
(Not allocated)  
(25) [SO3+]  
(Not allocated)  
(26) [SO3]  
Shell  
FG  
Frame ground  
Connection terminal for cable's shielded wire  
and FG line.  
All  
Note 1. Output signal INP1, INP2, VCMP, TGON, READY, CLIMT, VLIMT, BKIR, and WARN func-  
tions can be allocated to pin Nos. 1 to 2 or 23 to 26 [S01 to S03] by setting parameters  
Pn50E to Pn510.  
Note 2. The numbers in parentheses ( ) show the default pin number allocations. Terminal names  
are shown in brackets [ ].  
2-62  
Standard Models and Specifications  
Chapter 2  
CN1: Pin Arrangement  
Brake inter-  
lock output  
(See note 1.)  
Backup bat-  
tery + input  
(See note 3.)  
BAT  
[absolute]  
1
3
5
7
9
BKIR(SO1+)  
ALM  
14  
16  
18  
20  
22  
24  
26  
Brake inter-  
lock output  
(See note 1.)  
Backup bat-  
tery input  
(See note 3.)  
BKIRCOM  
BATGND  
[absolute]  
2
4
6
8
15  
17  
19  
21  
23  
25  
(SO1)  
Ground  
common  
Servo alarm  
output  
GND  
A  
Encoder  
phase-A  
+ output  
Servo alarm  
output  
ALMCOM  
+24VIN  
+A  
Encoder  
phase-A  
output  
(See note 2.)  
Encoder  
phase-B  
output  
Sequence  
signal control  
power supply  
B  
+Z  
Encoder  
phase-B  
+ output  
Forward drive  
prohibit input  
(See note 1.)  
POT(SI1)  
DEC(SI3)  
+B  
Encoder  
phase-Z  
+ output  
Reverse drive  
prohibit input  
(See note 1.)  
NOT(SI2)  
Origin return  
deceleration  
switch signal  
(See note 1.)  
Encoder  
phase-Z  
output  
Z  
General-pur-  
pose output  
(See note 1.)  
External latch  
10 EXT1(SI4) signal 1 (See  
note 1.)  
SO2+  
SO3+  
External latch  
signal 2 (See  
note 1.)  
General-pur-  
pose output  
(See note 1.)  
11 EXT2(SI5)  
SO2−  
SO3−  
External latch  
12 EXT3(SI6) signal 3 (See  
note 1.)  
General-pur-  
pose output  
(See note 1.)  
General-pur-  
pose output  
(See note 1.)  
General-  
purpose input  
(See note 1.)  
13  
SI0  
Note 1. Function allocations for pin 7 to 13 sequence inputs and pin 1, 2, and 23 to 26 sequence  
outputs can be set by means of user parameters Pn50A Pn50B, Pn511, and Pn50E to  
Pn510, respectively. The allocations shown in this table are the defaults.  
Note 2. Do not wire the empty pins.  
Note 3. When using an absolute encoder, connect a battery (2.8 to 4.5 V) either to the backup bat-  
tery inputs at pin Nos. 14 and 15 or to the absolute encoder battery cable. (Do not connect  
it to both of these locations.)  
CN1 Connectors (26P)  
Servo Driver receptacle 10226-52A2JL (Sumitomo 3M)  
Cable solder plug  
Cable case  
10126-3000VE (Sumitomo 3M)  
10326-52A0-008 (Sumitomo 3M)  
Sequence Inputs  
Servo Driver  
3.3 k  
+24VIN  
6
External power supply:  
24 V 1 V DC  
Power supply capacity:  
50 mA min. (per Unit)  
Photocoupler input: 24 V DC, 7 mA  
3.3 k  
9
Min. ON time: 2 ms  
To other input circuit GNDs  
To other input circuits  
Signal Levels ON level: Minimum (+24VIN11) V  
OFF level: Maximum (+24VIN1) V  
2-63  
Standard Models and Specifications  
Chapter 2  
Control Output Circuits  
Position Feedback Output  
Servo Driver  
R = 220 to 470 Ω  
+5 V  
17 +A  
+A  
A  
2
16  
3
Phase A  
R
Phase A  
18 A  
1
20 +B  
+B  
6
4
5
Output line driver  
SN75ALS174NS  
Phase B  
R
Phase B  
Phase Z  
19 B  
B  
7
or equivalent  
21 +Z  
+Z  
10  
12  
11  
8
Phase Z  
R
22 Z  
Z  
9
0 V  
16 GND  
GND  
Applicable line receiver  
SN75175/MC3486/  
AM26LS32  
0 V  
0 V  
FG  
Shell FG  
FG  
Sequence and Alarm Outputs  
Servo Driver side  
To other output circuits  
+
X
External power  
supply  
24 V DC 1 V  
Maximum operating voltage: 30 V DC  
Maximum output current: 50 mA  
Di  
Di: Diode for preventing surge voltage  
(Use speed diodes.)  
See note.  
Note An automatic reset fuse is provided to protect output. If the fuse is activated for overcurrent, it  
will automatically reset after a fixed period of time has lapsed without current flowing.  
Backup Battery + Input (14: BAT)  
Backup Battery Input (15: BATGND)  
• These are the connection terminals for a backup battery for when power to the absolute encoder is  
interrupted.  
• Normally a Backup Battery Unit is used and the battery is connected to the battery holder for the  
absolute encoder battery cable, so do not connect anything to these terminals. (Absolutely do not  
connect to both of them, or it will cause damage.)  
• The battery voltage is 2.8 to 4.5 V.  
2-64  
Standard Models and Specifications  
Chapter 2  
Forward Drive Prohibit (7: POT)  
Reverse Drive Prohibit (8: NOT)  
Note This is the default allocation. For either signal, the drive prohibition is normally disabled. This  
setting can be changed by Pn50A.3/Pn50B.0.  
• These two signals are the inputs for forward and reverse drive prohibit (overtravel).  
• When they are input, driving is possible in the respective direction.  
• When driving is prohibited, movement will stop according to the settings of Pn001.0 and Pn001.1.  
Refer to the diagram below.)  
• Alarm status will not be generated at the Servo Driver while driving is prohibited.  
Stopping Methods when Forward/Reverse Drive Prohibit is OFF  
Deceleration Method  
Stopped Status  
Servo unlocked  
Pn001.0  
"0" or "1"  
Dynamic brake  
Pn001.1  
"0"  
"2"  
POT (NOT) is OFF  
Free run  
Pn001.1  
"2"  
Servo unlocked  
"1" or "2"  
Emergency stop torque (Pn406)  
See note 1.  
"1"  
Servo locked  
Note 1. The position loop will not operate for position control when stopping in this mode.  
Note 2. When torque control is being used, the stopping method is determined by Pn001.0 setting.  
(The Pn001.1 setting is irrelevant.)  
Note 3. With a vertical load, the load may fall due to its own weight if it is left at a drive prohibit input.  
We recommend that you set the stop method for the drive prohibit input (Pn001.1) for decel-  
erating with the emergency stop torque, and then set stopping with the servo locked (SV: 1)  
to prevent the load from falling.  
Origin Return Deceleration Switch Signal (9: DEC)  
Note This is the default allocation. The DEC signal is allocated in Pn511.0.  
• This is the deceleration signal for origin search.  
• When DEC is input (DEC: 1) during an origin search, the Servomotor speed is changed according  
to the origin return approach speed 1 (Pn817). Then, when the signal is turned OFF (DEC: 0), the  
Servo Driver is switched to latch operation.  
2-65  
Standard Models and Specifications  
Chapter 2  
Speed command  
Origin return approach speed 1 (Pn817)  
Origin return approach speed 2 (Pn818)  
Origin return final travel distance (Pn819)  
DEC  
Latch signal  
External latch signal 1 (10: EXT1)  
External latch signal 2 (11: EXT2)  
External latch signal 3 (12: EXT3)  
Note This is the default allocation. The EXT1, EXT2, and EXT3 signals are allocated in Pn511.1,  
Pn511.2, and Pn511.3 respectively.  
• This is the signal for latching the present feedback pulse counter.  
Encoder Output (17: Phase A +)  
Encoder Output (18: Phase A )  
Encoder Output (20: Phase B +)  
Encoder Output (19: Phase B )  
Encoder Output (21: Phase Z +)  
Encoder Output (22: Phase Z )  
Alarm output (3: ALM)  
Alarm output ground (4: ALMCOM)  
• When the Servo Driver detects an error, outputs are turned OFF.  
• This output is OFF at the time of powering up, and turns ON when the Servo Driver's initial process-  
ing is completed.  
Positioning Completed Outputs 1, 2 (INP1, INP2)  
Note As the default setting, these INP signals are not allocated. The INP1 signal is allocated in  
Pn50E.0, and the INP2 signal in PN510.0.  
• The INP1 signal turns ON when the number of accumulated pulses in the deviation counter is less  
than the value set in Pn522 (Positioning completed range 1). INP2 turns ON when the number is  
less than Pn524 (Positioning completed range 2).  
• When the speed command is a low speed and the set value for the positioning completed range is  
large, the positioning completed outputs stay ON.  
2-66  
Standard Models and Specifications  
Chapter 2  
Note These outputs are always OFF when the control mode is any mode other than position control.  
Speed Conformity Output (VCMP)  
Note As the default setting, the VCMP signal is not allocated. It is allocated in Pn50E.1.  
• The VCMP signal turns ON when the difference between the speed command and the Servomotor  
rotation speed is equal to or less than the value set for Pn503 (Speed conformity signal output  
range).  
• For example, if the speed command is for 3,000 r/min and the set value is for 50 r/min, it turns ON  
when the Servomotor rotation speed is between 2,950 and 3,050 r/min.  
Note This output is always OFF when the control mode is any mode other than speed control.  
Servomotor Rotation Detection Output (TGON)  
Note As the default setting, the TGON signal is not allocated. It is allocated in Pn50E.2.  
• The TGON signal turns ON when the Servomotor rotation speed exceeds the value set for Pn502  
(Rotation speed for motor rotation detection).  
Note TGON is always ON when the encoder of the Servo Driver is not connected.  
Servo Ready Output (READY)  
Note As the default setting, the READY signal is not allocated. It is allocated in Pn50E.3.  
• The READY signal turns ON if no errors are detected after the main circuits are powered up.  
Current Limit Detection Output (CLIMT)  
Note As the default setting, the CLIMT signal is not allocated. It is allocated in Pn50F.0.  
• The CLIMT signal is turned ON in any of the following four cases.  
• The output torque reaches the limit value set in Pn402 (Forward torque limit) or Pn403 (Re-  
verse torque limit).  
• With the CJ1W-NCF71, the output torque reaches the limit value set in Pn404 (Forward rota-  
tion external current limit) or Pn405 (Reverse rotation external current limit) while the torque  
limit (forward/reverse rotation current limit designation) is ON.  
• With the CJ1W-NCF71, the output torque reaches the torque limit value specified by option  
command value 1 when Pn002.0 (Torque command input change) is set to 1.  
• With the CJ1W-NCF71, the output torque reaches the torque limit value specified by option  
command value 1 or 2 with the torque limit (forward/reverse rotation current limit designation)  
set to ON when Pn002.0 (Torque command input change) is set to 3.  
2-67  
Standard Models and Specifications  
Chapter 2  
Speed Limit Detection Output (VLIMT)  
Note As the default setting, the VLIMT signal is not allocated. It is allocated in Pn50F.1.  
• The VLIMT signal is turned ON in either of the following two cases.  
• The Servomotor rotation speed reaches the limit set in Pn407 (speed limit).  
• With the CJ1W-NCF71, the Servomotor rotation speed reaches the speed limit specified by  
option command value 1 when Pn002.1 (speed command input change) is set to 1.  
Note This output is always OFF when the control mode is any mode other than torque control.  
Brake Interlock Output (1: BKIR)  
Brake Interlock Output Common (2: BKIRCOM)  
Note This is the default allocation. The BKIR signal is allocated in Pn50F.2.  
• External brake timing signals are output according to the settings in Pn506 (Brake timing 1), Pn507  
(Brake command speed), and Pn508 (Brake timing 2).  
Note For details on the brake interlock function, refer to 4-4-6 Brake Interlock (All Operating Modes).  
Warning Output (WARN)  
Note As the default setting, the WARN signal is not allocated. It is allocated in Pn50F.3.  
• The WARN signal is turned ON in any of the following three cases.  
• The Servomotor output torque (effective value) exceeds 115% of the rated torque.  
• The regenerative energy exceeds the tolerance of the internal regeneration resistance.  
• When external regeneration resistance is used, the regenerative energy exceeds the value set  
for Pn600 (Regeneration resistance capacity).  
2-4-6 Encoder Input Specifications (CN2)  
Pin No.  
Symbol  
Signal name  
Function/Interface  
1
2
E5V  
Encoder power supply  
+5 V  
Power supply outlet for encoder: 5 V, 180 mA  
Note: An automatic reset fuse is provided to protect  
output. If the fuse is activated due to overcurrent,  
it will automatically reset after a fixed period of  
time has lapsed without current flowing.  
E0V  
Encoder power supply  
GND  
3
4
BAT+  
Battery + [absolute]  
Backup power output for encoder  
(3.6 V, 20 µA for backup or when stopped; 3 µA when  
Servo Driver is being powered)  
BAT−  
Battery [absolute]  
5
6
S+  
S−  
FG  
Encoder + phase-S input  
Encoder phase-S input  
Shielded ground  
Line driver input (conforming to EIA-RS422A)  
(Input impedance: 120 )  
Shell  
Cable shielded ground  
2-68  
Standard Models and Specifications  
Chapter 2  
CN2 Connectors Used (6P)  
Receptacle at Servo Driver 53460-0611 (Molex Japan Co., Ltd.)  
Cable plug  
55100-0670 (Molex Japan Co., Ltd.)  
2-4-7 Personal Computer Monitor Connector Specifications  
(CN3)  
Pin No.  
Symbol  
TXD+  
TXD−  
RXD+  
RXD−  
PRMU  
RT  
Signal name  
Transmission data +  
Transmission data −  
Reception data +  
Reception data −  
Unit switching  
Function/Interface  
1, 8  
This is data transmitted to a personal computer.  
Line receiver input  
2, 9  
3, 10  
4, 6  
5
This is data received from a personal computer.  
Line receiver input  
This is the terminal for switching the connection.  
7
Termination resistance ter- This is the termination resistance terminal for the line  
minal  
receiver.  
6-pin connection for RS-422 communications (final  
Servo Driver only).  
11, 12  
13  
---  
(Not used.)  
+5 V output  
Ground  
(Do not connect.)  
+5V  
GND  
FG  
This is the +5-V power supply output.  
14  
Shell  
Shielded ground  
Cable shielded ground  
CN3 Connectors Used (14P)  
Receptacle at Servo Driver 10214-52AJL (Sumitomo 3M)  
Cable plug with solder  
Cable case  
10114-3000VE (Sumitomo 3M)  
10314-50A0-008 (Sumitomo 3M)  
2-4-8 Analog Monitor Output Connector Specifications (CN5)  
Pin No.  
Symbol  
Signal name  
Function/Interface  
1
2
NM  
Analog Monitor 2  
Default setting: Servomotor rotation speed, 1 V per  
1,000 r/min (Can be changed by Pn007.)  
AM  
Analog Monitor 1  
Default setting: Torque command: gravity compensation  
torque, 1 V per 100% of rated torque (Can be changed  
by Pn006.)  
3
4
GND  
GND  
Analog Monitor Ground  
Analog Monitor Ground  
Grounds for analog monitors 1 and 2  
CN5 Connectors Used (4P)  
Pin header at Servo Driver DF11-4DP-2DS (Hirose Electric)  
Cable connector socket  
Cable connector contact  
DF11-4DS-2C (Hirose Electric)  
DF11-2428SCF (Hirose Electric)  
2-69  
Standard Models and Specifications  
Chapter 2  
Monitored Items and Scaling Changes  
Monitored item  
Monitor output specifications  
Pn006, Pn007  
setting  
Servomotor rotation  
speed  
1 V per 1,000 r/min; forward rotation: voltage; reverse rotation: + 00  
voltage  
Speed command  
1 V per 1,000 r/min; forward command: voltage; reverse com-  
01  
02  
mand: + voltage  
Torque command:  
gravity compensation reverse acceleration: + voltage  
torque (Pn422)  
1 V per 100% of rated torque; forward acceleration: voltage;  
Position deviation*  
Position amp error*  
Position command  
0.05 V / 1 command unit; plus error: voltage; reverse error: + volt- 03  
age  
0.05 V per encoder pulse unit; plus error: voltage; minus error: + 04  
voltage  
1 V per 1,000 r/min; forward rotation: voltage; reverse rotation: + 05  
speed (rotation speed voltage  
calculated value)  
Not used.  
Not used.  
---  
---  
06  
07  
08  
Positioning completed Positioning completed: 5 V; positioning not completed: 0 V  
Speed feed forward  
Torque feed forward  
Not used.  
1 V per 1,000 r/min; forward rotation: voltage; reverse rotation: + 09  
voltage  
1 V per 100% of rated torque; forward acceleration: voltage;  
reverse acceleration: + voltage  
0A  
---  
0B to 1F  
Note 1. The table shows the specifications with no offset adjustment or scaling changes.  
Note 2. The maximum output voltage is 8 V. Normal outputs will not be possible if this value is ex-  
ceeded.  
Note 3. The output accuracy is approximately 15%.  
Note 4. For items marked with an asterisk (*), the position deviation monitor signal is 0 when speed  
control is in effect.  
2-70  
Standard Models and Specifications  
Chapter 2  
2-5 Servomotor Specifications  
OMNUC W-series AC Servomotors (R88M-W@)  
There are three kinds of OMNUC W-Series AC Servomotors, as follows:  
• 3,000-r/min Servomotors  
• 3,000-r/min Flat-style Servomotors  
• 1,000-r/min Servomotors  
• 1,500-r/min Servomotors  
These Servomotors also have optional specifications, such as shaft type, with or without brake,  
waterproofing, with or without reduction gears, and so on. Select the appropriate Servomotor for your  
system according to the load conditions and installation environment.  
2-5-1 General Specifications  
Item  
3,000-r/min Servomotors  
3,000-r/min Flat-  
style  
Servomotors  
1,000-r/min and  
1,500-r/min  
Servomotors  
50 to 750 W 1 to 3 kW  
Ambient operating tem-  
perature  
0° to 40°C  
20% to 80% (with no condensation)  
Ambient operating  
humidity  
Ambient storage temper- 20° to 60°C  
ature  
Ambient storage humidity 20% to 80% (with no condensation)  
Storage and operating  
atmosphere  
No corrosive gasses.  
Vibration resistance (See 10 to 2,500 Hz in  
10 to 2,500 Hz in  
X, Y, and Z direc-  
10 to 2,500 Hz in  
X, Y, and Z direc-  
10 to 2,500 Hz in  
X, Y, and Z direc-  
note 1.)  
X, Y, and Z direc-  
tions with accelera- tions with accelera- tions with accelera- tions with accelera-  
2
2
2
2
tion 49 m/s max. tion 24.5 m/s max. tion 49 m/s max. tion 24.5 m/s max.  
Impact resistance  
Acceleration  
Acceleration  
Acceleration  
Acceleration  
2
2
2
2
490 m/s max., in 490 m/s max., in 490 m/s max., in 490 m/s max., in  
X, Y, and Z direc-  
tions, two times  
X, Y, and Z direc-  
tions, two times  
X, Y, and Z direc-  
tions, two times  
X, Y, and Z direc-  
tions, two times  
Insulation resistance  
Dielectric strength  
Between power line terminals and FG: 10 Mmin. (at 500 V DC)  
Between power line terminals and FG: 1,500 V AC for 1 min at 50/60 Hz  
2-71  
Standard Models and Specifications  
Chapter 2  
Item  
3,000-r/min Servomotors  
3,000-r/min Flat-  
style  
Servomotors  
1,000-r/min and  
1,500-r/min  
Servomotors  
50 to 750 W  
1 to 3 kW  
Run position  
All directions  
Type B  
Insulation grade  
Structure  
Type F  
Type B  
Type F  
Totally-enclosed self-cooling  
V-15  
Vibration grade  
Mounting method  
EC Direc- EMC Direc-  
Flange-mounting  
EN55011 class A group 1  
EN61000-6-2  
tives  
tive  
Low-voltage  
Directive  
IEC60034-8, EN60034-1, -5, -9  
UL standards  
cUL standards  
UL1004  
cUL C22.2 No. 100  
Note 1. Vibration may be amplified due to sympathetic resonance of machinery, so use the Servo-  
motor Driver under conditions which will not exceed 80% of the specification values over a  
long period of time.  
Note 2. Water-proof connectors must be used on the Power and Encoder Cables when used in en-  
vironments subject to direct contact with water. Refer to 3-1-2 Servomotors for the recom-  
mended connectors.  
Note 3. The above items reflect individual evaluation testing. The results may differ under compound  
conditions.  
Note 4. The Servomotors cannot be used in misty environments.  
Protective Structure  
The protective structure depends on the type of Servomotor, as shown in the following tables. Servo-  
motors are available with and without oil seals. The oils seals prevent oil and grease from penetrating  
around the shaft. They do not prevent the penetration of water.  
3,000-r/min Servomotors  
30 to 750 W  
1 to 5 kW  
Without oil seal  
With oil seal  
IP55 (except for through-shaft parts) IP67 (except for through-shaft parts)*  
IP55 (except for through-shaft parts) IP67 (including through-shaft parts)*  
3,000-r/min Flat Servomotors  
Without oil seal  
With oil seal  
IP55 (except for through-shaft parts)  
IP55 (except for through-shaft parts)  
With water-resistance processing IP67 (except for through-shaft parts)  
1,000-r/min and 1,500-r/min Servomotors  
Without oil seal  
With oil seal  
IP67 (except for through-shaft parts)*  
IP67 (including through-shaft parts)*  
Note The user can attach and remove oil seals for the Servomotors marked with an asterisk.  
2-72  
Standard Models and Specifications  
2-5-2 Performance Specifications  
3,000-r/min Servomotors  
Chapter 2  
Performance Specifications Table  
200 V AC  
W20030H  
W20030T  
Model (R88M-)  
W05030H  
W05030T  
W10030H  
W10030T  
W40030H  
W40030T  
W75030H  
W75030T  
750  
Item  
Unit  
W
Rated output*  
Rated torque*  
Rated rotation speed  
50  
100  
200  
400  
N·m  
r/min  
0.159  
3,000  
5,000  
0.318  
0.637  
1.27  
2.39  
Momentary maximum rota-  
tion speed  
r/min  
Momentary maximum  
torque*  
N·m  
0.477  
0.955  
1.91  
3.82  
7.16  
Rated current*  
A (rms) 0.64  
A (rms) 2.0  
0.91  
2.8  
2.1  
6.5  
2.8  
8.5  
4.4  
Momentary maximum cur-  
rent*  
13.4  
kg·m2  
(GD2/4)  
2.20 × 10-6  
3.64 × 10-6  
1.06 × 10-5  
1.73 × 10-5  
6.72 × 10-5  
Rotor inertia  
Torque constant*  
N·m/A  
kW/s  
ms  
ms  
N
0.268  
11.5  
0.378  
27.8  
0.327  
38.2  
0.498  
93.7  
0.590  
84.8  
Power rate*  
Mechanical time constant  
Electrical time constant  
Allowable radial load  
Allowable thrust load  
Weight Without brake  
With brake  
0.88  
0.53  
0.39  
0.25  
0.26  
1.1  
1.2  
4.6  
5.4  
8.7  
68  
78  
245  
245  
392  
N
54  
54  
74  
74  
147  
kg  
Approx. 0.4  
Approx. 0.7  
Approx. 0.5  
Approx. 0.8  
Approx. 1.1  
Approx. 1.6  
Approx. 1.7  
Approx. 2.2  
Approx. 3.4  
Approx. 4.3  
kg  
Radiation shield dimensions (material) t6 × @250 mm (AI)  
Applicable load inertia  
(See note 6.)  
WNA5L-ML2  
Applicable Servo Driver  
(R88D-)  
100 V  
AC  
WN01L-ML2  
WN01H-ML2  
WN02L-ML2  
WN02H-ML2  
WN04L-ML2  
WN04H-ML2  
---  
200 V  
AC  
WNA5H-ML2  
WN08H-ML2  
kg·m2  
8.5 × 10-7  
8.5 × 10-7  
5.8 × 10-6  
5.8 × 10-6  
1.4 × 10-5  
Brake  
specifi-  
cations  
Brake inertia  
(GD2/4)  
Excitation voltage  
V
24 V DC 10%  
6
Power consump-  
tion (at 20°C)  
W
6
6.9  
6.9  
7.7  
Current consump-  
tion (at 20°C)  
A
0.25  
0.25  
0.29  
0.29  
0.32  
Static friction  
torque  
N·m  
ms  
0.2 min.  
30 max.  
60 max.  
0.34 min.  
30 max.  
60 max.  
1.47 min.  
60 max.  
20 max.  
1.47 min.  
60 max.  
20 max.  
2.45 min.  
80 max.  
20 max.  
Attraction time  
(See note 3.)  
Release time (See ms  
note 3.)  
Backlash  
1° (reference value)  
Continuous  
Rating  
---  
---  
Insulation grade  
Type F  
2-73  
Standard Models and Specifications  
Chapter 2  
200 VAC  
Model (R88M-)  
W1K030H  
W1K030T  
W1K530H  
W1K530T  
W2K030H  
W2K030T  
W3K030H  
W3K030T  
3,000  
Item  
Unit  
W
Rated output*  
Rated torque*  
Rated rotation speed  
1,000  
1,500  
2,000  
N·m  
r/min  
3.18  
4.9  
6.36  
9.8  
3,000  
5,000  
Momentary maximum rota-  
tion speed  
r/min  
Momentary maximum  
torque*  
N·m  
9.54  
14.7  
19.1  
29.4  
Rated current*  
A (rms) 5.7  
A (rms) 17  
9.7  
28  
12.7  
42  
18.8  
56  
Momentary maximum cur-  
rent*  
kg·m2  
(GD2/4)  
1.74 × 10-4  
2.47 × 10-4  
3.19 × 10-4  
7.00 × 10-4  
Rotor inertia  
Torque constant*  
N·m/A  
kW/s  
ms  
ms  
N
0.64  
0.56  
0.54  
0.57  
Power rate*  
57.9  
97.2  
127  
137  
Mechanical time constant  
Electrical time constant  
Allowable radial load  
Allowable thrust load  
Weight Without brake  
With brake  
0.87  
0.74  
0.62  
0.74  
7.1  
7.7  
8.3  
13.0  
686  
686  
686  
980  
N
196  
196  
196  
392  
kg  
Approx. 4.6  
Approx. 6.0  
Approx. 5.8  
Approx. 7.5  
Approx. 7.0  
Approx. 8.5  
Approx. 11.0  
Approx. 14.0  
t20 × @400 mm (AI)  
kg  
Radiation shield dimensions (material) t12 × @300 mm (AI)  
Applicable load inertia  
(See note 6.)  
---  
Applicable Servo Driver  
(R88D-)  
100 V  
AC  
---  
---  
---  
200 V  
AC  
WN10H-ML2  
WN15H-ML2  
WN20H-ML2  
WN30H-ML2  
kg·m2  
3.25 × 10-5  
3.25 × 10-5  
3.25 × 10-5  
2.1 × 10-4  
Brake  
specifi-  
cations  
Brake inertia  
(GD2/4)  
Excitation voltage  
V
24 V DC 10%  
7
Power consump-  
tion (at 20°C)  
W
7
7
9.8  
Current consump-  
tion (at 20°C)  
A
0.29  
0.29  
0.29  
0.41  
Static friction  
torque  
N·m  
ms  
7.8 min.  
180 max.  
100 max.  
7.8 min.  
180 max.  
100 max.  
7.8 min.  
180 max.  
100 max.  
20 min.  
180 max.  
100 max.  
Attraction time  
(See note 3.)  
Release time (See ms  
note 3.)  
Backlash  
1° (reference value)  
Continuous  
Rating  
---  
---  
Insulation grade  
Type F  
Note 1. *The values for items marked by asterisks are the values at an armature winding tempera-  
ture of 100°C (for models of 750 W or less) or 20°C (for models of 1 kW or more), combined  
with the Servo Driver. Other values are at normal conditions (20°C, 65%). The momentary  
maximum torque shown above indicates the standard value.  
Note 2. The brakes are the non-excitation operation type (released when excitation voltage is ap-  
plied).  
Note 3. The operation time is the measured value (reference value) with a surge killer (CR50500, by  
Okaya Electric Industries co. LTD) inserted.  
Note 4. The allowable radial and thrust loads are the values determined for a service life of 20,000  
hours at normal operating temperatures.  
2-74  
Standard Models and Specifications  
Chapter 2  
Note 5. The value indicated for the allowable radial load is for the positions shown in the following  
diagrams.  
Radial load  
Radial load  
Thrust load  
End of Servomotor shaft  
Thrust load  
5 mm  
(Models of 750 W or less)  
(Models of 1 kW or more)  
Note 6. Applicable Load Inertia  
1) The drivable load inertia ratio (load inertia/rotor inertia) changes depending on the me-  
chanical configuration being driven and its rigidity. Highly rigid machines can operate with  
a large load inertia. Select a Servomotor and verify operation.  
2) If the dynamic brake is used frequently with a large load inertia, it may lead to burnout of  
the dynamic brake resistor. Do not repeatedly turn the Servo ON and OFF with the dy-  
namic brake enabled.  
Torque and Rotation Speed Characteristics  
3,000-r/min Servomotors (With a 100-VAC Servo Driver)  
The following graphs show the characteristics with a 3-m standard cable and 100-V AC input.  
R88M-W05030H/T (50 W)  
R88M-W10030H/T (100 W)  
R88M-W20030H/T (200 W)  
(N m)  
(N m)  
(N m)  
0.477  
0.955  
0.5  
1.0  
2.0  
1.5  
1.0  
0.5  
0
1.91  
0.477  
0.955  
1.91  
0.4  
0.8  
0.3  
0.6  
Repeated usage  
Repeated usage  
Repeated usage  
0.2  
0.4  
0.159  
0.159  
0.318  
0.318  
0.637  
0.637  
0.1  
0
0.2  
0
0.09  
0.19  
0.39  
Continuous usage  
Continuous usage  
Continuous usage  
(r/min)  
(r/min)  
(r/min)  
1000 2000 3000 4000 5000  
1000 2000 3000 4000 5000  
1000 2000 3000 4000 5000  
R88M-W40030H/T (400 W)  
(N m)  
4.0  
3.82  
3.82  
(3000)  
3.0  
2.0  
1.0  
0
Repeated usage  
1.27  
1.27  
1.35  
0.76  
Continuous usage  
(r/min)  
1000 2000 3000 4000 5000  
2-75  
Standard Models and Specifications  
Chapter 2  
3,000-r/min Servomotors (With a 200-VAC Servo Driver)  
The following graphs show the characteristics with a 3-m standard cable and 200-V AC input.  
R88M-W05030H/T (50 W)  
R88M-W10030H/T (100 W)  
R88M-W20030H/T (200 W)  
(N m)  
0.5  
(N m)  
1.0  
(N m)  
2.0  
0.477  
0.955  
1.91  
0.477  
0.955  
1.91  
0.4  
0.3  
0.2  
0.1  
0
0.8  
0.6  
0.4  
0.2  
0
1.5  
1.0  
0.5  
0
Repeated usage  
Repeated usage  
Repeated usage  
0.159  
0.159  
0.318  
0.318  
0.637  
0.637  
0.39  
0.19  
0.09  
Continuous usage  
Continuous usage  
Continuous usage  
(r/min)  
(r/min)  
(r/min)  
1000 2000 3000 4000 5000  
1000 2000 3000 4000 5000  
1000 2000 3000 4000 5000  
R88M-W40030H/T (400 W)  
R88M-W75030H/T (750 W)  
R88M-W1K030H/T (1 kW)  
(N m)  
4.0  
(N m)  
8.0  
(N m)  
10  
9.54  
3.82  
3.82  
7.16  
7.16  
8.67  
(3500)  
(3650)  
(3000)  
8
6
4
2
0
3.0  
2.0  
1.0  
0
6.0  
4.0  
2.0  
0
Repeated usage  
Repeated usage  
Repeated usage  
4.53  
1.5  
1.27  
1.27  
3.18  
3.18  
2.39  
2.39  
0.76  
1.46  
1.7  
Continuous usage  
Continuous usage  
Continuous usage  
(r/min)  
(r/min)  
(r/min)  
1000 2000 3000 4000 5000  
1000 2000 3000 4000 5000  
1000 2000 3000 4000 5000  
R88M-W1K530H/T (1.5 kW)  
(N m)  
R88M-W2K030H/T (2 kW)  
(N m)  
R88M-W3K030H/T (3 kW)  
(N m)  
20  
15  
10  
5
19.1  
18.3  
14.7  
15  
29.4  
30  
13.9  
(3250)  
27.6  
(3000)  
(3000)  
10  
20  
Repeated usage  
Repeated usage  
Repeated usage  
9.3  
7.0  
13.5  
6.36  
6.36  
4.9  
4.9  
9.8  
9.8  
5
0
10  
0
3.25  
5.2  
Continuous usage  
Continuous usage  
Continuous usage  
2.4  
(r/min)  
0
(r/min)  
(r/min)  
1000 2000 3000 4000 5000  
1000 2000 3000 4000 5000  
1000 2000 3000 4000 5000  
Servomotor and Mechanical System Temperature Characteristics  
• W-series AC Servomotors use rare earth magnets (neodymium-iron magnets). The temperature  
coefficient for these magnets is approximately 0.13%/°C. As the temperature drops, the Servomo-  
tor's momentary maximum torque increases, and as the temperature rises the Servomotor's  
momentary maximum torque decreases. When the normal temperature of 20°C and 10°C are  
compared, the momentary maximum torque increases by approximately 4%. Conversely, when the  
magnet warms up to 80°C from the normal temperature of 20°C, the momentary maximum torque  
decreases by approximately 8%.  
2-76  
Standard Models and Specifications  
Chapter 2  
• Generally, in a mechanical system, when the temperature drops the friction torque increases and  
the load torque becomes larger. For that reason, overloading may occur at low temperatures. In  
particular, in systems which use deceleration devices, the load torque at low temperatures may be  
nearly twice the load torque at normal temperatures. Check with a current monitor to see whether  
overloading is occurring at low temperatures, and how much the load torque is. Likewise, check to  
see whether there abnormal Servomotor overheating or alarms are occurring at high temperatures.  
• An increase in load friction torque visibly increases load inertia. Therefore, even if the Servo Driver  
parameters are adjusted at a normal temperature, there may not be optimal operation at low tem-  
peratures. Check to see whether there is optimal operation at low temperatures too.  
!Caution  
Do not use 2-kW Servomotors within the shaded portions of the following dia-  
grams. If used in these regions, the Servomotor may heat, causing the encoder to  
malfunction.  
R88M-W2K030@ (2 kW)  
Effective torque (N m)  
6.36  
5.74  
0
10  
20  
30  
40  
Ambient temperature (°C)  
3,000-r/min Flat-style Servomotors  
Performance Specifications Table  
200 V AC  
WP40030H  
WP40030T  
Model (R88M-)  
WP10030H  
WP10030T  
WP20030H  
WP20030T  
WP75030H  
WP75030T  
WP1K530H  
WP1K530T  
Item  
Unit  
W
Rated output*  
Rated torque*  
Rated rotation speed  
100  
200  
400  
750  
1,500  
N·m  
r/min  
0.318  
3,000  
5,000  
0.637  
1.27  
2.39  
4.77  
Momentary maximum rota-  
tion speed  
r/min  
Momentary maximum  
torque*  
N·m  
0.955  
1.91  
3.82  
7.16  
14.3  
Rated current*  
A (rms) 0.89  
A (rms) 2.8  
2.0  
6.0  
2.6  
8.0  
4.1  
7.5  
Momentary maximum cur-  
rent*  
13.9  
23.0  
kg·m2  
(GD2/4)  
4.91 × 10-6  
1.93 × 10-6  
3.31 × 10-5  
2.10 × 10-4  
4.02 × 10-4  
Rotor inertia  
Torque constant*  
N·m/A  
kW/s  
ms  
0.392  
20.6  
0.53  
3.7  
0.349  
21.0  
0.54  
7.4  
0.535  
49.0  
0.36  
8.6  
0.641  
27.1  
0.66  
18  
0.687  
56.7  
0.46  
22  
Power rate*  
Mechanical time constant  
Electrical time constant  
Allowable radial load  
ms  
N
78  
245  
245  
392  
490  
2-77  
Standard Models and Specifications  
Chapter 2  
200 V AC  
WP40030H  
WP40030T  
Model (R88M-)  
WP10030H  
WP10030T  
WP20030H  
WP20030T  
WP75030H  
WP75030T  
WP1K530H  
WP1K530T  
147  
Item  
Unit  
N
Allowable thrust load  
Weight Without brake  
With brake  
49  
68  
68  
147  
kg  
Approx. 0.7  
Approx. 0.9  
Approx. 1.4  
Approx. 1.9  
Approx. 2.1  
Approx. 2.6  
Approx. 4.2  
Approx. 5.7  
Approx. 6.6  
Approx. 8.1  
kg  
Radiation shield dimensions (material) t6 × @250 mm (AI)  
t12 × @300 mm (AI)  
Applicable load inertia  
(See note 6.)  
WN01L-ML2  
Applicable Servo Driver  
(R88D-)  
100 V  
AC  
WN02L-ML2  
WN02H-ML2  
WN04L-ML2  
WN04H-ML2  
---  
---  
200 V  
AC  
WN01H-ML2  
WN08H-ML2  
WN15H-ML2  
kg·m2  
2.9 × 10-6  
1.09 × 10-5  
1.09 × 10-5  
8.75 × 10-5  
8.75 × 10-5  
Brake  
specifi-  
cations  
Brake inertia  
(GD2/4)  
Excitation voltage  
V
24 V DC 10%  
8.2  
Power consump-  
tion (at 20°C)  
W
7.6  
8.2  
7.5  
10  
Current consump-  
tion (at 20°C)  
A
0.34  
0.32  
0.34  
0.31  
0.42  
Static friction  
torque  
N·m  
ms  
0.4 min.  
20 max.  
40 max.  
0.9 min.  
20 max.  
40 max.  
1.9 min.  
60 max.  
20 max.  
3.5 min.  
20 max.  
40 max.  
7.1 min.  
20 max.  
40 max.  
Attraction time  
(See note 3.)  
Release time (See ms  
note 3.)  
Backlash  
1° (reference value)  
Continuous  
Rating  
---  
---  
Insulation grade  
Type F  
Note 1. *The values for items marked by asterisks are the values at an armature winding tempera-  
ture of 100°C, combined with the Servo Driver. Other values are at normal conditions (20°C,  
65%). The momentary maximum torque shown above indicates the standard value.  
Note 2. The brakes are the non-excitation operation type (released when excitation voltage is ap-  
plied).  
Note 3. The operation time is the measured value (reference value) with a surge killer (CR50500, by  
Okaya Electric Industries co. LTD) inserted.  
Note 4. The allowable radial and thrust loads are the values determined for a service life of 20,000  
hours at normal operating temperatures.  
Note 5. The value indicated for the allowable radial load is for the position shown in the following di-  
agram.  
Radial load  
Thrust load  
5 mm  
Note 6. Applicable Load Inertia  
1) The drivable load inertia ratio (load inertia/rotor inertia) changes depending on the me-  
chanical configuration being driven and its rigidity. Highly rigid machines can operate with  
a large load inertia. Select a Servomotor and verify operation.  
2) If the dynamic brake is used frequently with a large load inertia, it may lead to burnout of  
the dynamic brake resistor. Do not repeatedly turn the Servo ON and OFF with the dy-  
namic brake enabled.  
2-78  
Standard Models and Specifications  
Chapter 2  
Torque and Rotation Speed Characteristics  
3,000-r/min Flat-style Servomotors (With a 100-VAC Servo Driver)  
The following graphs show the characteristics with a 3-m standard cable and 100-V AC input.  
R88M-WP10030H/T (100 W)  
R88M-WP20030H/T (200 W)  
R88M-WP40030H/T (400 W)  
(N m)  
1.0  
(N m)  
(N m)  
4.0  
2.0  
0.955  
0.955  
1.91  
1.91  
3.82  
3.82  
(4500)  
(4000)  
(2500)  
0.8  
0.6  
0.4  
0.2  
0
0.750  
1.5  
1.0  
0.5  
0
3.0  
2.0  
1.0  
0
1.45  
Repeated usage  
Repeated usage  
Repeated usage  
0.318  
0.318  
0.637  
0.637  
1.27  
1.27  
1.00  
0.76  
0.39  
0.19  
Continuous usage  
Continuous usage  
Continuous usage  
(r/min)  
(r/min)  
(r/min)  
1000 2000 3000 4000 5000  
1000 2000 3000 4000 5000  
1000 2000 3000 4000 5000  
3,000-r/min Flat-style Servomotors (With a 200-VAC Servo Driver)  
The following graphs show the characteristics with a 3-m standard cable and 200-V AC input.  
R88M-WP10030H/T (100 W)  
R88M-WP20030H/T (200 W)  
R88M-WP40030H/T (400 W)  
(N m)  
1.0  
(N m)  
(N m)  
4.0  
2.0  
0.955  
0.955  
1.91  
3.82  
3.82  
1.91  
(4500)  
(3000)  
0.8  
0.6  
0.4  
0.2  
0
0.750  
1.5  
1.0  
0.5  
0
3.0  
2.0  
1.0  
0
Repeated usage  
Repeated usage  
Repeated usage  
1.27  
1.70  
0.318  
0.318  
0.637  
0.637  
1.27  
0.39  
0.19  
0.76  
Continuous usage  
Continuous usage  
Continuous usage  
(r/min)  
(r/min)  
(r/min)  
1000 2000 3000 4000 5000  
1000 2000 3000 4000 5000  
1000 2000 3000 4000 5000  
R88-WP75030H/T (750 W)  
R88M-WP1K530H/T (1.5 kW)  
(N m)  
8.0  
(N m)  
7.16  
7.16  
15  
14.3  
14.3  
(3350)  
(3400)  
6.0  
4.0  
2.0  
0
10  
5
Repeated usage  
Repeated usage  
2.39  
2.39  
4.77  
4.77  
1.6  
3.0  
(4890)  
(4900)  
1.2  
Continuous usage  
Continuous usage  
2.4  
(r/min)  
1000 2000 3000 4000 5000  
0
(r/min)  
1000 2000 3000 4000 5000  
2-79  
Standard Models and Specifications  
Chapter 2  
Servomotor and Mechanical System Temperature Characteristics  
• W-series AC Servomotors use rare earth magnets (neodymium-iron magnets). The temperature  
coefficient for these magnets is approximately 0.13%/°C. As the temperature drops, the Servomo-  
tor's momentary maximum torque increases, and as the temperature rises the Servomotor's  
momentary maximum torque decreases. When the normal temperature of 20°C and 10°C are  
compared, the momentary maximum torque increases by approximately 4%. Conversely, when the  
magnet warms up to 80°C from the normal temperature of 20°C, the momentary maximum torque  
decreases by approximately 8%.  
• Generally, in a mechanical system, when the temperature drops the friction torque increases and  
the load torque becomes larger. For that reason, overloading may occur at low temperatures. In  
particular, in systems which use deceleration devices, the load torque at low temperatures may be  
nearly twice the load torque at normal temperatures. Check with a current monitor to see whether  
overloading is occurring at low temperatures, and how much the load torque is. Likewise, check to  
see whether there abnormal Servomotor overheating or alarms are occurring at high temperatures.  
• An increase in load friction torque visibly increases load inertia. Therefore, even if the Servo Driver  
parameters are adjusted at a normal temperature, there may not be optimal operation at low tem-  
peratures. Check to see whether there is optimal operation at low temperatures too.  
1,000-r/min Servomotors  
Performance Specifications Table  
200 V AC  
Model (R88M-)  
W30010H  
W30010T  
W60010H  
W60010T  
W90010H  
W90010T  
W1K210H  
W1K210T  
W2K010H  
W2K010T  
Item  
Unit  
W
Rated output*  
Rated torque*  
Rated rotation speed  
300  
600  
900  
1,200  
2,000  
N·m  
r/min  
2.84  
5.68  
8.62  
11.5  
19.1  
1,000  
2,000  
Momentary maximum rota-  
tion speed  
r/min  
Momentary maximum  
torque*  
N·m  
7.17  
14.1  
19.3  
28.0  
44.0  
Rated current*  
A (rms) 3.0  
A (rms) 7.3  
5.7  
7.6  
11.6  
28  
18.5  
42  
Momentary maximum cur-  
rent*  
13.9  
16.6  
kg·m2  
7.24 × 10-4  
1.39 × 10-3  
2.05 × 10-3  
3.17 × 10-3  
4.60 × 10-3  
Rotor inertia  
(GD2/4)  
Torque constant*  
N·m/A  
kW/s  
ms  
ms  
N
1.03  
1.06  
1.21  
1.03  
1.07  
Power rate*  
11.2  
23.2  
36.3  
41.5  
79.4  
Mechanical time constant  
Electrical time constant  
Allowable radial load  
Allowable thrust load  
Weight Without brake  
With brake  
5.1  
3.8  
2.8  
2.0  
1.7  
5.1  
4.7  
5.7  
13.5  
13.9  
490  
490  
686  
1,176  
490  
1,470  
490  
N
98  
98  
343  
kg  
Approx. 5.5  
Approx. 7.5  
Approx. 7.6  
Approx. 9.6  
Approx. 9.6  
Approx. 12  
Approx. 14  
Approx. 19  
Approx. 18  
Approx. 23.5  
kg  
Radiation shield dimensions (material) t20 × @400 mm (Fe)  
t30 × @550 mm (Fe)  
Applicable load inertia  
(See note 6.)  
WN05H-ML2  
Applicable Servo Driver (R88D-)  
WN10H-ML2  
WN10H-ML2  
WN15H-ML2 WN20H-ML2  
2-80  
Standard Models and Specifications  
Chapter 2  
200 V AC  
W90010H  
W90010T  
Model (R88M-)  
Unit  
W30010H  
W30010T  
W60010H  
W60010T  
W1K210H  
W1K210T  
W2K010H  
W2K010T  
Item  
kg·m2  
(GD2/4)  
2.1 × 10-4  
2.1 × 10-4  
2.1 × 10-4  
8.5 × 10-4  
8.5 × 10-4  
Brake  
specifi-  
cations  
Brake inertia  
Excitation voltage  
V
24 V DC 10%  
9.8  
Power consump-  
tion (at 20°C)  
W
9.8  
9.8  
18.5  
18.5  
Current consump-  
tion (at 20°C)  
A
0.41  
0.41  
0.41  
0.77  
0.77  
Static friction  
torque  
N·m  
ms  
4.41 min.  
180 max.  
100 max.  
12.7 min.  
180 max.  
100 max.  
12.7 min.  
180 max.  
100 max.  
43.1 min.  
180 max.  
100 max.  
43.1 min.  
180 max.  
100 max.  
Attraction time  
(See note 3.)  
Release time (See ms  
note 3.)  
Backlash  
1° (reference value)  
Continuous  
Rating  
---  
---  
Insulation grade  
Type F  
Note 1. *The values for items marked by asterisks are the values at an armature winding tempera-  
ture of 100°C, combined with the Servo Driver. Other values are at normal conditions (20°C,  
65%). The momentary maximum torque shown above indicates the standard value.  
Note 2. The brakes are the non-excitation operation type (released when excitation voltage is ap-  
plied).  
Note 3. The operation time is the measured value (reference value) with a surge killer (CR50500, by  
Okaya Electric Industries Co. LTD.) inserted.  
Note 4. The allowable radial and thrust loads are the values determined for a service life of 20,000  
hours at normal operating temperatures.  
Note 5. The value indicated for the allowable radial load is for the position shown in the following di-  
agram.  
Radial load  
Thrust load  
End of Servomotor shaft  
Note 6. Applicable Load Inertia  
1) The drivable load inertia ratio (load inertia/rotor inertia) changes depending on the me-  
chanical configuration being driven and its rigidity. Highly rigid machines can operate with  
a large load inertia. Select a Servomotor and verify operation.  
2) If the dynamic brake is used frequently with a large load inertia, it may lead to burnout of  
the dynamic brake resistor. Do not repeatedly turn the Servo ON and OFF with the dy-  
namic brake enabled.  
2-81  
Standard Models and Specifications  
Chapter 2  
Torque and Rotation Speed Characteristics  
1,000-r/min Servomotors (With a 200-VAC Servo Driver)  
The following graphs show the characteristics with a 3-m standard cable and 200-V AC input.  
R88M-W30010H/T (300 W)  
R88M-W60010H/T (600 W)  
R88M-W90010H/T (900 W)  
(N m)  
(N m)  
(N m)  
19.3  
8
20  
18.8  
7.17  
7.0  
15  
(1800)  
14.1  
13.8  
(1875)  
(1925)  
6.2  
12.7  
6
4
2
0
15  
10  
5
12.5  
10  
5
Repeated usage  
2.84  
Repeated usage  
5.68  
Repeated usage  
8.62  
8.8  
2.95  
5.8  
4.3  
1.4  
2.8  
Continuous usage  
Continuous usage  
Continuous usage  
(r/min)  
2000  
0
(r/min)  
0
(r/min)  
2000  
500  
1000  
1500  
500  
1000  
1500  
2000  
500  
1000  
1500  
R88M-W1K210H/T (1.2 kW)  
R88M-W2K010H/T (2 kW)  
(N m)  
(N m)  
50  
44.0  
30  
43.0  
(1825)  
28.0  
27.1  
40  
30  
20  
10  
0
(1800)  
35.8  
21.8  
20  
10  
0
Repeated usage  
11.5  
Repeated usage  
19.1  
21.6  
11.8  
9.7  
5.5  
Continuous usage  
Continuous usage  
(r/min)  
2000  
(r/min)  
2000  
500  
1000  
1500  
500  
1000  
1500  
Servomotor and Mechanical System Temperature Characteristics  
• W-series AC Servomotors use rare earth magnets (neodymium-iron magnets). The temperature  
coefficient for these magnets is approximately 0.13%/°C. As the temperature drops, the Servomo-  
tor's momentary maximum torque increases, and as the temperature rises the Servomotor's  
momentary maximum torque decreases. When the normal temperature of 20°C and 10°C are  
compared, the momentary maximum torque increases by approximately 4%. Conversely, when the  
magnet warms up to 80°C from the normal temperature of 20°C, the momentary maximum torque  
decreases by approximately 8%.  
• Generally, in a mechanical system, when the temperature drops the friction torque increases and  
the load torque becomes larger. For that reason, overloading may occur at low temperatures. In  
particular, in systems which use deceleration devices, the load torque at low temperatures may be  
nearly twice the load torque at normal temperatures. Check with a current monitor to see whether  
overloading is occurring at low temperatures, and how much the load torque is. Likewise, check to  
see whether there abnormal Servomotor overheating or alarms are occurring at high temperatures.  
• An increase in load friction torque visibly increases load inertia. Therefore, even if the Servo Driver  
parameters are adjusted at a normal temperature, there may not be optimal operation at low tem-  
peratures. Check to see whether there is optimal operation at low temperatures too.  
2-82  
Standard Models and Specifications  
Chapter 2  
!Caution  
Do not use 900-W or 2-kW Servomotors within the shaded portions of the follow-  
ing diagrams. If used in these regions, the Servomotor may heat, causing the  
encoder to malfunction.  
R88M-W90010@ (900 W)  
R88M-W2K010@ (2 kW)  
Effective torque (N m)  
Effective torque (N m)  
8.62  
7.73  
19.1  
17.7  
0
0
10  
20  
30  
40  
10  
20  
30  
40  
Ambient temperature (°C)  
Ambient temperature (°C)  
1,500-r/min Servomotors  
Performance Specifications Table  
200 V AC  
Model (R88M-)  
W45015T  
W85015T  
W1K315T  
W1K815T  
Item  
Unit  
W
Rated output*  
Rated torque*  
Rated rotation speed  
450  
850  
1,300  
8.34  
1,800  
N·m  
r/min  
2.84  
5.39  
11.5  
1,500  
3,000  
Momentary maximum rota-  
tion speed  
r/min  
Momentary maximum  
torque*  
N·m  
8.92  
13.8  
23.3  
28.7  
Rated current*  
A (rms) 3.8  
A (rms) 11  
7.1  
17  
10.7  
28  
16.7  
42  
Momentary maximum cur-  
rent*  
kg·m2  
(GD2/4)  
7.24 × 10-4  
1.39 × 10-3  
2.05 × 10-3  
3.17 × 10-3  
Rotor inertia  
Torque constant*  
N·m/A  
kW/s  
ms  
ms  
N
0.82  
0.83  
0.84  
0.73  
Power rate*  
11.2  
20.9  
33.8  
41.5  
Mechanical time constant  
Electrical time constant  
Allowable radial load  
Allowable thrust load  
Weight Without brake  
With brake  
5.0  
3.1  
2.8  
2.2  
5.1  
5.3  
6.3  
12.8  
490  
490  
686  
1,176  
N
98  
98  
343  
490  
kg  
Approx. 5.5  
Approx. 7.5  
Approx. 7.6  
Approx. 9.6  
Approx. 9.6  
Approx. 12  
Approx. 14  
Approx. 19  
t30 × @550 mm (Fe)  
kg  
Radiation shield dimensions (material) t20 × @400 mm (Fe)  
Applicable load inertia  
(See note 6.)  
WN05H-ML2  
Applicable Servo Driver (R88D-)  
WN10H-ML2  
WN15H-ML2  
WN20H-ML2  
2-83  
Standard Models and Specifications  
Chapter 2  
200 V AC  
Model (R88M-)  
Unit  
W45015T  
2.1 × 10-4  
W85015T  
2.1 × 10-4  
W1K315T  
W1K815T  
8.5 × 10-4  
Item  
kg·m2  
2.1 × 10-4  
Brake  
specifi-  
cations  
Brake inertia  
(GD2/4)  
Excitation voltage  
V
24 V DC 10%  
9.8  
Power consump-  
tion (at 20°C)  
W
9.8  
9.8  
18.5  
Current consump-  
tion (at 20°C)  
A
0.41  
0.41  
0.41  
0.77  
Static friction  
torque  
N·m  
ms  
4.41 min.  
180 max.  
100 max.  
12.7 min.  
180 max.  
100 max.  
12.7 min.  
180 max.  
100 max.  
43.1 min.  
180 max.  
100 max.  
Attraction time  
(See note 3.)  
Release time (See ms  
note 3.)  
Backlash  
1° (reference value)  
Continuous  
Rating  
---  
---  
Insulation grade  
Type F  
Note 1. *The values for items marked by asterisks are the values at an armature winding tempera-  
ture of 20°C, combined with the Servo Driver. Other values are at normal conditions (20°C,  
65%). The momentary maximum torque shown above indicates the standard value.  
Note 2. The brakes are the non-excitation operation type (released when excitation voltage is ap-  
plied).  
Note 3. The operation time is the measured value (reference value) with a surge killer (CR50500, by  
Okaya Electric Industries Co. LTD.) inserted.  
Note 4. The allowable radial and thrust loads are the values determined for a service life of 20,000  
hours at normal operating temperatures.  
Note 5. The value indicated for the allowable radial load is for the position shown in the following di-  
agram.  
Radial load  
Thrust load  
End of Servomotor shaft  
Note 6. Applicable Load Inertia  
1) The drivable load inertia ratio (load inertia/rotor inertia) changes depending on the me-  
chanical configuration being driven and its rigidity. Highly rigid machines can operate with  
a large load inertia. Select a Servomotor and verify operation.  
2) If the dynamic brake is used frequently with a large load inertia, it may lead to burnout of  
the dynamic brake resistor. Do not repeatedly turn the Servo ON and OFF with the dy-  
namic brake enabled.  
2-84  
Standard Models and Specifications  
Chapter 2  
Torque and Rotation Speed Characteristics  
1,500-r/min Servomotors (With a 200-VAC Servo Driver)  
The following graphs show the characteristics with a 3-m standard cable and 200-V AC input.  
R88M-W45015T (450 W)  
R88M-W85015T (850 W)  
R88M-W1K315T (1.3 kW)  
(N m)  
(N m)  
(N m)  
10  
20  
8.92  
30  
8.40  
8
6
4
2
0
(2190)  
15  
23.3  
13.8  
22.3  
12.7  
(2770)  
20  
(2870)  
11.5  
Repeated usage  
Repeated usage  
10  
Repeated usage  
17.1  
4.80  
2.94  
5.88  
5.39  
2.84  
8.83  
10  
0
8.34  
5
Continuous usage  
Continuous usage  
Continuous usage  
1.42  
2.70  
4.17  
(r/min)  
0
(r/min)  
(r/min)  
500 1000 1500 2000 2500 3000  
500 1000 1500 2000 2500 3000  
500 1000 1500 2000 2500 3000  
R88M-W1K815T (1.8 kW)  
(N m)  
30 28.7  
26.4  
(2870)  
24.6  
20  
Repeated usage  
11.5  
11.8  
10  
5.80  
Continuous usage  
0
(r/min)  
500 1000 1500 2000 2500 3000  
Servomotor and Mechanical System Temperature Characteristics  
• W-series AC Servomotors use rare earth magnets (neodymium-iron magnets). The temperature  
coefficient for these magnets is approximately 0.13%/°C. As the temperature drops, the Servomo-  
tor's momentary maximum torque increases, and as the temperature rises the Servomotor's  
momentary maximum torque decreases. When the normal temperature of 20°C and 10°C are  
compared, the momentary maximum torque increases by approximately 4%. Conversely, when the  
magnet warms up to 80°C from the normal temperature of 20°C, the momentary maximum torque  
decreases by approximately 8%.  
• Generally, in a mechanical system, when the temperature drops the friction torque increases and  
the load torque becomes larger. Therefore, overloading may occur at low temperatures. In particu-  
lar, in systems which use deceleration devices, the load torque at low temperatures may be nearly  
twice the load torque at normal temperatures. Check with a current monitor to see whether over-  
loading is occurring at low temperatures, and how much the load torque is. Likewise, check to see  
whether there is abnormal Servomotor overheating or alarms are occurring at high temperatures.  
• An increase in load friction torque visibly increases load inertia. Therefore, even if the Servo Driver  
parameters are adjusted at a normal temperature, there may not be optimal operation at low tem-  
peratures. Check to see whether there is optimal operation at low temperatures too.  
2-85  
Standard Models and Specifications  
Chapter 2  
!Caution  
Do not use 1.3-kW Servomotors within the shaded portions of the following dia-  
grams. If used in these regions, the Servomotor may overheat, causing the  
encoder to malfunction.  
R88M-W1K315T (1.3 kW)  
Effective torque (N m)  
8.34  
7.50  
0
10  
20  
30  
40  
Ambient temperature (°C)  
2-5-3 Specifications for Servomotors with Reduction Gears  
3,000-r/min Servomotors with Standard Reduction Gears (50 W to 3 kW)  
Model  
Rated  
Rated  
Ratio  
Maxi-  
mum  
Maxi-  
mum  
Reduction Allow-  
Allow-  
able  
thrust  
load  
Weight  
rotation torque  
speed  
gear  
able  
radial  
load  
Without  
With  
brake  
momen- momen-  
inertia  
brake  
tary  
rotation  
speed  
tary  
torque  
2
r/min  
N·m  
0.557  
1.00  
2.67  
4.20  
1.27  
2.80  
5.34  
8.40  
2.55  
5.96  
11.4  
17.9  
5.40  
11.9  
22.7  
33.5  
10.2  
22.3  
42.7  
67.0  
%
r/min  
800  
444  
190  
121  
800  
364  
190  
121  
800  
364  
190  
121  
800  
364  
190  
121  
800  
364  
190  
121  
N·m  
N
N
127  
147  
147  
147  
147  
147  
235  
235  
235  
235  
294  
294  
235  
294  
314  
314  
294  
314  
490  
490  
kg  
kg  
kg·m  
-6  
-6  
-6  
50 W  
1/5  
R88M-W05030@-@G05BJ 600  
R88M-W05030@-@G09BJ 333  
R88M-W05030@-@G21BJ 143  
R88M-W05030@-@G33BJ 91  
R88M-W10030@-@G05BJ 600  
R88M-W10030@-@G11BJ 273  
R88M-W10030@-@G21BJ 143  
R88M-W10030@-@G33BJ 91  
R88M-W20030@-@G05BJ 600  
R88M-W20030@-@G11BJ 273  
R88M-W20030@-@G21BJ 143  
R88M-W20030@-@G33BJ 91  
R88M-W40030@-@G05BJ 600  
R88M-W40030@-@G11BJ 273  
R88M-W40030@-@G21BJ 143  
R88M-W40030@-@G33BJ 91  
R88M-W75030@-@G05BJ 600  
R88M-W75030@-@G11BJ 273  
R88M-W75030@-@G21BJ 143  
R88M-W75030@-@G33BJ 91  
70  
1.67  
137  
1.1  
1.4  
3.60 × 10  
3.30 × 10  
1.80 × 10  
1/9  
70  
80  
80  
80  
80  
80  
80  
80  
85  
85  
85  
85  
85  
85  
80  
85  
85  
85  
85  
3.01  
8.01  
12.6  
3.82  
8.40  
16.0  
25.2  
7.64  
17.9  
34.1  
53.6  
16.2  
35.7  
68.2  
101  
206  
235  
235  
167  
216  
392  
431  
245  
323  
549  
608  
245  
441  
568  
657  
343  
451  
813  
921  
1.4  
1.6  
1.6  
1.4  
1.7  
2.7  
2.7  
3.0  
3.5  
3.7  
3.8  
3.6  
4.3  
4.7  
7.1  
5.8  
6.6  
9.9  
9.9  
1.7  
1.9  
1.9  
1.7  
2.0  
3.0  
3.0  
3.5  
4.0  
4.2  
4.3  
4.1  
4.8  
5.2  
7.6  
6.7  
7.5  
10.8  
10.8  
1/21  
1/33  
-6  
1.3 × 10  
-6  
100 W 1/5  
1/11  
7.76 × 10  
4.76 × 10  
4.26 × 10  
3.26 × 10  
3.35 × 10  
8.50 × 10  
-6  
-6  
-6  
-5  
-6  
1/21  
1/33  
200 W 1/5  
1/11  
1/21  
1/33  
-5  
1.10× 10  
6.50 × 10  
3.35 × 10  
1.95 × 10  
1.95 × 10  
1.73 × 10  
5.83 × 10  
5.28 × 10  
5.93 × 10  
2.63 × 10  
-6  
-5  
-5  
-5  
-5  
-5  
-5  
-5  
-5  
400 W 1/5  
1/11  
1/21  
1/33  
750 W 1/5  
30.4  
67.0  
128  
1/11  
1/21  
1/33  
201  
2-86  
Standard Models and Specifications  
Chapter 2  
Model  
Rated  
Rated  
Ratio  
Maxi-  
mum  
Maxi-  
mum  
Reduction Allow-  
Allow-  
Weight  
rotation torque  
speed  
gear  
able  
radial  
load  
able  
thrust  
load  
Without  
With  
brake  
momen- momen-  
inertia  
brake  
kg  
tary  
rotation  
speed  
tary  
torque  
2
r/min  
N·m  
12.7  
%
r/min  
800  
444  
200  
138  
89  
N·m  
N
N
kg  
kg·m  
-4  
-4  
-4  
-4  
-4  
-4  
-4  
-4  
-4  
-4  
-4  
-4  
-4  
-3  
-4  
-3  
-4  
-3  
-3  
-4  
1 kW  
1/5  
R88M-W1K030@-@G05BJ 600  
R88M-W1K030@-@G09BJ 333  
R88M-W1K030@-@G20BJ 150  
R88M-W1K030@-@G29BJ 103  
R88M-W1K030@-@G45BJ 67  
R88M-W1K530@-@G05BJ 600  
R88M-W1K530@-@G09BJ 333  
R88M-W1K530@-@G20BJ 150  
R88M-W1K530@-@G29BJ 103  
R88M-W1K530@-@G45BJ 67  
R88M-W2K030@-@G05BJ 600  
R88M-W2K030@-@G09BJ 333  
R88M-W2K030@-@G20BJ 150  
R88M-W2K030@-@G29BJ 103  
R88M-W2K030@-@G45BJ 67  
R88M-W3K030@-@G05BJ 600  
R88M-W3K030@-@G09BJ 333  
R88M-W3K030@-@G20BJ 150  
R88M-W3K030@-@G29BJ 103  
R88M-W3K030@-@G45BJ 67  
80  
38.2  
833  
1,280  
1,570  
4,220  
4,900  
5,690  
1,280  
3,000  
4,220  
4,900  
8,830  
1,280  
3,000  
4,220  
7,350  
8,830  
1,960  
3,000  
6,370  
7,350  
8,830  
13  
14.4  
3.44 × 10  
3.11 × 10  
6.79 × 10  
4.88 × 10  
3.92 × 10  
3.44 × 10  
4.77 × 10  
6.79 × 10  
4.88 × 10  
6.58 × 10  
3.44 × 10  
4.77 × 10  
6.79 × 10  
1.03 × 10  
6.58 × 10  
1.02 × 10  
7.80 × 10  
2.02 × 10  
1.34 × 10  
9.70 × 10  
1/9  
22.9  
50.9  
73.8  
114  
19.6  
35.3  
78.4  
114  
176  
25.4  
45.8  
102  
148  
229  
39.2  
70.6  
157  
227  
353  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
68.7  
153  
221  
343  
58.8  
106  
235  
341  
529  
76.4  
138  
306  
443  
688  
118  
212  
470  
682  
1,058  
980  
13  
30  
30  
30  
14  
31  
31  
31  
51  
15  
32  
32  
52  
52  
29  
36  
56  
56  
56  
14.4  
31.4  
31.4  
31.4  
15.7  
32.7  
32.7  
32.7  
52.5  
16.5  
33.5  
33.5  
53.5  
53.5  
32  
1/20  
1/29  
1/45  
2,650  
2,940  
3,430  
833  
1.5 kW 1/5  
1/9  
800  
444  
200  
138  
89  
1,960  
2,650  
2,940  
8,040  
833  
1/20  
1/29  
1/45  
1/5  
2 kW  
800  
444  
200  
138  
89  
1/9  
1,960  
2,650  
6,860  
8,040  
1,670  
1,960  
6,080  
6,860  
8,040  
1/20  
1/29  
1/45  
1/5  
3 kW  
800  
444  
200  
138  
89  
1/9  
39  
1/20  
1/29  
1/45  
58.5  
58.5  
58.5  
Note 1. The reduction gear inertia indicates the Servomotor shaft conversion value.  
Note 2. The enclosure rating for Servomotors with reduction gears is IP55 for 50- to 750-W models,  
and IP44 for 1- to 3-kW models.  
Note 3. The maximum momentary rotation speed for the motor shaft of Servomotors with reduction  
gears is 4,000 r/min.  
Note 4. The maximum momentary torque values marked by asterisks are the maximum allowable  
torque for the reduction gears. Use torque limits so that these values are not exceeded.  
Note 5. The allowable radial loads are measured at a point 5 mm from the end of the shaft for 50- to  
750-W Servomotors and in the center of the shaft for 1- to 3-W Servomotors.  
2-87  
Standard Models and Specifications  
Chapter 2  
3,000-r/min Flat-style Servomotors with Standard Reduction Gears  
(100 W to 1.5 kW)  
Model  
Rated  
Rated  
Effi-  
Maxi-  
mum  
Maxi-  
mum  
Reduction  
gear inertia  
Allow-  
able  
radial  
load  
Allow-  
able  
thrust  
load  
Weight  
rotation torque ciency  
speed  
Without  
With  
brake  
momen- momen-  
brake  
tary  
rotation  
speed  
tary  
torque  
2
r/min  
N·m  
1.27  
%
r/min  
800  
364  
190  
121  
800  
364  
190  
121  
800  
364  
190  
121  
800  
364  
190  
121  
800  
364  
190  
121  
N·m  
N
167  
216  
392  
431  
245  
323  
549  
608  
245  
441  
568  
657  
343  
451  
813  
921  
353  
647  
1,274  
1,274  
N
147  
147  
235  
235  
235  
235  
294  
294  
235  
294  
314  
314  
294  
314  
490  
490  
314  
490  
882  
882  
kg  
kg  
kg·m  
-6  
100 W 1/5  
1/11  
R88M-WP10030@-@G05BJ 600  
R88M-WP10030@-@G11BJ 273  
R88M-WP10030@-@G21BJ 143  
R88M-WP10030@-@G33BJ 91  
R88M-WP20030@-@G05BJ 600  
R88M-WP20030@-@G11BJ 273  
R88M-WP20030@-@G21BJ 143  
R88M-WP20030@-@G33BJ 91  
R88M-WP40030@-@G05BJ 600  
R88M-WP40030@-@G11BJ 273  
R88M-WP40030@-@G21BJ 143  
R88M-WP40030@-@G33BJ 91  
R88M-WP75030@-@G05BJ 600  
R88M-WP75030@-@G11BJ 273  
R88M-WP75030@-@G21BJ 143  
R88M-WP75030@-@G33BJ 91  
R88M-WP1K530@-@G05BJ 600  
R88M-WP1K530@-@G11BJ 273  
R88M-WP1K530@-@G21BJ 143  
R88M-WP1K530@-@G33BJ 91  
80  
80  
80  
80  
80  
85  
85  
85  
85  
85  
85  
80  
85  
85  
85  
85  
85  
85  
80  
80  
3.82  
1.5  
1.7  
9.29 × 10  
-6  
2.80  
5.34  
8.40  
2.55  
5.96  
11.4  
17.9  
5.40  
11.9  
22.7  
33.5  
10.2  
22.3  
42.7  
67.0  
20.3  
44.6  
80.1  
126  
8.40  
16.0  
25.2  
7.64  
17.9  
34.1  
53.6  
16.2  
35.7  
68.2  
101  
1.5  
1.7  
4.79 × 10  
-6  
1/21  
1/33  
3.0  
3.2  
4.29 × 10  
-6  
3.0  
3.2  
3.29 × 10  
-5  
200 W 1/5  
3.5  
4.0  
3.60 × 10  
-6  
1/11  
1/21  
1/33  
3.8  
4.3  
8.80 × 10  
-5  
4.1  
4.6  
1.10 × 10  
-6  
4.1  
4.6  
6.50 × 10  
-5  
400 W 1/5  
4.2  
4.7  
3.60 × 10  
-5  
1/11  
1/21  
1/33  
4.8  
5.3  
1.95 × 10  
-5  
5.2  
5.7  
1.95 × 10  
-5  
7.7  
8.2  
1.72 × 10  
-5  
750 W 1/5  
30.4  
67.0  
128  
6.9  
8.4  
7.65 × 10  
-5  
1/11  
1/21  
1/33  
8.0  
9.5  
5.23 × 10  
-5  
11.0  
11.0  
11.6  
13.7  
23.6  
23.6  
12.5  
12.5  
13.1  
15.2  
25.1  
25.1  
6.63 × 10  
-5  
201  
4.55 × 10  
-4  
1.5 kW 1/5  
60.8  
134  
1.54 × 10  
-4  
1/11  
1/21  
1/33  
2.09 × 10  
-4  
270  
1.98 × 10  
-4  
353  
1.12 × 10  
Note 1. The reduction gear inertia indicates the Servomotor shaft conversion value.  
Note 2. The enclosure rating for Servomotors with reduction gears is IP55.  
Note 3. The maximum momentary rotation speed for the motor shaft of Servomotors with reduction  
gears is 4,000 r/min.  
Note 4. The maximum momentary torque values marked by asterisks are the maximum allowable  
torque for the reduction gears. Use torque limits so that these values are not exceeded.  
Note 5. The allowable radial loads are measured at a point 5 mm from the end of the shaft.  
1,000-r/min Servomotors with Standard Reduction Gears (300 W to  
2 kW)  
Model  
Rated  
Rated  
Effi-  
ciency  
Maxi-  
mum  
Maxi-  
mum  
Reduction Allow-  
Allow-  
able  
thrust  
load  
Weight  
rotation torque  
speed  
gear  
able  
radial  
load  
Without  
With  
brake  
momen- momen-  
inertia  
brake  
tary  
rotation  
speed  
tary  
torque  
2
r/min  
N·m  
11.4  
%
r/min  
400  
222  
100  
69  
N·m  
N
N
1,280  
1,570  
2,260  
4,900  
5,690  
kg  
kg  
kg·m  
-4  
-5  
-4  
-4  
-4  
300 W 1/5  
1/9  
R88M-W30010@-@G05BJ 200  
R88M-W30010@-@G09BJ 111  
R88M-W30010@-@G20BJ 50  
R88M-W30010@-@G29BJ 34  
R88M-W30010@-@G45BJ 22  
80  
28.7  
883  
14  
16  
1.26 × 10  
9.40 × 10  
1.40 × 10  
2.76 × 10  
1.81 × 10  
20.4  
45.4  
65.9  
102  
80  
80  
80  
80  
51.6  
115  
166  
258  
980  
14  
16  
31  
31  
16  
18  
33  
33  
1/20  
1,270  
2,940  
3,430  
1/29  
1/45  
44  
2-88  
Standard Models and Specifications  
Chapter 2  
Model  
Rated  
Rated  
Effi-  
Maxi-  
mum  
Maxi-  
mum  
Reduction Allow-  
Allow-  
Weight  
rotation torque  
speed  
ciency  
gear  
able  
radial  
load  
able  
thrust  
load  
Without  
With  
brake  
momen- momen-  
inertia  
brake  
kg  
tary  
rotation  
speed  
tary  
torque  
2
r/min  
N·m  
22.7  
%
r/min  
400  
222  
100  
69  
N·m  
N
N
kg  
kg·m  
-4  
-5  
-4  
-4  
-4  
-4  
-4  
-4  
-3  
-4  
-3  
-4  
-3  
-3  
-4  
-3  
-4  
-3  
600 W 1/5  
1/9  
R88M-W60010@-@G05BJ 200  
R88M-W60010@-@G09BJ 111  
R88M-W60010@-@G20BJ 50  
R88M-W60010@-@G29BJ 34  
R88M-W60010@-@G45BJ 22  
R88M-W90010@-@G05BJ 200  
R88M-W90010@-@G09BJ 111  
R88M-W90010@-@G20BJ 50  
R88M-W90010@-@G29BJ 34  
R88M-W90010@-@G45BJ 22  
R88M-W1K210@-@G05BJ 200  
R88M-W1K210@-@G09BJ 111  
R88M-W1K210@-@G20BJ 50  
R88M-W1K210@-@G29BJ 34  
R88M-W1K210@-@G45BJ 22  
R88M-W2K010@-@G05BJ 200  
R88M-W2K010@-@G09BJ 111  
R88M-W2K010@-@G20BJ 50  
80  
56.4  
833  
1,280  
1,570  
4,220  
4,900  
8,830  
1,280  
3,000  
4,220  
7,350  
8,830  
1,960  
3,000  
6,370  
7,350  
8,830  
1,960  
3,000  
6,370  
16  
18  
1.30 × 10  
9.00 × 10  
4.70 × 10  
2.80 × 10  
4.50 × 10  
3.40 × 10  
4.80 × 10  
6.90 × 10  
1.04 × 10  
6.70 × 10  
1.02 × 10  
7.80 × 10  
2.02 × 10  
1.34 × 10  
9.70 × 10  
1.02 × 10  
7.80 × 10  
2.02 × 10  
40.9  
90.9  
132  
204  
34.5  
62.1  
138  
200  
310  
46.0  
82.8  
184  
267  
414  
76.4  
138  
306  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
80  
82.5*  
226  
327  
508  
77.2  
139  
309  
448  
695  
112  
202  
448  
650  
1,008  
176  
317  
704  
980  
16  
33  
33  
53  
18  
35  
35  
55  
55  
32  
39  
59  
59  
59  
36  
43  
63  
18  
1/20  
2,650  
2,940  
8,040  
833  
35  
1/29  
1/45  
35  
44  
55  
900 W 1/5  
400  
222  
100  
69  
20.4  
37.4  
37.4  
57.4  
57.4  
37  
1/9  
1,960  
2,650  
6,860  
8,040  
1,670  
1,960  
6,080  
6,860  
8,040  
1,670  
1,960  
6,080  
1/20  
1/29  
1/45  
44  
1.2 kW 1/5  
400  
222  
100  
69  
1/9  
44  
1/20  
1/29  
1/45  
1/5  
64  
64  
44  
64  
2 kW  
400  
222  
100  
41.5  
48.5  
68.5  
1/9  
1/20  
Note 1. The reduction gear inertia indicates the Servomotor shaft conversion value.  
Note 2. The enclosure rating for Servomotors with reduction gears is IP44.  
Note 3. The maximum momentary torque values marked by asterisks are the maximum allowable  
torque for the reduction gears. Use torque limits so that these values are not exceeded.  
Note 4. The allowable radial loads are measured in the center of the shaft.  
1,500-r/min Servomotors with Standard Reduction Gears (450 W to  
1.8 kW)  
Model  
Rated  
Rated  
Effi-  
ciency  
Maxi-  
mum  
Maxi-  
mum  
Reduction Allow-  
Allow-  
able  
thrust  
load  
Weight  
rotation torque  
speed  
gear  
able  
radial  
load  
Without  
With  
brake  
momen- momen-  
inertia  
brake  
tary  
rotation  
speed  
tary  
torque  
2
r/min  
N·m  
11.4  
%
r/min  
600  
333  
150  
103  
67  
N·m  
N
N
kg  
kg  
kg·m  
-4  
-5  
-4  
-4  
-4  
-4  
-5  
-4  
-4  
-4  
450 W 1/5  
1/9  
R88M-W45015T-@G05BJ 300  
R88M-W45015T-@G09BJ 167  
R88M-W45015T-@G20BJ 75  
R88M-W45015T-@G29BJ 52  
80  
35.7  
883  
1,280  
1,570  
4,220  
4,900  
5,690  
1,280  
1,570  
4,220  
4,900  
8,830  
14  
16  
1.26 × 10  
9.40 × 10  
4.66 × 10  
2.76 × 10  
1.81 × 10  
1.30 × 10  
9.00 × 10  
4.70 × 10  
2.80 × 10  
4.50 × 10  
20.4  
45.4  
65.9  
102  
80  
80  
80  
80  
80  
80  
80  
80  
80  
64.2  
143  
207  
321  
55.2  
74.5*  
221  
320  
497  
980  
14  
31  
31  
31  
16  
16  
33  
33  
53  
16  
33  
33  
33  
18  
18  
35  
35  
55  
1/20  
2,650  
2,940  
3,430  
883  
1/29  
1/45  
R88M-W45015T-@G45BJ  
33  
850 W 1/5  
R88M-W85015T-@G05BJ 300  
R88M-W85015T-@G09BJ 167  
R88M-W85015T-@G20BJ 75  
21.6  
38.8  
86.2  
125  
600  
333  
150  
103  
67  
1/9  
980  
1/20  
1/29  
1/45  
2,650  
2,940  
8,040  
R88M-W85015T-@G29BJ  
R88M-W85015T-@G45BJ  
52  
33  
194  
2-89  
Standard Models and Specifications  
Chapter 2  
Model  
Rated  
Rated  
Effi-  
ciency  
Maxi-  
mum  
Maxi-  
mum  
Reduction Allow-  
Allow-  
Weight  
rotation torque  
speed  
gear  
able  
radial  
load  
able  
thrust  
load  
Without  
With  
brake  
momen- momen-  
inertia  
brake  
tary  
rotation  
speed  
tary  
torque  
2
r/min  
N·m  
33.4  
%
r/min  
600  
333  
150  
103  
67  
N·m  
N
N
kg  
kg  
kg·m  
-4  
-4  
-4  
-3  
-4  
-3  
-4  
-3  
-3  
1.3 kW 1/5  
1/9  
R88M-W1K315T-@G05BJ 300  
R88M-W1K315T-@G09BJ 167  
R88M-W1K315T-@G20BJ 75  
R88M-W1K315T-@G29BJ 52  
R88M-W1K315T-@G45BJ 33  
R88M-W1K815T-@G05BJ 300  
R88M-W1K815T-@G09BJ 167  
R88M-W1K815T-@G20BJ 75  
R88M-W1K815T-@G29BJ 52  
80  
93.2  
1,670  
1,960  
2,650  
6,860  
8,040  
1,670  
1,960  
6,080  
6,860  
1,960  
3,000  
4,220  
7,350  
8,830  
1,960  
3,000  
6,370  
7,350  
28  
30.4  
7.20 × 10  
4.80 × 10  
6.90 × 10  
1.04 × 10  
6.70 × 10  
1.02 × 10  
7.80 × 10  
2.02 × 10  
1.34 × 10  
60.0  
133  
193  
300  
46.0  
82.8  
184  
267  
80  
80  
80  
80  
80  
80  
80  
80  
168  
373  
541  
839  
115  
207  
459  
666  
35  
35  
55  
55  
32  
39  
59  
59  
37.4  
37.4  
57.4  
57.4  
37  
1/20  
1/29  
1/45  
1.8 kW 1/5  
600  
333  
150  
103  
1/9  
44  
1/20  
1/29  
64  
64  
Note 1. The reduction gear inertia indicates the Servomotor shaft conversion value.  
Note 2. The enclosure rating for Servomotors with reduction gears is IP44.  
Note 3. The maximum momentary torque values marked by asterisks are the maximum allowable  
torque for the reduction gears. Use torque limits so that these values are not exceeded.  
Note 4. The allowable radial loads are measured in the center of the shaft.  
3,000-r/min Servomotors with Economy Reduction Gears (100 to  
750 W)  
Model  
Rated  
Rated  
Effi-  
ciency  
Maxi-  
mum  
Maxi-  
mum  
Reduction Allow-  
Allow-  
able  
thrust  
load  
Weight  
rotation torque  
speed  
gear  
able  
radial  
load  
Without  
With  
brake  
momen- momen-  
inertia  
brake  
tary  
rotation  
speed  
tary  
torque  
2
r/min  
N·m  
1.19  
%
r/min  
1,000  
556  
N·m  
N
N
196  
220  
294  
661  
196  
465  
588  
661  
392  
465  
588  
808  
392  
588  
686  
1,029  
kg  
kg  
kg·m  
-6  
-6  
-6  
-6  
-5  
-5  
-5  
-5  
-5  
-5  
-5  
-5  
-5  
-5  
-5  
-5  
100 W 1/5  
1/9  
R88M-W10030@-@G05CJ 600  
R88M-W10030@-@G09CJ 333  
R88M-W10030@-@G15CJ 200  
R88M-W10030@-@G25CJ 120  
R88M-W20030@-@G05CJ 600  
R88M-W20030@-@G09CJ 333  
R88M-W20030@-@G15CJ 200  
R88M-W20030@-@G25CJ 120  
R88M-W40030@-@G05CJ 600  
R88M-W40030@-@G09CJ 333  
R88M-W40030@-@G15CJ 200  
R88M-W40030@-@G25CJ 120  
R88M-W75030@-@G05CJ 600  
R88M-W75030@-@G09CJ 333  
R88M-W75030@-@G15CJ 200  
R88M-W75030@-@G25CJ 120  
75  
3.58  
392  
1.05  
1.35  
4.08 × 10  
3.43 × 10  
3.62 × 10  
3.92 × 10  
1.53 × 10  
2.68 × 10  
2.71 × 10  
2.67 × 10  
3.22 × 10  
2.68 × 10  
2.71 × 10  
2.79 × 10  
7.17 × 10  
6.50 × 10  
7.09 × 10  
7.05 × 10  
2.29  
3.82  
6.36  
2.71  
3.78  
6.31  
11.1  
5.40  
9.49  
15.8  
26.4  
10.8  
18.2  
30.4  
50.7  
80  
80  
80  
85  
66  
66  
70  
85  
83  
83  
83  
90  
85  
85  
85  
6.88  
11.5  
19.1  
8.12  
11.3  
18.9  
33.4  
16.2  
28.5  
47.6  
79.3  
32.2  
54.7  
91.2  
152  
441  
1.05  
1.2  
2.2  
1.82  
2.8  
3.2  
3.2  
3.4  
3.4  
3.8  
4.9  
5.5  
6.8  
7.2  
10.6  
1.35  
1.5  
2.5  
2.32  
3.3  
3.7  
3.7  
3.9  
3.9  
4.3  
5.4  
6.4  
7.7  
8.1  
11.5  
1/15  
1/25  
200 W 1/5  
333  
588  
200  
1,323  
392  
1,000  
556  
1/9  
931  
1/15  
1/25  
333  
1,176  
1,323  
784  
200  
400 W 1/5  
1,000  
556  
1/9  
931  
1/15  
1/25  
333  
1,176  
1,617  
784  
200  
750 W 1/5  
1,000  
556  
1/9  
1,176  
1,372  
2,058  
1/15  
1/25  
333  
200  
Note 1. The reduction gear inertia indicates the Servomotor shaft conversion value.  
Note 2. The enclosure rating for Servomotors with reduction gears is IP44.  
Note 3. The allowable radial loads are measured in the center of the shaft.  
2-90  
Standard Models and Specifications  
Chapter 2  
3,000-r/min Flat-style Servomotors with Economy Reduction Gears  
(100 to 750 W)  
Model  
Rated  
Rated  
Effi-  
Maxi-  
mum  
Maxi-  
mum  
Reduction Allow-  
Allow-  
able  
thrust  
load  
Weight  
rotation torque ciency  
speed  
gear  
able  
radial  
load  
Without  
With  
brake  
momen- momen-  
inertia  
brake  
tary  
rotation  
speed  
tary  
torque  
2
r/min  
N·m  
1.19  
%
r/min  
1,000  
556  
N·m  
N
N
196  
220  
294  
661  
196  
465  
588  
661  
392  
465  
588  
808  
392  
588  
686  
1,029  
kg  
kg  
kg·m  
-5  
-5  
-6  
-6  
-5  
-5  
-5  
-5  
-5  
-5  
-5  
-5  
-5  
-5  
-5  
-5  
100 W 1/5  
1/9  
R88M-WP10030@-@G05CJ 600  
R88M-WP10030@-@G09CJ 333  
R88M-WP10030@-@G15CJ 200  
R88M-WP10030@-@G25CJ 120  
R88M-WP20030@-@G05CJ 600  
R88M-WP20030@-@G09CJ 333  
R88M-WP20030@-@G15CJ 200  
R88M-WP20030@-@G25CJ 120  
R88M-WP40030@-@G05CJ 600  
R88M-WP40030@-@G09CJ 333  
R88M-WP40030@-@G15CJ 200  
R88M-WP40030@-@G25CJ 120  
R88M-WP75030@-@G05CJ 600  
R88M-WP75030@-@G09CJ 333  
R88M-WP75030@-@G15CJ 200  
R88M-WP75030@-@G25CJ 120  
75  
80  
80  
80  
85  
66  
66  
70  
85  
83  
83  
83  
90  
85  
85  
85  
3.58  
392  
1.42  
1.62  
1.60 × 10  
1.37 × 10  
3.38 × 10  
3.68 × 10  
1.53 × 10  
2.56 × 10  
2.71 × 10  
2.67 × 10  
3.23 × 10  
2.56 × 10  
2.71 × 10  
2.79 × 10  
7.17 × 10  
6.50 × 10  
6.86 × 10  
7.05 × 10  
2.29  
3.82  
6.36  
2.71  
3.78  
6.31  
11.1  
5.40  
9.49  
15.8  
26.4  
10.8  
18.2  
30.4  
50.7  
6.88  
11.5  
19.1  
8.12  
11.3  
18.9  
33.4  
16.2  
28.5  
47.6  
79.3  
32.2  
54.7  
91.2  
152  
441  
1.42  
1.47  
2.5  
1.62  
1.67  
2.7  
1/15  
1/25  
200 W 1/5  
333  
588  
200  
1,323  
392  
1,000  
556  
2.25  
3.2  
2.75  
3.7  
1/9  
931  
1/15  
1/25  
333  
1,176  
1,323  
784  
3.6  
4.1  
200  
3.6  
4.1  
400 W 1/5  
1,000  
556  
3.9  
4.4  
1/9  
931  
3.9  
4.4  
1/15  
1/25  
333  
1,176  
1,617  
784  
4.3  
4.8  
200  
5.4  
5.9  
750 W 1/5  
1,000  
556  
6.7  
8.2  
1/9  
1,176  
1,372  
2,058  
8.0  
9.5  
1/15  
1/25  
333  
8.4  
9.9  
200  
11.8  
13.3  
Note 1. The reduction gear inertia indicates the Servomotor shaft conversion value.  
Note 2. The enclosure rating for Servomotors with reduction gears is IP44.  
Note 3. The allowable radial loads are measured in the center of the shaft.  
2-5-4 Encoder Specifications  
Incremental Encoder Specifications  
Item  
3,000-r/min Servomotors  
50 to 750 W 1 to 3 kW  
3,000-r/min Flat-  
style Servomotors  
1,000-r/min  
Servomotors  
Encoder method  
Optical encoder  
13 bits  
17 bits  
13 bits  
17 bits  
Number of output  
pulses  
A, B phase: 2,048  
pulses/revolution  
A, B phase: 32,768 A, B phase: 2,048  
A, B phase: 32,768  
pulses/revolution  
pulses/revolution  
pulses/revolution  
Z phase: 1 pulse/  
revolution  
Z phase: 1 pulse/  
revolution  
Z phase: 1 pulse/  
revolution  
Z phase: 1 pulse/  
revolution  
Power supply voltage 5 V DC 5%  
Power supply current 120 mA  
150 mA  
120 mA  
150 mA  
2-91  
Standard Models and Specifications  
Chapter 2  
Item  
3,000-r/min Servomotors  
50 to 750 W 1 to 3 kW  
3,000-r/min Flat-  
style Servomotors  
1,000-r/min  
Servomotors  
Maximum rotation  
speed  
5,000 r/min  
Output signals  
+S, S  
Output impedance  
Conforming to EIA RS-422A.  
Output based on LTC1485CS or equivalent.  
Serial communica-  
tions data  
Position data, poll sensor, U, V, W phase, encoder alarm, Servomotor data  
Serial communica-  
tions method  
Bi-directional communications in HDLC format, by Manchester method  
Absolute Encoder Specifications  
Item  
3,000-r/min Servomotors  
50 to 750 W 1 to 3 kW  
3,000-r/min Flat-  
style Servomotors  
1,000-r/min  
Servomotors  
1,500-r/min  
Servomotors  
Encoder method  
Optical encoder  
16 bits  
17 bits  
16 bits  
17 bits  
Number of output  
pulses  
A, B phase: 16,384 A, B phase: 32,768 A, B phase: 16,384 A, B phase: 32,768  
pulses/revolution  
pulses/revolution  
pulses/revolution  
pulses/revolution  
Z phase: 1 pulse/  
revolution  
Z phase: 1 pulse/  
revolution  
Z phase: 1 pulse/  
revolution  
Z phase: 1 pulse/  
revolution  
Maximum rotational  
speed  
32,768 to +32,767 rotations or 0 to 65,534 rotations  
Power supply voltage 5 V DC 5%  
Power supply current 180 mA  
Applicable battery volt- 3.6 V DC  
age  
Battery current con-  
sumption  
20 µA (for backup, when stopped), 3 µA (when Servo Driver is powered)  
Maximum rotation  
speed  
5,000 r/min  
Output signals  
+S, S  
Output impedance  
Conforming to EIA RS-422A.  
Output based on LTC1485CS or equivalent.  
Serial communica-  
tions data  
Position data, poll sensor, U, V, W phase, encoder alarm, Servomotor data  
Bi-directional communications in HDLC format, by Manchester method  
Amount of rotation  
Serial communica-  
tions method  
Absolute value com-  
munications data  
2-92  
Standard Models and Specifications  
Chapter 2  
2-6 Cable and Connector Specifications  
2-6-1 MECHATROLINK-II Communications Cable Specifications  
MECHATROLINK Communications Cable (With Connectors at Both  
Ends and a Core) (FNY-W6003-@@)  
Cable Models  
Name  
Model  
FNY-W6003-A5  
FNY-W6003-01  
FNY-W6003-03  
FNY-W6003-05  
FNY-W6003-10  
FNY-W6003-20  
FNY-W6003-30  
FNY-W6022  
Length (L)  
0.5 m  
MECHATROLINK-II Cable  
1.0 m  
3.0 m  
5.0 m  
10 m  
20 m  
30 m  
---  
MECHATROLINK-II Terminating Resistor  
Connection Configuration and External Dimensions  
MECHATROLINK-II Cable  
L
With core  
MECHATROLINK-II Terminating Resistor  
(8)  
46  
2-93  
Standard Models and Specifications  
Chapter 2  
Wiring  
The following example shows the MECHATROLINK-II Communications Cable connections between  
a host device and Servo Drivers.  
Position Control Unit  
L1  
L2  
Ln  
200V  
R88D-WN01H-ML2  
AC SERVO DRIVER  
200V  
200V  
R88D-WN01H-ML2  
AC SERVO DRIVER  
R88D-WN01H-ML2  
AC SERVO DRIVER  
POWER  
COM  
POWER  
COM  
POWER  
COM  
100W  
100W  
100W  
SW1  
SW1  
SW1  
C
C
C
N
6
N
6
N
6
CHARGE  
CHARGE  
A/B  
CHARGE  
A/B  
A/B  
Terminating  
Resistor  
C
N
3
C
N
3
C
N
3
C
N
1
C
N
1
C
N
1
U
V
U
V
U
V
W
W
W
C
N
2
C
N
2
C
N
2
C
N
4
C
N
4
C
N
4
Note 1. Use a minimum cable length of 0.5 m between any two devices (L1, L2 ... Ln).  
Note 2. The total cable length (L1, L2 ... Ln) must not exceed 50 m.  
2-94  
Standard Models and Specifications  
Chapter 2  
Servo Driver Cable (XW2Z-@J-B16)  
This Cable is for the Connector-Terminal Block Conversion Unit for W-series Servo Drivers (with  
built-in MECHATROLINK-II communications).  
Cables  
XW2Z-@J-B16  
Model  
Length (L)  
External  
sheath  
Weight  
diameter  
XW2Z-100J-B16 1 m  
XW2Z-200J-B16 2 m  
8.0 dia.  
Approx. 0.1 kg  
Approx. 0.2 kg  
Connection Configuration and External Dimensions  
6
L
39  
Connector-Terminal Block  
Conversion Unit side  
Servo Driver side  
XW2B-20G4  
XW2B-20G5  
XW2D-20G6  
R88D-WN@  
t = 14  
Wiring  
Connector for Connector-  
Terminal Block Conversion Unit  
Connector on Servo  
Driver (CN1)  
No.  
Symbol  
No.  
6
Symbol  
1
+24VIN  
+24V  
2
3
0 V  
+24V  
0 V  
4
5
+ 24 V  
0 V  
6
7
Connector on Servo Driver  
Connector plug model  
8
9
7
DEC  
POT  
DEC  
POT  
9
10126-3000VE (Sumitomo 3M)  
Connector Case model  
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
8
NOT  
NOT  
10  
11  
12  
15  
14  
2
EXT1  
EXT2  
EXT3  
BATGND  
BAT  
10326-52A0-008 (Sumitomo 3M)  
EXT1  
EXT2  
EXT3  
BATGND  
BAT  
Connector on Connector-Terminal  
Block Conversion Unit  
Connector Socket Model  
XG4M-2030 (OMRON)  
Strain Relief Model  
BKIRCOM  
BKIR  
BKIRCOM  
BKIR  
1
XG4T-2004 (OMRON)  
4
ALMCOM  
ALM  
ALMCOM  
ALM  
3
Cable  
Shell  
FG  
FG  
AWG28 × 3P + AWG28 × 7C, UL2464  
Note Set and use the signal names listed above for the Servo Driver connectors.  
2-95  
Standard Models and Specifications  
Chapter 2  
Connector-Terminal Block Conversion Unit (XW2B-20G@)  
Control input signals from WN-series Servo Drivers (CN1) can be converted to a terminal block by  
using the Connector-Terminal Block Conversion Unit with the XW2Z-@J-B16 Cable for Connector-  
Terminal Block Conversion Units.  
Connector-Terminal Block Conversion Units  
XW2B-20G4  
The XW2B-20G4 is a Connector-Terminal Block Conversion Unit with a M3 screw terminal block.  
External Dimensions  
Flat cable connector  
(MIL plug)  
3.5  
67.5  
3.5  
Two, 3.5 dia.  
Terminal block  
5.08  
Precautions  
• Use 0.30 to 1.25 mm2 wire (AWG22 to AWG16).  
• The wire inlet for M3 screw terminal blocks is 1.8 × 2.5 mm (vertical × horizontal).  
• Strip the sheath as shown in the following diagram.  
6 mm  
2-96  
Standard Models and Specifications  
Chapter 2  
Terminal Block Model  
XW2B-20G5  
The XW2B-20G5 is a Connector-Terminal Block Conversion Unit with a M3.5 screw terminal block.  
External Dimensions  
Flat cable connector  
(MIL plug)  
3.5  
7
3.5  
7
112.5  
Two, 3.5-dia. holes  
8.5  
7.3  
Terminal block  
Note The terminal pitch is 8.5 mm.  
Precautions  
• When using crimp terminals, use crimp terminals with the following dimensions.  
Round Crimp Terminals  
Fork Crimp Terminals  
Dia.: 3.7 mm  
3.7 mm 6.8 mm max.  
6.8 mm max.  
Applicable Crimp Terminals  
Round Terminals 1.25 to 3  
2 to 3.5  
Applicable Wires  
2
AWG22 to AWG16 (0.30 to 1.25 mm )  
2
AWG16 to AWG14 (1.25 to 2.0 mm )  
2
Fork Terminals  
1.25Y to 3  
2 to 3.5  
AWG22 to AWG16 (0.30 to 1.25 mm )  
2
AWG16 to AWG14 (1.25 to 2.0 mm )  
• Use a tightening torque of 0.59 N·m when connecting wires and crimp terminals to the terminal  
block.  
2-97  
Standard Models and Specifications  
Chapter 2  
Terminal Blocks  
XW2D-20G6  
The XW2D-20G6 is an M3 screw terminal block.  
External Dimensions  
79  
(39.1)  
57  
17.6  
Two, 4.5-dia. holes  
39  
Precautions  
• When using crimp terminals, use crimp terminals with the following dimensions.  
Round Crimp Terminals  
Fork Crimp Terminals  
3.2 mm dia.  
5.8 mm max.  
5.8 mm max.  
3.2 mm  
Applicable Crimp Terminals  
Applicable Wires  
2
Round Terminals 1.25 to 3  
AWG22 to AWG16 (0.30 to 1.25 mm )  
2
Fork Terminals  
1.25Y to 3  
AWG22 to AWG16 (0.30 to 1.25 mm )  
• Use a tightening torque of 0.7 N·m when connecting wires and crimp terminals to the terminal  
block.  
2-98  
Standard Models and Specifications  
Chapter 2  
Terminal Block Wiring Example (for XW2B-20G4/XW2B-20G5 and XW2D-20G6)  
(See note 7.)  
+24V  
+24 V  
+24V  
Not used  
POT  
EXT1  
EXT3  
BAT  
BKIR  
ALM  
0 V  
0 V  
0 V  
DEC  
NOT  
EXT2 BATGND BKIRCOM ALMCOM  
FG  
(See  
note 1.)  
(See note 5.)  
XB  
X1  
24 VDC  
24 VDC  
Note 1. Backup battery for absolute encoders (2.8 to 4.5 V).  
Note 2. A backup battery for absolute encoders is not required for motors with incremental encod-  
ers.  
Note 3. Connect a backup battery for an absolute encoder to either the Connector-Terminal Block  
Conversion Unit or to the battery cable for absolute encoder backup (with battery), but not  
to both.  
Note 4. Secure the backup battery for an absolute encoder with cable clips with double-sided tape  
or a similar means.  
Note 5. The XB contact is used to turn the electromagnetic brake ON and OFF.  
Note 6. Do not wire unused terminals.  
Note 7. Allocate BKIR (brake interlock) to CN1-1.  
2-6-2 Motor Cable Specifications  
The motor cable is used to connect the Servo Driver and Servomotor. Select the appropriate cable  
for the Servomotor. The maximum distance between Servo Driver and Servomotor is 50 m.  
Note Use a Robot Cable if the cable needs to bend.  
Bend Resistance of Robot Cables  
Robot Cables use wire that has a bending life of 20 million times when used at the minimum bending  
radius (R) or greater under the following conditions.  
Note 1. The bending resistance data was compiled under test conditions and must be used as a  
guide only. An extra margin must always be allowed.  
Note 2. The life expectancy is the number of uses without cracks or damage to the sheath that would  
affect performance while current is applied to the wire conductor. This value does not apply  
to cut shield strands.  
Note 3. Note: If Robot Cables are used at a bending radius smaller than the minimum bending radi-  
us, mechanical malfunctions, ground faults, and other problems may occur due to insulation  
breakdown. Contact your OMRON representative if you need to use a Robot Cable with a  
bending radius smaller than the minimum bending radius.  
2-99  
Standard Models and Specifications  
Chapter 2  
Power Cables  
Model  
Minimum bending radius (R)  
Without brake R88A-CAWA@@@SR  
55 mm  
55 mm  
96 mm  
96 mm  
96 mm  
96 mm  
150 mm  
150 mm  
With brake  
Without brake R88A-CAWB@@@SR  
With brake R88A-CAWB@@@BR  
Without brake R88A-CAWC@@@SR  
With brake R88A-CAWC@@@BR  
Without brake R88A-CAWD@@@SR  
With brake R88A-CAWD@@@BR  
R88A-CAWA@@@BR  
@@@: 003 to 050  
Encoder Cables  
Model  
Minimum bending radius (R)  
R88A-CAWA@@@CR  
R88A-CAWA∆∆∆CR  
R88A-CAWB@@@NR  
R88A-CAWB∆∆∆NR  
46 mm  
78 mm  
46 mm  
78 mm  
@@@: 003 to 020  
∆∆∆: 030 to 050  
Moving Bending Test  
Stroke  
320 mm  
Bending radius (R)  
100 times/min  
2-100  
Standard Models and Specifications  
Chapter 2  
Standard Encoder Cable Specifications  
Select an Encoder Cable to match the Servomotor being used. The cables range in length from 3 to  
50 meters. (The maximum distance between the Servomotor and Servo Driver is 50 meters.)  
Cable Models  
R88A-CRWA@C  
Model  
Length (L)  
Outer diameter of sheath  
6.5 dia.  
Weight  
Approx. 0.2 kg  
Approx. 0.4 kg  
Approx. 0.7 kg  
Approx. 1.0 kg  
Approx. 1.3 kg  
Approx. 2.5 kg  
Approx. 3.3 kg  
Approx. 4.1 kg  
R88A-CRWA003C 3 m  
R88A-CRWA005C 5 m  
R88A-CRWA010C 10 m  
R88A-CRWA015C 15 m  
R88A-CRWA020C 20 m  
R88A-CRWA030C 30 m  
R88A-CRWA040C 40 m  
R88A-CRWA050C 50 m  
6.8 dia.  
R88A-CRWB@N  
Model  
Length (L)  
Outer diameter of sheath  
Weight  
Approx. 0.4 kg  
Approx. 0.5 kg  
Approx. 0.8 kg  
Approx. 1.1 kg  
Approx. 1.4 kg  
Approx. 2.6 kg  
Approx. 3.4 kg  
Approx. 4.2 kg  
R88A-CRWB003N 3 m  
R88A-CRWB005N 5 m  
R88A-CRWB010N 10 m  
R88A-CRWB015N 15 m  
R88A-CRWB020N 20 m  
R88A-CRWB030N 30 m  
R88A-CRWB040N 40 m  
R88A-CRWB050N 50 m  
6.5 dia.  
6.8 dia.  
Connection Configuration and External Dimensions  
R88A-CRWA@C  
43.5  
L
43.5  
Servo Driver  
R88D-WN@-ML2  
Servomotor  
R88M-W@  
t = 12  
t = 12  
R88A-CRWB@N  
43.5  
L
69.1  
Servo Driver  
Servomotor  
R88M-W@  
R88D-WN@-ML2  
t = 12  
2-101  
Standard Models and Specifications  
Chapter 2  
Wiring  
R88A-CRWA@C  
Cable:  
Servo Driver  
Signal  
E5V  
Servomotor  
AWG22 × 2C + AWG24 × 2P UL20276 (3 to 20 m)  
AWG16 × 2C + AWG26 × 2P UL20276 (30 to 50 m)  
No.  
No.  
Signal  
Red  
1
1
E5V  
E0V  
BAT+  
BAT−  
S+  
Black  
Cable  
Connector socket:  
54280-0609 (Molex Japan)  
Servomotor  
Connector plug:  
E0V  
2
2
Orange  
BAT+  
BAT−  
S+  
3
4
3
4
Orange/White  
Open  
5
5
55102-0600 (Molex Japan)  
Open/White  
S−  
6
6
S−  
FG  
Shell  
Shell  
FG  
Connector plug: 3 to 20 m ... 55101-0600 (Molex Japan)  
30 to 50 m ... 55100-0670 (Molex Japan)  
Crimp terminal: 50639-8091 (Molex Japan)  
R88A-CRWB@N  
Cable:  
AWG22 × 2C + AWG24 × 2P UL20276 (3 to 20 m)  
AWG16 × 2C + AWG26 × 2P UL20276 (30 to 50 m)  
Servo Driver  
Signal  
E5V  
Servomotor  
No.  
No.  
H
G
T
Signal  
Red  
Cable  
Straight plug:  
N/MS3106B20-29S (JAE Ltd.)  
Cable plug:  
N/MS3057-12A (JAE Ltd.)  
Servomotor  
1
E5V  
E0V  
BAT+  
BAT−  
S+  
Black  
E0V  
2
Orange  
BAT+  
BAT−  
S+  
3
4
Orange/White  
Open  
S
5
C
D
J
Receptacle:  
MS3102A20-29P (DDK Ltd.)  
Open/White  
S−  
FG  
6
S−  
FG  
Shell  
Connector plug: 3 to 20 m ... 55101-0600 (Molex Japan)  
30 to 50 m ... 55100-0670 (Molex Japan)  
Crimp terminal: 50639-8091 (Molex Japan)  
Absolute Encoder Battery Cable Specifications [ABS]  
Cable Models  
Model  
Length (L)  
R88A-CRWC0R3C  
0.3 m  
Connection Configuration and External Dimensions  
R88A-CRWC0R3C  
43.5  
0.3  
43.5  
Servo Driver  
R88D-WN@-ML2  
Servomotor  
R88M-W@  
Battery holder  
(provided with battery)  
t = 12  
t = 12  
2-102  
Standard Models and Specifications  
Chapter 2  
Wiring  
R88A-CRWC0R3C  
Servo Driver  
Servomotor  
Signal  
E 5V  
E 0V  
BAT+  
BAT−  
S+  
No.  
No.  
Signal  
Red  
1
1
E 5V  
E 0V  
BAT+  
BAT−  
S+  
Black  
Cable  
Connector socket:  
54280-0609 (Molex Japan)  
Servomotor  
Connector plug:  
2
2
Orange  
White/Orange  
Open  
3
4
3
4
5
5
55102-0600 (Molex Japan)  
Open/White  
S−  
6
6
S−  
FG  
Shell  
Shell  
FG  
Battery holder  
Signal  
No.  
1
BAT+  
BAT−  
2
Connector plug: 3 to 20 m ... 55101-0600 (Molex Japan)  
30 to 50 m ... 55100-0670 (Molex Japan)  
Crimp terminal: 50639-8091 (Molex Japan)  
Standard Power Cable Specifications  
Select a Power Cable to match the Servomotor being used. The cables range in length from 3 to 50  
meters. (The maximum distance between the Servomotor and Servo Driver is 50 meters.)  
R88A-CAWA@  
The R88A-CAWA@ Cables are for 3,000-r/min Servomotors (30 to 750 W) and 3,000-r/min Flat-style  
Servomotors (100 to 750 W).  
Cable Models  
For Servomotors without Brakes  
Model  
Length (L)  
Outer diameter of sheath  
6.2 dia.  
Weight  
Approx. 0.2 kg  
Approx. 0.3 kg  
Approx. 0.6 kg  
Approx. 0.9 kg  
Approx. 1.2 kg  
Approx. 1.8 kg  
Approx. 2.4 kg  
Approx. 3.0 kg  
R88A-CRWA003S 3 m  
R88A-CRWA005S 5 m  
R88A-CRWA010S 10 m  
R88A-CRWA015S 15 m  
R88A-CRWA020S 20 m  
R88A-CRWA030S 30 m  
R88A-CRWA040S 40 m  
R88A-CRWA050S 50 m  
2-103  
Standard Models and Specifications  
Chapter 2  
For Servomotors with Brakes  
Model  
Length (L)  
Outer diameter of sheath  
7.4 dia.  
Weight  
Approx. 0.3 kg  
Approx. 0.5 kg  
Approx. 0.9 kg  
Approx. 1.3 kg  
Approx. 1.7 kg  
Approx. 2.5 kg  
Approx. 3.3 kg  
Approx. 4.1 kg  
R88A-CRWA003B 3 m  
R88A-CRWA005B 5 m  
R88A-CRWA010B 10 m  
R88A-CRWA015B 15 m  
R88A-CRWA020B 20 m  
R88A-CRWA030B 30 m  
R88A-CRWA040B 40 m  
R88A-CRWA050B 50 m  
Note If a 750-W Servomotor is to be wired at a distance of 30 meters or more, use R88A-CAWB@@  
Cable.  
Connection Configuration and External Dimensions  
For Servomotors without Brakes  
50  
L
27.4  
Servo Driver  
R88D-WN@-ML2  
Servomotor  
R88M-W@  
t = 15.7  
For Servomotors with Brakes  
50  
L
27.4  
Servo Driver  
Servomotor  
R88M-W@  
R88D-WN@-ML2  
t = 28.4  
Wiring  
For Servomotors without Brakes  
Servo Driver  
Servomotor  
No.  
1
Symbol  
Cable  
Red  
Connector cap: 350780-1 (Tyco Electronics AMP KK)  
Connector socket: 350689-3 (Tyco Electronics AMP KK)  
Servomotor  
Connector plug: 350779-1 (Tyco Electronics AMP KK)  
Connector pins 1 to 3: 350690-3 (Tyco Electronics AMP KK)  
Connector pin 4: 770210-1 (Tyco Electronics AMP KK)  
Phase-U  
Phase-V  
Phase-W  
FG  
White  
Blue  
2
3
Green/Yellow  
4
Cable: AWG20 × 4C UL2464  
M4 crimp  
terminal  
2-104  
Standard Models and Specifications  
Chapter 2  
For Servomotors with Brakes  
Servo Driver  
Servomotor  
No.  
1
Symbol  
Cable  
Red  
Phase-U  
Phase-V  
Phase-W  
FG  
Connector cap: 350781-1 (Tyco Electronics AMP KK)  
Connector socket: 350689-3 (Tyco Electronics AMP KK)  
Servomotor  
Connector plug: 350715-1 (Tyco Electronics AMP KK)  
Connector pins 1 to 3, 5, 6: 350690-3 (Tyco Electronics AMP KK)  
Connector pin 4: 770210-1 (Tyco Electronics AMP KK)  
White  
Blue  
2
3
Green/Yellow  
4
Black  
5
Brake  
Brown  
6
Brake  
Cable: AWG20 × 6C UL2464  
M4 crimp  
terminals  
R88A-CAWB@  
The R88A-CAWB@ Cables are for 3,000-r/min Flat-style Servomotors (1.5 kW).  
Cable Models  
For Servomotors without Brakes  
Model  
Length (L)  
Outer diameter of sheath  
10.4 dia.  
Weight  
Approx. 0.6 kg  
Approx. 1.0 kg  
Approx. 1.9 kg  
Approx. 2.8 kg  
Approx. 3.7 kg  
Approx. 5.5 kg  
Approx. 7.3 kg  
Approx. 9.2 kg  
R88A-CAWB003S 3 m  
R88A-CAWB005S 5 m  
R88A-CAWB010S 10 m  
R88A-CAWB015S 15 m  
R88A-CAWB020S 20 m  
R88A-CAWB030S 30 m  
R88A-CAWB040S 40 m  
R88A-CAWB050S 50 m  
For Servomotors with Brakes  
Model  
Length (L)  
Outer diameter of sheath  
14.5 dia.  
Weight  
R88A-CAWB003B 3 m  
R88A-CAWB005B 5 m  
R88A-CAWB010B 10 m  
R88A-CAWB015B 15 m  
R88A-CAWB020B 20 m  
R88A-CAWB030B 30 m  
R88A-CAWB040B 40 m  
R88A-CAWB050B 50 m  
Approx. 1.0 kg  
Approx. 1.6 kg  
Approx. 3.2 kg  
Approx. 4.8 kg  
Approx. 6.4 kg  
Approx. 9.5 kg  
Approx. 12.7 kg  
Approx. 15.8 kg  
Note Use these cables if a 750-W Servomotor is to be wired at a distance of 30 meters or more.  
2-105  
Standard Models and Specifications  
Chapter 2  
Connection Configuration and External Dimensions  
For Servomotors without Brakes  
50  
L
27.4  
Servo Driver  
R88D-WN@-ML2  
Servomotor  
R88M-W@  
t = 15.7  
For Servomotors with Brakes  
50  
L
27.4  
Servo Driver  
Servomotor  
R88D-WN@-ML2  
R88M-W@  
t = 28.4  
Wiring  
For Servomotors without Brakes  
Servo Driver  
Servomotor  
Cable  
No.  
1
Symbol  
Connector cap: 350780-1 (Tyco Electronics AMP KK)  
Connector socket:  
Pins 1 to 3: 350551-6 (Tyco Electronics AMP KK)  
Pin 4: 350551-3 (Tyco Electronics AMP KK)  
Servomotor  
Connector plug: 350779-1 (Tyco Electronics AMP KK)  
Connector pins 1 to 3: 350547-6 (Tyco Electronics AMP KK)  
Connector pin 4: 350669-1 (Tyco Electronics AMP KK)  
Red  
Phase-U  
Phase-V  
White  
Blue  
2
3
Phase-W  
FG  
Green/Yellow  
4
Cable: AWG14 × 4C UL2463  
M4 crimp  
terminal  
For Servomotors with Brakes  
Servo Drivers  
Servomotors  
No.  
1
Symbol  
Cable  
Red  
Connector plug: 350781-1 (Tyco Electronics AMP KK)  
Connector socket:  
Pins 1 to 3: 350551-6 (Tyco Electronics AMP KK)  
Pins 4 to 6: 350551-3 (Tyco Electronics AMP KK)  
Servomotor  
Connector plug: 350715-1 (Tyco Electronics AMP KK)  
Connector pins 1 to 3: 350547-6 (Tyco Electronics AMP KK)  
Connector pin 4: 350669-1 (Tyco Electronics AMP KK)  
Connector pins 5 and 6: 350690-3 (Tyco Electronics AMP KK)  
Phase-U  
Phase-V  
Phase-W  
FG  
White  
2
Blue  
3
Green/Yellow  
Black  
4
5
Brake  
Brown  
6
Brake  
Cable: AWG14 × 6C UL2463  
M4 crimp  
terminals  
2-106  
Standard Models and Specifications  
Chapter 2  
R88A-CAWC@  
The R88A-CAWC@ Cables are for 3,000-r/min Servomotors (1 to 2 kW), 1,000-r/min Servomotors  
(300 to 900 W), and 1,500-r/min Servomotors (450 W to 1.3 kW).  
Cable Models  
For Servomotors without Brakes  
Model  
Length (L)  
Outer diameter of sheath  
10.4 dia.  
Weight  
Approx. 0.6 kg  
Approx. 1.0 kg  
Approx. 1.9 kg  
Approx. 2.8 kg  
Approx. 3.7 kg  
Approx. 5.6 kg  
Approx. 7.4 kg  
Approx. 9.2 kg  
R88A-CAWC003S 3 m  
R88A-CAWC005S 5 m  
R88A-CAWC010S 10 m  
R88A-CAWC015S 15 m  
R88A-CAWC020S 20 m  
R88A-CAWC030S 30 m  
R88A-CAWC040S 40 m  
R88A-CAWC050S 50 m  
For Servomotors with Brakes  
Model  
Length (L)  
Outer diameter of sheath  
14.5 dia.  
Weight  
R88A-CAWC003B 3 m  
R88A-CAWC005B 5 m  
R88A-CAWC010B 10 m  
R88A-CAWC015B 15 m  
R88A-CAWC020B 20 m  
R88A-CAWC030B 30 m  
R88A-CAWC040B 40 m  
R88A-CAWC050B 50 m  
Approx. 1.1 kg  
Approx. 1.7 kg  
Approx. 3.3 kg  
Approx. 4.9 kg  
Approx. 6.4 kg  
Approx. 9.6 kg  
Approx. 12.7 kg  
Approx. 15.9 kg  
Connection Configuration and External Dimensions  
For Servomotors without Brakes  
70  
L
65.9  
Servo Driver  
R88D-WN@-ML2  
Servomotor  
R88M-W@  
For Servomotors with Brakes  
70  
L
69.1  
Servo Driver  
Servomotor  
R88M-W@  
R88D-WN@-ML2  
2-107  
Standard Models and Specifications  
Chapter 2  
Wiring  
For Servomotors without Brakes  
Servo Driver  
Servomotor  
No.  
A
Symbol  
Cable  
Red  
Straight plug: N/MS3106B18-10S (JAE Ltd.)  
Cable clamp: N/MS3057-10A (JAE Ltd.)  
Servomotor  
Phase-U  
Phase-V  
Phase-W  
FG  
White  
Blue  
B
C
Receptacle: MS3102A18-10P (DDK Ltd.)  
Green/Yellow  
Cable: AWG14 × 4C UL2463  
D
M4 crimp  
terminals  
For Servomotors with Brakes  
Servo Driver  
Servomotor  
No.  
A
Symbol  
Cable  
Red  
Straight plug: N/MS3106B20-15S (JAE Ltd.)  
Cable clamp: N/MS3057-12A (JAE Ltd.)  
Servomotor  
Phase-U  
Phase-V  
Phase-W  
FG  
White  
B
Blue  
C
Receptacle: MS3102A20-15P (DDK Ltd.)  
Green/Yellow  
Black  
D
E
Brake  
Brown  
F
Brake  
Cable: AWG14 × 6C UL2463  
M4 crimp  
terminals  
Note Connector-type terminal blocks are used for Servo Drivers of 1.5 kW or less, as shown in Ter-  
minal Block Wiring Procedure under 3-2-3 Terminal Block Wiring. Remove the crimp terminals  
from the phase-U, phase-V, and phase-W wires for these Servo Drivers.  
R88A-CAWD@  
The R88A-CAWD@ Cables are for 3,000-r/min Servomotors (3 to 5 kW), 1,000-r/min Servomotors  
(1.2 to 3 kW), and 1,500-r/min Servomotors (1.8 to 4.4 kW).  
Cable Models  
For Servomotors without Brakes  
Model  
Length (L)  
Outer diameter of sheath  
14.7 dia.  
Weight  
R88A-CAWD003S 3 m  
R88A-CAWD005S 5 m  
R88A-CAWD010S 10 m  
R88A-CAWD015S 15 m  
R88A-CAWD020S 20 m  
R88A-CAWD030S 30 m  
R88A-CAWD040S 40 m  
R88A-CAWD050S 50 m  
Approx. 1.3 kg  
Approx. 2.1 kg  
Approx. 4.1 kg  
Approx. 6.0 kg  
Approx. 8.0 kg  
Approx. 11.9 kg  
Approx. 15.8 kg  
Approx. 19.7 kg  
2-108  
Standard Models and Specifications  
Chapter 2  
For Servomotors with Brakes  
Model  
Length (L)  
Outer diameter of sheath  
17.8 dia.  
Weight  
R88A-CAWD003B 3 m  
R88A-CAWD005B 5 m  
R88A-CAWD010B 10 m  
R88A-CAWD015B 15 m  
R88A-CAWD020B 20 m  
R88A-CAWD030B 30 m  
R88A-CAWD040B 40 m  
R88A-CAWD050B 50 m  
Approx. 1.9 kg  
Approx. 3.0 kg  
Approx. 5.8 kg  
Approx. 8.6 kg  
Approx. 11.4 kg  
Approx. 17.0 kg  
Approx. 22.6 kg  
Approx. 28.2 kg  
Connection Configuration and External Dimensions  
For Servomotors without Brakes  
70  
L
69.1  
Servo Driver  
R88D-WN@-ML2  
Servomotor  
R88M-W@  
For Servomotors with Brakes  
70  
L
74.6  
Servo Driver  
Servomotor  
R88M-W@  
R88D-WN@-ML2  
Wiring  
For Servomotors without Brakes  
Servo Driver  
Servomotor  
No.  
A
Symbol  
Phase-U  
Phase-V  
Phase-W  
FG  
Cable  
Red  
Straight plug: N/MS3106B22-22S (JAE Ltd.)  
Cable clamp: N/MS3057-12A (JAE Ltd.)  
Servomotor  
White  
Blue  
B
C
Receptacle: MS3102A22-22P (DDK Ltd.)  
Green/Yellow  
D
Cable: AWG10 × 4C UL2463  
M5 crimp  
terminals  
2-109  
Standard Models and Specifications  
Chapter 2  
For Servomotors with Brakes  
Servo Driver  
Servomotor  
No.  
A
Symbol  
Cable  
Red  
Straight plug: N/MS3106B24-10S (JAE Ltd.)  
Cable clamp: N/MS3057-16A (JAE Ltd.)  
Servomotor  
Phase-U  
Phase-V  
Phase-W  
FG  
White  
Blue  
B
C
Receptacle: MS3102A24-10P (DDK Ltd.)  
Green/Yellow  
D
Black  
E
Brake  
Brown  
F
Brake  
Cable: AWG10 × 6C UL2463  
M5 crimp  
terminals  
Note Connector-type terminal blocks are used for Servo Drivers of 1.5 kW or less, as shown in Ter-  
minal Block Wiring Procedure under 3-2-3 Terminal Block Wiring. Remove the crimp terminals  
from the phase-U, phase-V, and phase-W wires for these Servo Drivers.  
Robot Cable Encoder Cable Specifications  
Select an Encoder Cable to match the Servomotor being used. The cables range in length from 3 to  
50 meters. (The maximum distance between the Servomotor and Servo Driver is 50 meters.)  
Cable Models  
R88A-CRWA@CR  
Model  
Length (L)  
Outer diameter of sheath  
7.0 dia.  
Weight  
Approx. 0.2 kg  
Approx. 0.3 kg  
Approx. 0.6 kg  
Approx. 0.9 kg  
Approx. 1.2 kg  
Approx. 1.8 kg  
Approx. 2.4 kg  
Approx. 3.0 kg  
R88A-CRWA003CR 3 m  
R88A-CRWA005CR 5 m  
R88A-CRWA010CR 10 m  
R88A-CRWA015CR 15 m  
R88A-CRWA020CR 20 m  
R88A-CRWA030CR 30 m  
R88A-CRWA040CR 40 m  
R88A-CRWA050CR 50 m  
6.7 dia.  
R88A-CRWB@NR  
Model  
Length (L)  
Outer diameter of sheath  
Weight  
Approx. 0.3 kg  
Approx. 0.4 kg  
Approx. 0.7 kg  
Approx. 1.0 kg  
Approx. 1.3 kg  
Approx. 1.9 kg  
Approx. 2.5 kg  
Approx. 3.1 kg  
R88A-CRWB003NR 3 m  
R88A-CRWB005NR 5 m  
R88A-CRWB010NR 10 m  
R88A-CRWB015NR 15 m  
R88A-CRWB020NR 20 m  
R88A-CRWB030NR 30 m  
R88A-CRWB040NR 40 m  
R88A-CRWB050NR 50 m  
6.5 dia.  
6.8 dia.  
2-110  
Standard Models and Specifications  
Connection Configuration and External Dimensions  
R88A-CRWA@CR  
Chapter 2  
43.5  
L
43.5  
Servo Driver  
R88D-WN@-ML2  
Servomotor  
R88M-W@  
t = 12  
t = 12  
R88A-CRWB@NR  
43.5  
L
69.1  
Servo Driver  
Servomotor  
R88M-W@  
R88D-WN@-ML2  
t = 12  
Wiring  
R88A-CRWA@CR  
Cable:  
Servo Driver  
Signal  
E5V  
Servomotor  
AWG22 × 2C + AWG24 × 2P UL20276 (3 to 20 m)  
AWG16 × 2C + AWG26 × 2P UL20276 (30 to 50 m)  
No.  
No.  
Signal  
Red  
1
1
E5V  
E0V  
Black  
Cable  
Connector socket:  
54280-0609 (Molex Japan)  
Servomotor  
Connector plug:  
E0V  
2
2
Orange  
BAT+  
BAT−  
S+  
3
4
3
4
BAT+  
BAT−  
S+  
Orange/White  
Open  
5
5
55102-0600 (Molex Japan)  
Open/White  
S−  
6
6
S−  
FG  
Shell  
Shell  
FG  
Connector plug: 55100-0670 (Molex Japan)  
Crimp terminal: 50639-8091 (Molex Japan)  
R88A-CRWB@NR  
Cable:  
AWG22 × 2C + AWG24 × 2P UL20276 (3 to 20 m)  
AWG16 × 2C + AWG26 × 2P UL20276 (30 to 50 m)  
Servo Driver  
Signal  
E5V  
Servomotor  
No.  
No.  
H
G
T
Signal  
Red  
Cable  
Straight plug:  
N/MS3106B20-29S (JAE Ltd.)  
Cable plug:  
N/MS3057-12A (JAE Ltd.)  
Servomotor  
1
E5V  
E0V  
BAT+  
BAT−  
S+  
Black  
E0V  
2
Orange  
BAT+  
BAT−  
S+  
3
4
Orange/White  
Open  
S
5
C
D
J
Receptacle:  
MS3102A20-29P (DDK Ltd.)  
Open/White  
S−  
FG  
6
S−  
FG  
Shell  
Connector plug: 55100-0670 (Molex Japan)  
Crimp terminal: 50639-8091 (Molex Japan)  
2-111  
Standard Models and Specifications  
Chapter 2  
Robot Cable Power Cable Specifications  
Select a Power Cable to match the Servomotor being used. The cables range in length from 3 to 50  
meters. (The maximum distance between the Servomotor and Servo Driver is 50 meters.)  
R88A-CAWA@R  
The R88A-CAWA@R Cables are for 3,000-r/min Servomotors (30 to 750 W) and 3,000-r/min Flat-  
style Servomotors (100 to 750 W).  
Cable Models  
For Servomotors without Brakes  
Model  
Length (L)  
Outer diameter of sheath  
6.5 dia.  
Weight  
Approx. 0.2 kg  
Approx. 0.3 kg  
Approx. 0.6 kg  
Approx. 0.8 kg  
Approx. 1.1 kg  
Approx. 1.7 kg  
Approx. 2.2 kg  
Approx. 2.8 kg  
R88A-CRWA003SR 3 m  
R88A-CRWA005SR 5 m  
R88A-CRWA010SR 10 m  
R88A-CRWA015SR 15 m  
R88A-CRWA020SR 20 m  
R88A-CRWA030SR 30 m  
R88A-CRWA040SR 40 m  
R88A-CRWA050SR 50 m  
For Servomotors with Brakes  
Model  
Length (L)  
Outer diameter of sheath  
7.0 dia.  
Weight  
Approx. 0.2 kg  
Approx. 0.4 kg  
Approx. 0.8 kg  
Approx. 1.1 kg  
Approx. 1.5 kg  
Approx. 2.3 kg  
Approx. 3.0 kg  
Approx. 3.8 kg  
R88A-CRWA003BR 3 m  
R88A-CRWA005BR 5 m  
R88A-CRWA010BR 10 m  
R88A-CRWA015BR 15 m  
R88A-CRWA020BR 20 m  
R88A-CRWA030BR 30 m  
R88A-CRWA040BR 40 m  
R88A-CRWA050BR 50 m  
Note If a 750-W Servomotor is to be wired at a distance of 30 meters or more, use R88A-CAWB@R  
Cable.  
Connection Configuration and External Dimensions  
For Servomotors without Brakes  
50  
L
27.4  
Servo Driver  
R88D-WN@-ML2  
Servomotor  
R88M-W@  
t = 15.7  
2-112  
Standard Models and Specifications  
Chapter 2  
For Servomotors with Brakes  
50  
L
27.4  
Servo Driver  
Servomotor  
R88M-W@  
R88D-WN@-ML2  
t = 28.4  
Wiring  
For Servomotors without Brakes  
Servo Driver  
Servomotor  
No.  
1
Symbol  
Phase-U  
Cable  
Red  
Connector cap: 350780-1 (Tyco Electronics AMP KK)  
Connector socket: 350689-3 (Tyco Electronics AMP KK)  
Servomotor  
Connector plug: 350779-1 (Tyco Electronics AMP KK)  
Connector pins 1 to 3: 350690-3 (Tyco Electronics AMP KK)  
Connector pin 4: 770210-1 (Tyco Electronics AMP KK)  
White  
Blue  
2
Phase-V  
Phase-W  
FG  
3
Green/Yellow  
4
Cable: AWG21 × 4C UL2464  
M4 crimp  
terminal  
For Servomotors with Brakes  
Servo Driver  
Servomotor  
No.  
1
Symbol  
Cable  
Red  
Phase-U  
Phase-V  
Phase-W  
FG  
Connector cap: 350781-1 (Tyco Electronics AMP KK)  
Connector socket: 350689-3 (Tyco Electronics AMP KK)  
Servomotor  
Connector plug: 350715-1 (Tyco Electronics AMP KK)  
Connector pins 1 to 3, 5, 6: 350690-3 (Tyco Electronics AMP KK)  
Connector pin 4: 770210-1 (Tyco Electronics AMP KK)  
White  
2
Blue  
3
Green/Yellow  
Black  
4
5
Brake  
Brown  
6
Brake  
Cable: AWG21 × 6C UL2464  
M4 crimp  
terminals  
R88A-CAWB@R  
The R88A-CAWB@R Cables are for 3,000-r/min Flat-style Servomotors (1.5 kW).  
Cable Models  
For Servomotors without Brakes  
Model  
Length (L)  
Outer diameter of sheath  
9.5 dia.  
Weight  
Approx. 0.5 kg  
Approx. 0.8 kg  
Approx. 1.5 kg  
Approx. 2.2 kg  
Approx. 3.0 kg  
Approx. 4.5 kg  
Approx. 5.9 kg  
Approx. 7.4 kg  
R88A-CAWB003SR 3 m  
R88A-CAWB005SR 5 m  
R88A-CAWB010SR 10 m  
R88A-CAWB015SR 15 m  
R88A-CAWB020SR 20 m  
R88A-CAWB030SR 30 m  
R88A-CAWB040SR 40 m  
R88A-CAWB050SR 50 m  
2-113  
Standard Models and Specifications  
Chapter 2  
For Servomotors with Brakes  
Model  
Length (L)  
Outer diameter of sheath  
11.5 dia.  
Weight  
Approx. 0.7 kg  
Approx. 1.1 kg  
Approx. 2.2 kg  
Approx. 3.3 kg  
Approx. 4.4 kg  
Approx. 6.6 kg  
Approx. 8.8 kg  
Approx. 11.0 kg  
R88A-CAWB003BR 3 m  
R88A-CAWB005BR 5 m  
R88A-CAWB010BR 10 m  
R88A-CAWB015BR 15 m  
R88A-CAWB020BR 20 m  
R88A-CAWB030BR 30 m  
R88A-CAWB040BR 40 m  
R88A-CAWB050BR 50 m  
Note Use these cables if a 750-W Servomotor is to be wired at a distance of 30 meters or more.  
Connection Configuration and External Dimensions  
For Servomotors without Brakes  
50  
L
27.4  
Servo Driver  
R88D-WN@-ML2  
Servomotor  
R88M-W@  
t = 15.7  
For Servomotors with Brakes  
50  
L
27.4  
Servo Driver  
Servomotor  
R88D-WN@-ML2  
R88M-W@  
t = 28.4  
Wiring  
For Servomotors without Brakes  
Servo Driver  
Servomotor  
Cable  
No.  
1
Symbol  
Connector cap: 350780-1 (Tyco Electronics AMP KK)  
Connector socket:  
Pins 1 to 3: 350550-6 (Tyco Electronics AMP KK)  
Pin 4: 350551-3 (Tyco Electronics AMP KK)  
Servomotor  
Connector plug: 350779-1 (Tyco Electronics AMP KK)  
Connector pins 1 to 3: 350547-6 (Tyco Electronics AMP KK)  
Connector pin 4: 350669-1 (Tyco Electronics AMP KK)  
Red  
Phase-U  
Phase-V  
White  
Blue  
2
3
Phase-W  
FG  
Green/Yellow  
4
Cable: AWG15 × 4C UL2586  
M4 crimp  
terminal  
2-114  
Standard Models and Specifications  
Chapter 2  
For Servomotors with Brakes  
Servo Drivers  
Servomotors  
No.  
1
Symbol  
Cable  
Red  
Connector plug: 350781-1 (Tyco Electronics AMP KK)  
Connector socket:  
Pins 1 to 3: 350550-6 (Tyco Electronics AMP KK)  
Pins 4 to 6: 350550-3 (Tyco Electronics AMP KK)  
Servomotor  
Connector plug: 350715-1 (Tyco Electronics AMP KK)  
Connector pins 1 to 3: 350547-6 (Tyco Electronics AMP KK)  
Connector pin 4: 350669-1 (Tyco Electronics AMP KK)  
Connector pins 5 and 6: 350690-3 (Tyco Electronics AMP KK)  
Phase-U  
Phase-V  
Phase-W  
FG  
White  
Blue  
2
3
Green/Yellow  
4
Black  
5
Brake  
Brown  
6
Brake  
Cable: AWG15 × 6C UL2586  
M4 crimp  
terminals  
R88A-CAWC@R  
The R88A-CAWC@R Cables are for 3,000-r/min Servomotors (1 to 2 kW), 1,000-r/min Servomotors  
(300 to 900 W), and 1,500-r/min Servomotors (450 W to 1.3 kW).  
Cable Models  
For Servomotors without Brakes  
Model  
Length (L)  
Outer diameter of sheath  
9.5 dia.  
Weight  
Approx. 0.6 kg  
Approx. 0.9 kg  
Approx. 1.6 kg  
Approx. 2.4 kg  
Approx. 3.1 kg  
Approx. 4.6 kg  
Approx. 6.1 kg  
Approx. 7.5 kg  
R88A-CAWC003SR 3 m  
R88A-CAWC005SR 5 m  
R88A-CAWC010SR 10 m  
R88A-CAWC015SR 15 m  
R88A-CAWC020SR 20 m  
R88A-CAWC030SR 30 m  
R88A-CAWC040SR 40 m  
R88A-CAWC050SR 50 m  
For Servomotors with Brakes  
Model  
Length (L)  
Outer diameter of sheath  
11.5 dia.  
Weight  
Approx. 0.8 kg  
Approx. 1.3 kg  
Approx. 2.4 kg  
Approx. 3.5 kg  
Approx. 4.6 kg  
Approx. 6.8 kg  
Approx. 9.0 kg  
Approx. 11.2 kg  
R88A-CAWC003BR 3 m  
R88A-CAWC005BR 5 m  
R88A-CAWC010BR 10 m  
R88A-CAWC015BR 15 m  
R88A-CAWC020BR 20 m  
R88A-CAWC030BR 30 m  
R88A-CAWC040BR 40 m  
R88A-CAWC050BR 50 m  
2-115  
Standard Models and Specifications  
Chapter 2  
Connection Configuration and External Dimensions  
For Servomotors without Brakes  
70  
L
65.9  
Servo Driver  
R88D-WN@-ML2  
Servomotor  
R88M-W@  
For Servomotors with Brakes  
70  
L
69.1  
Servo Driver  
Servomotor  
R88M-W@  
R88D-WN@-ML2  
Wiring  
For Servomotors without Brakes  
Servo Driver  
Servomotor  
No.  
A
Symbol  
Phase-U  
Phase-V  
Phase-W  
FG  
Cable  
Red  
Straight plug: N/MS3106B18-10S (JAE Ltd.)  
Cable clamp: N/MS3057-10A (JAE Ltd.)  
Servomotor  
White  
Blue  
B
C
Receptacle: MS3102A18-10P (DDK Ltd.)  
Green/Yellow  
Cable: AWG15 × 4C UL2586  
D
M4 crimp  
terminals  
For Servomotors with Brakes  
Servo Driver  
Servomotor  
No.  
A
Symbol  
Cable  
Red  
Straight plug: N/MS3106B20-15S (JAE Ltd.)  
Cable clamp: N/MS3057-12A (JAE Ltd.)  
Servomotor  
Phase-U  
Phase-V  
Phase-W  
FG  
White  
B
Blue  
C
Receptacle: MS3102A20-15P (DDK Ltd.)  
Green/Yellow  
Black  
D
E
Brake  
Brown  
F
Brake  
Cable: AWG15 × 6C UL2586  
M4 crimp  
terminals  
Note Connector-type terminal blocks are used for Servo Drivers of 1.5 kW or less, as shown in Ter-  
minal Block Wiring Procedure under 3-2-3 Terminal Block Wiring. Remove the crimp terminals  
from the phase-U, phase-V, and phase-W wires for these Servo Drivers.  
2-116  
Standard Models and Specifications  
Chapter 2  
R88A-CAWD@R  
The R88A-CAWD@R Cables are for 3,000-r/min Servomotors (3 to 5 kW), 1,000-r/min Servomotors  
(1.2 to 3 kW), and 1,500-r/min Servomotors (1.8 to 4.4 kW).  
Cable Models  
For Servomotors without Brakes  
Model  
Length (L)  
Outer diameter of sheath  
13.5 dia.  
Weight  
R88A-CAWD003SR 3 m  
R88A-CAWD005SR 5 m  
R88A-CAWD010SR 10 m  
R88A-CAWD015SR 15 m  
R88A-CAWD020SR 20 m  
R88A-CAWD030SR 30 m  
R88A-CAWD040SR 40 m  
R88A-CAWD050SR 50 m  
Approx. 1.1 kg  
Approx. 1.7 kg  
Approx. 3.3 kg  
Approx. 4.9 kg  
Approx. 6.4 kg  
Approx. 9.5 kg  
Approx. 12.6 kg  
Approx. 15.7 kg  
For Servomotors with Brakes  
Model  
Length (L)  
Outer diameter of sheath  
16.5 dia.  
Weight  
R88A-CAWD003BR 3 m  
R88A-CAWD005BR 5 m  
R88A-CAWD010BR 10 m  
R88A-CAWD015BR 15 m  
R88A-CAWD020BR 20 m  
R88A-CAWD030BR 30 m  
R88A-CAWD040BR 40 m  
R88A-CAWD050BR 50 m  
Approx. 1.7 kg  
Approx. 2.6 kg  
Approx. 4.9 kg  
Approx. 7.2 kg  
Approx. 9.4 kg  
Approx. 14.1 kg  
Approx. 18.7 kg  
Approx. 23.3 kg  
Connection Configuration and External Dimensions  
For Servomotors without Brakes  
70  
L
69.1  
Servo Driver  
R88D-WN@-ML2  
Servomotor  
R88M-W@  
For Servomotors with Brakes  
70  
L
74.6  
Servo Driver  
Servomotor  
R88M-W@  
R88D-WN@-ML2  
2-117  
Standard Models and Specifications  
Chapter 2  
Wiring  
For Servomotors without Brakes  
Servo Driver  
Servomotor  
No.  
A
Symbol  
Cable  
Red  
Straight plug: N/MS3106B22-22S (JAE Ltd.)  
Cable clamp: N/MS3057-12A (JAE Ltd.)  
Servomotor  
Phase-U  
Phase-V  
Phase-W  
FG  
White  
Blue  
B
C
Receptacle: MS3102A22-22P (DDK Ltd.)  
Green/Yellow  
D
Cable: AWG11 × 4C UL2586  
M5 crimp  
terminals  
For Servomotors with Brakes  
Servo Driver  
Servomotor  
No.  
A
Symbol  
Cable  
Red  
Straight plug: N/MS3106B24-10S (JAE Ltd.)  
Cable clamp: N/MS3057-16A (JAE Ltd.)  
Servomotor  
Phase-U  
Phase-V  
Phase-W  
FG  
White  
B
Blue  
C
Receptacle: MS3102A24-10P (DDK Ltd.)  
Green/Yellow  
Black  
D
E
Brake  
Brown  
F
Brake  
Cable: AWG11 × 6C UL2586  
M5 crimp  
terminals  
Note Connector-type terminal blocks are used for Servo Drivers of 1.5 kW or less, as shown in Ter-  
minal Block Wiring Procedure under 3-2-3 Terminal Block Wiring. Remove the crimp terminals  
from the phase-U, phase-V, and phase-W wires for these Servo Drivers.  
2-6-3 Peripheral Cables and Connector Specifications  
Analog Monitor Cable (R88A-CMW001S)  
This is cable for connecting to the Servo Driver's Analog Monitor Connector (CN5). It is required for  
connecting analog monitor outputs to external devices such as measuring instruments.  
Cable Models  
Model  
Length (L)  
Weight  
R88A-CMW001S 1 m  
Approx. 0.1 kg  
Connection Configuration and External Dimensions  
7.3  
L
Servo Driver  
R88D-WN@-ML2  
External device  
t = 6  
2-118  
Standard Models and Specifications  
Chapter 2  
Wiring  
Servo Driver  
Symbol  
NM  
No.  
1
Red  
White  
Black  
Black  
AM  
2
GND  
GND  
3
4
Cable: AWG24 × 4C UL1007  
Connector socket: DF11-4DS-2C (Hirose Electric)  
Connector contacts: DF11-2428SCF (Hirose Electric)  
Computer Monitor Cables (R88A-CCW002P2)  
In order to set Servo Driver parameters and monitor a Servo Driver from a personal computer, the  
Computer Monitor Software and Computer Monitor Cable are required.  
Cable Models  
For DOS/V Computers  
Model  
Length (L)  
Outer diameter of sheath  
6 dia.  
Weight  
R88A-CCW002P2 2 m  
Approx. 0.1 kg  
Connection Configuration and External Dimensions  
For DOS/V Computers  
38  
L
39  
Servo Driver  
R88D-WN@-ML2  
Personal  
computer  
(DOS/V)  
t = 15  
t = 12.7  
Wiring  
For DOS/V Computers  
Computer  
Servo Driver  
Symbol  
RXD  
TXD  
RTS  
CTS  
GND  
FG  
No.  
No.  
2
Symbol  
2
TXD  
RXD  
3
7
4
Connector plug: 10114-3000VE (Sumitomo 3M)  
Connector case: 10314-52A0-008 (Sumitomo 3M)  
8
5
14  
GND  
FG  
Shell  
Shell  
Cable: AWG26 × 3C UL2464  
Connector: 17JE-13090-02 (D8A) (DDK Ltd.)  
2-119  
Standard Models and Specifications  
Chapter 2  
Control I/O Connector (R88A-CNW01)  
This is the connector for connecting to the Servo Driver's Control I/O Connector (CN1). This connec-  
tor is used when the cable is prepared by the user.  
External Dimensions  
39  
Connector plug: 10126-3000VE (Sumitomo 3M)  
Connector case: 10326-52A0-008 (Sumitomo 3M)  
t = 14  
Encoder Connectors (R88A-CNW0@R)  
These are the connectors for the encoder cable. These connectors are used when the cable is pre-  
pared by the user. They are solder-type connectors. Use the following cable.  
• Wire size: AWG16 max.  
• Stripped outer diameter: 2.1 mm max.  
• Outer diameter of sheath: 6.7 0.5 mm  
External Dimensions  
R88A-CNW01R (For Driver's CN2 Connector)  
43.5  
Connector Plug Model Number  
55100-0670 (Molex)  
t = 12  
R88A-CNW02R (For Motor Connector)  
43.5  
Connector Plug Model Number  
54280-0609 (Molex)  
t = 12  
2-120  
Standard Models and Specifications  
Chapter 2  
2-7 External Regeneration Resistor Specifications  
If the Servomotor's regenerative energy is excessive, connect an External  
Regeneration Resistor.  
R88A-RR22047S External Regeneration Resistor  
Specifications  
Model  
Resistance  
Nominal  
capacity  
Regeneration  
absorption for 120°C  
temperature rise  
Heat  
radiation  
condition  
Thermal switch  
output  
specifications  
R88A-RR22047S 47 5%  
220 W  
70 W  
t1.0 × @350 Operating tempera-  
(SPCC)  
ture: 170°C 3%,  
NC contact, Rated  
output: 3 A  
External Dimensions  
All dimensions are in millimeters.  
R88A-RR22047S External Regeneration Resistor  
Thermal switch output  
6
t1.2  
500  
200  
220  
230  
20  
2-121  
Standard Models and Specifications  
Chapter 2  
2-8 Absolute Encoder Backup Battery Specifications  
A backup battery is required when using a Servomotor with an absolute encoder.  
Install the Battery Unit in the battery holder for the Absolute Encoder Battery Cable  
(R88A-CRWC0R3C, 0.3 m), and connect the provided connector to the connector in  
the battery holder.  
R88A-BAT01W Absolute Encoder Backup Battery Unit  
Specifications  
Item  
Battery model number  
Battery voltage  
Specifications  
ER3V (Toshiba)  
3.6 V  
Current capacity  
1,000 mA·h  
Connection Configuration and External Dimensions  
t = 6  
Model  
Length (L)  
R88A-BAT01W  
20 mm  
5
26  
L
6.8  
Wiring  
No.  
1
Symbol  
BAT  
Red  
Black  
2
BATGND  
Cable: AWG24 × 2C UL1007  
Connector housing: DF3-2S-2C (Hirose Electric)  
Contact pin: DF3-2428SCFC (Hirose Electric)  
2-122  
Standard Models and Specifications  
Chapter 2  
Installation  
R88A-CRWC0R3C Absolute Encoder Battery Cable  
Battery holder  
Servo Driver connector  
Install an R88A-BAT01W Battery.  
Manufacturing Code  
The manufacturing code gives the manufacturing date as shown below.  
Day of month, one alphanumeric character  
Month, one alphanumeric character  
Year, one alphanumeric character  
The alphanumeric characters have the following meanings.  
Year  
Code  
Year  
K
L
M
N
O
P
Q
R
S
T
1999 2000 2001 2002 2003 2004 2005 2006 2007 2008  
Month  
Code  
R
1
A
2
Y
3
D
4
L
5
I
T
7
E
8
S
9
H
U
M
Month  
6
10  
11  
12  
Day of  
month  
Code  
Day  
A
B
C
D
4
E
F
G
7
H
8
I
J
K
L
1
2
3
5
6
9
10  
V
11  
W
23  
12  
X
Code  
Day  
M
13  
Y
N
O
15  
2
P
Q
17  
4
R
18  
5
S
T
U
21  
14  
Z
16  
3
19  
6
20  
22  
24  
Code  
Day  
25  
26  
27  
28  
29  
30  
31  
Note Some Servomotors manufactured before 2001 have a two-character code.  
Example1: OMR = 2003 December 18  
Example 2: LU = 2000 November  
2-123  
Standard Models and Specifications  
Chapter 2  
2-9 Reactor Specifications  
Connect a DC Reactor to the Servo Driver's DC Reactor connection terminal as a  
harmonic current control measure. Select a model to match the Servo Driver being  
used.  
R88A-PX@ AC/DC Reactors  
Specifications  
Servo Driver model  
AC/DC Reactor  
Model  
Rated current (A) Inductance (mH) Weight (kg)  
Single-  
phase,  
100 V AC  
R88D-WNA5L-ML2  
R88D-WN01L-ML2  
R88A-PX5053 2.0  
R88A-PX5053 2.0  
R88A-PX5054 3.0  
R88A-PX5056 5.0  
R88A-PX5052 1.0  
R88A-PX5052 1.0  
R88A-PX5053 2.0  
R88A-PX5054 3.0  
R88A-PX5056 5.0  
R88A-PX5061 4.8  
R88A-PX5061 4.8  
R88A-PX5060 8.8  
R88A-PX5060 8.8  
R88A-PX5059 14.0  
20.0  
20.0  
5.0  
Approx. 0.6  
Approx. 0.6  
Approx. 0.4  
Approx. 0.4  
Approx. 0.4  
Approx. 0.4  
Approx. 0.6  
Approx. 0.4  
Approx. 0.4  
Approx. 0.5  
Approx. 0.5  
Approx. 1.0  
Approx. 1.0  
Approx. 1.1  
R88D-WN02L-ML2  
R88D-WN04L-ML2  
R88D-WNA5H-ML2  
R88D-WN01H-ML2  
R88D-WN02H-ML2  
R88D-WN04H-ML2  
R88D-WN08H-ML2  
R88D-WN05H-ML2  
R88D-WN10H-ML2  
R88D-WN15H-ML2  
R88D-WN20H-ML2  
R88D-WN30H-ML2  
2.0  
Single-  
phase,  
200 V AC  
45.0  
45.0  
20.0  
5.0  
2.0  
Three-  
phase,  
200 V AC  
2.0  
2.0  
1.5  
1.5  
1.0  
External Dimensions  
Unit: mm  
I
G
Nameplate  
1 2  
E
F
A
B
4- H  
Notches  
2-124  
Standard Models and Specifications  
Chapter 2  
Model  
A
B
C
D
E
F
G
H dia.  
I dia.  
4.3  
R88A-PX5052  
R88A-PX5053  
R88A-PX5054  
R88A-PX5056  
R88A-PX5059  
R88A-PX5060  
R88A-PX5061  
35  
35  
35  
35  
50  
40  
35  
52  
52  
52  
52  
74  
59  
52  
80  
90  
80  
80  
95  
30  
35  
30  
30  
35  
45  
35  
40  
45  
40  
40  
45  
60  
45  
45  
50  
45  
45  
60  
65  
50  
4
4
4
4
5
4
4
105  
95  
4.3  
4.5  
4.3  
5.3  
4.3  
4.3  
95  
125  
105  
80  
140  
125  
95  
2-125  
Standard Models and Specifications  
Chapter 2  
2-10 MECHATROLINK-II Repeater Specifications  
The MECHATROLINK-II Repeater is required to extend the MECHATROLINK-II connection distance.  
FNY-REP2000  
Item  
Specification  
Cable lengths  
Controller to Repeater: 50 m max.  
Repeater to terminating resistance: 50 m max.  
Maximum number of  
stations  
14 stations over 50 m or 15 stations over 30 m from Controller to Repeater  
15 stations over 50 m or 16 stations over 30 m from Repeater to terminating resis-  
tance  
Also, the number of stations on both sizes of the Repeater must not exceed the  
maximum number of stations for the Controller. (The maximum is 16 stations for the  
CS1W/CJ1W-NCF71.)  
Indicators  
Three: Power, CN1 transmitting, and CN2 transmitting  
180 mA max.  
Power supply current  
External power supply 100 mA at 24 VDC ( 4.8 V)  
Weight 0.5 kg  
Repeater Part Names  
Power indicator (POWER)  
DIP Switch  
CN1 transmitting indicator (TX1)  
CN2 transmitting indicator (TX2)  
Leave all pins set to OFF.  
MECHATROLINK-II  
communications connectors (CN1 and CN2)  
Control power supply terminals (24 VDC and 0 VDC)  
Protective ground terminal  
2-126  
Standard Models and Specifications  
Chapter 2  
MECHATROLINK-II Repeater Dimensions  
FNY-REP2000  
Dimensions  
(97)  
(34)  
30  
77  
50  
(20)  
(4)  
12  
15  
6
14 10  
1
1
4.8  
4.8  
15  
4.8  
12  
50  
Dimensions  
Mounting on Bottom  
Mounting on Back  
M4 tap  
50  
14  
M4 tap  
2-127  
Standard Models and Specifications  
Chapter 2  
Connections  
An example of connections between the host controller, servo drives, and a Repeater is shown  
below.  
MCH71  
RU  
N
ERC  
ER1  
ER2  
SSI  
ERH  
ER3  
ER4  
MLK  
UNIT  
No.  
NCF71  
MLK  
RUN  
ERC  
ERH  
ERM  
B
A
UNIT  
No.  
E
0
8
F
1
7
3 2  
6
T.B.  
SSI  
MLK  
I/O  
MLK  
R8  
8D  
-W  
R8  
8D  
-W  
R8  
8D  
-W  
R8  
8D  
-W  
D
RIVE  
N01  
H-M  
L2  
N01  
H-M  
L2  
N01  
H-M  
L2  
N01  
H-M  
AC  
S
L2  
ERV  
O
AC  
S
200  
V
AC  
S
200V  
AC  
S
200V  
200V  
ERV  
ERV  
ERV  
O
D
O
D
O
D
RIVE  
RIVE  
RIVE  
R
R
R
R
POW  
POW  
POW  
POW  
ER  
COM  
ER  
COM  
ER  
COM  
ER  
COM  
10  
0W  
10  
0W  
10  
0W  
10  
0W  
SW1  
SW1  
SW1  
SW1  
C
N
C
C
C
N
6
N
6
N
6
CHARGE  
CHARGE  
CHARGE  
CHARGE  
6
A/B  
A/B  
A/B  
A/B  
MECHATROLINK-II  
MECHATROLINK-II  
L1  
L2  
L1  
L2  
B1  
B2  
L1  
L2  
L1  
L2  
B1  
B2  
L1  
L2  
L1  
L2  
B1  
B2  
L1  
L2  
L1  
L2  
B1  
B2  
C
N
3
C
N
3
C
N
3
C
N
3
U
V
U
V
U
V
U
V
C
N
1
C
N
1
C
N
1
C
N
1
   V
   V
   V
UV  
W
W
W
W
W
W
W
W
C
N
2
C
N
2
C
N
2
C
N
2
C
N
4
C
N
4
C
N
4
C
N
4
30 m or less: 16 stations max.  
30 to 50 m: 15 stations max.  
30 m or less: 15 stations max.  
30 to 50 m: 14 stations max.  
100 m max.: Maximum number of stations for Controller  
(The maximum is 16 stations for the CJ1W/CS1W-NCF71  
and 30 stations for the CJ1W/CS1W-MCH71.)  
2-128  
Chapter 3  
System Design and  
Installation  
3-1 Installation Conditions  
3-2 Wiring  
3-3 Regenerative Energy Absorption  
3-4 Adjustments and Dynamic Braking When Load  
Inertia Is Large  
System Design and Installation  
Chapter 3  
Installation and Wiring Precautions  
!Caution  
!Caution  
!Caution  
!Caution  
Do not step on or place a heavy object on the product. Doing so may result in  
injury.  
Do not cover the inlet or outlet ports and prevent any foreign objects from entering  
the product. Failure to observe this may result in fire.  
Be sure to install the product in the correct direction. Not doing so may result in  
malfunction.  
Provide the specified clearances between the Servo Driver and the control box or  
other devices. Not doing so may result in fire or malfunction.  
!Caution  
!Caution  
Do not apply any strong impact. Doing so may result in malfunction.  
Be sure to wire correctly and securely. Not doing so may result in motor runaway,  
injury, or malfunction.  
!Caution  
Be sure that all the mounting screws, terminal screws, and cable connector  
screws are tightened to the torque specified in the relevant manuals. Incorrect  
tightening torque may result in malfunction.  
!Caution  
!Caution  
!Caution  
Use crimp terminals for wiring. Do not connect bare stranded wires directly to ter-  
minals. Connection of bare stranded wires may result in burning.  
Always use the power supply voltages specified in the this manual. An incorrect  
voltage may result in malfunctioning or burning.  
Take appropriate measures to ensure that the specified power with the rated volt-  
age and frequency is supplied. Be particularly careful in places where the power  
supply is unstable. An incorrect power supply may result in malfunctioning.  
!Caution  
!Caution  
Install external breakers and take other safety measures against short-circuiting in  
external wiring. Insufficient safety measures against short-circuiting may result in  
burning.  
To avoid damage to the product, take appropriate and sufficient countermeasures  
when installing systems in the following locations:  
• Locations subject to static electricity or other sources of noise.  
• Locations subject to strong electromagnetic fields and magnetic fields.  
• Locations subject to possible exposure to radiation.  
• Locations close to power supply lines.  
!Caution  
When connecting the battery, be careful to connect the polarity correctly. Incorrect  
polarity connections can damage the battery or cause it to explode.  
3-2  
System Design and Installation  
Chapter 3  
3-1 Installation Conditions  
3-1-1 Servo Drivers  
Space Around Drivers  
• Install Servo Drivers according to the dimensions shown in the following illustration to ensure  
proper heat dispersion and convection inside the panel. Also install a fan for circulation if Servo  
Drivers are installed side by side to prevent uneven temperatures from developing inside the panel.  
Take the control cable's connector direction into account when installing the Servo Drivers.  
50 mm min.  
Air  
Fan  
Fan  
Side panel  
W
W
50 mm min.  
Air  
30 mm min.  
W = 10 mm min.  
Mounting Direction  
Mount the Servo Drivers in a direction (perpendicular) such that the lettering for the model number,  
and so on, can be seen.  
Operating Environment  
The environment in which Servo Drivers are operated must meet the following conditions.  
• Ambient operating temperature: 0 to +55°C (Take into account temperature rises in the individual  
Servo Drivers themselves.)  
• Ambient operating humidity:  
• Atmosphere:  
20% to 90% (with no condensation)  
No corrosive gases.  
Ambient Temperature  
• Servo Drivers should be operated in environments in which there is minimal temperature rise to  
maintain a high level of reliability.  
Temperature rise in any Unit installed in a closed space, such as a control box, will cause the ambi-  
ent temperature to rise inside the entire closed space. Use a fan or a air conditioner to prevent the  
ambient temperature of the Servo Driver from exceeding 55°C.  
• Unit surface temperatures may rise to as much as 30°C above the ambient temperature. Use heat-  
resistant materials for wiring, and keep separate any devices or wiring that are sensitive to heat.  
3-3  
System Design and Installation  
Chapter 3  
• The service life of a Servo Driver is largely determined by the temperature around the internal elec-  
trolytic capacitors. The service life of an electrolytic capacitor is affected by a drop in electrolytic vol-  
ume and an increase in internal resistance, which can result in overvoltage alarms, malfunctioning  
due to noise, and damage to individual elements.  
If a Servo Driver is always operated at the maximum ambient temperature of 40°C and at 80% of  
the rated torque, then a service life of approximately 50,000 hours can be expected. A drop of 10°C  
in the ambient temperature will double the expected service life.  
Keeping Foreign Objects Out of Units  
• Place a cover over the Units or take other preventative measures to prevent foreign objects, such as  
drill filings, from getting into the Units during installation. Be sure to remove the cover after installa-  
tion is complete. If the cover is left on during operation, heat buildup may damage the Units.  
Take measures during installation and operation to prevent foreign objects such as metal particles,  
oil, machining oil, dust, or water from getting inside of Servo Drivers.  
3-1-2 Servomotors  
Operating Environment  
The environment in which the Servomotor is operated must meet the following conditions.  
• Ambient operating temperature: 0 to +40°C  
• Ambient operating humidity:  
• Atmosphere:  
20% to 80% (with no condensation)  
No corrosive gases.  
Impact and Load  
• The Servomotor is resistant to impacts of up to  
490 m/s2. Do not subject it to heavy impacts or loads  
during transport, installation, or removal. When  
transporting it, hold onto the Servomotor itself, and  
do not hold onto the encoder, cable, or connector  
areas. Holding onto weaker areas such as these can  
damage the Servomotor.  
• Always use a pulley remover to remove pulleys, cou-  
plings, or other objects from the shaft.  
• Secure cables so that there is no impact or load placed on the cable connector areas.  
3-4  
System Design and Installation  
Chapter 3  
Connecting to Mechanical Systems  
• The axial loads for Servomotors are specified in 2-5-  
2 Performance Specifications. If an axial load greater  
than that specified is applied to a Servomotor, it will  
reduce the service life of the motor bearings and may  
damage the motor shaft.  
Ball screw center line  
• When connecting to a load, use couplings that can  
sufficiently absorb mechanical eccentricity and varia-  
tion.  
Shaft core displacement  
Servomotor shaft  
center line  
• For spur gears, an extremely large radial load may be  
applied depending on the gear precision. Use spur  
gears with a high degree of accuracy (for example,  
JIS class 2: normal line pitch error of 6 µm max. for a  
pitch circle diameter of 50 mm). If the gear precision  
is not adequate, allow backlash to ensure that no  
radial load is placed on the motor shaft.  
Backlash  
Adjust backlash by  
adjusting the distance  
between shafts.  
• Bevel gears will cause a load to be applied in the  
thrust direction depending on the structural precision,  
the gear precision, and temperature changes. Pro-  
vide appropriate backlash or take other measures to  
ensure that no thrust load is applied which exceeds  
specifications.  
Bevel gear  
Make moveable.  
• Do not put rubber packing on the flange surface. If  
the flange is mounted with rubber packing, the motor  
flange may separate due to the tightening strength.  
• When connecting to a V-belt or timing belt, consult the maker for belt selection and tension. A radial  
load twice the belt tension will be placed on the motor shaft. Do not allow a radial load exceeding  
specifications to be placed on the motor shaft due to belt tension. If an excessive radial load is  
applied, the motor shaft may be damaged. Set up the structure so that the radial load can be  
adjusted. A large radial load may also be applied as a result of belt vibration. Attach a brace and  
adjust Servo Driver gain so that belt vibration is minimized.  
Pulley  
Pulley for tension adjustment  
(Make adjustable.)  
Belt  
Tension  
3-5  
System Design and Installation  
Chapter 3  
Connectors Conforming to EC Directives  
The Power Cable and Encoder Cable connectors listed in the following table are recommended for  
conforming to EC Directives.  
Note The connectors for the Servomotor models not listed below, i.e., 3,000-r/min Servomotors (50  
to 750 W) and all 3,000-r/min Flat-style Servomotor models, already conform to EC Directives  
and do not need to be changed.  
Recommended Connectors  
For Power Cables  
Servomotor type  
Servomotor model  
Connector model  
Cable clamp model  
Maker  
With- 3,000-r/min 1 kW  
out  
R88M-W1K030@-@  
Angled type  
For sheath external diameter  
of 6.5 to 8.7 dia.:  
DDK Ltd.  
CE05-8A18-10SD-B-BAS  
1.5 kW R88M-W1K530@-@  
brake  
CE3057-10A-3 (D265)  
Straight type  
CE06-6A18-10SD-B-BSS  
2 kW  
1,000-r/min 300 W  
600 W  
R88M-W2K030@-@  
R88M-W30010@-@  
R88M-W60010@-@  
R88M-W90010@-@  
R88M-W45015T-@  
R88M-W85015T-@  
For sheath external diameter  
of 8.5 to 11 dia.:  
CE3057-10A-2 (D265)  
For sheath external diameter  
of 10.5 to 14.1 dia.:  
CE3057-10A-1 (D265)  
900 W  
1,500-r/min 450 W  
850 W  
1.3 kW R88M-W1K315T-@  
3,000-r/min 3 kW  
R88M-W3K030@-@  
Angled type  
For sheath external diameter  
of 6.5 to 9.5 dia.:  
Japan Avia-  
tion Electron-  
ics Industry,  
Ltd. (JAE)  
JL04V-8A22-22SE-EB  
1,000-r/min 1.2 kW R88M-W1K210@-@  
JL04-2022CK (09)  
Straight type  
JL04V-6A22-22SE-EB  
2 kW  
R88M-W2K010@-@  
For sheath external diameter  
of 9.5 to 13 dia.:  
JL04-2022CK (12)  
1,500-r/min 1.8 kW R88M-W1K815T-@  
For sheath external diameter  
of 12.9 to 15.9 dia.:  
JL04-2022CK (14)  
With  
brake  
3,000-r/min 1 kW  
R88M-W1K030@-B@ Angled type  
For sheath external diameter  
of 6.5 to 9.5 dia.:  
Japan Avia-  
tion Electron-  
ics Industry,  
Ltd. (JAE)  
JL04V-8A20-15SE-EB  
1.5 kW R88M-W1K530@-B@  
JL04-2022CK (09)  
Straight type  
2 kW  
1,000-r/min 300 W  
600 W  
R88M-W2K030@-B@  
R88M-W30010@-B@  
R88M-W60010@-B@  
R88M-W90010@-B@  
R88M-W45015T-B@  
R88M-W85015T-B@  
JL04V-6A20-15SE-EB  
For sheath external diameter  
of 9.5 to 13 dia.:  
JL04-2022CK (12)  
For sheath external diameter  
of 12.9 to 15.9 dia.:  
JL04-2022CK (14)  
900 W  
1,500-r/min 450 W  
850 W  
1.3 kW R88M-W1K315T-B@  
3,000-r/min 3 kW  
1,000-r/min 1.2 kW R88M-W1K210@-B@  
2 kW R88M-W2K010@-B@  
1,500-r/min 1.8 kW R88M-W1K815T-B@  
R88M-W3K030@-B@ Angled type  
For sheath external diameter  
of 9 to 12 dia.:  
Japan Avia-  
tion Electron-  
ics Industry,  
Ltd. (JAE)  
JL04V-8A24-10SE-EB  
JL04-2428CK (11)  
Straight type  
JL04V-6A24-10SE-EB  
For sheath external diameter  
of 12 to 15 dia.:  
JL04-2428CK (14)  
For sheath external diameter  
of 15 to 18 dia.:  
JL04-2428CK (17)  
For sheath external diameter  
of 18 to 20 dia.:  
JL04-2428CK (20)  
3-6  
System Design and Installation  
Chapter 3  
For Encoder Cables  
Servomotor type Servomotor model  
Connector model  
Cable clamp model  
Maker  
3,000-r/min  
(1 to 3 kW)  
R88M-W1K030@-@ to Angled type  
For sheath external diam- Japan Avia-  
R88M-W3K030@-@  
JA08A-20-29S-J1-EB eter of 6.5 to 9.5 dia.:  
tion Electron-  
ics Industry,  
Ltd. (JAE)  
JL04-2022CKE (09)  
Straight type  
1,000-r/min  
(300 W to 2.0 kW) R88M-W2K010@-@  
1,500-r/min  
(450 W to 1.8 kW) R88M-W1K815T-@  
R88M-W30010@-@ to  
JA06A-20-29S-J1-EB For sheath external diam-  
eter of 9.5 to 13 dia.:  
R88M-W45015T-@ to  
JL04-2022CKE (12)  
For sheath external diam-  
eter of 12.9 to 16 dia.:  
JL04-2022CKE (14)  
Water and Drip Resistance  
The enclosure ratings for the Servomotors are as follows:  
3,000-r/min Servomotors (50 to 750 W): IP55 (except for through-shaft parts).  
3,000-r/min Servomotors (1 to 3.0 kW): IP67 (except for through-shaft parts). Models are also  
available with IP67 ratings that include through-shaft parts.  
3,000-r/min Flat-style Servomotors (100 W to 1.5 kW): IP55 (except for through-shaft parts). Mod-  
els are also available with IP67 ratings that include through-shaft parts.  
1,000-r/min Servomotors (300 W to 2.0 kW): IP67 (except for through-shaft parts). Models are also  
available with IP67 ratings that include through-shaft parts.  
1,500-r/min Servomotors (450 W to 1.8 kW): IP67 (except for through-shaft parts). Models are also  
available with IP67 ratings that include through-shaft parts.  
The standard cable conforms to IP30. When selecting an IP67-rated Servomotor for use in a wet  
environment, install waterproof connectors for the power and Encoder Cables. The recommended  
connectors are the same as for the EC Directives, listed in the tables above.  
Oil Seals  
If the Servomotor is to be used in a location where it may be exposed to oil or grease, select an IP67-  
rated Servomotor or a Servomotor with an oil seal.  
Other Precautions  
• Do not apply commercial power directly to the Servomotor. The Servomotors run on synchronous  
AC and use permanent magnets. Applying commercial power directly will burn out the motor coils.  
Take measures to prevent the shaft from rusting. The shafts are coated with anti-rust oil when  
shipped, but anti-rust oil or grease should also be applied when connecting the shaft to a load.  
• Absolutely do not remove the encoder cover or take the motor apart. The magnet and the encoder  
are aligned in the AC Servomotor. If they become misaligned, the motor will not operate.  
3-7  
System Design and Installation  
Chapter 3  
3-2 Wiring  
3-2-1 Connecting Cable  
This section shows the types of connecting cable used in an OMNUC W-series Servo  
System. The wide selection of cables provided for configuring a Servo System using a  
Motion Control Unit or Position Unit makes wiring simple.  
Servo System Configuration  
CN3 (Personal computer connector)  
Computer Monitor Software  
DOS personal computers  
6
Computer Monitor Cable  
Controller  
CN6 (MECHATROLINK-II communications cable)  
Motion Control Unit  
1
MECHATROLINK-II Cable  
CJ1W-MCH71  
MCH71  
B
A
D
E
CS1W-MCH71  
8
0
7
3 2  
6
Position Control Unit  
CJ1W-NCF71  
NCF71  
MLK  
RUN  
ERC  
ERH  
ERM  
B
A
D
UNIT  
No.  
E
8
0
7
1
 F
3 2  
6
MLK  
7
Analog Monitor Cable  
CN5  
R88D-WN01H-ML2  
200V  
AC  
SERVO DRIVER  
POWE  
R
CO  
M
100W  
SW1  
C
CHARGE  
A/B  
L1  
L2  
L1  
L2  
B1  
B2  
1L  
2L  
1LC  
2LC  
CN1  
(I/O signal connector)  
2B  
U
C
N
1
2
I/O Signal Connector  
VU  
Servo Driver  
W
W
R88D-WN@-ML2  
C
N
2
C
N
4
Terminal block  
CN2  
(Encoder Connector)  
Absolute Encoder  
Backup Battery Unit  
R88A-BAT01W  
3
Power Cable  
(See note.)  
Robot Cable Power Cable  
4
5
Encoder Cable  
(See note.)  
Robot Cable  
Encoder Cable  
5
Note Use a Robot Cable if the cable needs to bend.  
Absolute Encoder Battery Cable  
R88A-CRWC0R3C 0.3 m  
(Refer to page 2-99.)  
Servomotor  
R88M-W@  
3-8  
System Design and Installation  
Chapter 3  
1. MECHATROLINK-II Cable  
Special MECHATROLINK-II Cables  
Use the following cables to connect to MECHATROLINK-II devices.  
Unit  
Cable model  
FNY-W6003-A5  
FNY-W6003-01  
FNY-W6003-03  
FNY-W6003-05  
FNY-W6003-10  
FNY-W6003-20  
FNY-W6003-30  
Length  
0.5 m  
CJ1W-NCF71  
CJ1W-MCH71  
CS1W-MCH71  
1.0 m  
3.0 m  
5.0 m  
10 m  
20 m  
30 m  
Terminating Resistor  
Use the following terminating resistor at the end of the MECHATROLINK-II communications line.  
Name  
Model  
MECHATROLINK-II Terminating Resistor FNY-W6022  
2. I/O Signal Connector  
Use the following connector to make your own cable for the Servo Driver I/O connector (CN1).  
Name  
Model  
I/O Signal Connector R88A-CNW01C  
Connects to the I/O signal connector (CN1).  
(Connector only)  
3. Power Cable  
Select a Power Cable to match the Servomotor that is to be used.  
Servomotor type  
Power Cables for Servomotors Power Cables for Servomotors  
without Brakes with Brakes  
R88A-CAWA@@@S R88A-CAWA@@@B  
3,000-r/min Servo- 30 to 750 W  
motors  
1 to 2kW  
R88A-CAWC@@@S  
R88A-CAWD@@@S  
R88A-CAWA@@@S  
R88A-CAWB@@@S  
R88A-CAWC@@@S  
R88A-CAWD@@@S  
R88A-CAWC@@@B  
R88A-CAWD@@@B  
R88A-CAWA@@@B  
R88A-CAWB@@@B  
R88A-CAWC@@@B  
R88A-CAWD@@@B  
R88A-CAWC@@@B  
R88A-CAWD@@@B  
3.0 kW  
3,000-r/min Flat-  
style Servomotors  
100 to 750 W  
1.5 kW  
1,000-r/min Servo- 300 to 900 W  
motors  
1.2 to 2.0 kW  
1,500-r/min Servo- 450 W to 1.3 kW R88A-CAWC@@@S  
motors  
1.8 kW  
R88A-CAWD@@@S  
Note 1. The empty boxes in the model numbers are for cable length. The cables can be 3, 5, 10, 15,  
20, 30, 40, or 50 meters long. (For example, R88A-CAW003S is 3 meters long.)  
Note 2. For 750-W Servomotors, use R88A-CAWB@ Power Cable if the wiring distance will be 30  
meters or more.  
3-9  
System Design and Installation  
Chapter 3  
4. Encoder Cable  
Select an Encoder Cable to match the Servomotor that is to be used.  
Servomotor type  
3,000-r/min Servomotors 30 to 750 W  
1 to 3.0 kW  
Encoder Cable  
Remarks  
R88A-CRWA@@@C The empty boxes in the model numbers  
R88A-CRWB@@@N  
are for cable length. The cables can be 3,  
5, 10, 15, 20, 30, 40, or 50 meters long.  
(For example, R88A-CRWA003C is 3  
meters long.)  
3,000-r/min Flat-style  
Servomotors  
100 W to 1.5 kW R88A-CRWA@@@C  
1,000-r/min Servomotors 300 W to 2.0 kW R88A-CRWB@@@N  
1,500-r/min Servomotors 450 W to 1.8 kW R88A-CRWB@@@N  
Use the following cable for an absolute encoder.  
Name/specifications  
Model  
Remarks  
Absolute Encoder Battery Cable 0.3 m  
R88A-CRWC0R3C Only 0.3-meter cables are available.  
5. Robot Cables  
Use a Robot Cable if the encoder or power cables need to bend.  
• Encoder Cables  
Motor  
3,000-r/min Servomotors 30 to 750 W  
1 to 3.0 kW  
Encoder Cable  
Remarks  
R88A-CAWA@@@CR The @@@” in the model number indi-  
R88A-CAWB@@@NR  
R88A-CAWA@@@CR  
cates the cable length.  
There are 8 cable lengths: 3 m, 5 m,  
10 m, 15 m, 20 m, 30 m, 40 m, and  
3,000-r/min Flat-style  
Servomotors  
100 to 1.5 kW  
50 m.  
1,000-r/min Servomotors 300 to 2.0 kW  
R88A-CAWB@@@NR  
(Example model number:  
R88A-CRWA003CR (3 m))  
1,500-r/min Servomotors 450 W to 1.8 kW R88A-CAWB@@@NR  
• Power Cables  
Motor  
Power Cable for Motors  
Power Cable for Motors With  
Without Brakes  
R88A-CAWA@@@SR  
R88A-CAWC@@@SR  
R88A-CAWD@@@SR  
R88A-CAWA@@@SR  
R88A-CAWB@@@SR  
R88A-CAWC@@@SR  
R88A-CAWD@@@SR  
Brakes  
3,000-r/min Servomotors 30 to 750 W  
R88A-CAWA@@@BR  
R88A-CAWC@@@BR  
R88A-CAWD@@@BR  
R88A-CAWA@@@BR  
R88A-CAWB@@@BR  
R88A-CAWC@@@BR  
R88A-CAWD@@@BR  
R88A-CAWC@@@BR  
R88A-CAWD@@@BR  
1 to 2 kW  
3.0 kW  
3,000-r/min Flat-style  
Servomotors  
100 to 750 W  
1.5 kW  
1,000-r/min Servomotors 300 to 900 W  
1.2 to 2.0 kW  
1,500-r/min Servomotors 450 W to 1.3 kW R88A-CAWC@@@SR  
1.8 kW R88A-CAWD@@@SR  
Note The “@@@” in the model number indicates the cable length. There are 8 cable lengths: 3 m,  
5 m, 10 m, 15 m, 20 m, 30 m, 40 m, and 50 m.  
(Example model number: R88A-CAWA003SR (3 m))  
3-10  
System Design and Installation  
Chapter 3  
6. Computer Monitor Cable  
A Computer Monitor Cable and Computer Monitor Software are required to set or monitor parame-  
ters from a personal computer.  
Name/specifications  
Model  
Remarks  
Computer Monitor For DOS personal 2 m  
R88A-CCW002P2 Only 2-meter cables are available.  
Cable  
computers  
7. Analog Monitor Cable  
This cable connects to the Servo Driver's Analog Monitor Connector (CN5). It is required for connect-  
ing analog monitor outputs to an external device (such as a measuring instrument).  
Name/specifications  
Model  
Remarks  
Analog Monitor Cable 1 m  
R88A-CMW001S  
Only 1-meter cables are available.  
3-11  
System Design and Installation  
Chapter 3  
3-2-2 Peripheral Device Connection Examples  
R88D-WNA5L-ML2/-WN01L-ML2/-WN02L-ML2/-WN04L-ML2/  
-WNA5H-ML2/-WN01H-ML2/-WN02H-ML2/-WN04H-ML2  
R
T
Single-phase 100/115 V AC, 50/60 Hz: R88D-WN@@L-ML2  
Single-phase 200/230 V AC, 50/60 Hz: R88D-WN@@H-ML2  
NFB  
Noise filter (See note 2.)  
1
3
2
4
E
NF  
Main-circuit connector  
(See note 2.)  
Main-circuit power supply  
OFF ON  
1MC  
Ground to  
100 or less  
1MC  
X
Surge killer (See note 2.)  
PL  
X
Servo error display  
OMNUC W-series  
AC Servo Driver  
OMNUC W-series  
AC Servomotor  
Power Cable  
XB  
L1C  
L2C  
B
24 V DC  
1MC  
U
V
M
W
AC Reactor  
L1  
L2  
Ground to  
CN2  
100 or less  
E
CN1  
Encoder Cable  
3 ALM  
X
24 VDC  
4 ALMCOM  
Note 1. Set by user parameter Pn50F.  
Note 2. Recommended product in 3-2-4  
Wiring for Noise Resistance. For  
conformity to EC Directives, refer to  
3-2-5 Wiring for Conformity to EMC  
Directives.  
CN1  
BKIR 1  
24 V DC  
XB  
X
(See note 3.)  
BKIRCOM 2  
(See note 1.)  
User-  
controlled  
device  
CN6  
Note 3. Recommended relay: MY Relay  
(24 V), by OMRON. For example,  
an MY2 Relay outputs to a 2-A in-  
ductive load at 24 VDC, making it  
applicable to all W-series Motors  
with Brakes.  
MECHATROLINK-II  
Cable  
3-12  
System Design and Installation  
Chapter 3  
R88D-WN05H-ML2/-WN10H-ML2/-WN15H-ML2/-WN20H-ML2/  
-WN30H-ML2  
R
S
T
Three-phase 200/230 V AC 50/60 Hz  
NFB  
Noise filter (See note 2.)  
Main-circuit power supply  
1
4
2
NF  
5
3
6
E
Main-circuit connector  
(See note 2.)  
OFF  
ON  
1MC  
Ground to  
100 or less  
1MC  
X
Surge killer (See note 2.)  
PL  
X
Servo error display  
OMNUC W-series  
AC Servo Driver  
OMNUC W-series  
AC Servomotor  
Power Cable  
XB  
L1C  
L2C  
B
24 V DC  
1MC  
U
V
L1  
L2  
L3  
M
W
DC Reactor  
Ground to  
CN2  
100 or less  
E
Encoder Cable  
CN1  
Note 1. Set by user parameter Pn50F.  
3 ALM  
X
24 VDC  
Note 2. Recommended product in 3-2-4  
Wiring for Noise Resistance. For  
conformity to EC Directives, re-  
fer to 3-2-5 Wiring for Conformity  
to EMC Directives.  
4 ALMCOM  
CN1  
BKIR 1  
24 V DC  
XB  
X
(See note 3.)  
Note 3. Recommended relay: MY Relay  
(24 V), by OMRON. For exam-  
ple, an MY2 Relay outputs to a  
2-A inductive load at 24 VDC,  
making it applicable to all W-se-  
ries Motors with Brakes.  
BKIRCOM 2  
(See note 1.)  
CN6  
User-  
controlled  
device  
MECHATROLINK-II  
Cable  
3-13  
System Design and Installation  
Chapter 3  
R88D-WN08H-ML2  
R
T
Single-phase 200/230 V AC 50/60 Hz  
NFB  
Noise filter (See note 2.)  
Main-circuit power supply  
1
3
2
4
E
NF  
Main-circuit connector  
(See note 2.)  
OFF  
ON  
1MC  
Ground to  
100 or less  
1MC  
X
Surge killer (See note 2.)  
PL  
X
Servo error display  
OMNUC W-series  
AC Servo Driver  
OMNUC W-series  
AC Servomotor  
Power Cable  
XB  
L1C  
L2C  
B
24 V DC  
1MC  
U
V
L1  
L2  
M
W
DC Reactor  
Ground to  
CN2  
100 or less  
E
CN1  
Encoder Cable  
3 ALM  
X
24 VDC  
Note 1. Set by user parameter Pn50F.  
4 ALMCOM  
Note 2. Recommended product in 3-2-  
4 Wiring for Noise Resistance.  
For conformity to EC Direc-  
tives, refer to 3-2-5 Wiring for  
Conformity to EMC Directives.  
CN1  
BKIR 1  
24 V DC  
XB  
(See note 3.)  
X
BKIRCOM 2  
(See note 1.)  
Note 3. Recommended relay: MY Re-  
lay (24 V), by OMRON. For ex-  
ample, an MY2 Relay outputs  
to a 2-A inductive load at 24  
VDC, making it applicable to all  
W-series Motors with Brakes.  
User-  
controlled  
device  
CN6  
MECHATROLINK-II  
Cable  
3-14  
System Design and Installation  
Chapter 3  
3-2-3 Terminal Block Wiring  
When wiring a Terminal Block, pay attention to wire sizes, grounding systems, and anti-  
noise measures.  
Terminal Block Names and Functions  
Terminal  
label  
Name  
Function  
L1  
Main circuit power sup- R88D-WN@H-ML2 (50 to 400 W)  
ply input Single-phase 200/230 V AC (170 to 253 V), 50/60 Hz (There is no L3  
L2  
L3  
terminal.)  
R88D-WN08H-ML2 (750 W)  
Single-phase 200/230 V AC (170 to 253 V), 50/60 Hz (The L3 terminal is  
not used; do not connect it.)  
R88D-WN@H-ML2 (500 W to 3.0 kW)  
Three-phase 200/230 V AC (170 to 253 V), 50/60 Hz  
R88D-WN@L-ML2 (50 to 400 W)  
Single-phase 100/115 V AC (85 to 127 V), 50/60 Hz (There is no L3 ter-  
minal.)  
Connection terminals R88D-WN@H-ML2 (500 W to 3.0 kW)  
1  
2  
for DC Reactor for  
Normally short between  
and  
.
2  
1  
When harmonic control measures are required, connect a DC Reactor  
between and  
power supply har-  
monic control  
.
2  
1  
Main circuit terminal,  
positive  
Used to connect a DC power supply input.  
B1/ +  
(The R88D-WN@H-ML2 (500 W to 3.0 kW) do not have the  
terminal.  
Main circuit terminal,  
negative  
Connect the  
terminal.)  
2  
L1C  
L2C  
Control circuit power  
supply input  
R88D-WN@H-ML2  
Single-phase 200/230 V AC (170 to 253 V), 50/60 Hz  
R88D-WN@L-ML2  
Single-phase 100/115 V AC (85 to 127 V), 50/60 Hz  
External regeneration R88D-WN@H-ML2 (50 to 400 W)  
resistance connection R88D-WN@L-ML2 (50 to 400 W)  
B1/ +  
B2  
B3  
terminal  
These terminals normally do not need to be connected. If there is high  
regenerative energy, connect an External Regeneration Resistor  
between B1 and B2. (There is no B3 terminal.)  
R88D-WN@H-ML2 (500 W to 3.0 kW)  
Normally short between B2 and B3. If there is high regenerative energy,  
remove the short bar between B2 and B3 and connect an External  
Regeneration Resistor between B1 and B2.  
U
V
Servomotor connec-  
tion terminals  
Red  
These are the output terminals to the Servomotor. Be  
careful to wire them correctly.  
White  
W
Blue  
Green/Yellow  
Frame ground  
This is the ground terminal. Ground to 100 or less.  
3-15  
System Design and Installation  
Chapter 3  
Terminal Block Wire Sizes  
100-V AC Input (R88D-WN@L-ML2)  
Model (R88D-) WNA05L-ML2 WN01L-ML2 WN02L-ML2 WN04L-ML2  
Item  
Unit  
Power supply capacity  
kVA  
0.25  
0.4  
0.6  
4.7  
2
1.2  
9.4  
2
Main circuit  
Rated current  
A (rms) 1.2  
2.4  
power supply  
input (L1, L2)  
(See note 1.)  
2
Wire size  
1.25  
1.25  
mm  
---  
Screw size  
Torque  
---  
---  
N·m  
Control circuit Rated current  
A (rms) 0.13  
0.13  
1.25  
0.13  
1.25  
0.13  
1.25  
power supply  
input (L1C,  
2
Wire size  
1.25  
mm  
---  
Screw size  
Torque  
---  
---  
L2C)  
N·m  
Servomotor  
connection ter-  
minal (U, V, W,  
Rated current  
Wire size  
A (rms) 0.66  
0.91  
1.25  
2.1  
2.8  
2
1.25  
1.25  
1.25  
mm  
---  
Screw size  
Torque  
---  
---  
)
N·m  
(See note 2.)  
2
Frame ground Wire size  
2
2
2
2
mm  
---  
(
)
Screw size  
Torque  
M4  
1.2  
4
M4  
1.2  
4
M4  
1.2  
6
M4  
1.2  
12  
N·m  
Non-fuse breaker or fuse capacity A (rms)  
Note 1. Use the same wire sizes for  
,
, B1, and B2.  
2  
1  
Note 2. Connect special OMRON Power Cable to the Servomotor connection terminals.  
200-V AC Input (R88D-WT@H-ML2)  
Model (R88D-) WNA5H- WN01H- WN02H- WN04H- WN08H- WN05H- WN10H- WN15H- WN20H- WN30H-  
ML2  
ML2  
ML2  
ML2  
ML2  
ML2  
ML2  
ML2  
ML2  
ML2  
Item  
Unit  
Power supply capacity  
kVA  
0.25  
0.4  
0.75  
1.2  
2.1  
1.4  
2.3  
3.2  
4.3  
5.9  
Main circuit Rated current A (rms)  
0.6  
1.2  
2.4  
4.7  
2
8.8  
2
2.5  
2
4.9  
2
7.3  
2
9.7  
3.5  
15.0  
3.5  
power sup-  
2
Wire size  
1.25  
1.25  
1.25  
mm  
---  
ply input  
(L1, L2 or  
L1, L2, L3)  
(See note  
1.)  
Screw size  
Torque  
---  
---  
M4  
1.2  
M4  
1.2  
N·m  
Control cir- Rated current A (rms)  
0.13  
1.25  
0.13  
1.25  
0.13  
1.25  
0.13  
1.25  
0.15  
1.25  
0.15  
1.25  
0.15  
1.25  
0.15  
1.25  
0.15  
1.25  
0.15  
1.25  
cuit power  
2
Wire size  
mm  
---  
supplyinput  
(L1C, L2C)  
Screw size  
Torque  
---  
M4  
M4  
N·m  
---  
Servomo-  
tor connec-  
tion  
Rated current A (rms)  
2
0.66  
1.25  
0.91  
1.25  
2.1  
2.8  
5.5  
3.8  
2
7.6  
2
11.6  
2
18.5  
3.5  
18.9  
5.5  
Wire size  
1.25  
1.25  
1.25  
mm  
---  
terminal (U,  
Screw size  
Torque  
---  
---  
M4  
1.2  
M4  
1.2  
V, W,  
)
N·m  
(See note  
2.)  
2
Frame  
ground  
Wire size  
2
2
2
2
2
2
2
2
2
2
mm  
Screw size  
Torque  
---  
M4  
1.2  
4
M4  
1.2  
4
M4  
1.2  
4
M4  
1.2  
8
M4  
1.2  
11  
M4  
1.2  
4
M4  
1.2  
7
M4  
1.2  
10  
M4  
1.2  
13  
M4  
1.2  
17  
(
)
N·m  
A (rms)  
No-fuse breaker or fuse  
capacity  
3-16  
System Design and Installation  
Chapter 3  
Note 1. Use the same wire sizes and tightening torques for  
,
, B1, B2, and B3.  
2  
1  
Note 2. Connect special OMRON Power Cable to the Servomotor connection terminals.  
Wire Sizes and Allowable Current  
The following table shows the allowable current for when there are three wires.  
600-V Heat-resistant Vinyl Wiring (HIV) (Reference Values)  
AWG size  
Nominal cross-  
sectional area (mm ) (wires/mm )  
Configuration Conductive  
Allowable current (A) for ambient  
temperature  
2
2
resistance  
(/km)  
30°C  
40°C  
50°C  
20  
---  
18  
16  
14  
12  
10  
8
0.5  
19/0.18  
30/0.18  
37/0.18  
50/0.18  
7/0.6  
39.5  
6.6  
8.8  
9.0  
5.6  
7.0  
7.7  
4.5  
5.5  
6.0  
8.5  
16  
24  
31  
40  
57  
70  
0.75  
0.9  
26.0  
24.4  
15.6  
9.53  
5.41  
3.47  
2.41  
1.35  
0.849  
1.25  
2.0  
12.0  
23  
11.0  
20  
3.5  
7/0.8  
33  
29  
5.5  
7/1.0  
43  
38  
8.0  
7/1.2  
55  
49  
6
14.0  
22.0  
7/1.6  
79  
70  
4
7/2.0  
99  
88  
Terminal Block Wiring Procedure  
Connector-type Terminal Blocks are used for Servo Drivers of 1.5 W or less (except for the R88D-  
WN20H-ML2 to R88D-WN30H-ML2). The procedure for wiring these Terminal Blocks is explained  
below.  
C
N
3
Connector-type Terminal Block  
C
N
1
U
V
W
C
N
2
(Example: R88D-WN01H-ML2)  
C
N
4
1.Remove the Terminal Block from the Servo Driver.  
!Caution  
The Terminal Block must be removed from the Servo Driver before being wired.  
The Servo Driver will be damaged if the wiring is done with the Terminal Block in  
place.  
3-17  
System Design and Installation  
Chapter 3  
2.Strip the covering off the ends of the wires.  
Prepare wires of the right sizes, according to the tables provided under Terminal Block Wire Sizes  
above, and strip off 8 or 9 mm of the covering from the end of each wire.  
8 to 9 mm  
3.Open the wire insertion slots in the Terminal Block  
There are two ways to open the wire insertion slots, as follows:  
• Pry the slot open using the lever that comes with the Servo Driver (as in Fig. A).  
• Insert a flat-blade screwdriver (end width: 3.0 to 3.5 mm) into the opening for Servo Driver in-  
stallation, and press down firmly to open the slot (as in Fig. B).  
210-120J Driver  
(Wago Company  
of Japan)  
231-131 Lever  
(Wago Company  
of Japan)  
Fig. A  
Fig. B  
4.Insert the wire into the slot.  
With the slot held open, insert the end of the wire. Then let the slot close by releasing the pressure  
from the lever or the screwdriver.  
5.Mount the Terminal Block to the Servo Driver.  
After all of the terminals have been wired, return the Terminal Block to its original position on the  
Servo Driver.  
3-18  
System Design and Installation  
Chapter 3  
3-2-4 Wiring for Noise Resistance  
System noise resistance will vary greatly depending on the wiring method used. This  
section explains how to reduce noise through proper wiring.  
Wiring Method  
R88D-WNA5L-ML2 to R88D-WN04L-ML2, R88D-WNA5H-ML2 to R88D-WN04H-ML2,  
and R88D-WN08H-ML2 Servo Drivers (Single-phase Power Supply Input)  
R88D-WN@-ML2  
R88M-W@  
Contactor  
X1  
AC power  
supply  
TB  
TB  
Metal duct  
Surge absorber  
Noise filter  
NFB  
NF  
E
1
3
L1  
U
V
M
2
4
L2  
W
L1C  
L2C  
Fuse  
CN2  
2
2 mm  
E
2
3.5 mm  
2
Thick power line (3.5 mm )  
Ground to  
100 or less  
Machine ground  
Ground control  
box  
Ground plate  
Controller power supply  
R88D-WN05H-ML2 to R88D-WN30H-ML2 Servo Drivers (Three-phase Power Supply  
Input)  
R88D-WN@-ML2  
R88M-W@  
Contactor  
X1  
AC power  
supply  
TB  
TB  
Metal duct  
Surge absorber  
Noise filter  
NFB  
NF  
1
2
3
4
5
6
L1  
U
L2  
L3  
V
M
W
E
Fuse  
L1C  
L2C  
CN2  
2
2 mm  
E
2
3.5 mm  
2
Thick power line (3.5 mm )  
Ground to  
100 or less  
Machine ground  
Ground control  
box  
Ground plate  
Controller power supply  
• Ground the motor's frame to the machine ground when the motor is on a movable shaft.  
• Use a grounding plate for the frame ground for each Unit, as shown in the above diagrams, and  
ground to a single point.  
3-19  
System Design and Installation  
Chapter 3  
• Use ground lines with a minimum thickness of 3.5 mm2, and arrange the wiring so that the ground  
lines are as short as possible.  
• If no-fuse breakers are installed at the top and the power supply line is wired from the lower duct,  
use metal tubes for wiring and make sure that there is adequate distance between the input lines  
and the internal wiring. If input and output lines are wired together, noise resistance will decrease.  
• No-fuse breakers, surge absorbers, and noise filters (NF) should be positioned near the input termi-  
nal block (ground plate), and I/O lines should be isolated and wired using the shortest distance pos-  
sible.  
• Wire the noise filter as shown at the left in the following illustration. The noise filter should be  
installed at the entrance to the control box whenever possible.  
Correct: Separate input and output  
WRONG: Noise not filtered effectively  
AC input  
AC output  
AC input  
1
2
3
4
5
6
1
2
3
4
5
6
NF  
E
NF  
E
Ground  
Ground  
AC output  
• Use twisted-pair cables for the power supply cables whenever possible, or bind the cables.  
Correct: Properly twisted Correct: Cables are bound.  
Driver  
Driver  
L1  
L2  
L3  
L1C  
L2C  
Binding  
• Separate power supply cables and signal cables when wiring.  
Selecting Components  
This section explains the criteria for selecting the connection components required for  
improving noise resistance. These criteria include capacity performance, applicable  
range, and so on. For more details, contact the manufacturers directly.  
No-fuse Breakers (NFB)  
When selecting no-fuse breakers, take into consideration the maximum output current and the inrush  
current.  
3-20  
System Design and Installation  
Chapter 3  
W
Powersupply  
voltage  
Model  
Capacity Rated current Inrush current (main  
A (rms) circuit) A (0-p)  
14.3  
From rated  
current (*125%)  
Single-  
phase  
100  
100  
100  
100  
200  
200  
200  
200  
200  
200  
200  
200  
200  
200  
WNA5L  
WN01L  
WN02L  
WN04L  
WNA5H  
WN01H  
WN02H  
WN04H  
WN08H  
WN05H  
WN10H  
WN15H  
WN20H  
WN30H  
50 W  
1.2  
2.4  
4.7  
9.4  
0.6  
1.2  
2.4  
4.7  
8.8  
2.5  
4.9  
7.3  
9.7  
1.5  
100 W  
200 W  
400 W  
50 W  
14.3  
14.3  
14.3  
27.6  
27.6  
27.6  
27.6  
27.6  
27.6  
27.6  
27.6  
27.6  
27.6  
3
5.875  
11.75  
0.75  
1.5  
Single-  
phase  
100 W  
200 W  
400 W  
750 W  
500 W  
1.0 kW  
1.5 kW  
2.0 kW  
3.0 kW  
3
5.875  
11  
Three-  
phase  
3.125  
6.125  
9.125  
12.125  
18.75  
15.0  
Maximum Input Current:  
• The momentary maximum output for a Servo Driver is approximately three times that of the rated  
output, and a maximum output of three seconds can be executed. Therefore, select no-fuse break-  
ers with an operating time of at least five seconds at 300% of the rated maximum output. General-  
purpose and low-speed no-fuse breakers are generally suitable (e.g., Mitsubishi S Series).  
• The table in 3-2-3 Terminal Block Wiring shows the rated power supply input currents for each Ser-  
vomotor. Select a no-fuse-breaker with a rated current greater than the total effective load current  
(when multiple Servomotors are used).  
• When making the selection, add in the current consumption of other controllers, and so on.  
Servo Driver Inrush Current:  
• The Servo Driver inrush currents are shown in the above table.  
• With low-speed no-fuse breakers, an inrush current 10 times the rated current flows for 0.02 sec-  
ond.  
• For a simultaneous inrush current for multiple Servo Drivers, select a non-fuse breaker with a 20-  
ms allowable current greater than the total inrush current shown in the above table for the applica-  
ble Servomotor models.  
Noise Filters for Servomotor Output  
• Use noise filters without built-in capacitors on the Servomotor output lines.  
• Select a noise filter with a rated current at least two times the total rated current of the Servo  
Driver's continuous output current.  
3-21  
System Design and Installation  
Chapter 3  
• The following table shows the noise filters that are recommended for Servomotor output.  
Maker  
Model  
LF-310KA  
LF-320KA  
LF-350KA  
LF-3110KB  
Rated current  
10 A  
Remarks  
NEC TOKIN  
Three-phase block noise filter  
20 A  
50 A  
110 A  
Note 1. Servomotor output lines cannot use the same noise filters used for power supplies.  
Note 2. Typical noise filters are used with power supply frequencies of 50/60 Hz. If these noise filters  
are connected to outputs of 11.7 kHz/5.9 kHz (the Servo Driver's PWM frequency), a very  
large (about 100 times larger) leakage current will flow through the noise filter's condenser  
and the Servo Driver could be damaged.  
Harmonic Current Countermeasures (Reactor)  
• The AC Reactor is used for suppressing harmonic currents. It suppresses sudden and quick  
changes in electric currents.  
• In September 1994, the Ministry of International Trade and Industry established guidelines for the  
suppression of harmonic waves emitted from home and general electric appliances. To comply with  
the guidelines, appropriate measures are required to suppress the influence of harmonic waves on  
power supply lines.  
• Select the proper AC Reactor or DC Reactor model according to the Servo Driver that is to be  
used.  
Servo Drive  
Reactor specifications  
Model number  
R88A-PX5053  
R88A-PX5053  
R88A-PX5054  
R88A-PX5056  
R88A-PX5052  
R88A-PX5052  
R88A-PX5053  
R88A-PX5054  
R88A-PX5056  
R88A-PX5061  
R88A-PX5061  
R88A-PX5060  
R88A-PX5060  
R88A-PX5059  
Rated current (A) Inductance (mH)  
Reactor type  
AC Reactor  
R88D-WNA5L-ML2  
R88D-WN01L-ML2  
R88D-WN02L-ML2  
R88D-WN04L-ML2  
R88D-WNA5H-ML2  
R88D-WN01H-ML2  
R88D-WN02H-ML2  
R88D-WN04H-ML2  
R88D-WN08H-ML2  
R88D-WN05H-ML2  
R88D-WN10H-ML2  
R88D-WN15H-ML2  
R88D-WN20H-ML2  
R88D-WN30H-ML2  
2.0  
2.0  
3.0  
5.0  
1.0  
1.0  
2.0  
3.0  
5.0  
4.8  
4.8  
8.8  
8.8  
14.0  
20.0  
20.0  
5.0  
2.0  
45.0  
45.0  
20.0  
5.0  
2.0  
DC Reactor  
2.0  
2.0  
1.5  
1.5  
1.0  
3-22  
System Design and Installation  
Chapter 3  
AC Reactor Connection Example  
DC Reactor Connection Example  
Servo Driver  
Servo Driver  
Power supply  
AC Reactor  
DC Reactor  
L1  
L2  
R88D-WNA5@-ML2 to WN04@-ML2  
R88D-WN05H-ML2 to WN30H-ML2  
3-2-5 Wiring for Conformity to EMC Directives  
When the wiring conditions provided in this section are satisfied, the wiring will conform  
to EMC Directives (EN55011 Class A Group 1 (EMI), EN61000-6-2 (EMS)). These  
conditions were stipulated when EMC Directive approval was obtained for the W  
Series. They will be affected by the installation and wiring conditions resulting from the  
connected devices and wiring when the W Series is built into the system. Therefore,  
the entire system must be checked for conformity.  
The following conditions must be satisfied in order to conform to the EC Directives.  
• The Servo Driver must be mounted in a metal case (control box). (It is not necessary to mount the  
Servomotor in a metal box.)  
• Noise filters and surge absorbers must be inserted in power supply lines.  
• Shielded cable must be used for I/O signal cables and encoder cables. (Use tinned soft steel wire.)  
• Cables leading out from the control box must be enclosed within metal ducts or conduits with  
blades. (It is not necessary to enclose the 30-cm power cable, encoder cable, or connectors in a  
metal duct or conduit.)  
• Ferrite cores must be installed for cables with braided shields, and the shield must be directly  
grounded to a ground plate.  
3-23  
System Design and Installation  
Chapter 3  
Wiring Method  
Control box  
Metal plate  
2 m max.  
Motor built-in device  
Brake  
power  
supply  
Noise  
filter  
R88M-W@  
Metal  
duct or  
AC power conduit  
supply  
Metal  
duct or  
conduit  
R88D-WN@-ML2  
See note 3.  
Contactor  
B
Ferrite  
core  
Ferrite  
core  
NFB  
Surge absorber  
L1  
L2  
L3  
U
V
Noise  
filter  
M
W
L1C  
L2C  
2 m max.  
Ferrite  
core  
Class-3 ground  
(to 100 or less)  
CN2  
Ferrite core  
E
Clamp  
CN1  
Ferrite core  
Clamp  
Ferrite core  
Controller  
Controller power supply  
Ground plate  
Note 1. Make 1.5 turns for the ferrite core's cable winding.  
Note 2. Peel the insulation off the cable at the clamp, and directly connect the shield to the metal  
plate.  
Note 3. For single-phase power supply input models (R88D-WNA5@ to R88D-WN04@, R88D-  
WN08H), the main-circuit power supply input terminals will be L1 and L2.  
• Ground the motor's frame to the machine ground when the motor is on a movable shaft.  
• Use a grounding plate for the frame ground for each Unit, as shown in the above diagrams, and  
ground to a single point.  
• Use ground lines with a minimum thickness of 3.5 mm2, and arrange the wiring so that the ground  
lines are as short as possible.  
• If no-fuse breakers are installed at the top and the power supply line is wired from the lower duct,  
use metal tubes for wiring and make sure that there is adequate distance between the input lines  
and the internal wiring. If input and output lines are wired together, noise resistance will decrease.  
• No-fuse breakers, surge absorbers, and noise filters should be positioned near the input terminal  
block (ground plate), and I/O lines should be isolated and wired using the shortest distance possi-  
ble.  
• The noise filter should be installed at the entrance to the control box whenever possible. Wire the  
noise filter as shown in the following illustrations.  
3-24  
System Design and Installation  
Chapter 3  
Correct: Separate input and output  
WRONG: Noise not filtered effectively  
AC input  
Ground  
AC output  
AC input  
1
2
3
4
5
6
1
2
3
4
5
6
NF  
E
NF  
E
Ground  
AC output  
• Use twisted-pair cables for the power supply cables whenever possible, or bind the cables.  
Correct: Properly twisted Correct: Cables are bound.  
Driver  
Driver  
L1  
L2  
L3  
L1C  
L2C  
Binding  
• Separate power supply cables and signal cables when wiring.  
Control Box Structure  
If there are gaps in the control box from cable openings, operating panel installation  
holes, gaps around the door, and so on, it may allow electric waves to penetrate. In  
order to prevent this from occurring, take the measures described below.  
Case Structure  
• Construct the control box case of metal, and weld the joints between the top, bottom, and sides so  
that they will be electrically conductive.  
• For assembly, strip the paint off of joined areas (or mask them during painting), to make them elec-  
trically conductive.  
• If gaps are opened in the control box case when tightening down screws, make adjustments to pre-  
vent this from occurring.  
• Do not leave any conducting part unconnected.  
• Connect to the case all Units inside of the case.  
Door Structure  
• Construct the door of metal.  
• Use a water draining structure where the door and case fit together, and leave no gaps. (Refer to  
the diagrams below.)  
• Use conductive packing between the door and the case, as shown in the diagrams below. Strip the  
paint off of the sections of the door and case that will be in contact with the conductive packing (or  
mask them during painting), so that they will be electrically conductive.  
3-25  
System Design and Installation  
Chapter 3  
• Be careful not to let gaps be opened in the control box while tightening down screws.  
Case  
Door  
A
B
Door  
Oil-proof packing Conductive packing  
Control box  
Cross-sectional view of A-B  
Oil-proof packing  
Conductive packing  
Door (interior view)  
Selecting Components  
This section explains the criteria for selecting the connection components required for  
improving noise resistance. These criteria include capacity performance, applicable  
range, and so on. For more details, contact the manufacturers directly.  
No-fuse Breakers (NFB)  
When selecting no-fuse breakers, take into consideration the maximum output current and the inrush  
current.  
Maximum Input Current:  
• The momentary maximum output for a Servo Driver is approximately three times that of the rated  
output, and a maximum output of three seconds can be executed. Therefore, select no-fuse break-  
ers with an operating time of at least five seconds at 300% of the rated maximum output. General-  
purpose and low-speed no-fuse breakers are generally suitable (e.g., Mitsubishi S Series).  
• The table in 3-2-3 Terminal Block Wiring shows the rated power supply input currents for each Ser-  
vomotor. Select a no-fuse-breaker with a rated current greater than the total effective load current  
(when multiple Servomotors are used).  
3-26  
System Design and Installation  
Chapter 3  
• When making the selection, add in the current consumption of other controllers, and so on.  
Servo Driver Inrush Current:  
The Servo Driver inrush currents are listed in the following table.  
• With low-speed no-fuse breakers, an inrush current 10 times the rated current flows for 0.02 sec-  
ond.  
• For a simultaneous inrush for multiple Servo Drivers, select a no-fuse-breaker with a 20-ms allow-  
able current greater than the total inrush current shown in the following table for the applicable Ser-  
vomotor models.  
Servo Driver  
Inrush current (A0-p)  
Control-circuit power supply Main-circuit power supply  
R88D-WNA5L-ML2  
R88D-WN01L-ML2  
R88D-WN02L-ML2  
R88D-WN04L-ML2  
R88D-WNA5H-ML2  
R88D-WN01H-ML2  
R88D-WN02H-ML2  
R88D-WN04H-ML2  
R88D-WN08H-ML2  
R88D-WN05H-ML2  
R88D-WN10H-ML2  
R88D-WN15H-ML2  
R88D-WN20H-ML2  
R88D-WN30H-ML2  
22.2  
22.2  
22.2  
22.2  
41.6  
41.6  
41.6  
41.6  
41.6  
41.6  
41.6  
41.6  
41.6  
41.6  
14.3  
14.3  
14.3  
14.3  
27.6  
27.6  
27.6  
27.6  
27.6  
27.6  
27.6  
27.6  
27.6  
27.6  
Surge Absorbers  
• Use surge absorbers to absorb surges from power supply input lines due to lightning, abnormal  
voltages, etc.  
• When selecting surge absorbers, take into account the varistor voltage, the amount of surge immu-  
nity, and the amount of energy resistance.  
• For 200-V AC systems, use surge absorbers with a varistor voltage of 470 V.  
• The surge absorbers shown in the following table are recommended.  
Maker  
Model  
Max. limit  
voltage immunity  
Surge  
Type  
Remarks  
Okaya Electric  
Industries Co., Ltd.  
R·A·V-781BYZ-2  
R·A·V-781BXZ-4  
783 V  
783 V  
1,000 A  
1,000 A  
Block  
Between power supply lines  
Between power supply line  
grounds  
Note 1. Refer to the manufacturers' documentation for operating details.  
Note 2. The surge immunity is for a standard impulse current of 8/20 µs. If pulses are wide, either  
decrease the current or change to a larger-capacity surge absorber.  
3-27  
System Design and Installation  
Chapter 3  
Noise Filters for Power Supply Input  
Use the following noise filters for the Servo Driver power supply.  
Servo Driver model  
Noise Filter  
Model  
Rated  
current  
Rated  
voltage  
Leakage current  
Maker  
R88D-WNA5L-ML2  
R88D-WN01L-ML2  
R88D-WN02L-ML2  
R88D-WN04L-ML2  
R88D-WNA5H-ML2  
R88D-WN01H-ML2  
R88D-WN02H-ML2  
R88D-WN04H-ML2  
R88D-WN08H-ML2  
R88D-WN05H-ML2  
R88D-WN10H-ML2  
R88D-WN15H-ML2  
R88D-WN20H-ML2  
R88D-WN30H-ML2  
FN2070-6/07 250 V  
6 A  
0.40 mA (at 230 Vrms, 50 Hz) Schaffner  
FN2070-10/07  
FN2070-16/07  
FN2070-6/07  
10 A  
16 A  
6 A  
FN2070-10/07  
10 A  
16 A  
7 A  
FN2070-16/07  
FN258L-7/07 480 V  
FN258L-16/07  
4.30 mA (at 450 Vrms, 50 Hz)  
4.40 mA (at 450 Vrms, 50 Hz)  
16 A  
FN258L-30/07  
30 A  
4.30 mA (at 450 Vrms, 50 Hz)  
Note The leakage currents shown for Schaffner noise filters are the values for when a three-phase  
power supply uses a Y connection. The leakage current will be greater for a X connection.  
External Dimensions  
• FN2070-6/07, FN2070-10/07 Noise Filters (by Schaffner)  
M
Side View  
Top View  
S
J
B
• FN2070-16/07 Noise Filters (by Schaffner)  
N
Side View  
Top View  
J
R
Q
B
3-28  
System Design and Installation  
Chapter 3  
Model  
Dimensions (mm)  
A
B
C
D
F
J
K
L
M
N
P
Q
R
S
FN2070-6/07  
FN2070-10/07  
FN2070-16/07  
113.5 57.5 45.4 94  
103  
25  
8.4  
32.4 4.4  
5.3  
6
0.9  
---  
---  
38  
156  
119  
130.5 143  
85.5 57.6 98.5 109  
40  
8.6  
---  
4.4  
7.4  
1.2  
66  
51  
---  
• FN258L-7/07, -16/07, -30/07 Noise Filters (by Schaffner)  
Side View  
Top and Side Views  
7 A to 55 A Models  
D
H
C
P
L
E
A
O
Model  
Dimensions (mm)  
A
B
126  
142  
150  
C
D
E
240  
290  
320  
F
G
H
J
L
O
P
FN258L-7/07 255  
FN258L-16/07 303  
FN258L-30/07 335  
50  
55  
60  
225  
275  
305  
25  
6.5  
300  
1
9
M5  
AWG16  
AWG14  
AWG10  
30  
35  
400  
Surge Killers  
• Install surge killers for loads that have induction coils, such as relays, solenoids, brakes, clutches,  
etc.  
• The following table shows types of surge killers and recommended products.  
Type  
Diode  
Features  
Recommended products  
Diodes are used for relatively small  
loads when the reset time is not an  
issue, such as relays. The reset time is  
increased because the surge voltage is  
the lowest when power is cut off.  
Use a fast-recovery diode with a short  
reverse recovery time.  
Example: Fuji Electric Co., ERA22-06  
Used for 24/48-V DC systems.  
Thyristor Thyristors and varistors are used for  
or varistor loads when induction coils are large, as  
in electromagnetic brakes, solenoids,  
etc., and when reset time is an issue.  
The surge voltage when power is cut off  
is approximately 1.5 times the varistor  
voltage.  
Select the varistor voltage as follows:  
24 VDC system: 39 V  
100 VDC system: 200 V  
100 VAC system: 270 V  
200 VAC system: 470 V  
Capacitor The capacitor + resistor combination is Okaya Electric Industries Co., Ltd.  
+ resistor used to absorb vibration in the surge  
XEB120020.2 µF – 120 Ω  
XEB120030.3 µF – 120 Ω  
when power is cut off. The reset time  
can be shortened by selecting the  
appropriate capacitance and resistance.  
Note Thyristors and varistors are made by the following companies. Refer to manufacturers' docu-  
mentation for operating details.  
Thyristors: Ishizuka Electronics Co.  
Varistors: Ishizuka Electronics Co., Matsushita Electric Industrial Co.  
3-29  
System Design and Installation  
Chapter 3  
Contactors  
• When selecting contactors, take into consideration the circuit's inrush current and the maximum  
momentary current.  
• The Servo Driver inrush current is covered in the preceding explanation of no-fuse-breaker selec-  
tion, and the maximum momentary current is approximately twice the rated current.  
• The following table shows the recommended contactors.  
Maker  
OMRON  
Model  
Rated current Coil voltage  
LC1D09106  
LC1D25106  
LC1D40116  
LC1D50116  
LC1D80116  
LC1D09106  
LP1D25106  
LP1D40116  
LP1D50116  
LP1D80116  
11 A  
26 A  
35 A  
50 A  
80 A  
11 A  
26 A  
35 A  
50 A  
80 A  
200 V AC  
24 V DC  
Leakage Current and Leakage Breakers  
• Use a surge-resistant leakage breaker designed for Inverters that will not operate for high-fre-  
quency currents  
• The detection current of a leakage breaker is set to approximately 60% of the normal rated current.  
You should thus allow a leeway of approximately two times the rated current.  
• Leakage current will also flow to the input noise filter, switch mode power supply, and other devices.  
Be sure to allow for these devices as well.  
Servo Driver model *Leakage current  
(for 10-m cable)  
*Additional  
leakage current  
per 10 m of cable  
PWM frequency  
Input power  
supply voltage  
R88D-WNA5L-ML2  
R88D-WN01L-ML2  
R88D-WN02L-ML2  
R88D-WN04L-ML2  
R88D-WNA5H-ML2  
R88D-WN01H-ML2  
3.0 mA  
5.0 mA  
0.5 mA  
10.667 kHz  
Single-phase  
100/115 VAC (85 to  
127 V) 50/60 Hz  
Single-phase  
200/230 VAC (170  
to 253 V) 50/60 Hz  
R88D-WN02H-ML2 8.0 mA  
R88D-WN04H-ML2  
R88D-WN05H-ML2  
R88D-WN08H-ML2  
R88D-WN10H-ML2 10 mA  
R88D-WN15H-ML2  
0.6 mA  
0.7 mA  
8.0 kHz  
4.0 kHz  
R88D-WN20H-ML2  
R88D-WN30H-ML2 12 mA  
0.8 mA  
Note 1. Values indicated with asterisks are measured using the UL (JIS) methods.  
3-30  
System Design and Installation  
Chapter 3  
Note 2. The installation conditions of the power cable and the measurement methods greatly affect  
these values. Use these values only for reference. The values differ by a factor of approxi-  
mately 3 between standard breakers and inverter breakers.  
Leakage Breaker Connection Example  
AC power  
Leakage  
breaker  
Servo Driver  
side  
supply side No-fuse breaker Surge absorber  
Noise filter  
1
2
3
4
5
6
NF  
E
Improving Encoder Cable Noise Resistance  
The OMNUC W Series uses serial encoders, with phase-S signals from the encoder. The phase-S  
communications speed is 4 Mbits/s.  
In order to improve the encoder's noise resistance, take the following measures for wiring and instal-  
lation.  
• Always use the specified Encoder Cables.  
• If lines are interrupted in the middle, be sure to connect them with connectors, making sure that the  
cable insulation is not peeled off for more than 50 mm. In addition, always use shielded cable.  
• Do not coil cables. If cables are long and are coiled, mutual induction and inductance will increase  
and will cause malfunctions. Always use cables fully extended.  
• When installing noise filters for Encoder Cables, use clamp filters. The following table shows the  
recommended clamp filter models.  
Maker  
NEC TOKIN  
TDK  
Name  
EMI core  
Clamp filter  
Model  
ESD-SR-25  
ZCAT2032-0930  
ZCAT3035-1330  
ZCAT2035-0930A  
• Do not place the Encoder Cable in the same duct as Power Cables and Control Cables for brakes,  
solenoids, clutches, and valves.  
3-31  
System Design and Installation  
Chapter 3  
3-3 Regenerative Energy Absorption  
The Servo Drivers have internal regenerative energy absorption circuitry for absorbing  
the regenerative energy produced during time such as Servomotor deceleration, and  
thus preventing the DC voltage from increasing. An overcurrent error is generated,  
however, if the amount of regenerative energy from the Servomotor is too large. If this  
occurs, measures must be taken to reduce the regenerative energy produced by  
changing operating patterns, and so on, or to improve the regenerative energy  
absorption capacity by connecting external regeneration resistance.  
3-3-1 Regenerative Energy Calculation  
Horizontal Axis  
+N1  
Servomotor operation  
N2  
TD2  
Eg2  
TD1  
Servomotor output torque  
Eg1  
t1  
t2  
T
Note In the output torque graph, acceleration in the positive direction is shown as positive, and  
acceleration in the negative direction is shown as negative.  
• The regenerative energy values for Eg1 and Eg2 are derived from the following equations.  
1
2
1
2
2π  
60  
2π  
60  
Eg1 =  
Eg2 =  
N1 TD1 t1 [J]  
N2 TD2 t2 [J]  
N1, N2: Rotation speed at beginning of deceleration [r/min]  
TD1, TD2: Deceleration torque [N·m]  
t1, t2: Deceleration time [s]  
3-32  
System Design and Installation  
Chapter 3  
Note There is some loss due to winding resistance, so the actual regenerative energy will be approx-  
imately 90% of the values derived from these equations.  
• For Servo Driver models with internal capacitors for absorbing regenerative energy (i.e., models of  
400 W or less.), the values for both Eg1 or Eg2 (unit: J) must be lower than the Servo Driver's regen-  
erative energy absorption capacity. (The capacity varies depending on the model. For details, refer  
to 3-3-2 Servo Driver Regenerative Energy Absorption Capacity.)  
• For Servo Driver models with internal regeneration resistance for absorbing regenerative energy  
(i.e., models of 500 W or more), the average amount of regeneration Pr (unit: W) must be calcu-  
lated, and this value must be lower than the Servo Driver's regenerative energy absorption capacity.  
(The capacity varies depending on the model. For details, refer to 3-3-2 Servo Driver Regenerative  
Energy Absorption Capacity.)  
The average amount of regeneration (Pr) is the power consumed by regeneration resistance in  
one cycle of operation.  
Pr = (Eg1 + Eg2)/T [W]  
T: Operation cycle [s]  
Vertical Axis  
+N1  
Fall  
Servomotor operation  
Rise  
N2  
T
D2  
E
g2  
E
g3  
T
t
L2  
2
Servomotor output torque  
T
D1  
E
g1  
t
1
t
3
T
Note In the output torque graph, acceleration in the positive direction (rise) is shown as positive, and  
acceleration in the negative direction (fall) is shown as negative.  
• The regenerative energy values for Eg1, Eg2, and Eg3 are derived from the following equations.  
1
2
2π  
60  
1
2
2π  
Eg1 =  
Eg2 =  
Eg3 =  
N1 TD1 t1 [J]  
60  
N2 TL2 t2 [J]  
2π  
60  
N2 TD2 t3 [J]  
3-33  
System Design and Installation  
Chapter 3  
N1, N2: Rotation speed at beginning of deceleration [r/min]  
T
D1, TD2: Deceleration torque [N·m]  
TL2: Torque when falling [N·m]  
t1, t3: Deceleration time [s]  
t2: Constant-velocity travel time when falling [s]  
Note There is some loss due to winding resistance, so the actual regenerative energy will be approx-  
imately 90% of the values derived from these equations.  
• For Servo Driver models with internal capacitors for absorbing regenerative energy (i.e., models of  
400 W or less.), the values for both Eg1 or Eg2 (unit: J) must be lower than the Servo Driver's regen-  
erative energy absorption capacity. (The capacity varies depending on the model. For details, refer  
to 3-3-2 Servo Driver Regenerative Energy Absorption Capacity.)  
• For Servo Driver models with internal regeneration resistance for absorbing regenerative energy  
(i.e., models of 500 W or more), the average amount of regeneration Pr (unit: W) must be calcu-  
lated, and this value must be lower than the Servo Driver's regenerative energy absorption capacity.  
(The capacity varies depending on the model. For details, refer to 3-3-2 Servo Driver Regenerative  
Energy Absorption Capacity.)  
The average amount of regeneration (Pr) is the power consumed by regeneration resistance in  
one cycle of operation.  
Pr = (Eg1 + Eg2 + Eg3)/T [W]  
T: Operation cycle  
[s]  
3-3-2 Servo Driver Regenerative Energy Absorption Capacity  
Amount of Internal Regeneration Resistance in Servo Drivers  
W-series Servo Drivers absorb regenerative energy by means of internal capacitors or resistors. If  
the regenerative energy is more than can be processed internally, an overvoltage error is generated  
and operation cannot continue. The following table shows the regenerative energy (and amount of  
regeneration) that the individual Servo Drivers themselves can absorb. If these values are exceeded,  
take the following measures.  
• Connect external regeneration resistance (to improve the regeneration processing capacity).  
• Reduce the operating rotation speed. (The amount of regeneration is proportional to the square of  
the rotation speed.)  
• Lengthen the deceleration time (to decrease the regenerative energy produced per time unit).  
3-34  
System Design and Installation  
Chapter 3  
• Lengthen the operation cycle, i.e., the cycle time (to decrease the average regenerative power).  
Servo Driver  
Regenerative energy (J)  
that can be absorbed by  
internal capacitor  
(See note.)  
Internal regeneration resistance  
Average amount of  
regeneration that can be  
absorbed (W)  
Resistance ()  
R88D-WNA5L-ML2  
R88D-WN01L-ML2  
R88D-WN02L-ML2  
R88D-WN04L-ML2  
R88D-WNA5H-ML2  
R88D-WN01H-ML2  
R88D-WN02H-ML2  
R88D-WN04H-ML2  
R88D-WN08H-ML2  
R88D-WN05H-ML2  
R88D-WN10H-ML2  
R88D-WN15H-ML2  
R88D-WN20H-ML2  
R88D-WN30H-ML2  
28.6  
28.6  
28.6  
39.0  
15.2  
30.5  
30.5  
30.5  
---  
---  
---  
---  
---  
---  
---  
---  
---  
12  
8
---  
---  
---  
---  
---  
---  
---  
---  
50  
50  
50  
20  
12  
12  
---  
---  
12  
14  
28  
28  
---  
---  
---  
Note These are the values at 100 V AC for 100-V AC models, and at 200 V AC for 200-V AC models.  
3-3-3 Regenerative Energy Absorption by External  
Regeneration Resistance  
If the regenerative energy exceeds the absorption capacity of the Servo Driver by itself,  
then external regeneration resistance must be connected. A Resistor or Unit can be  
used alone or in combination with other Resistors/Units to provide the required  
regeneration processing capacity.  
!Caution  
Connect the External Regeneration Resistor or External Regeneration Resistance  
Unit between the Servo Driver's B1 and B2 terminals. Check the terminal names  
carefully when connecting to the terminals. If the Resistor or Unit is connected to  
the wrong terminals it will damage the Servomotor.  
Note 1. The External Regeneration Resistor can reach a temperature of approximately 120°C, so  
install it at a distance from heat-sensitive devices and wiring. In addition, a radiation shield  
must be installed according to the radiation conditions.  
Note 2. For external dimensions, refer to 2-7 External Regeneration Resistor Specifications.  
3-35  
System Design and Installation  
Chapter 3  
External Regeneration Resistors  
Specifications  
Model  
Resistance  
Nominal  
capacity absorption at 120°C  
220 W 70 W  
Regeneration  
Heat  
radiation  
Thermal switch  
output  
R88A-RR22047S 47 5%  
External Regener-  
ation Resistor  
t1.0 × @350  
(SPCC)  
Operating temper-  
ature: 170°C  
NC contact  
Note The following external regeneration resistors are recommended products from another manu-  
facturer, Iwaki Musen Kenkyusho Co., Ltd. For details, refer to the manufacturer's documenta-  
tion.  
• RH120N50J  
• RH300N50J  
• RH500N50J  
50 5% 30 W (Amount of regeneration at 120°C)  
50 5% 75 W (Amount of regeneration at 120°C)  
50 5% 100 W (Amount of regeneration at 120°C)  
Combining External Regeneration Resistors (R88D-RR22047S)  
1 70 W (47 )  
2 280 W (47 )  
3 630 W (47 )  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
4 140 W (23.5 )  
5 560 W (23.5 )  
6 840 W (15.7 )  
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
R
Note A combination cannot be used if the resistance is less than the minimum connection resistance  
for any given Servo Driver. Refer to the following table for the minimum connection resistance  
values for each Servo Driver, and select a suitable combination.  
3-36  
System Design and Installation  
Chapter 3  
Servo Driver Minimum Connection Resistance and External  
Regeneration Resistor Combinations  
Servo Driver  
Minimum Connection  
External Regeneration  
Resistor Combinations  
Resistance ()  
R88D-WNA5L-ML2 to WN01L-ML2  
R88D-WN02L-ML2 to WN04L-ML2  
R88D-WNA5H-ML2 to WN01H-ML2  
R88D-WN02H-ML2 to WN04H-ML2  
R88D-WN05H-ML2 to WN10H-ML2  
R88D-WN15H-ML2  
40  
40  
40  
40  
40  
20  
12  
1
1, 2  
1
1, 2  
1, 2, 3  
1, 2, 3, 4, 5  
1, 2, 3, 4, 5, 6  
R88D-WN20H-ML2 to WN30H-ML2  
Wiring External Regeneration Resistance  
R88D-WNA5L-ML2/01L-ML2/02L-ML2/04L-ML2/A5H-ML2/01H-ML2/02H-ML2/  
04H-ML2  
Connect an External Regeneration Resistor between the B1 and B2 terminals.  
External Regeneration Resistor  
B1/  
Servo Driver  
B2  
Note When using the R88A-RR22047S, connect the thermal switch output so that the power supply  
will be shut off when open.  
R88D-WN05H-ML2/08H-ML2/10H-ML2/20H-ML2/30H-ML2  
Remove the short-circuit wiring between B2 and B3, and then connect an External Regeneration  
Resistor between the B1 and B2 terminals.  
External Regeneration Resistor  
B1/  
Servo Driver  
B2  
B3  
Remove  
Note 1. The short-circuit wiring between B2 and B3 must be removed.  
Note 2. When using the R88A-RR22047S, connect the thermal switch output so that the power sup-  
ply will be shut off when open.  
3-37  
System Design and Installation  
Chapter 3  
Setting Pn600 (Regeneration Resistor Capacity) for an External  
Regeneration Resistor  
Pn600 (Regeneration Resistor Capacity) must be set correctly when using an external regeneration  
resistor. The regenerative energy in the Servo Driver is calculated based on the assumption that the  
regeneration resistance that is built into the Servo Driver is connected. The following settings are  
therefore recommended for Pn600 (Regeneration Resistor Capacity).  
Servo Driver model  
External  
regeneration  
resistance ()  
Absorption  
capacity of  
external  
regeneration  
resistor (W)  
Regeneration  
resistance built setting for Pn600  
into Servo Driver  
Recommended  
()  
R88D-WN05H/08H/10H-ML2 47  
70  
50  
50  
50  
20  
20  
20  
20  
20  
12  
12  
12  
12  
12  
12  
7
47  
47  
280  
630  
70  
26  
59  
R88D-WN15H-ML2  
47  
16  
47  
280  
630  
140  
560  
70  
66  
47  
148  
16  
23.5  
23.5  
47  
66  
R88D-WN20H/30H-ML2  
27  
47  
280  
630  
140  
560  
840  
110  
247  
27  
47  
23.5  
23.5  
15.7  
110  
110  
3-38  
System Design and Installation  
Chapter 3  
3-4 Adjustments and Dynamic Braking When Load Inertia Is  
Large  
The value that is given for the Servomotor's applicable load inertia is the value that will  
not damage the Servo Driver's internal circuits (dynamic brake circuit, regenerative  
circuit, etc.) when control is basically stable and the operating status is normal. When  
the Servomotor is used at the applicable load inertia or below, there are certain  
operating conditions and precautions that must be observed when making adjustments  
and using the dynamic brake. For details on regenerative energy processing, refer to  
3-3 Regenerative Energy Absorption.  
3-4-1 Adjustments When Load Inertia Is Large  
Operation is possible with a large load inertia as long as the load torque is within a range that allows  
Servo Driver control (i.e., no larger than the rated torque and within the electronic thermal range:  
these depend on the motor speed and acceleration/deceleration). If the load inertia ratio is large,  
however, adjustment becomes difficult using only the rigidity setting and autotuning, as shown below.  
The following table lists the adjustment criteria according to the load inertia.  
Load inertia ratio  
Adjustment criteria  
Below 500%  
Adjustment is possible using mainly the factory settings or the rigidity setting function  
(Fn001).  
500% to 1,000%  
Adjustment is possible using mainly the rigidity setting and autotuning.  
1,000% to 3,000% Adjustment may be possible using the rigidity setting and autotuning, but it may be nec-  
essary to manually adjust settings such as the gain.  
Above 3,000%  
Adjustment will be difficult using the rigidity setting and autotuning. Set the load inertia  
based on mechanism settings, and manually adjust the gain.  
3-4-2 Dynamic Braking When Load Inertia Is Large  
Dynamic braking is used to brake the Servomotor by consuming rotational energy using a resistor.  
The Servomotor's rotational energy can be found by using the following equation.  
Servomotor rotational energy - (1/2 × J × ω2) = 1/2 × J × (2 × π)2 × (N/60)2  
J: Load inertia + Servomotor rotor inertia  
N: Servomotor speed [r/min]  
Therefore, if the load inertia ratio is large and the motor speed is high, the load on the dynamic brake  
circuit will be great and there will be a risk of burnout. Burnout may also occur if the dynamic brake is  
used repeatedly within a short period of time. Do not use the dynamic brake under conditions where  
the maximum speeds or load inertia ratios shown in the following table are exceeded. For operating  
conditions other than these, use the following equation: 1/2 × J × ω2 = Constant.  
3-39  
System Design and Installation  
Chapter 3  
Servomotor  
Load inertia ratio  
3,000% max.  
2,000% max.  
1,000% max.  
2,500% max.  
3,000-r/min Servomotors, 30 to 400 W  
3,000-r/min Servomotors, 750 W  
3,000-r/min Servomotors, 1 k to 3 kW  
3,000-r/min Flat-type Servomotors, 100 W  
3,000-r/min Flat-type Servomotors, 200 W or 400 W 1,500% max.  
3,000-r/min Flat-type Servomotors, 750 W or 1.5 kW 1,000% max.  
1,000-r/min Servomotors, 300 W to 2 kW  
1,500-r/min Servomotors, 450 W to 1.8 kW  
1,000% max.  
1,000% max.  
For Servomotors of 1.5 kW or less, observe the following precautions if there is a possibility of the  
power being turned ON while the Servomotor is rotating.  
In Servomotors of 1.5 kW or less, the dynamic brake circuit uses a relay. Normally, if an alarm occurs  
while the Servo is OFF, the dynamic brake operates according to the function selection application  
switch (Pn001.0, 1) when drive prohibition is being input. At 1.5 kW or less, however, the dynamic  
brake operates regardless of this setting even if the main circuit power supply or the control power  
supply is OFF.  
Current flows to the relay while the dynamic brake is operating. If 2 (Stop Servomotor by free run) is  
selected for the function selection application switch (Pn001.0: Stop selection for alarm generation  
with Servo OFF), the relay turns OFF when the power is turned ON again.  
If the power is turned from OFF to ON while the Servomotor is rotating, the relay operates while cur-  
rent is flowing to it. This may cause the relay contacts to fuse.  
For Servomotors of 1.5 kW or less, if there is a possibility of the power being turned ON during Ser-  
vomotor rotation, either set 0 (Stop Servomotor by dynamic brake) for the function selection applica-  
tion switch (Pn001.0: Stop selection for alarm generation with Servo OFF) or make sure that the  
power will not be turned ON until the Servomotor has stopped.  
3-40  
Chapter 4  
Operation  
4-1 Operational Procedure  
4-2 Preparing for Operation  
4-3 User Parameters  
4-4 Operation Functions  
4-5 Trial Operation Procedure  
4-6 Making Adjustments  
4-7 Advanced Adjustment Functions  
4-8 Using Displays  
4-9 Using Monitor Output  
Operation  
Chapter 4  
Precautions  
!Caution  
!Caution  
!Caution  
!Caution  
!Caution  
!Caution  
Confirm that there will be no effect on the equipment, and then perform a test  
operation. Not doing so may result in equipment damage.  
Check the newly set parameters for proper execution before actually running  
them. Not doing so may result in equipment damage.  
Do not make any extreme adjustments or setting changes. Doing so may result in  
unstable operation and injury.  
Separate the Servomotor from the machine, check for proper operation, and then  
connect to the machine. Not doing so may cause injury.  
When an alarm occurs, remove the cause, reset the alarm after confirming safety,  
and then resume operation. Not doing so may result in injury.  
Do not use the built-in brake of the Servomotor for ordinary braking. Doing so may  
result in a malfunction.  
4-2  
Operation  
Chapter 4  
4-1 Operational Procedure  
After mounting, wiring, and connecting a power supply, check the operation of the  
Servomotor and Servo Driver. Then make the function settings as required according  
to the use of the Servomotor and Servo Driver. If the parameters are set incorrectly,  
there is a risk of an unforeseen Servomotor operation. Set the parameters in  
accordance with the instructions in this manual.  
1.Mounting and installation  
Install the Servomotor and Servo Driver according to the installation conditions. (Do not connect  
the Servomotor to the mechanical system before checking the no-load operation.) Refer to 3-1 In-  
stallation Conditions.  
2.Wiring and connections  
Connect to power supply and peripheral devices. Specified installation and wiring requirements  
must be satisfied, particularly for models conforming to the EC Directives. Refer to 3-2 Wiring.  
3.Preparing for operation  
Before turning ON the power supply, check the necessary items. Check by means of the displays  
to see whether there are any internal errors in the Servo Driver. If using a Servomotor with an ab-  
solute encoder, first set up the absolute encoder. Refer to 4-4-2 Speed Control (Speed).  
4.Checking operation  
Check the operation of the Servomotor and Servo Driver alone by performing a jogging operation  
without a load. Refer to 4-4-5 Encoder Dividing Function (All Operating Modes).  
5.Function settings  
By means of the user parameters, set the functions according to the operating conditions. Refer  
to 4-4-3 Torque Control (Torque) and 4-4-4 Forward and Reverse Drive Prohibit (All Operating  
Modes).  
6.Trial operation  
Turn the power OFF then ON again to enable the parameter settings. If using a Servomotor with  
an absolute encoder, set up the absolute encoder and set the Motion Control Unit's initial param-  
eters. Turn ON the power, and check to see whether protective functions such as emergency stop  
and operational limits are working reliably. Check operation at both low speed and high speed (us-  
ing instructions from the Host Controller). Refer to 4-4-5 Encoder Dividing Function (All Operating  
Modes).  
7.Adjustments  
Manually adjust the gain as required. Further adjust the various functions to further improve the  
control performance as required. Refer to 4-4-6 Brake Interlock (All Operating Modes) and 4-4-7  
Torque Limit Function (All Operating Modes).  
8.Operation  
Operation can now begin. If any trouble should occur, refer to Chapter 5 Troubleshooting.  
4-3  
Operation  
Chapter 4  
4-2 Preparing for Operation  
This section explains the procedure following installation and wiring of the Servomotor  
and Servo Driver, to prepare the mechanical system for operation. It explains what you  
need to check both before and after turning ON the power. It also explains the setup  
procedure required if using a Servomotor with an absolute encoder.  
4-2-1 Turning Power ON and Checking Indicators  
Items to Check Before Turning ON the Power  
Checking Power Supply Voltage  
• Check to be sure that the power supply voltage is within the ranges shown below.  
R88D-WN@L-ML2 (Single-phase 100 V AC input)  
Main-circuit power supply: Single-phase 100/115 V AC (85 to 127 V) 50/60 Hz  
Control-circuit power supply: Single-phase 100/115 V AC (85 to 127 V) 50/60 Hz  
R88D-WNA5H-ML2/01H-ML2/02H-ML2/04H-ML2/08H-ML2 (Single-phase 200 V AC input)  
Main-circuit power supply: Single-phase 200/230 V AC (170 to 253 V) 50/60 Hz  
Control-circuit power supply: Single-phase 200/230 V AC (170 to 253 V) 50/60 Hz  
R88D-WN05H-ML2/10H-ML2/15H-ML2/20H-ML2/30H-ML2 (Three-phase 200 V AC input)  
Main-circuit power supply: Three-phase 200/230 V AC (170 to 253 V) 50/60 Hz  
Control-circuit power supply: Single-phase 200/230 V AC (170 to 253 V) 50/60 Hz  
Checking Terminal Block Wiring  
• The main-circuit power supply inputs (L1/L2 or L1/L2/L3) and the control-circuit power supply inputs  
(L1C/L2C) must be properly connected to the terminal block.  
• The Servomotor's red (U), white (V), and blue (W) power lines and the yellow/green ground wire  
( ) must be properly connected to the terminal block.  
Checking the Servomotor  
• There should be no load on the Servomotor. (Do not connect to the mechanical system.)  
• The power lines at the Servomotor must be securely connected.  
Checking the Encoder Connectors  
• The Encoder Cable must be securely connected to the Encoder Connector (CN2) at the Servo  
Driver.  
• The Encoder Cable must be securely connected to the Encoder Connector at the Servomotor.  
Checking the I/O Connector  
• The I/O Signal Cable must be securely connected to the I/O Connector (CN1).  
4-4  
Operation  
Chapter 4  
Checking the MECHATROLINK-II Connections  
• The MECHATROLINK-II Connector must be securely connected to the MECHATROLINK-II Con-  
nector at the host controller.  
• The MECHATROLINK-II Cable must be securely connected to the MECHATROLINK-II Connector  
(CN6) at the Servo Driver.  
• The termination resistance must be securely connected to the final Servo Driver.  
Turning ON Power  
• First carry out the preliminary checks, and then turn ON the control-circuit power supply. It makes  
no difference whether or not the main-circuit power supply is also turned ON.  
• The ALM output will take approximately 2 seconds to turn ON after the power has been turned ON.  
Do not attempt to detect an alarm using the Host Controller during this time (when power is being  
supplied with the Host Controller connected).  
Checking Displays  
• When the power is turned ON, one of the codes shown below will be displayed at either the indica-  
tors or the Parameter Unit.  
Normal  
Error (Alarm Display)  
Note 1. The alarm code (the number shown in the alarm display) changes depending on the con-  
tents of the error.  
Note 2. When using a Servomotor with an absolute encoder for the first time, A.810 (backup error)  
will be displayed. Clear this error by setting up the absolute encoder. (Refer to 4-2-2 Abso-  
lute Encoder Setup and Battery Changes).  
• If the display is normal (i.e., no errors), manually turn the Servomotor shaft forward and reverse,  
and check to be sure that it agrees with the positive and negative on the speed display. Display the  
speed feedback with the Computer Monitor Software and manually turn the Servomotor shaft for-  
ward and reverse.  
Panel Operator Status Display  
• Status Display (Bit Data)  
Item  
(1)  
Bit data  
Display contents  
Servomotor rotation detection Lit while Servomotor is rotating.  
Bit data  
(2)  
Servo ON/OFF  
Lit when Servo is OFF.  
Unlit when Servo is ON.  
(1)  
(2)  
(3)  
(3)  
(4)  
Command input detection  
CONNECT  
Lit while a command is being input.  
Lit when CONNECT is complete.  
(4)  
4-5  
Operation  
Chapter 4  
• Code Display  
Code  
Details  
Forward rotation drive prohibited (POT is OFF) or  
the forward software limit has been exceeded.  
Reverse rotation drive prohibited (NOT is OFF) or  
the reverse software limit has been exceeded.  
Alarm display (Refer to 5-2 Alarms.)  
@@  
• Codes are displayed one character at a time on the Servo Driver's front panel display, as shown  
below.  
Example:When both forward rotation drive prohibit (P) and reverse rotation drive prohibit (n) are  
ON:  
Status display  
Code display  
Status display  
(bit data)  
Not lit  
Not lit  
Not lit  
Example:A.E60  
Status display  
(bit data)  
Not lit  
Not lit  
Not lit  
Not lit  
Not lit  
4-2-2 Absolute Encoder Setup and Battery Changes  
You must set up the absolute encoder if using a Servomotor with an absolute encoder.  
Perform the setup if connecting a Battery Unit (R88A-BAT01W) to an absolute encoder  
for the first time, or when setting the mechanical rotation data to 0 for a trial operation.  
For the absolute encoder setup, refer to Computer Monitor Software procedure.  
Cases where Setup is Required  
During Trial Operation  
The absolute encoder's multi-turn data may become too large when connecting the Servomotor to  
the mechanical system for trial operation, so the setup must be executed again.  
When Replacing the Battery Unit  
The setup must be executed again if an alarm (A.810) occurs after the Battery Unit has been  
replaced.  
4-6  
Operation  
Chapter 4  
Note If no alarm occurs after the Battery Unit has been replaced, there is no need to execute the  
setup again or to initialize the Motion Control Unit settings.  
For details on the Battery Units service life and replacement method, refer to 5-6 Replacing the  
Absolute Encoder Battery (ABS).  
Other Cases  
• If the Encoder Cable is removed from the connector (on either the Servo Driver or Servomotor  
side), the data within the absolute encoder will be cleared. In this case, perform the setup once  
again.  
• If the Battery Unit has completely worn down, the data within the absolute encoder will be cleared.  
In this case, replace the Battery Unit and perform the setup once again.  
4-7  
Operation  
Chapter 4  
4-3 User Parameters  
Set and check the user parameters using the Setting Mode. Make sure you fully  
understand the parameter meanings and how to set them before setting user  
parameters in the system. Some parameters are enabled by turning OFF the Unit, then  
turning it ON again. When changing these parameters, turn OFF the power (check that  
the power lamp is not lit), then turn ON the power again.  
4-3-1 Parameter Tables  
• Some parameters are enabled by turning OFF the Unit, then turning it ON again. (See the tables  
below.) When changing these parameters, turn OFF the power (check that the power lamp is not  
lit), then turn ON the power again.  
• The specific digit number of a parameter for which each digit number must be set separately is dis-  
played in the table with “.0" added to the digit number. For example, Pn001.0 (i.e., digit No. 0 of  
parameter No. Pn001).  
• The default setting for parameters set using 5 digits are displayed in the table with the leftmost dig-  
its not shown if they are 0 (e.g., if the default setting is 00080, 80 is entered in the table).  
• Do not set parameters or digit numbers shown as “Not used.”  
Function Selection Parameters (from Pn000)  
Param- Parame- Digit  
Name  
Setting  
Explanation  
Default  
setting  
Unit  
Setting Restart  
range power?  
eter No.  
ter  
No.  
name  
Pn000  
Func-  
0
Reverse rota- 0  
tion  
CCW direction is taken for positive com- 0000  
mand  
---  
---  
Yes  
tion  
selec-  
tion  
basic  
switches  
1
CW direction is taken for positive com-  
mand  
2 to 3  
Not used.  
1
2
Not used.  
0
(Do not change setting.)  
Unit No. set- 0 to F  
ting  
Servo Driver communications unit num-  
ber setting (necessary for multiple Servo  
Driver connections when using personal  
computer monitoring software)  
3
0
Not used.  
0
0
1
(Do not change setting.)  
Pn001  
Func-  
tion  
Stop selec-  
tion if an  
alarm occurs  
when Servo-  
motor is OFF  
Servomotor stopped by dynamic brake.  
0002  
---  
---  
Yes  
Dynamic brake OFF after Servomotor  
stopped  
selec-  
tion  
applica-  
tion  
switches  
1
2
0
Servomotor stopped with free run  
1
Stop selec-  
tion when  
drive prohib-  
ited is input  
Stop according to Pn001.0 setting  
(release Servomotor after stopping)  
1
2
Stop Servomotor using torque set in  
Pn406, and lock Servomotor after stop-  
ping  
Stop Servomotor using torque set in  
Pn406, and release Servomotor after  
stopping  
2
3
AC/DC  
0
1
0
AC power supply: AC power supplied  
from L1, L2, (L3) terminals  
power input  
selection  
DC power supply: DC power from +, (2)  
terminals  
Not used.  
(Do not change setting.)  
4-8  
Operation  
Chapter 4  
Param- Parame- Digit  
Name  
Setting  
Explanation  
Default  
setting  
Unit  
Setting Restart  
range power?  
eter No.  
ter  
No.  
name  
Pn002  
Func-  
0
Torque com-  
mand input  
change (dur-  
ing speed  
control)  
0
Do not use option command value.  
0000  
---  
---  
Yes  
tion  
1
2
3
Use option command value 1 as the  
torque limit value.  
selec-  
tion  
applica-  
tion  
switches  
2
Use option command value 1 as the  
torque feed forward command value.  
Use option command value 1 or 2 as the  
torque limit value, according to the for-  
ward and reverse torque limits that are  
specified.  
1
2
Speed com-  
mand input  
change (dur-  
ing torque  
control)  
0
1
Do not use option command value.  
Use option command value 1 as the  
speed limit value.  
Operation  
0
1
Use as absolute encoder  
switch when  
using abso-  
lute encoder  
Use as incremental encoder  
3
0
1
2
3
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
0
0
1
1
0
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
Pn004  
Pn006  
Func-  
tion  
0110  
0002  
---  
---  
---  
---  
Yes  
selec-  
tion  
applica-  
tion  
switches  
4
Func-  
tion  
selec-  
tion  
applica-  
tion  
switches  
6
0 to 1 Analog moni- 00  
tor 1 (AM)  
Servomotor rotation speed:  
1V/1000 r/min  
---  
signal selec-  
tion  
01  
Speed command: 1 V/1000 r/min  
02  
Torque command: gravity compensation  
torque (Pn422)  
(1 V per 100%)  
03  
04  
05  
Position deviation: 0.05 V/1 command  
unit  
Position amp error (after electronic gear)  
(0.05 V per encoder pulse unit)  
Position command speed  
(1 V/1,000 r/min)  
06  
07  
08  
Not used.  
Not used.  
Positioning completed command  
(Positioning completed: 5 V; positioning  
not completed: 0 V  
09  
0A  
Speed feed forward (1 V/1,000 r/min)  
Torque feed forward (1 V per 100%)  
0B to 1F Not used.  
2
3
Analog moni-  
tor 1 signal  
multiplier  
0
1
2
3
4
0
1x  
10x  
selection  
100x  
1/10x  
1/100x  
Not used.  
(Do not change setting.)  
4-9  
Operation  
Chapter 4  
Param- Parame- Digit  
Name  
Setting  
Explanation  
Default  
setting  
Unit  
Setting Restart  
range power?  
eter No.  
ter  
No.  
name  
Pn007  
Func-  
0 to 1 Analog moni- 00  
tor 2 (NM)  
Servomotor rotation speed:  
1V/1000 r/min  
0000  
---  
---  
---  
tion  
selec-  
tion  
signal selec-  
01  
Speed command: 1 V/1000 r/min  
tion  
applica-  
tion  
02  
Torque command: gravity compensation  
torque (Pn422)  
(1 V per 100%)  
switches  
7
03  
04  
05  
Position deviation: 0.05 V/1 command  
unit  
Position amp error (after electronic gear)  
(0.05 V per encoder pulse unit)  
Position command speed  
(1 V/1,000 r/min)  
06  
07  
08  
Not used.  
Not used.  
Positioning completed command  
(Positioning completed: 5 V; positioning  
not completed: 0 V  
09  
0A  
Speed feed forward (1 V/1,000 r/min)  
Torque feed forward (1 V per 100%)  
0B to 1F Not used.  
2
Analog moni-  
tor 2 signal  
multiplier  
0
1
2
3
4
0
0
1x  
10x  
selection  
100x  
1/10x  
1/100x  
3
0
Not used.  
(Do not change setting.)  
Pn008  
Func-  
tion  
Lowered bat-  
tery voltage  
alarm/warn-  
ing selection  
Regard battery voltage drop as alarm  
(A.830).  
4000  
---  
---  
Yes  
selec-  
tion  
1
Regard battery voltage drop as warning  
(A.930).  
applica-  
tion  
switches  
8
1
2
Not used.  
0
0
1
(Do not change setting.)  
Warnings detected.  
Warning  
detection  
selection  
Warnings not detected.  
3
Not used.  
4
(Do not change setting.)  
Servo Gain Parameters (from Pn100)  
Param- Parameter  
Explanation (See note 1.)  
Default  
setting  
Unit  
Setting Restart  
range power?  
eter No.  
name  
Digit  
No.  
Name  
Setting Explanation (See note 2.)  
Pn100  
Pn101  
Speed loop Adjusts speed loop response.  
gain  
800  
× 0.1 Hz  
10 to  
---  
---  
20000  
Speed loop Speed loop integral time constant  
integration  
constant  
2000  
× 0.01 ms 15 to  
51200  
Pn102  
Pn103  
Pn104  
Pn105  
Position  
Adjusts position loop response.  
400  
× 0.1/s  
%
10 to  
---  
---  
---  
---  
loop gain  
20000  
Inertia ratio Set using the ratio between the machine system inertia and the Ser- 300  
vomotor rotor inertia.  
0 to  
20000  
Speed loop Adjusts speed loop response (enabled by gain switching input).  
gain 2  
800  
× 0.1 Hz  
10 to  
20000  
Speed loop Speed loop integral time constant (enabled by gain switching input). 2000  
integration  
constant 2  
× 0.01 ms 15 to  
51200  
Pn106  
Pn107  
Position  
Adjusts position loop response (enabled by gain switching input).  
Sets position control bias.  
400  
0
× 0.1/s  
10 to  
---  
loop gain 2  
20000  
Bias rota-  
tional speed  
r/min  
0 to 450 ---  
4-10  
Operation  
Chapter 4  
Param- Parameter  
Explanation (See note 1.)  
Setting Explanation (See note 2.)  
Default  
setting  
Unit  
Setting Restart  
range power?  
eter No.  
name  
Digit  
No.  
Name  
Pn108  
Pn109  
Bias addi-  
tion band  
Sets the position control bias operation start using deviation counter  
pulse width.  
7
0
Command 0 to 250 ---  
unit  
Feed-for-  
ward  
amount  
Position control feed-forward compensation value  
%
0 to 100 ---  
Pn10A  
Pn10B  
Feed-for-  
Sets position control feed-forward command filter.  
0
× 0.01 ms 0 to  
6400  
---  
---  
ward com-  
mand filter  
Speed con-  
trol setting  
0
P control  
switching  
conditions  
0
1
2
3
Sets internal torque command  
value conditions (Pn10C).  
0004  
---  
---  
Sets speed command value condi-  
tions (Pn10d).  
Sets acceleration command value  
conditions (Pn10E)  
Sets deviation pulse value condi-  
tions (Pn10F)  
4
No P control switching function  
PI control  
1
2
3
Speed con-  
trol loop  
0
Yes  
1
IP control  
switching  
2 to 3  
Not used.  
Position loop  
control  
method  
0
Standard position control  
Less deviation control  
Not used.  
1
2 to 3  
0
Not used.  
(Do not change setting.)  
Pn10C P control  
switching  
Sets level of torque command to switch from PI control to P control. 200  
%
0 to 800 ---  
(torque  
command)  
Pn10D P control  
switching  
Sets level of speed command to switch from PI control to P control.  
0
0
r/min  
r/min/s  
0 to  
---  
---  
10000  
(speed com-  
mand)  
Pn10E  
P control  
switching  
(accelera-  
tion com-  
mand)  
Sets level of acceleration command to switch from PI control to P  
control.  
0 to  
30000  
Pn10F  
Pn110  
P control  
switching  
(deviation  
pulse)  
Sets level of deviation pulses to switch from PI control to P control.  
10  
Command 0 to  
---  
unit  
10000  
Normal  
autotuning  
switches  
0
1
Normal auto-  
tuning  
2
(Do not change setting.)  
0012  
---  
---  
Yes  
method  
Speed feed-  
back com-  
pensation  
function  
0
ON  
1
OFF  
2 to 3  
Not used.  
selection  
2
3
Not used.  
Not used.  
0
0
(Do not change setting.)  
(Do not change setting.)  
Pn111  
Speed feed- Adjusts speed loop feedback gain.  
100  
%
1 to 500 ---  
back com-  
pensating  
gain  
Pn119  
Pn11A  
Pn11E  
Pn11F  
Not used.  
Not used.  
Not used.  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
500  
1000  
1000  
0
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
Position  
integral time  
constant  
Position loop integral time constant  
× 0.1 ms  
0 to  
50000  
Pn12B  
Not used.  
(Do not change setting.)  
400  
---  
---  
---  
4-11  
Operation  
Chapter 4  
Param- Parameter  
Explanation (See note 1.)  
Setting Explanation (See note 2.)  
Default  
setting  
Unit  
Setting Restart  
range power?  
eter No.  
name  
Digit  
No.  
Name  
Pn12C Not used.  
Pn12D Not used.  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
2000  
400  
400  
2000  
400  
0
---  
---  
---  
---  
---  
ms  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
Pn12E  
Pn12F  
Pn130  
Pn131  
Not used.  
Not used.  
Not used.  
Gain switch- Switching time from No. 1 gain to No. 2 gain  
ing time 1  
0 to  
65535  
Pn132  
Pn135  
Gain switch- Switching time from No. 2 gain to No. 1 gain  
ing time 2  
0
0
ms  
ms  
0 to  
---  
---  
65535  
Gain switch- The time from when gain switching condition A is satisfied until  
0 to  
65535  
ing waiting  
time 1  
switching from the No. 1 gain to the No. 2 gain begins.  
Pn136  
Pn139  
Gain switch- The time from when gain switching condition B is satisfied until  
0
ms  
---  
0 to  
---  
ing waiting  
time 2  
switching from the No. 2 gain to the No. 1 gain begins.  
65535  
Automatic  
gain  
0
Gain switch-  
ing selection  
switch  
0
1
Manual gain switching  
0000  
---  
Yes  
Automatic switching pattern 1  
Automatic switching from No. 1  
gain to No. 2 gain when gain  
switching condition A is satisfied.  
Automatic switching from No. 2  
gain to No. 1 gain when gain  
switching condition B is satisfied.  
changeover  
related  
switches 1  
2 to 4  
0
Not used.  
1
Gain switch-  
ing condition  
A
Positioning completed output 1  
(INP1) ON  
1
2
3
4
Positioning completed output 1  
(INP1) OFF  
Positioning completed output 2  
(INP2) ON  
Positioning completed output 2  
(INP2) OFF  
The position command filter out-  
put is 0, and also the position com-  
mand input is 0.  
5
The position command input is not  
0.  
2
3
Gain switch- 0 to 5  
Same as above.  
ing condition  
B
Not used.  
0
(Do not change setting.)  
Pn144  
Pn150  
Not used.  
(Do not change setting.)  
1000  
0210  
---  
---  
---  
---  
---  
Predictive  
control  
selection  
switches  
0
Predictive  
control selec-  
tion  
0
1
2
0
1
2
0
Predictive control not used.  
Predictive control used.  
Yes  
Not used. (Do not change setting.)  
Predictive control for tracking  
Predictive control for positioning  
(Do not change setting.)  
1
Predictive  
control type  
2
3
Not used.  
Not used.  
(Do not change setting.)  
Pn151  
Predictive  
control  
Adjusts acceleration and deceleration response for predictive control. 100  
%
0 to 300 ---  
accelera-  
tion/deceler-  
ation gain  
Pn152  
Pn1A0  
Predictive  
control  
Adjusts position deviation for predictive control.  
100  
60  
%
%
0 to 300 ---  
1 to 500 ---  
weighting  
ratio  
Servo rigid- Adjusts the Servo rigidity for the No. 1 gain.  
ity  
4-12  
Operation  
Chapter 4  
Param- Parameter  
Explanation (See note 1.)  
Setting Explanation (See note 2.)  
Default  
setting  
Unit  
Setting Restart  
range power?  
eter No.  
name  
Digit  
No.  
Name  
Pn1A1  
Pn1A2  
Servo rigid- Adjusts the Servo rigidity for the No. 2 gain.  
ity 2  
60  
72  
%
1 to 500 ---  
Speed feed- Sets the filter time constant for No. 1 gain speed feedback.  
× 0.01 ms 30 to  
---  
---  
---  
---  
back filter  
time con-  
stant  
3200  
Pn1A3  
Pn1A4  
Pn1A7  
Speed feed- Sets the filter time constant for No. 2 gain speed feedback.  
72  
36  
× 0.01 ms 30 to  
back filter  
time con-  
stant 2  
3200  
Torque com- Sets the filter time constant for the torque command.  
× 0.01 ms 0 to  
mand filter  
time con-  
stant 2  
2500  
Utility con-  
trol switches  
0
Integral com-  
pensation  
processing  
0
1
2
Integral compensation processing 1121  
---  
---  
not executed.  
Integral compensation processing  
executed.  
Integral compensation is executed  
for No. 1 gain and not for No. 2  
gain for less-deviation gain switch-  
ing.  
3
Integral compensation is executed  
for No. 2 gain and not for No. 1  
gain for less-deviation gain switch-  
ing.  
1
2
3
Not used.  
Not used.  
Not used.  
2
1
1
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
Pn1A9  
Utility inte-  
gral gain  
Adjusts the auxiliary integral responsive.  
37  
60  
Hz  
Hz  
0 to 500 ---  
0 to 500 ---  
Pn1AA Position pro- Adjusts the position proportional responsive.  
portional  
gain  
Pn1AB Speed inte- Adjusts the speed integral responsive.  
gral gain  
0
Hz  
Hz  
0 to 500 ---  
Pn1AC Speed pro- Adjusts the speed proportional responsive.  
120  
0 to  
---  
---  
portional  
gain  
2000  
Pn1B5  
Not used.  
(Do not change setting.)  
150  
---  
---  
Note 1. Explanation for parameters set using 5 digits.  
Note 2. Explanation for parameters requiring each digit No. to be set separately.  
Position Control Parameters (from Pn200)  
Param- Parame-  
eter No. ter name  
Explanation  
Default  
setting  
Unit  
Setting  
range  
Restart  
power?  
Digit  
No.  
Name  
Setting  
Explanation  
Pn200  
Pn205  
Not used.  
0
Not used.  
Not used.  
Not used.  
Not used.  
0
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
0100  
---  
---  
Yes  
1
2
3
0
1
0
Absolute  
encoder  
multi-turn  
limit set-  
ting  
Sets the multi-turn limit for when a Servomotor with an absolute  
encoder is used.  
65535  
Rotation  
0 to 65535  
Yes  
4-13  
Operation  
Chapter 4  
Param- Parame-  
eter No. ter name  
Explanation  
Setting  
Default  
setting  
Unit  
Setting  
range  
Restart  
power?  
Digit  
No.  
Name  
Explanation  
Pn207  
Position  
control  
settings 2  
0
Not used.  
Not used.  
0
(Do not change setting.)  
(Do not change setting.)  
Disabled  
0010  
---  
---  
Yes  
1
2
1
0
1
Backlash  
compensa-  
tion selec-  
tion  
Compensates to forward rota-  
tion side.  
2
0
1
Compensates to reverse rota-  
tion side.  
3
INP 1 output  
timing  
When the position deviation is  
below the INP1 range.  
When the position deviation is  
below the INP1 range and also  
the command after the position  
command filter is 0.  
2
When the absolute value for the  
position deviation is below the  
INP1 range (Pn522) and also the  
position command input is 0.  
Pn209  
Pn20A  
Pn20E  
Not used. (Do not change setting.)  
Not used. (Do not change setting.)  
0
---  
---  
---  
---  
---  
---  
32768  
4
Yes  
Yes  
Electronic Sets the pulse rate for the command pulses and Servomotor  
gear ratio movement distance.  
1 to  
1073741824  
G1  
(numera-  
tor)  
0.001 Pn20E/Pn210 1000  
Pn210  
Electronic  
gear ratio  
G2  
(denomi-  
nator)  
1
---  
1 to  
1073741824  
Yes  
Pn212  
Pn214  
Encoder  
divider  
rate  
Sets the number of output pulses per Servomotor rotation.  
1000  
0
Pulses/  
rotation  
16 to  
Yes  
---  
1073741824  
Backlash Mechanical system backlash amount (the mechanical gap  
Command 32767 to  
unit 32767  
compen-  
sation  
amount  
between the drive shaft and the shaft being driven)  
Pn215  
Backlash Sets the backlash compensation time constant.  
0
× 0.01 ms 0 to 65535  
---  
compen-  
sation  
time con-  
stant  
Pn216  
Pn217  
Pn281  
Not used. (Do not change setting.)  
Not used. (Do not change setting.)  
Not used. (Do not change setting.)  
0
---  
---  
---  
---  
---  
---  
---  
0
---  
20  
Yes  
Speed Control Parameters (from Pn300)  
Param- Parameter  
Explanation  
Default  
setting  
Unit  
Setting Restart  
range power?  
eter No.  
name  
Digit  
No.  
Name  
Setting  
Explanation  
Pn300  
Pn301  
Pn302  
Pn303  
Pn304  
Not used.  
Not used.  
Not used.  
Not used.  
Jog speed  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
600  
100  
200  
300  
500  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
Sets rotation speed during jog operation.  
r/min  
0 to  
10000  
Pn305  
Pn306  
Soft start  
accelera-  
tion time  
Sets acceleration time during speed control soft start.  
Sets deceleration time during speed control soft start.  
0
0
ms  
0 to  
---  
---  
10000  
Soft start  
decelera-  
tion time  
ms  
0 to  
10000  
4-14  
Operation  
Chapter 4  
Param- Parameter  
Explanation  
Setting  
Default  
setting  
Unit  
Setting Restart  
range power?  
eter No.  
name  
Digit  
No.  
Name  
Explanation  
Pn307  
Pn308  
Not used.  
(Do not change setting.)  
40  
0
---  
---  
---  
---  
Speed feed- Sets constant during filter of speed feedback.  
× 0.01 ms 0 to  
back filter  
time con-  
stant  
65535  
Pn310  
Vibration  
detection  
switches  
0
Vibration  
detection  
selection  
0
1
Vibration detection not used.  
0000  
---  
---  
---  
Gives warning (A.911) when vibra-  
tion is detected.  
2
Gives warning (A.520) when vibra-  
tion is detected.  
1
2
3
Not used.  
Not used.  
Not used.  
0
0
0
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
Pn311  
Pn312  
Vibration  
detection  
sensitivity  
Sets the vibration detection sensitivity.  
100  
50  
%
50 to  
500  
---  
---  
Vibration  
detection  
level  
Sets the vibration detection level  
r/min  
0 to  
5000  
Torque Control Parameters (from Pn400)  
Param- Parameter  
Explanation  
Default  
setting  
Unit  
Setting Restart  
range power?  
eter No.  
name  
Digit  
No.  
Name  
Setting  
Explanation  
Pn400  
Pn401  
Not used.  
(Do not change setting.)  
30  
40  
---  
---  
---  
---  
1st step 1st Sets the filter time constant for internal torque commands.  
× 0.01 ms 0 to  
torque com-  
mand filter  
time con-  
stant  
65535  
Pn402  
Pn403  
Pn404  
Forward  
Forward rotation output torque limit (rated torque ratio).  
Reverse rotation output torque limit (rated torque ratio).  
350  
350  
%
%
%
0 to 800 ---  
0 to 800 ---  
0 to 800 ---  
torque limit  
Reverse  
torque limit  
Forward  
rotation  
external cur-  
rent limit  
Output torque limit during input of forward rotation current limit (rated 100  
torque ratio)  
Pn405  
Reverse  
Output torque limit during input of reverse rotation current limit (rated 100  
torque ratio)  
%
0 to 800 ---  
0 to 800 ---  
rotation  
external cur-  
rent limit  
Pn406  
Pn407  
Pn408  
Emergency Deceleration torque when an error occurs (rated torque ratio)  
stop torque  
350  
%
Speed limit Sets the speed limit in torque control mode.  
3000  
0000  
r/min  
---  
0 to  
---  
---  
10000  
Torque com- 0  
mand set-  
ting  
Selectsnotch  
filter 1 func-  
tion.  
0
1
Notch filter 1 not used.  
---  
Notch filter 1 used for torque com-  
mands.  
1
2
Not used.  
0
0
1
(Do not change setting.)  
Notch filter 2 not used.  
Selectsnotch  
filter 2 func-  
tion.  
Notch filter 2 used for torque com-  
mands.  
3
Not used.  
0
(Do not change setting.)  
Pn409  
Pn40A  
Notch filter  
1 frequency  
Sets notch filter 1 frequency for torque command.  
2000  
70  
Hz  
50 to  
2000  
---  
---  
---  
Notch filter  
1 Q value  
Sets Q value of notch filter 1.  
× 0.01  
Hz  
50 to  
1000  
Pn40C Notch filter  
2 frequency  
Sets the notch filter 2 frequency for torque commands.  
2000  
50 to  
2000  
4-15  
Operation  
Chapter 4  
Param- Parameter  
Explanation  
Setting  
Default  
setting  
Unit  
Setting Restart  
range power?  
eter No.  
name  
Digit  
No.  
Name  
Explanation  
Pn40D Notch filter  
2 Q value  
Sets Q value of notch filter 2.  
70  
× 0.01  
50 to  
1000  
---  
---  
Pn40F  
2nd step  
2nd torque  
command  
filter fre-  
quency  
Sets the filter frequency for internal torque commands.  
2000  
Hz  
100 to  
2000  
Pn410  
Pn411  
2nd step  
Sets the torque command filter Q value.  
70  
0
× 0.01  
µs  
50 to  
1000  
---  
---  
2nd torque  
command  
filter Q value  
3rd step  
Sets the filter time constant for internal torque commands.  
0 to  
65535  
torque com-  
mand filter  
time con-  
stant  
Pn412  
1st step 2nd Sets the filter time constant for No. 2 gain internal torque commands. 100  
× 0.01 ms 0 to  
65535  
---  
torque com-  
mand filter  
time con-  
stant  
Pn413  
Pn414  
Pn420  
Not used.  
Not used.  
(Do not change setting.)  
(Do not change setting.)  
100  
100  
100  
---  
---  
%
---  
---  
---  
---  
---  
Damping for Sets the vibration suppression value while stopped.  
10 to  
100  
vibration  
suppres-  
sion on  
stopping  
Pn421  
Vibration  
suppres-  
sion start-  
ing time  
Sets the time from when the position command becomes 0 until  
damping for vibration suppression on stopping begins.  
1000  
ms  
0 to  
65535  
---  
Pn422  
Pn456  
Gravity  
Sets the gravity compensation torque.  
0
× 0.01%  
20000 ---  
to  
compensa-  
tion torque  
20000  
Sweep  
Sets the sweep torque command amplitude.  
15  
%
1 to 800 ---  
torque com-  
mand ampli-  
tude  
Sequence Parameters (from Pn500)  
Param- Parame-  
eter No. ter name  
Explanation  
Default  
setting  
Unit  
Setting  
range  
Restart  
power?  
Digit  
No.  
Name  
Setting  
Explanation  
Pn501  
Pn502  
Not used. (Do not change setting.)  
10  
---  
---  
---  
---  
Rotation  
Sets the number of rotations for the Servomotor rotation detection 20  
r/min  
1 to 10000  
speed for output (TGON).  
motor  
rotation  
detection  
Pn503  
Speed  
Sets the allowable fluctuation (number of rotations) for the speed 10  
conformity output (VCMP).  
r/min  
0 to 100  
---  
confor-  
mity sig-  
nal output  
width  
Pn506  
Pn507  
Brake tim- Sets the delay from the brake command to the Servomotor turn-  
0
× 10 ms  
0 to 50  
---  
---  
ing 1  
ing OFF.  
Brake  
Sets the number of rotations for outputting the brake command.  
100  
r/min  
0 to 10000  
command  
speed  
Pn508  
Pn509  
Brake tim- Sets the delay time from the Servomotor turning OFF to the brake 50  
× 10 ms  
10 to 100  
---  
---  
ing 2  
command output.  
Momen-  
tary hold  
time  
Sets the time during which alarm detection is disabled when a  
power failure occurs.  
20  
ms  
20 to 1000  
4-16  
Operation  
Chapter 4  
Param- Parame-  
eter No. ter name  
Explanation  
Setting  
Default  
setting  
Unit  
Setting  
range  
Restart  
power?  
Digit  
No.  
Name  
Explanation  
Pn50A  
Input sig-  
nal selec-  
tions 1  
0
Not used.  
Not used.  
Not used.  
1
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
1881  
---  
---  
Yes  
1
2
3
8
8
0
POT (for-  
ward drive  
prohibited  
input) sig-  
nal Input  
terminal  
Allocated to CN1, pin 13: Valid  
for low input  
1
2
3
4
5
6
Allocated to CN1, pin 7: Valid for  
low input  
Allocated to CN1, pin 8: Valid for  
low input  
allocation  
Allocated to CN1, pin 9: Valid for  
low input  
Allocated to CN1, pin 10: Valid  
for low input  
Allocated to CN1, pin 11: Valid  
for low input  
Allocated to CN1, pin 12: Valid  
for low input  
7
8
9
Always enabled.  
Always disabled.  
Allocated to CN1, pin 13: Valid  
for high input  
A
Allocated to CN1, pin 7: Valid for  
high input  
B
Allocated to CN1, pin 8: Valid for  
high input  
C
Allocated to CN1, pin 9: Valid for  
high input  
D
Allocated to CN1, pin 10: Valid  
for high input  
E
Allocated to CN1, pin 11: Valid  
for high input  
F
Allocated to CN1, pin 12: Valid  
for high input  
Pn50B  
Input sig-  
nal selec-  
tions 2  
0
NOT  
0 to F  
Same as Pn50A.3.  
NOT (reverse drive prohibited)  
signal allocation  
8882  
---  
---  
Yes  
(reverse  
drive prohib-  
ited input)  
signal Input  
terminal  
allocation  
1
2
3
0
1
2
3
0
1
2
3
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
8
8
8
8
8
8
8
8
8
8
8
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
Pn50C Input sig-  
nal selec-  
8888  
8888  
---  
---  
---  
---  
Yes  
Yes  
tions 3  
Pn50D Input sig-  
nal selec-  
tions 4  
4-17  
Operation  
Chapter 4  
Param- Parame-  
eter No. ter name  
Explanation  
Setting  
Default  
setting  
Unit  
Setting  
range  
Restart  
power?  
Digit  
No.  
Name  
Explanation  
Pn50E  
Output  
signal  
selec-  
tions 1  
0
INP1 (posi-  
tioning com-  
pleted 1)  
signal out-  
put terminal  
allocation  
0
Not used.  
0000  
---  
---  
Yes  
1
2
3
Allocated to CN1 pins 1, 2  
Allocated to CN1 pins 23, 24  
Allocated to CN1 pins 25, 26  
1
2
VCMP  
0 to 3  
Same as Pn50E.0.  
(speed con-  
formity) sig-  
nal output  
terminal  
VCMP (speed coincidence) sig-  
nal allocation  
allocation  
TGON (ser- 0 to 3  
vomotor  
rotation  
detection)  
Same as Pn50E.0.  
TGON (Servomotor rotation  
detection) signal allocation  
signal out-  
put terminal  
allocation  
3
0
1
READY  
0 to 3  
Same as Pn50E.0.  
READY (servo ready) signal allo-  
cation  
(servo  
ready) sig-  
nal output  
terminal  
allocation  
Pn50F  
Output  
signal  
selec-  
tions 2  
CLIMT (cur- 0 to 3  
rent limit  
detection)  
signal out-  
put terminal  
allocation  
Same as Pn50E.0.  
CLIMT (current limit detection)  
signal allocation  
0100  
---  
---  
Yes  
VLIMT  
0 to 3  
Same as Pn50E.0.  
VLIMT (speed limit detection)  
signal allocation  
(speed limit  
detection)  
signal out-  
put terminal  
allocation  
2
3
0
BKIR (brake 0 to 3  
interlock)  
Same as Pn50E.0.  
BKIR (brake interlock) signal  
allocation.  
signal out-  
put terminal  
allocation  
WARN  
0 to 3  
Same as Pn50E.0.  
WARN (warning) signal alloca-  
tion  
(warning)  
signal out-  
put terminal  
allocation  
Pn510  
Output  
signal  
selec-  
tions 3  
INP2 (posi- 0 to 3  
tioning com-  
pleted 2)  
signal out-  
put terminal  
allocation  
Same as Pn50E.0.  
INP2 (positioning completed 2)  
signal allocation  
0000  
---  
---  
Yes  
1
2
3
Not used.  
Not used.  
Not used.  
0
0
0
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
4-18  
Operation  
Chapter 4  
Param- Parame-  
eter No. ter name  
Explanation  
Setting  
Default  
setting  
Unit  
Setting  
range  
Restart  
power?  
Digit  
No.  
Name  
Explanation  
Pn511  
Input sig-  
nal selec-  
tions 5  
0
DEC signal  
input termi-  
nal alloca-  
tion  
0
Allocated to CN1, pin 13: Valid  
for low input  
6543  
---  
---  
Yes  
1
2
3
4
5
6
Allocated to CN1, pin 7: Valid for  
low input  
Allocated to CN1, pin 8: Valid for  
low input  
Allocated to CN1, pin 9: Valid for  
low input  
Allocated to CN1, pin 10: Valid  
for low input  
Allocated to CN1, pin 11: Valid  
for low input  
Allocated to CN1, pin 12: Valid  
for low input  
7
8
9
Always enabled.  
Always disabled.  
Allocated to CN1, pin 13: Valid  
for high input  
A
B
C
D
E
F
Allocated to CN1, pin 7: Valid for  
high input  
Allocated to CN1, pin 8: Valid for  
high input  
Allocated to CN1, pin 9: Valid for  
high input  
Allocated to CN1, pin 10: Valid  
for high input  
Allocated to CN1, pin 11: Valid  
for high input  
Allocated to CN1, pin 12: Valid  
for high input  
1
EXT1 sig-  
nal input ter-  
minal  
0 to 3  
4
Always disabled.  
Allocated to CN1, pin 10: Valid  
for low input  
allocation  
5
6
Allocated to CN1, pin 11: Valid  
for low input  
Allocated to CN1, pin 12: Valid  
for low input  
7
Always enabled.  
Always disabled.  
Always disabled.  
8
9 to C  
D
Allocated to CN1, pin 10: Valid  
for high input  
E
Allocated to CN1, pin 11: Valid  
for high input  
F
Allocated to CN1, pin 12: Valid  
for high input  
2
3
EXT2 sig-  
nal input ter-  
minal  
0 to F  
Same as for Pn511.1.  
EXT2 signal allocation  
allocation  
EXT3 sig-  
nal input ter-  
minal  
0 to F  
Same as for Pn511.1.  
EXT3 signal allocation  
allocation  
4-19  
Operation  
Chapter 4  
Param- Parame-  
eter No. ter name  
Explanation  
Setting  
Default  
setting  
Unit  
Setting  
range  
Restart  
power?  
Digit  
No.  
Name  
Explanation  
Pn512  
Output  
signal  
reverse  
0
Output sig-  
nal reverse  
for CN1 pins  
1, 2  
0
Not reversed.  
0000  
---  
---  
Yes  
1
Reversed.  
1
2
3
Output sig-  
nal reverse  
for CN1 pins  
23, 24  
0
1
Not reversed.  
Reversed.  
Output sig-  
nal reverse  
for CN1 pins  
25, 26  
0
1
Not reversed.  
Reversed.  
Not used.  
0
(Do not change setting.)  
Pn513  
Pn515  
Pn51B  
Pn51E  
Not used. (Do not change setting.)  
Not used. (Do not change setting.)  
Not used. (Do not change setting.)  
0321  
8888  
1000  
100  
---  
---  
---  
%
---  
---  
---  
Yes  
Yes  
---  
Deviation Sets the detection level for the deviation counter overflow warn-  
10 to 100  
---  
counter  
overflow  
warning  
level  
ing.  
(A warning is output for Pn520 × Pn51E/100 or higher.)  
Pn520  
Pn522  
Pn524  
Pn526  
Deviation Sets the deviation counter overflow alarm detection level.  
262144 Command 1 to  
---  
---  
---  
---  
counter  
overflow  
level  
Pn520 (Max. feed speed [command unit/s]/Pn102) × 2.0  
unit  
1073741823  
Position-  
ing com-  
pleted  
Setting range for positioning completed range 1 (INP1)  
3
3
Command 0 to  
unit  
1073741823  
range 1  
Position-  
ing com-  
pleted  
Setting range for positioning completed range 2 (INP2)  
Command 1 to  
unit  
1073741823  
range 2  
Deviation Sets the deviation counter overflow alarm detection level for Servo 262144 Command 1 to  
counter  
overflow  
level at  
ON.  
unit  
1073741823  
Servo-ON  
Pn528  
Pn529  
Deviation Sets the deviation counter overflow warning detection level for  
100  
%
10 to 100  
---  
---  
counter  
overflow  
warning  
level at  
Servo ON.  
Servo-ON  
Speed  
Sets the speed limit for when the Servo turns ON with position  
10000  
r/min  
0 to 10000  
limit level deviation accumulated.  
at Servo-  
ON  
Pn52A  
Pn52F  
Not used. (Do not change setting.)  
Not used. (Do not change setting.)  
20  
---  
---  
---  
---  
---  
---  
FFF  
4-20  
Operation  
Chapter 4  
Param- Parame-  
eter No. ter name  
Explanation  
Setting  
Default  
setting  
Unit  
Setting  
range  
Restart  
power?  
Digit  
No.  
Name  
Explanation  
Pn530  
Program  
JOG oper-  
ation  
0
Program  
JOG operat-  
ing pattern  
0
(Waiting time Pn535 Forward 0000  
movement Pn531) × Number of  
movement operations Pn536  
---  
---  
---  
related  
1
2
(Waiting time Pn535 Reverse  
movement Pn531) × Number of  
movement operations Pn536  
switches  
(Waiting time Pn535 Forward  
movement Pn531) × Number of  
movement operations Pn536  
(Waiting time Pn535 Reverse  
movement Pn531) × Number of  
movement operations Pn536  
3
(Waiting time Pn535 Reverse  
movement Pn531) × Number of  
movement operations Pn536  
(Waiting time Pn535 Forward  
movement Pn531) × Number of  
movement operations Pn536  
4
5
(Waiting time Pn535 Forward  
movement Pn531 Waiting  
time Pn535 Reverse move-  
ment Pn531) × Number of move-  
ment operations Pn536  
(Waiting time Pn535 Reverse  
movement Pn531 Waiting  
time Pn535 Forward move-  
ment Pn531) × Number of move-  
ment operations Pn536  
1
2
3
Not used.  
Not used.  
Not used.  
0
0
0
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
Pn531  
Pn533  
Pn534  
Program  
JOG  
Sets the program JOG movement distance.  
32768  
500  
Command 1 to  
---  
---  
---  
unit  
1073741824  
move-  
ment dis-  
tance  
Program  
JOG  
move-  
ment  
speed  
Sets the program JOG operation movement speed.  
r/min  
1 to 10000  
2 to 10000  
Program  
JOG  
Sets the acceleration/deceleration time for program JOG opera-  
tion.  
100  
ms  
accelera-  
tion/decel-  
eration  
time  
Pn535  
Pn536  
Program  
Sets the delay time from the program JOG operation start input  
100  
1
ms  
0 to 10000  
1 to 1000  
---  
---  
JOG wait- until operation starts.  
ing time  
Numberof Sets the number of repetitions of the program JOG operations.  
Times  
program  
JOG  
move-  
ments  
Pn540  
Pn550  
Gain limit Sets the gain limit.  
2000  
0
× 0.1 Hz  
× 0.1 V  
10 to 2000  
---  
---  
Analog  
monitor 1  
offset volt-  
age  
Sets the analog monitor 1 offset voltage.  
10000 to  
10000  
Pn551  
Analog  
monitor 2  
offset volt-  
age  
Sets the analog monitor 2 offset voltage.  
0
× 0.1 V  
10000 to  
---  
10000  
4-21  
Operation  
Chapter 4  
Other Parameters (from Pn600)  
Param- Parame-  
eter No. ter name  
Explanation  
Default  
setting  
Unit  
Setting  
range  
Restart  
power?  
Digit  
No.  
Name  
Setting  
Explanation  
Pn600  
Pn800  
Regener- Setting for regeneration resistance load ratio monitoring calcula-  
0
× 10 W  
0 to (varies by ---  
model) (See  
note 2.)  
ation  
tions  
resistor  
capacity  
(See note  
1.)  
Communi-  
cations  
control  
0
MECHA-  
0
1
Normal  
0040  
---  
---  
---  
TROLINK-II  
communica-  
tions check  
mask  
Ignore communications errors  
(A.E6@).  
Ignore WDT errors (A.E5@).  
Ignore communications errors  
(A.E6@) and WDT errors  
(A.E5@).  
2
3
1
Warning  
check mask  
0
1
Normal  
Ignore data setting warning  
(A. 94@).  
2
Ignore command warning  
(A. 95@).  
3
4
Ignore A.94@ and A.95@.  
Ignore communications warn-  
ing (A. 96@).  
5
6
7
Ignore A.94@ and A.96@.  
Ignore A.95@ and A.96@.  
Ignore A.94@, A.95@ and  
A.96@.  
2
Communi-  
cationserror  
count at sin-  
gle trans-  
0 to F  
Detects communications errors  
(A.E60) if they occur consecu-  
tively for the set value plus two  
times.  
mission  
3
0
Not used.  
0
0
1
2
3
(Do not change setting.)  
Pn801  
Function  
selection  
applica-  
tion 6  
(software  
LS)  
Software  
limit function  
Software limit enabled.  
0003  
---  
---  
---  
Forward software limit disabled.  
Reverse software limit disabled.  
Forward/reverse software limits  
disabled.  
1
2
Not used.  
0
0
(Do not change setting.)  
Software  
limit check  
using refer-  
ence  
No software limit check using  
reference  
1
Software limit check using refer-  
ence  
3
Not used.  
0
(Do not change setting.)  
Pn802  
Pn803  
Not used. (Do not change setting.)  
0000  
10  
---  
---  
---  
---  
Zero point Sets the origin position detection range.  
width  
Command 0 to 250  
unit  
Pn804  
Pn806  
Pn808  
Forward  
software  
limit  
Sets the software limit for the positive direction.  
Note: Pn806 must be set lower than Pn804.  
8191  
Command 1073741823 ---  
91808  
unit  
to  
1073741823  
Reverse  
software  
limit  
Sets the software limit for the negative direction.  
Note: Pn806 must be set lower than Pn804.  
8191  
Command 1073741823 ---  
91808  
unit  
to  
1073741823  
Absolute  
encoder  
zero point  
position  
offset  
Sets the encoder position and machine coordinate system offsets  
for when an absolute encoder is used.  
0
Command 1073741823 ---  
unit  
to  
1073741823  
4-22  
Operation  
Chapter 4  
Param- Parame-  
eter No. ter name  
Explanation  
Setting  
Default  
setting  
Unit  
Setting  
range  
Restart  
power?  
Digit  
No.  
Name  
Explanation  
Pn80A  
Pn80B  
First step Sets the step 1 acceleration for when two-step acceleration is  
100  
100  
0
× 10000  
1 to 65535  
1 to 65535  
0 to 65535  
1 to 65535  
1 to 65535  
0 to 65535  
---  
---  
---  
---  
---  
---  
---  
---  
linear  
used.  
Command  
unit/s2  
accelera-  
tion  
parameter  
Second  
step lin-  
Sets the step 2 acceleration for when two-step acceleration is  
executed, or the one-step acceleration parameter for when one-  
× 10000  
Command  
unit/s2  
ear accel- step acceleration is executed.  
eration  
parameter  
Pn80C Accelera- Sets the switching speed for the step 1 and step 2 acceleration  
× 100  
tion  
when two-step acceleration is executed.  
Command  
unit/s  
parame-  
ter switch-  
ing speed  
Note: When used as one-step acceleration, 0 must be set.  
Pn80D First step Sets the step 1 deceleration for when two-step deceleration is  
100  
100  
0
× 10000  
linear  
used.  
Command  
unit/s2  
decelera-  
tion  
parameter  
Pn80E  
Pn80F  
Pn810  
Pn811  
Second  
step lin-  
Sets the step 2 deceleration for when two-step deceleration is  
executed, or the one-step deceleration parameter for when one-  
× 10000  
Command  
unit/s2  
ear decel- step deceleration is executed.  
eration  
parameter  
Decelera- Sets the switching speed for the step 1 and step 2 deceleration  
× 100  
tion  
when two-step deceleration is executed.  
Command  
unit/s  
parame-  
ter switch-  
ing speed  
Note: When used as one-step acceleration, 0 must be set.  
Exponen- Sets the bias for when an exponential filter is used for the posi-  
tial accel- tion command filter.  
eration/  
decelera-  
tion bias  
0
Command 0 to 32767  
unit/s  
Exponen- Sets the time constant for when an exponential filter is used for  
0
× 0.1 ms  
0 to 5100  
tial accel- the position command filter.  
eration/  
decelera-  
tion time  
constant  
Pn812  
Moving  
average  
time  
Sets the average movement time for when S-curve acceleration/  
deceleration is used, and an average movement filter is used for  
the position command filter.  
0
× 0.1 ms  
0 to 5100  
---  
---  
---  
Pn813  
Pn814  
Not used. (Do not change setting.) (See note 3.)  
0
---  
Final Sets the distance from the external signal input position when  
travel dis- external positioning is executed.  
tance for  
external  
position-  
ing  
100  
Command 1073741823 ---  
unit  
to  
1073741823  
Note: For a negative direction or if the distance is short, opera-  
tion is reversed after decelerating to a stop.  
Pn816  
Zero point  
return  
mode set-  
tings  
0
Zero point  
return direc-  
tion  
0
1
Forward direction  
Reverse direction  
0000  
---  
---  
---  
1
2
3
Not used.  
Not used.  
Not used.  
0
0
0
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
Pn817  
Pn818  
Zero point Sets the origin search speed after the deceleration limit switch  
50  
5
× 100  
0 to 65535  
0 to 65535  
---  
---  
return  
signal turns ON.  
Command  
unit/s  
approach  
speed 1  
Zero point Sets the origin search speed after the deceleration limit switch  
× 100  
return  
approach  
speed 2  
signal turns ON.  
Command  
unit/s  
4-23  
Operation  
Chapter 4  
Param- Parame-  
eter No. ter name  
Explanation  
Setting  
Default  
setting  
Unit  
Setting  
range  
Restart  
power?  
Digit  
No.  
Name  
Explanation  
Pn819  
Final  
Sets the distance from the latch signal input position to the origin, 100  
Command 1073741823 ---  
travel dis- for when origin search is executed.  
unit  
to  
tance to  
return to  
zero point  
1073741823  
Note: If the final travel distance is in the opposite direction from  
the origin return direction or if the distance is short, operation is  
reversed after decelerating to a stop.  
Pn81B  
Not used. (Do not change setting.)  
0
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
Pn81C Not used. (Do not change setting.)  
Pn81D Not used. (Do not change setting.)  
0
0
Pn81E  
Pn81F  
Pn820  
Pn822  
Pn824  
Pn825  
Not used. (Do not change setting.)  
0000  
0
Not used. (Do not change setting.)  
Not used. (Do not change setting.)  
0
Not used. (Do not change setting.)  
0
Not used. (Do not change setting.) (See note 4.)  
Not used. (Do not change setting.) (See note 5.)  
Not used. (Do not change setting.)  
0000  
0000  
Pn900  
to  
Pn910  
Pn920  
to  
Pn95F  
Not used. (Do not change setting.)  
---  
---  
---  
Note 1. The normal setting is 0. If an external regeneration resistor is used, refer to 3-3-3 Regener-  
ative Energy Absorption by External Regeneration Resistance for the recommended setting.  
Note 2. The upper limit is the maximum output capacity (W) of the applicable Servo Driver.  
Note 3. If the Servo Driver is used with the CJ1W-MCH71 or CS1W-MCH71, this parameter will be  
set to 0032.  
If parameters are edited with the WMON-ML2 connected, this parameter will set to 0000.  
If this happens, you must reset this parameter to 0032 from the CJ1W-MCH71 or CS1W-  
MCH71.  
Note 4. If the Servo Driver is used with the CJ1W-MCH71 or CS1W-MCH71, this parameter will be  
set to 0023. If parameters are edited with the WMON-ML2 connected, this parameter will set  
to 0000. If this happens, you must reset this parameter to 0023 from the CJ1W-MCH71 or  
CS1W-MCH71.  
Note 5. If the Servo Driver is used with the CJ1W-MCH71 or CS1W-MCH71, this parameter will be  
set to 0024. If parameters are edited with the WMON-ML2 connected, this parameter will set  
to 0000. If this happens, you must reset this parameter to 0024 from the CJ1W-MCH71 or  
CS1W-MCH71.  
4-3-2 Important Parameters  
This section explains the user parameters you need to set and check before using the  
Servomotor and Servo Driver. If these parameters are set incorrectly, there is a risk of  
the Servomotor not rotating, and of a malfunction. Set the parameters to suit your  
system.  
4-24  
Operation  
Chapter 4  
Reverse Rotation Mode Settings (Pn000.0)  
Pn000.0  
Function selection basic switches -- Reverse rotation (All operation modes)  
Setting  
range  
0, 1  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0
1
CCW direction is taken for positive command (counterclockwise seen from the Servomotor out-  
put shaft)  
CW direction is taken for positive command (clockwise seen from the Servomotor output shaft)  
• This parameter sets the Servomotor's direction of rotation.  
• Even if 1 is set, the Servo Driver's encoder output phase (A/B phase) does not change (i.e., the  
Servomotor's direction of rotation is simply reversed).  
• For example, with a pulse command, the motor will rotate counterclockwise for a counterclockwise  
command if the Reverse Rotation Mode Setting is set to 0 and will rotate clockwise for a counter-  
clockwise command if the Reverse Rotation Mode Setting is set to 1.  
Alarm Stop Selection (Pn001.0)  
Pn001.0  
Function selection application switches 1 -- Stop selection if an alarm occurs when Servomotor  
is OFF (All operation modes)  
Setting  
range  
0 to 2  
Unit  
---  
Default  
setting  
2
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0
1
2
Stop Servomotor using dynamic brake (dynamic brake stays ON after Servomotor has stopped).  
Stop Servomotor using dynamic brake (dynamic brake released after Servomotor has stopped).  
Stop Servomotor using free run.  
• Select the stopping process for when the Servo is turned OFF or an alarm occurs.  
Note Dynamic Brake Operation when Power Is Turned OFF  
The dynamic brake will remain ON if the main circuit or control circuit power supplies are  
turned OFF for Servo Drivers of the capacities listed below. This means that it will be slightly  
more difficult to turn the motor shaft by hand than it is when the dynamic brake is OFF. To  
release the dynamic brake, disconnect the Servo Motor wiring (U, V, or W). Always confirm that  
any disconnected wires are connected properly before turning ON the power supplies again.  
Overtravel Stop Selection (Pn001.1)  
Pn001.1  
Function selection application switches 1 -- Stop selection when drive prohibited is input (Posi-  
tion, speed)  
Setting  
range  
0 to 2  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
4-25  
Operation  
Chapter 4  
Setting Explanation  
Setting  
Explanation  
0
1
Stop according to the setting of Pn001.0 (Servo released after Servomotor has stopped)  
Stop the Servomotor using the torque set in Pn406 (emergency stop torque), then locks the  
Servo.  
2
Stop the Servomotor using the torque set in Pn406 (emergency stop torque), then releases the  
Servo (dynamic brake is turned OFF).  
• Select the stopping process for when overtravel occurs.  
Stopping Methods when Forward/Reverse Drive Prohibit is OFF  
Deceleration Method  
Stopped Status  
Servo unlocked  
Pn001.0  
"0" or "1"  
Dynamic brake  
Pn001.1  
"0"  
"2"  
POT (NOT) is OFF  
Free run  
Pn001.1  
"2"  
Servo unlocked  
"1" or "2"  
Emergency stop torque (Pn406)  
See note 1.  
"1"  
Servo locked  
Note 1. The position loop is disabled when the Servo stops in servolock mode during position con-  
trol.  
Note 2. During torque control, the stopping process depends on Pn001.0 (the Pn001.1 setting does  
not matter).  
Note 3. With a vertical load, the load may fall due to its own weight if it is left at a drive prohibit input.  
We recommend that you set the stop method for the drive prohibit input (Pn001.1) for decel-  
erating with the emergency stop torque, and then set stopping with the servo locked (SV: 1)  
to prevent the load from falling.  
I/O Signal Allocation (Pn50A, Pn50B, Pn50E to Pn512)  
• With the OMNUC W Series, you can freely change the I/O signal allocation.  
• If using an OMRON position controller (Position Control Unit or Motion Control Unit), you do not  
need to change the default settings.  
4-26  
Operation  
Chapter 4  
• The default allocations are as follows:  
CN1,pin  
No.  
Signal name  
Condition  
Input  
signal  
7
POT (Forward drive prohibit input)  
NOT (Reverse drive prohibit input)  
DEC (Origin return deceleration LS)  
EXT1 (External latch signal 1)  
EXT2 (External latch signal 2)  
EXT3 (External latch signal 3)  
Enabled when the CN1-7 input signal turns ON  
(L level).  
8
Enabled when the CN1-8 input signal turns ON  
(L level).  
9
Enabled when the CN1-9 input signal turns ON  
(L level).  
10  
11  
12  
Enabled when the CN1-10 input signal turns  
ON (L level).  
Enabled when the CN1-11 input signal turns  
ON (L level).  
Enabled when the CN1-12 input signal turns  
ON (L level).  
Output 1/2  
signal  
BKIR (Brake interlock output)  
General-purpose output signal  
General-purpose output signal  
23/24  
(Not allocated.)  
(Not allocated.)  
25/26  
Input Signal Selections (Pn50A, Pn50B, Pn511)  
Pn50A.0  
Input signal selections 1 -- Not used.  
--- Unit ---  
Setting  
range  
Default  
setting  
1
8
8
Restart  
power?  
Yes  
Yes  
Yes  
Note Do not change setting.  
Pn50A.1  
Input signal selections 1 -- Not used.  
--- Unit ---  
Setting  
range  
Default  
setting  
Restart  
power?  
Note Do not change setting.  
Pn50A.2  
Input signal selections 1 -- Not used.  
--- Unit ---  
Setting  
range  
Default  
setting  
Restart  
power?  
Note Do not change setting.  
Pn50A.3  
Input signal selections 1 -- POT (forward drive prohibited) signal input terminal allocation (All  
operation modes)  
Setting  
range  
0 to F  
Unit  
---  
Default  
setting  
1
Restart  
power?  
Yes  
4-27  
Operation  
Chapter 4  
Setting Explanation  
Setting  
Explanation  
Allocated to CN1-13 pin: enabled using L input  
Allocated to CN1-7 pin: enabled using L input  
0
1
2
3
4
5
6
7
8
9
A
B
C
D
E
F
Allocated to CN1-8 pin: enabled using L input  
Allocated to CN1-9 pin: enabled using L input  
Allocated to CN1-10 pin: enabled using L input  
Allocated to CN1-11 pin: enabled using L input  
Allocated to CN1-12 pin: enabled using L input  
Always ON  
Always OFF  
Allocated to CN1-13 pin: enabled using H input  
Allocated to CN1-7 pin: enabled using H input  
Allocated to CN1-8 pin: enabled using H input  
Allocated to CN1-9 pin: enabled using H input  
Allocated to CN1-10 pin: enabled using H input  
Allocated to CN1-11 pin: enabled using H input  
Allocated to CN1-12 pin: enabled using H input  
• If set to 7 (always ON), the Servo is in always overtravel status (i.e., forward rotation is always drive-  
prohibited).  
• If set to 8 (always OFF), the Servo drive prohibition is OFF (i.e., the forward rotation drive is permit-  
ted).  
• The POT signal permits forward rotation drive upon input.  
Pn50B.0  
Input signal selections 2 -- NOT (reverse drive prohibited) signal input terminal allocation (All  
operation modes)  
Setting  
range  
0 to F  
Unit  
---  
Default  
setting  
2
Restart  
power?  
Yes  
• Settings are the same as for Pn50A.3.  
• If set to 7 (always ON), the Servo is in always in overtravel status (i.e., reverse rotation is always  
drive-prohibited).  
• If set to 8 (always OFF), the Servo drive prohibition is OFF (i.e., the reverse rotation drive is permit-  
ted).  
• The NOT signal permits reverse rotation drive upon input.  
Pn50B.1  
Input signal selections 2 -- Not used.  
--- Unit ---  
Setting  
range  
Default  
setting  
8
8
Restart  
power?  
Yes  
Yes  
Note Do not change setting.  
Pn50B.2  
Input signal selections 2 -- Not used.  
--- Unit ---  
Setting  
range  
Default  
setting  
Restart  
power?  
Note Do not change setting.  
4-28  
Operation  
Chapter 4  
Pn50B.3  
Input signal selections 2 -- Not used.  
--- Unit ---  
Setting  
range  
Default  
setting  
8
Restart  
power?  
Yes  
Note Do not change setting.  
Pn511.0  
Input signal selections 5 -- DEC (origin return deceleration LS) signal input terminal allocation  
(All operation modes)  
Setting  
range  
0 to F  
Unit  
---  
Default  
setting  
3
Restart  
power?  
Yes  
• Settings are the same as for Pn50A.3.  
• When “7” (always enabled) is set, the deceleration switch is always enabled.  
• When “8” (always disabled) is set, the deceleration switch is always disabled.  
Pn511.1  
Input signal selections 5 -- EXT1 (external latch signal 1) signal input terminal allocation (All  
operation modes)  
Setting  
range  
0 to F  
Unit  
---  
Default  
setting  
4
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0 to 3  
Always OFF  
4
Allocated to CN1-10 pin: enabled using L input  
Allocated to CN1-11 pin: enabled using L input  
Allocated to CN1-12 pin: enabled using L input  
Always ON  
5
6
7
8
Always OFF  
9 to C  
Always OFF  
D
E
F
Allocated to CN1-10 pin: enabled using H input  
Allocated to CN1-11 pin: enabled using H input  
Allocated to CN1-12 pin: enabled using H input  
• When “7” (always enabled) is set, the external latch signal is always enabled.  
• When “8” (always disabled) is set, the external latch signal is always disabled.  
Pn511.2  
Input signal selections 5 -- EXT2 (external latch signal 2) signal input terminal allocation (All  
operation modes)  
Setting  
range  
0 to F  
Unit  
---  
Default  
setting  
5
Restart  
power?  
Yes  
• Settings are the same as for Pn511.1.  
• When “7” (always enabled) is set, the deceleration switch is always enabled.  
• When “0 to 3” or “8 to C” (always disabled) is set, the deceleration switch is always disabled.  
Pn511.3  
Input signal selections 5 -- EXT3 (external latch signal 3) signal input terminal allocation (All  
operation modes)  
Setting  
range  
0 to F  
Unit  
---  
Default  
setting  
6
Restart  
power?  
Yes  
4-29  
Operation  
Chapter 4  
• Settings are the same as for Pn511.1.  
• When “7” (always enabled) is set, the deceleration switch is always enabled.  
• When “0 to 3” or “8 to C” (always disabled) is set, the deceleration switch is always disabled.  
Output Signal Selections (Pn50E to Pn510, Pn512)  
• Output signal selection is performed in Pn50E to Pn510, and whether each signal should be  
reversed is set in Pn512.  
You can allocate multiple output signals to the same pin. Such signals are output separately as an  
OR operation.  
• The default setting is for BKIR (brake interlock output) to be allocated to pins No. 1 and 2.  
Pn50E.0  
Output signal selections 1 -- INP1 (positioning completed 1) signal output terminal allocation  
(Position)  
Setting  
range  
0 to 3  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0
1
2
3
No output  
Allocated to pins CN1-1 and 2 (pin 2 is the COM port)  
Allocated to pins CN1-23 and 24 (pin 24 is the COM port)  
Allocated to pins CN1-25 and 26 (pin 26 is the COM port)  
Pn50E.1  
Output signal selections 1 -- VCMP (speed conformity) signal output terminal allocation (Speed)  
Setting  
range  
0 to 3  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Pn50E.2  
Output signal selections 1 -- TGON (Servomotor rotation detection) signal output terminal allo-  
cation (All operation modes)  
Setting  
range  
0 to 3  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Pn50E.3  
Output signal selections 1 -- READY (Servo ready) signal output terminal allocation (All opera-  
tion modes)  
Setting  
range  
0 to 3  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Pn50F.0  
Output signal selections 2 -- CLIMT (current limit detection) signal output terminal allocation (All  
operation modes)  
Setting  
range  
0 to 3  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Pn50F.1  
Output signal selections 2 -- VLIMT (speed limit detection) signal output terminal allocation  
(Torque)  
Setting  
range  
0 to 3  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
4-30  
Operation  
Chapter 4  
Pn50F.2  
Output signal selections 2 -- BKIR (brake interlock) signal output terminal allocation (All opera-  
tion modes)  
Setting  
range  
0 to 3  
Unit  
---  
Default  
setting  
1
Restart  
power?  
Yes  
Pn50F.3  
Output signal selections 2 -- WARN (warning) signal output terminal allocation (All operation  
modes)  
Setting  
range  
0 to 3  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Pn510.0  
Output signal selections 3 -- INP2 (positioning completed 2) output terminal allocation (Position)  
Setting  
range  
0 to 3  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
• Parameter settings are the same as for Pn50E.0.  
Pn512.0  
Output signal reverse -- Pins CN1-1 and 2 output signal reverse (All operation modes)  
Setting  
range  
0, 1  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0
1
Not reversed.  
Reversed.  
• Select the characteristics of the output signal allocated to pins CN1-1 and 2.  
• If you set 1 (reverse), ON/OFF outputs are reversed.  
Pn512.1  
Output signal reverse -- Pins CN1-23 and 24 output signal reverse (All operation modes)  
Setting  
range  
0, 1  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0
1
Not reversed.  
Reversed.  
Pn512.2  
Output signal reverse -- Pins CN1-25 and 26 output signal reverse (All operation modes)  
Setting  
range  
0, 1  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0
1
Not reversed.  
Reversed.  
4-31  
Operation  
Chapter 4  
4-3-3 Parameter Details  
This section explains all user parameters not already explained in 4-3-2 Important  
Parameters. Make sure you fully understand the meaning of each parameter before  
making any changes to parameter settings. Be sure not to change parameters  
designated “Not used., and digit No. settings.  
Function Selection Parameters (from Pn000)  
Function Selection Basic Switches (Pn000: Default Setting 0010)  
Pn000.0  
Function selection basic switches -- Reverse rotation (All operation modes)  
Setting  
range  
0, 1  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Yes  
Yes  
Note Refer to 4-3-2 Important Parameters.  
Pn000.1  
Function selection basic switches -- Not used  
Setting  
range  
---  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Note Do not change setting.  
Pn000.2  
Function selection basic switches -- Unit No. setting (All operation modes)  
Setting  
range  
0 to F  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Setting Explanation  
Setting  
Explanation  
0 to F  
Sets the Servo Driver unit number  
• This setting is required when multiple Servo Drivers are connected and Computer Monitor Software  
is used.  
Pn000.3  
Function selection basic switches -- Not used.  
Setting  
range  
---  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Note Do not change setting.  
Function Selection Application Switches 1 (Pn001: Default setting 0000)  
Pn001.0  
Function selection application switches 1 -- Stop selection if an alarm occurs when Servomotor  
is OFF (All operation modes)  
Setting  
range  
0 to 2  
Unit  
---  
Default  
setting  
2
Restart  
power?  
Yes  
Note Refer to 4-3-2 Important Parameters.  
4-32  
Operation  
Chapter 4  
Pn001.1  
Function selection application switches 1 -- Stop selection when drive prohibited is input (Posi-  
tion, speed)  
Setting  
range  
0 to 2  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Note Refer to 4-3-2 Important Parameters.  
Pn001.2  
Function selection application switches 1 -- AC/DC power input selection (All operation modes)  
Setting  
range  
0, 1  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0
1
AC power supply: AC power supplied from L1, L2, (L3) terminals  
2 termi-  
+
+
,
DC power supply input: DC power from B1/  
nals.  
,
terminals, or DC power from B1/  
• Select setting 1 if using a DC power supply.  
• If using a DC power supply, perform the following operations.  
Control circuit power supply: Supply DC power to L1C and L2C. There is no polarity.  
+
Main circuit power supply: Supply DC power as follows: Positive voltage to B1/ 1 terminal, and  
or 2 terminal.  
ground to  
External regeneration resistance terminals: Remove the short bar from between B2 and B3 so that  
B1, B2, and B3 are open. (For Servo Drivers without B3, open B1 and B2.)  
Use 270 to 320 VDC as the input voltage. (100-V input models do not handle DC inputs.)  
Note 1. Always set this parameter to 1 when using a DC power supply. If a DC power supply is con-  
nected with this parameter set to 0, the regeneration absorption circuit will operate, possibly  
damaging the Servo Driver. When changing the setting from 0 to 1, either the main circuit  
power supply must be OFF, or the external regeneration resistance terminals must be open.  
Note 2. If using a DC power supply, the regeneration absorption circuit inside the Servo Driver will  
not operate. The regeneration power returns to the DC power supply, so make sure the DC  
power supply can absorb the regeneration power.  
Note 3. If using a DC power supply, the residual voltage in the main-circuit power supply is not dis-  
charged rapidly when the power is turned OFF. Be sure to mount a discharge circuit on the  
DC power supply. Also, check that the charge indicator is not lit before storing the power sup-  
ply input when the power supply has been turned OFF (the discharge time for the Servo  
Driver is approximately 30 minutes.)  
Pn001.3  
Function selection application switches 1 -- Not used.  
Setting  
range  
---  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Note Do not change setting.  
4-33  
Operation  
Chapter 4  
Function Selection Application Switches 2 (Pn002: Default Setting 0000)  
Pn002.0  
Function selection application switches 2 -- Torque command input change (Speed)  
Setting  
range  
0 to 3  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0
1
2
3
Function not used.  
Option command value used as torque limit value.  
Option command value used as torque feed forward command value.  
Option command value used as torque limit value, according to forward/reverse rotation current  
limit designation.  
• This parameter sets the option command value function for speed control.  
• When 1 or 3 is set, the torque limit operates according to the option command value.  
• When 2 is set, the torque feed forward operates according to the option command value.  
• For details on the torque limit function, refer to 4-4-7 Torque Limit Function (All Operating Modes).  
For details on the torque feed forward function, refer to 4-7-3 Torque Feed-forward Function  
(Speed).  
Note Other torque limit functions include Pn402 (forward torque limit), Pn403 (reverse torque limit),  
Pn404 (Forward rotation external current limit), and Pn405 (Reverse rotation external current  
limit). The smallest output torque from among the enabled limitations is limited.  
Pn002.1  
Function selection application switches 2 -- Speed command input change (Torque)  
Setting  
range  
0, 1  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0
1
Function not used.  
Option command value used as analog speed limit.  
• This parameter sets the option command value function for torque control.  
• When 1 is set, the speed limit operates according to the option command value.  
• For details on the speed limit function, refer to 4-4-10 Speed Limit Function (Torque).  
Note Other speed limitation functions include Pn407 (speed limit). The speed is limited to the lower  
value.  
Pn002.2  
Function selection application switches 2 -- Operation switch when using an absolute encoder  
(All operation modes, absolute)  
Setting  
range  
0, 1  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
4-34  
Operation  
Chapter 4  
Setting Explanation  
Setting  
Explanation  
0
1
Use as an absolute encoder.  
Use as an incremental encoder.  
• When 1 is set, the absolute encoder operates as an incremental encoder (backup battery not nec-  
essary).  
Pn002.3  
Function selection application switches 2 -- Not used.  
Setting  
range  
---  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Note Do not change setting.  
Unused Parameters (Pn004)  
Pn004  
Not used.  
---  
Setting  
range  
Unit  
---  
Default  
setting  
0110  
Restart  
power?  
Yes  
Note Do not change setting.  
Function Selection Application Switches 6 (Pn0006; Default 0002)  
Pn006.0-1 Function selection application switches 6 -- Analog monitor 1 signal selection (All operation  
modes)  
Setting  
range  
00 to 1F  
Unit  
---  
Default  
setting  
02  
Restart  
power?  
No  
Setting Explanation  
Setting  
Explanation  
00  
Servomotor rotation speed: 1 V/1000 r/min  
Speed command: 1 V/1000 r/min  
01  
02  
Torque command: gravity compensation torque (Pn422): (1 V per 100%)  
Position deviation: 0.05 V/1 command unit  
Position amp error (after electronic gear) (0.05 V per encoder pulse unit)  
Position command speed (1 V/1,000 r/min)  
Not used.  
03  
04  
05  
06  
07  
Not used.  
08  
Positioning completed command: (Positioning completed: 5 V; positioning not completed: 0 V)  
09  
Speed feed forward (1 V/1,000 r/min)  
Torque feed forward (1 V per 100%)  
Not used.  
0A  
0B to 1F  
Note 1. The value derived from subtracting the Pn422 gravity compensation torque from the torque  
command value output from the Servopack is output for monitoring.  
Note 2. For speed control, the position deviation monitor signal is 0.  
4-35  
Operation  
Chapter 4  
Pn006.2  
Function selection application switches 6 -- Analog monitor 1 signal multiplier selection (All  
operation modes)  
0 to 4 Unit  
Setting  
range  
---  
Default  
setting  
0
Restart  
power?  
No  
Setting Explanation  
Setting  
Explanation  
0
1
2
3
4
1x  
10x  
100x  
1/10x  
1/100x  
Pn006.3  
Not used.  
---  
Setting  
range  
Unit  
---  
Default  
setting  
0
Restart  
power?  
No  
Note Do not change setting.  
Function Selection Application Switches 7 (Pn007; Default: 0000)  
Pn007.0-1 Function selection application switches 7 -- Analog monitor 2 signal selection (All operation  
modes)  
Setting  
range  
00 to 1F  
Unit  
---  
Default  
setting  
00  
Restart  
power?  
No  
Setting Explanation  
Setting  
Explanation  
00  
Servomotor rotation speed: 1 V/1000 r/min  
Speed command: 1 V/1000 r/min  
01  
02  
Torque command: gravity compensation torque (Pn422): (1 V per 100%)  
Position deviation: 0.05 V/1 command unit  
Position amp error (after electronic gear) (0.05 V per encoder pulse unit)  
Position command speed (1 V/1,000 r/min)  
Not used.  
03  
04  
05  
06  
07  
Not used.  
08  
Positioning completed command: (Positioning completed: 5 V; positioning not completed: 0 V)  
09  
Speed feed forward (1 V/1,000 r/min)  
Torque feed forward (1 V per 100%)  
Not used.  
0A  
0B to 1F  
Note 1. The value derived from subtracting the Pn422 gravity compensation torque from the torque  
command value output from the Servopack is output for monitoring.  
Note 2. For speed control, the position deviation monitor signal is 0.  
4-36  
Operation  
Chapter 4  
Pn007.2  
Function selection application switches 7: Analog monitor 2 signal multiplier selection (All oper-  
ation modes)  
Setting  
range  
0 to 4  
Unit  
---  
Default  
setting  
0
Restart  
power?  
No  
Setting Explanation  
Setting  
Explanation  
0
1
2
3
4
1x  
10x  
100x  
1/10x  
1/100x  
Pn007.3  
Not used.  
---  
Setting  
range  
Unit  
---  
Default  
setting  
0
Restart  
power?  
No  
Note Do not change setting.  
Function Selection Application Switches 8 (Pn008; Default: 4000)  
Pn008.0  
Function selection application switches 8 -- Lowered battery voltage alarm/warning selection  
(All operation modes)  
Setting  
range  
0, 1  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0
1
Regard battery voltage drop as alarm (A.830).  
Regard battery voltage drop as warning (A.930).  
Pn008.1  
Not used.  
Setting  
range  
---  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Note Do not change setting.  
Pn008.2  
Function selection application switches 8 -- Warning detection selection (All operation modes)  
Setting  
range  
0, 1  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0
1
Warnings detected.  
Warnings not detected.  
4-37  
Operation  
Chapter 4  
• When 1 (warnings not detected) is set, the following warnings are not detected.  
A.900, A.901, A.910, A.911, A.920, A.930  
Pn008.3  
Not used.  
---  
Setting  
range  
Unit  
---  
Default  
setting  
4
Restart  
power?  
Yes  
Note Do not change setting.  
Gain Parameters (from Pn100)  
Pn100  
Speed loop gain (Position, speed)  
10 to 20000 Unit × 0.1 Hz  
Setting  
range  
Default  
setting  
800  
Restart  
power?  
No  
• This gain adjusts the speed loop response.  
• Increase the setting (i.e., increase the gain) to raise Servo rigidity. Generally, the greater the inertia  
ratio, the higher the setting. There is a risk of oscillation, however, if the gain is too high.  
Overshoots when speed loop gain is high.  
(Oscillates when gain is too high.)  
Servomotor speed  
(speed monitor)  
When speed loop gain is low.  
Time  
Pn101  
Speed loop integration constant (Position, speed)  
Setting  
range  
15 to 51200 Unit  
× 0.01 ms  
Default  
setting  
2000  
Restart  
power?  
No  
• Sets the speed loop integral time constant.  
• The higher the setting, the lower the response, and the lower the resiliency to external force. There  
is a risk of oscillation if the setting is too low.  
Overshoots when speed loop integration constant is short.  
Servomotor speed  
When speed loop integration  
constant is long.  
Time  
4-38  
Operation  
Chapter 4  
Pn102  
Position loop gain (Position)  
10 to 20000 Unit  
Setting  
range  
× 0.1/s  
Default  
setting  
400  
Restart  
power?  
No  
• Adjust the position loop response to suit the mechanical rigidity.  
• Servo system response is determined by the position loop gain. Servo systems with a high loop  
gain have a high response, and positioning is fast. To raise the position loop gain, you must improve  
mechanical rigidity and raise the specific oscillation. This should be 500 to 700 (0.1/s) for ordinary  
machine tools, 300 to 500 (0.1/s) for general-use and assembly machines, and 100 to 300 (0.1/s)  
for production robots. The default position loop gain is 400 (0.1/s), so be sure to lower the setting for  
machines with low rigidity.  
• Raising the position loop gain in systems with low mechanical rigidity or systems with low specific  
oscillation may result in machine resonance, causing an overload alarm to occur.  
• If the position loop gain is low, you can shorten the positioning time using feed forward. You can  
also shorten the positioning time using the bias function.  
Position loop gain is generally expressed as follows:  
Command pulse frequency (pulses/s)  
Position loop gain (Kp) =  
(0.1/s)  
Deviation counter residual pulses (pulses)  
When the position loop gain is manipulated, the response is as shown in the diagram below.  
When position loop gain is high  
Servomotor speed  
When position loop gain is low  
Time  
Pn103  
Inertia ratio (Position, speed)  
0 to 20000 Unit  
Setting  
range  
%
Default  
setting  
300  
Restart  
power?  
No  
• Set the mechanical system inertia (load inertia for Servomotor shaft conversion) using the ratio (%)  
of the Servomotor rotor inertia. If the inertia ratio is set incorrectly, the Pn103 (inertia ratio) value will  
also be incorrect.  
Pn104  
Speed loop gain 2 (Position, speed)  
10 to 20000 Unit × 0.1 Hz  
Setting  
range  
Default  
setting  
800  
Restart  
power?  
No  
No  
Pn105  
Speed loop integration constant 2 (Position, speed)  
Setting  
range  
15 to 51200 Unit  
× 0.01 ms  
Default  
setting  
2000  
Restart  
power?  
4-39  
Operation  
Chapter 4  
Pn106  
Position loop gain 2 (Position)  
10 to 20000 Unit × 0.1/s  
Setting  
range  
Default  
setting  
400  
Restart  
power?  
No  
• These parameters are gain and time constants selected when using gain switching under the fol-  
lowing conditions.  
• When automatic gain switching is set, and the switching conditions are met.  
Pn139.2 (Gain switching condition B) must be set.  
Refer to 4-7-4 Automatic Gain Switching (Position) for details.  
• If the mechanical system inertia changes greatly or if you want to change the response for when the  
Servomotor is rotating and when it is stopped, you can achieve the appropriate control by setting  
the gain and time constant beforehand for each of these conditions, and then switch according to  
the conditions.  
Note 1. Automatic gain switching is enabled for position control only. When position control is not  
used, the Servomotor operates using No. 1 gain (Pn100, Pn101, Pn102).  
Note 2. When automatic gain switching is used, set No. 1 gain for gain during operation, and set No.  
2 gain for gain while stopped.  
Pn107  
Bias rotational speed (Position)  
0 to 450 Unit r/min  
Setting  
range  
Default  
setting  
0
7
Restart  
power?  
No  
No  
Pn108  
Bias addition band (Position)  
0 to 250 Unit Command Default  
unit setting  
Setting  
range  
Restart  
power?  
• These two parameters set the position control bias.  
• This function shortens the positioning time by adding the number of bias rotations to the speed  
command (i.e., commands to the speed control loop).  
• When the deviation counter residual pulses exceed the Pn108 (bias addition band) setting, the  
speed set in Pn107 (bias rotational speed) is added to the speed command, and when they are  
within the limits for Pn108, it stops being added.  
Note 1. Set Pn107 to 0 if not using bias function.  
Note 2. If the bias rotation speed is too great, the Servomotor operation may become unstable. The  
optimum value will vary depending on the load, gain, and bias addition range, so check and  
adjust the Servomotor response. (Gradually increase the value, starting from Pn107 = 0.)  
Bias function operation  
Speed command (command pulse frequency)  
Servomotor speed  
Bias function not used.  
Bias function used.  
Pn107 added to speed command  
when residual pulses exceed Pn108  
Time  
4-40  
Operation  
Chapter 4  
Pn109  
Feed-forward amount (Position)  
0 to 100 Unit  
Setting  
range  
%
Default  
setting  
0
Restart  
power?  
No  
• Sets the feed-forward compensation value during positioning.  
• When performing feed-forward compensation, the effective Servo gain rises, improving response.  
There is almost no effect, however, on systems where the position loop gain is sufficiently high.  
• Use to shorten positioning time.  
Note Setting a high value may result in machine vibration. Set the feed-forward amount for general  
machinery to 80% maximum. (Check and adjust machine response.)  
Pn10A  
Feed-forward command filter (Position)  
0 to 6400 Unit × 0.01 ms  
Setting  
range  
Default  
setting  
0
Restart  
power?  
No  
• Sets the feed-forward primary (lag) command filter during position control.  
• If the positioning completed signal is interrupted (i.e., repeatedly turns ON and OFF) because of  
performing feed-forward compensation, and a speed overshoot is generated, alleviate the problem  
by setting the primary lag filter.  
Speed Control Setting (Pn10B: Default Setting 0004)  
Pn10B.0  
Speed control setting -- P control switching conditions (Position, speed)  
Setting  
range  
0 to 4  
Unit  
---  
Default  
setting  
4
Restart  
power?  
No  
Setting Explanation  
Setting  
Explanation  
0
1
2
3
4
Internal torque command (Pn10C) condition (Position, speed)  
Speed command (Pn10D) condition (Position, speed)  
Acceleration command (Pn10E) condition (Position, speed)  
Deviation pulse (Pn10F) condition (Position)  
P control switching function not used. (Position, speed)  
• Sets the speed control loop switching function from PI control to P control.  
• Normally, using the speed loop gain and the position loop gain set by means of the auto-tuning  
operation will provide adequate control. (Consequently, there is normally no need to change the  
setting.)  
• When PI control is always being used, switching to P control may help if the Servomotor speed  
overshoots or undershoots (i.e., the effective Servo gain is reduced by switching to P control to sta-  
bilize the Servo System). The positioning time can also be shortened in this way.  
• If the output torque is saturated during acceleration and deceleration, set speed control to 0  
(switching by internal torque command), or 2 (switching by acceleration command).  
• If the speed control overshoots or undershoots without the output torque being saturated during  
acceleration and deceleration, set speed control to 1 (switching by speed command), or 3 (switch-  
ing by deviation pulse value).  
4-41  
Operation  
Chapter 4  
• If the setting is made from 0 to 3 (i.e., if P control switching is used), set the switching condition to  
Pn10C to Pn10F.  
Note Setting Pn10B.1 (speed control loop switching) to 1 (IP control) changes the parameter to  
switch from IP control to P control.  
Pn10B.1  
Speed control setting -- Speed control loop switching (Position, speed)  
Setting  
range  
0, 1  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0
1
PI control  
IP control  
• Set the speed control loop to either PI control or IP control.  
• There is normally no need to change the setting.  
• If you cannot shorten positioning time in PI control, change the setting to 1 (IP control).  
Pn10B.2  
Speed control setting -- Position loop control method (Position)  
Setting  
range  
0 to 3  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0
1
2
3
Standard position control  
Less-deviation control  
Not used.  
Not used.  
Pn10B.3  
Speed control setting -- Not used.  
--- Unit ---  
Setting  
range  
Default  
setting  
0
Restart  
power?  
No  
No  
Note Do not change setting.  
Pn10C  
P control switching (torque command) (Position, speed)  
Setting  
range  
0 to 800  
Unit  
%
Default  
setting  
200  
Restart  
power?  
You must set Pn10C if you set Pn10B.0 (P control switching condition) to 0 (switching by internal  
torque command).  
• Set the condition to switch to P control using Servomotor rated torque ratio (%).  
• The Servo switches to P control if the internal torque command exceeds the setting level.  
Pn10D  
P control switching (speed command) (Position, speed)  
Setting  
range  
0 to 10000 Unit  
r/min  
Default  
setting  
0
Restart  
power?  
No  
4-42  
Operation  
Chapter 4  
You must set Pn10D if you set Pn10B.0 (P control switching condition) to 1 (switching by speed  
command).  
• Set the speed to switch to P control.  
• The Servo switches to P control if the speed command exceeds the setting level.  
Pn10E  
P control switching (acceleration command) (Position, speed)  
Setting  
range  
0 to 30000 Unit  
r/min/s  
Default  
setting  
0
Restart  
power?  
No  
You must set Pn10E if you set Pn10B.0 (P control switching condition) to 2 (switching by accelera-  
tion command).  
• Set the acceleration to switch to P control.  
• The Servo switches to P control if the acceleration command value exceeds the setting level.  
Pn10F  
P control switching (deviation pulse) (Position)  
0 to 10000 Unit Command Default  
unit setting  
Setting  
range  
10  
Restart  
power?  
No  
You must set Pn10F if you set Pn10B.0 (P control switching condition) to 3 (switching by deviation  
pulse).  
• Set the deviation pulse to switch to P control.  
• The Servo switches to P control if the deviation counter residual pulses exceed the setting level.  
Pn110.0  
Normal autotuning switches -- Not used.  
--- Unit ---  
Setting  
range  
Default  
setting  
2
Restart  
power?  
Yes  
Note Do not change setting.  
Pn110.1  
Normal autotuning switches -- Speed feedback compensation function selection (Position,  
speed)  
Setting  
range  
0, 1  
Unit  
---  
Default  
setting  
1
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0
1
Speed feedback compensation function ON  
Speed feedback compensation function OFF  
• This function shortens positioning time.  
• Use this function to lower speed loop feedback gain, and to raise speed loop gain and position loop  
gain. In this way, you can improve command response and shorten positioning time. Positioning  
time cannot be shortened, however, when external force is applied as with the vertical shaft,  
because response to external interference is lowered.  
• If 0 (function ON) is set, set Pn111 (speed feedback compensating gain).  
Pn110.2  
Normal autotuning switches -- Not used.  
--- Unit ---  
Setting  
range  
Default  
setting  
0
Restart  
power?  
Yes  
4-43  
Operation  
Chapter 4  
Note Do not change setting.  
Pn110.3  
Normal autotuning switches -- Not used.  
--- Unit ---  
Setting  
range  
Default  
setting  
0
Restart  
power?  
Yes  
Note Do not change setting.  
Pn111  
Speed feedback compensating gain (Position, speed)  
Setting  
range  
1 to 500  
Unit  
%
Default  
setting  
100  
Restart  
power?  
No  
• Use this parameter to adjust the speed loop feedback gain for when Pn110.1 (speed feedback com-  
pensation function selection) is set to ON.  
• The smaller the setting, the higher you can raise the speed loop gain and position loop gain. If the  
setting is too small, however, responses may be unstable.  
Note 1. Correctly set Pn103 (inertia ratio), perform the usual manual adjustment, then adjust the  
speed feedback compensation. After manual adjustment, manually readjust the setting to  
approximately 90%. Then, readjust repeatedly while gradually reducing the setting to find  
the optimum setting.  
Note 2. Refer to 4-7-5 Speed Feedback Compensation (Position, Speed) for details.  
Pn119  
Not used.  
---  
Setting  
range  
Unit  
---  
---  
---  
Default  
setting  
500  
1000  
1000  
0
Restart  
power?  
No  
No  
No  
No  
Note Do not change setting.  
Pn11A  
Not used.  
---  
Setting  
range  
Unit  
Default  
setting  
Restart  
power?  
Note Do not change setting.  
Pn11E  
Not used.  
---  
Setting  
range  
Unit  
Default  
setting  
Restart  
power?  
Note Do not change setting.  
Pn11F  
Position integral time constant (Position)  
0 to 50000 Unit × 0.1 ms  
Setting  
range  
Default  
setting  
Restart  
power?  
• Set the integral time constant for the position loop.  
Note Enabled for synchronous operations such as electronic cam and electronic shaft.  
4-44  
Operation  
Chapter 4  
Unused Gain Parameters (Pn12B to Pn130)  
Note Do not change the settings of the following parameters.  
Pn12B  
Not used.  
---  
Setting  
range  
Unit  
Unit  
Unit  
Unit  
Unit  
Unit  
---  
---  
---  
---  
---  
---  
Default  
setting  
400  
Restart  
power?  
No  
No  
No  
No  
No  
No  
Pn12C  
Not used.  
---  
Setting  
range  
Default  
setting  
2000  
400  
Restart  
power?  
Pn12D  
Not used.  
---  
Setting  
range  
Default  
setting  
Restart  
power?  
Pn12E  
Not used.  
---  
Setting  
range  
Default  
setting  
400  
Restart  
power?  
Pn12F  
Not used.  
---  
Setting  
range  
Default  
setting  
2000  
400  
Restart  
power?  
Pn130  
Not used.  
---  
Setting  
range  
Default  
setting  
Restart  
power?  
Automatic Gain Switching (Pn131 to Pn139)  
Pn131  
Gain switching time 1 (Position)  
0 to 65535 Unit ms  
Setting  
range  
Default  
setting  
0
0
0
0
Restart  
power?  
No  
No  
No  
No  
Pn132  
Gain switching time 2 (Position)  
0 to 65535 Unit ms  
Setting  
range  
Default  
setting  
Restart  
power?  
Pn135  
Gain switching waiting time 1 (Position)  
0 to 65535 Unit ms  
Setting  
range  
Default  
setting  
Restart  
power?  
Pn136  
Gain switching waiting time 2 (Position)  
0 to 65535 Unit ms  
Setting  
range  
Default  
setting  
Restart  
power?  
4-45  
Operation  
Chapter 4  
• The following diagram shows the relation between the gain switching waiting time and the gain  
switching time constant. In this example, the gain is switched from position loop gain (Pn102) to No.  
2 position loop gain (Pn106) in automatic gain switching pattern 1, in which the turning ON of the  
positioning completed signal (INP1) is taken as the switching condition. From the point at which the  
INP1 signal turns ON and the switching condition is met, operation is paused for the delay time set  
in Pn135, and then, during the switching time set in Pn131, the gain is changed in a straight line  
from Pn102 to Pn106.  
Switching Delay Time and Switching Time  
Delay time  
Pn135  
Switching time  
Pn131  
Pn102  
Position loop gain  
Pn106  
No. 2 position loop gain  
INP1  
Switching condition A met.  
• In addition to the standard PI and I-P control, automatic gain switching is also possible with less-  
deviation control. The gain combinations for less-deviation control are provided in 4-7-4 Automatic  
Gain Switching (Position). The settings for the switching condition, the gain switching waiting time,  
and the switching time are the same as for PI and I-P control. For details on adjustment methods for  
less-deviation control, refer to 4-7-9 Less-deviation Control (Position).  
Pn139.0  
Automatic gain changeover related switches 1 -- Gain switching selection switch (Position)  
Setting  
range  
0 to 4  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0
1
Manual gain switching  
Automatic switching pattern 1  
Automatic switching from No. 1 gain to No. 2 gain when gain switching condition A is satisfied.  
Automatic switching from No. 2 gain to No. 1 gain when gain switching condition B is satisfied.  
2 to 4  
Not used.  
Pn139.1  
Automatic gain changeover related switches 1 -- Gain switching condition A (Position)  
Setting  
range  
0 to 5  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
4-46  
Operation  
Chapter 4  
Setting Explanation  
Setting  
Explanation  
Positioning completed output 1 (INP1) ON  
Positioning completed output 1 (INP1) OFF  
0
1
2
3
4
5
Positioning completed output 2 (INP2) ON  
Positioning completed output 2 (INP2) OFF  
The position command filter output is 0, and also the position command input is 0.  
The position command input is not 0.  
Pn139.2  
Automatic gain changeover related switches 1 -- Gain switching condition B (Position)  
Setting  
range  
0 to 5  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
• Settings are the same as for Pn139.1.  
Pn139.3  
Automatic gain changeover related switches 1 -- Not used.  
Setting  
range  
---  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Note Do not change setting.  
Pn144  
Not used.  
---  
Setting  
range  
Unit  
---  
Default  
setting  
1000  
Restart  
power?  
No  
Note Do not change setting.  
Predictive Control (Pn150 to Pn152)  
Pn150.0  
Predictive control selection switches -- Predictive control selection. (Position)  
Setting  
range  
0 to 2  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0
1
2
Predictive control not used.  
Predictive control used.  
Not used.  
Pn150.1  
Predictive control selection switches -- Predictive control type (Position)  
Setting  
range  
0, 1  
Unit  
---  
Default  
setting  
1
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0
1
Predictive control for tracking  
Predictive control for positioning  
4-47  
Operation  
Chapter 4  
Pn150.2  
Predictive control selection switches -- Not used.  
Setting  
range  
---  
Unit  
---  
Default  
setting  
2
0
Restart  
power?  
Yes  
Note Do not change setting.  
Pn150.3  
Predictive control selection switches -- Not used.  
Setting  
range  
---  
Unit  
---  
Default  
setting  
Restart  
power?  
Yes  
Note Do not change setting.  
Pn151  
Predictive control acceleration/deceleration gain (Position)  
Setting  
range  
0 to 300  
Unit  
%
Default  
setting  
100  
Restart  
power?  
No  
• If the value is increased, the settling time will be shortened, but the maximum position deviation will  
not significantly change. If the set value is too large, overshooting will occur. The diagram shows an  
example of position deviation during operation by trapezoidal speed command. By increasing the  
predictive control acceleration/deceleration gain, the position deviation is changed from the broken  
line to the solid line, i.e., the settling time is shortened.  
Position error  
Predictive control acceleration/deceleration  
gain (Pn151) increased.  
Time  
Pn152  
Predictive control weighting ratio (Position)  
Setting  
range  
0 to 300  
Unit  
%
Default  
setting  
100  
Restart  
power?  
No  
• If the value is increased, tracking deviation will be reduced. If the positioning completed range is  
large, the settling time will also be reduced. If the set value is too long, the torque may oscillate and  
overshooting may occur. The diagram shows an example of position deviation during operation by  
trapezoidal speed command. By increasing the predictive control weighting ratio, the position devi-  
ation is changed from the broken line to the solid line and the settling time is shortened.  
4-48  
Operation  
Chapter 4  
Predictive control weighting  
ratio (Pn152) increased.  
Position error  
Time  
Less-deviation Control Parameters (Pn1A0 to Pn1AC)  
Pn1A0  
Servo rigidity (Position)  
1 to 500 Unit  
Setting  
range  
%
Default  
setting  
60  
60  
72  
72  
36  
Restart  
power?  
No  
No  
No  
No  
No  
Pn1A1  
Servo rigidity 2 (Position)  
1 to 500 Unit  
Setting  
range  
%
Default  
setting  
Restart  
power?  
Pn1A2  
Speed feedback filter time constant (Position)  
Setting  
range  
30 to 3200 Unit  
× 0.01 ms  
Default  
setting  
Restart  
power?  
Pn1A3  
Speed feedback filter time constant 2 (Position)  
Setting  
range  
30 to 3200 Unit  
× 0.01 ms  
Default  
setting  
Restart  
power?  
Pn1A4  
Torque command filter time constant 2 (Position)  
Setting  
range  
0 to 2500  
Unit  
× 0.01 ms  
Default  
setting  
Restart  
power?  
• For details on the less-deviation control function, refer to 4-7-9 Less-deviation Control (Position).  
Pn1A7.0  
Utility control switches -- Integral compensation processing (Position)  
Setting  
range  
0 to 3  
Unit  
---  
Default  
setting  
1
Restart  
power?  
No  
Setting Explanation  
Setting  
Explanation  
0
1
2
Integral compensation processing is not executed.  
Integral compensation processing is executed.  
Integral compensation is executed for No. 1 gain and not for No. 2 gain for less-deviation gain  
switching.  
3
Integral compensation is executed for No. 2 gain and not for No. 1 gain for less-deviation gain  
switching.  
4-49  
Operation  
Chapter 4  
Pn1A7.1  
Utility control switches -- Not used.  
--- Unit ---  
Setting  
range  
Default  
setting  
2
1
1
Restart  
power?  
No  
Note Do not change setting.  
Pn1A7.2  
Utility control switches -- Not used.  
--- Unit ---  
Setting  
range  
Default  
setting  
Restart  
power?  
No  
No  
Note Do not change setting.  
Pn1A7.3  
Utility control switches -- Not used.  
Setting  
range  
---  
Unit  
---  
Default  
setting  
Restart  
power?  
Note Do not change setting.  
Pn1A9  
Utility integral gain (Position)  
Setting  
range  
0 to 500  
Unit  
Hz  
Default  
setting  
37  
Restart  
power?  
No  
No  
No  
No  
No  
Pn1AA  
Position proportional gain (Position)  
0 to 500 Unit Hz  
Setting  
range  
Default  
setting  
60  
Restart  
power?  
Pn1AB  
Speed integral gain (Position)  
0 to 500 Unit Hz  
Setting  
range  
Default  
setting  
0
Restart  
power?  
Pn1AC  
Speed proportional gain (Position)  
Setting  
range  
0 to 2000  
Unit  
Hz  
Default  
setting  
120  
150  
Restart  
power?  
Pn1B5  
Not used.  
---  
Setting  
range  
Unit  
---  
Default  
setting  
Restart  
power?  
Note Do not change setting.  
Position Control Parameters (from Pn200)  
Position Control Setting 1 (Pn200: Default Setting 0100)  
Pn200  
Not used.  
---  
Setting  
range  
Unit  
---  
Default  
setting  
0100  
Restart  
power?  
Yes  
4-50  
Operation  
Chapter 4  
Note Do not change setting.  
Pn205  
Absolute encoder multi-turn limit setting (All operation modes, absolute)  
Setting  
range  
0 to 65535 Unit  
Rotation  
Default  
setting  
65535  
Restart  
power?  
Yes  
• Sets the amount of multi-turn rotation when using a Servomotor with an absolute encoder.  
• If using an absolute encoder, the counter counts the number of rotations from the setup position,  
and outputs the number of rotations from the Servo Driver.  
• With the default setting (Pn205 = 65535), the Servomotor multi-turn data will be as follows:  
+32767  
Forward  
Reverse  
Multi-turn data  
0
Servomotor rotations  
32768  
• With the default settings changed (i.e., Pn205 65535), the Servomotor multi-turn data will be as  
follows:  
Pn205 set value  
Forward  
Reverse  
Multi-turn data  
0
Servomotor rotations  
That is, when the default settings are changed (i.e., Pn205 65535), the Servomotor multi-turn data  
will be only in the positive direction. If you want to set the multi-turn limit as high as possible, with the  
entire operating area positive, set a number such as 65534. To return multi-turn data to 0 at every m  
turns of the motor (e.g., turn-tables), set Pn205 to m-1.  
Note If Pn205 is changed, the limit to the number of rotations in the encoder memory and the limit to  
the number of rotations in the Servo Driver memory will no longer agree, so an A.CC0 alarm  
(multi-turn limit nonconformity) will be generated. To cancel this alarm, the setting for the num-  
ber of multi-turns must be changed in the System Check Mode.  
Position Control Settings 2 (Pn207: Default Setting 0010)  
Pn207.0  
Position control settings 2 -- Not used.  
--- Unit ---  
Setting  
range  
Default  
setting  
0
Restart  
power?  
Yes  
Yes  
Note Do not change setting.  
Pn207.1  
Position control settings 2 -- Not used.  
--- Unit ---  
Setting  
range  
Default  
setting  
1
Restart  
power?  
4-51  
Operation  
Chapter 4  
Note Do not change setting.  
Pn207.2  
Position control function 2 -- Backlash compensation selection (Position)  
Setting  
range  
0 to 2  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0
1
2
Disabled  
Compensates to forward rotation side.  
Compensates to reverse rotation side.  
• For details, refer to 4-7-12 Backlash Compensation (Position).  
Pn207.3  
Position control function 2 -- INP 1 output timing (Position)  
Setting  
range  
0 to 2  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Yes  
Setting Explanation  
Setting  
Explanation  
0
1
When the position deviation is below the INP1 range.  
When the position deviation is below the INP1 range and also the command after the position  
command filter is 0.  
2
When the absolute value for the position deviation is below the INP1 range (Pn522) and also the  
position command input is 0.  
Pn209  
Not used.  
Setting  
range  
---  
Unit  
---  
---  
Default  
setting  
0
Restart  
power?  
No  
Note Do not change setting.  
Pn20A  
Not used.  
---  
Setting  
range  
Unit  
Default  
setting  
32768  
Restart  
power?  
Yes  
Note Do not change setting.  
Pn20E  
Electronic gear ratio G1 (numerator) (Position)  
Setting  
range  
1 to  
1073741824  
Unit  
---  
Default  
setting  
4
1
Restart  
power?  
Yes  
Yes  
Pn210  
Electronic gear ratio G2 (denominator) (Position)  
Setting  
range  
1 to  
1073741824  
Unit  
---  
Default  
setting  
Restart  
power?  
• Sets the pulse rate for command pulses and the Servomotor travel amount.  
4-52  
Operation  
Chapter 4  
• When G1/G2 is 1, inputting (encoder resolution × 4) pulses will rotate the Servomotor once. (The  
Servo Driver operates internally at a multiple of 4.)  
• Set within a range of 0.001 G1/G2 1,000.  
Note For details on the electronic gear function, refer to 4-4-9 Electronic Gear Function (Position).  
Pn212  
Encoder divider rate (All operation modes)  
Setting  
range  
16 to  
1073741824  
Unit  
Pulses/rota- Default  
tion setting  
1000  
Restart  
power?  
Yes  
• Sets the number of output pulses from the Servo Driver.  
• The encoder resolution for each Servomotor is shown below. Set this resolution as the upper limit.  
INC  
3,000-r/min Servomotor (30 to 750 W): 2,048 pulses/rotation  
3,000-r/min Servomotor (1 to 3 kW): 32,768 pulses/rotation  
3,000-r/min flat-type Servomotor: 2,048 pulses/rotation  
1,000-r/min Servomotor: 32,768 pulses/rotation  
ABS 3,000-r/min Servomotor (30 to 750 W): 16,384 pulses/rotation  
3,000-r/min Servomotor (1 to 3 kW): 32,768 pulses/rotation  
3,000-r/min flat-type Servomotor: 16,384 pulses/rotation  
1,000-r/min Servomotor: 32,768 pulses/rotation  
1,500-r/min Servomotor: 32,768 pulses/rotation  
Note 1. If a value greater than the encoder resolution is set, the encoder resolution will be taken as  
the divider rate.  
Note 2. For details on the encoder divider rate, refer to 4-4-5 Encoder Dividing Function (All Oper-  
ating Modes).  
Pn214  
Backlash compensation amount (Position)  
Setting  
range  
32767 to  
Unit  
Command Default  
unit setting  
0
0
Restart  
power?  
No  
No  
32767  
Pn215  
Backlash compensation time constant (Position)  
Setting  
range  
0 to 65535 Unit  
× 0.01 ms  
Default  
setting  
Restart  
power?  
Note For details, refer to 4-7-12 Backlash Compensation (Position).  
Pn216  
Not used.  
---  
Setting  
range  
Unit  
---  
---  
Default  
setting  
0
Restart  
power?  
No  
No  
Note Do not change setting.  
Pn217  
Not used.  
---  
Setting  
range  
Unit  
Default  
setting  
0
Restart  
power?  
Note Do not change setting.  
4-53  
Operation  
Chapter 4  
Pn281  
Not used.  
---  
Setting  
range  
Unit  
---  
Default  
setting  
20  
Restart  
power?  
Yes  
Note Do not change setting.  
Speed Control Parameters (from Pn300)  
Pn300  
Not used.  
---  
Setting  
range  
Unit  
---  
Default  
setting  
600  
Restart  
power?  
No  
Note Do not change setting.  
Pn301  
Not used.  
---  
Setting  
range  
Unit  
---  
---  
---  
Default  
setting  
100  
200  
300  
500  
Restart  
power?  
No  
No  
No  
No  
Note Do not change setting.  
Pn302  
Not used.  
---  
Setting  
range  
Unit  
Default  
setting  
Restart  
power?  
Note Do not change setting.  
Pn303  
Not used.  
---  
Setting  
range  
Unit  
Default  
setting  
Restart  
power?  
Note Do not change setting.  
Pn304  
Jog speed (All operation modes)  
0 to 10000 Unit r/min  
Setting  
range  
Default  
setting  
Restart  
power?  
• Sets the speed for when the jog operation is used.  
Note If a value that exceeds the maximum Servomotor rotation speed is set, that value will be  
regarded as the maximum Servomotor rotation speed.  
Pn305  
Soft start acceleration time (Speed)  
0 to 10000 Unit ms  
Setting  
range  
Default  
setting  
0
0
Restart  
power?  
No  
No  
Pn306  
Soft start deceleration time (Speed)  
0 to 10000 Unit ms  
Setting  
range  
Default  
setting  
Restart  
power?  
4-54  
Operation  
Chapter 4  
• Sets the acceleration and deceleration time for soft start using speed control.  
• Set the acceleration time from Servomotor rotation speed = 0 (r/min.) to the maximum rotation  
speed in Pn305, and set the deceleration time from the maximum rotation speed to the Servomotor  
rotation speed = 0 (r/min.) in Pn306.  
• Set both Pn305 and Pn306 to 0 if using a position controller with acceleration and deceleration  
functions, or if not using speed control and internally-set speed control.  
Note Refer to 4-4-8 Soft Start Function (Speed) for details.  
Pn307  
Not used.  
---  
Setting  
range  
Unit  
---  
Default  
setting  
40  
Restart  
power?  
No  
No  
Note Do not change setting.  
Pn308  
Speed feedback filter time constant (Position, speed)  
Setting  
range  
0 to 65535 Unit  
× 0.01 ms  
Default  
setting  
0
Restart  
power?  
• Sets the filter time constant (primary filter) for speed feedback.  
• Set this parameter if the speed loop gain cannot be raised due to factors such as mechanical sys-  
tem vibration.  
Pn310.0  
Vibration detection switches -- Vibration detection selection (All operation modes)  
Setting  
range  
0 to 2  
Unit  
---  
Default  
setting  
0
Restart  
power?  
No  
Setting Explanation  
Setting  
Explanation  
0
1
2
Vibration detection not used.  
Gives warning (A.911) when vibration is detected.  
Gives warning (A.520) when vibration is detected.  
Pn310.1  
Vibration detection switches -- Not used.  
Setting  
range  
---  
Unit  
---  
Default  
setting  
0
0
Restart  
power?  
No  
No  
Note Do not change setting.  
Pn310.2  
Vibration detection switches -- Not used.  
--- Unit ---  
Setting  
range  
Default  
setting  
Restart  
power?  
Note Do not change setting.  
4-55  
Operation  
Chapter 4  
Pn310.3  
Vibration detection switches -- Not used.  
--- Unit ---  
Setting  
range  
Default  
setting  
0
Restart  
power?  
No  
Note Do not change setting.  
Pn311  
Vibration detection sensitivity (All operation modes)  
Setting  
range  
50 to 500  
Unit  
%
Default  
setting  
100  
50  
Restart  
power?  
No  
No  
Pn312  
Vibration detection level (All operation modes)  
Setting  
range  
0 to 5000  
Unit  
r/min  
Default  
setting  
Restart  
power?  
• Pn312 is set by the vibration detection level initialization by Computer Monitor Software, so there is  
no need for the user to directly adjust this parameter. Detection sensitivity is set by Pn311 (Vibra-  
tion detection sensitivity).  
• Detection level initialization for vibration detection:  
This function detects vibration in machine operation and automatically sets the vibration detection  
level (Pn312) so that the vibration alarm (A.520) and vibration warning (A.911) can be more accu-  
rately detected.  
Use this function when the vibration alarm (A.520) and vibration warning (A.911) are not output with  
the appropriate timing when vibration is detected at the default setting for the vibration detection  
level (Pn312). Aside from that situation, there is no need to execute this function.  
When the vibration detection function detects a certain level of vibration at the Servomotor rotation  
speed and the detection level in the equation below is exceeded, an alarm or warning is generated  
according to the vibration detection switches (Pn310) setting.  
Depending on the conditions of the machinery being used, there may be a difference in detection  
sensitivity between vibration alarms and warnings. If that occurs, a minute adjustment in detection  
sensitivity can be set in Pn311 (detection sensitivity) in the equation below.  
Vibration detection level (Pn312 [r/min]) × Pn311 [%])  
Detection level =  
100  
Note 1. Vibration may be difficult to detect due to an inappropriate Servo gain setting. Moreover, not  
all vibration that occurs can be detected. Use a uniform criterion for detected results.  
Note 2. Set the appropriate inertia rate (Pn103). If the setting inappropriate, it may result in errone-  
ous detection of vibration alarms or warnings, or in detection failure.  
Note 3. To execute this function, the commands that the user is actually using must be input.  
Note 4. Execute this function in the operating conditions under which the vibration detection level is  
to be initialized. If this function is executed with the Servomotor rotating at low speed, vibra-  
tion will be detected as soon as the Servo is turned ON. “Error” will be displayed if this func-  
tion is executed while the Servomotor is operating at 10% or less of its maximum rotation  
speed.  
Torque Control Parameters (from Pn400)  
Pn400  
Not used.  
---  
Setting  
range  
Unit  
---  
Default  
setting  
30  
Restart  
power?  
No  
4-56  
Operation  
Chapter 4  
Note Do not change setting.  
Pn401  
1st step 1st torque command filter time constant (All operation modes)  
Setting  
range  
0 to 65535 Unit  
× 0.01 ms  
Default  
setting  
40  
Restart  
power?  
No  
• Sets the (primary) filter time constant for the internal torque command.  
• When the mechanical resonance frequency is within the response frequency of the Servo loop,  
Servomotor vibration will occur. In order to prevent this from occurring, set the torque command fil-  
ter time constant.  
The relationship between the filter time constant and the cut-off frequency can be found by means  
of the following formula:  
fc (Hz) = 1 / (2πT)  
: T= Filter time constant (s), fc: cut-off frequency.  
Set the cut-off frequency to below the mechanical resonance frequency.  
Pn402  
Forward torque limit (All operation modes)  
Setting  
range  
0 to 800  
Unit  
%
Default  
setting  
350  
350  
Restart  
power?  
No  
No  
Pn403  
Reverse torque limit (All operation modes)  
Setting  
range  
0 to 800  
Unit  
%
Default  
setting  
Restart  
power?  
• Set Pn402 (forward torque limit) and Pn403 (reverse torque limit) using the ratio (%) of the Servo-  
motor rated torque for each.  
Note These following torque limit functions are available: Analog torque limit (Pn002.0 = 1 or 3),  
Pn402 (forward torque limit), Pn403 (reverse torque limit), Pn404 (forward rotation external cur-  
rent limit), and Pn405 (reverse rotation external current limit). The output torque is limited by  
the smallest of the enabled limit values. Refer to 4-4-7 Torque Limit Function (All Operating  
Modes) for details.  
Pn404  
Forward rotation external current limit (All operation modes)  
Setting  
range  
0 to 800  
Unit  
%
Default  
setting  
100  
Restart  
power?  
No  
No  
Pn405  
Reverse rotation external current limit (All operation modes)  
Setting  
range  
0 to 800  
Unit  
%
Default  
setting  
100  
Restart  
power?  
• Set in Pn404 the torque limit for when the forward torque limit is input, and set in Pn405 the torque  
limit for when the reverse torque limit is input, using the ratio (%) of the Servomotor rated torque for  
each.  
Note The following torque limit functions are available: Analog torque limit (Pn002.0 = 1 or 3), Pn402  
(forward torque limit), Pn403 (reverse torque limit), Pn404 (forward rotation external current  
limit), and Pn405 (reverse rotation external current limit). The output torque is limited by the  
smallest of the enabled limit values. Refer to 4-4-7 Torque Limit Function (All Operating Modes)  
for details.  
4-57  
Operation  
Chapter 4  
Pn406  
Emergency stop torque (Position, speed)  
0 to 800 Unit  
Setting  
range  
%
Default  
setting  
350  
Restart  
power?  
No  
• Set the deceleration torque if overtravel occurs using the ratio (%) of the Servomotor rated torque.  
Note This parameter is enabled when Pn001.1 (stop selection when drive prohibited is input) is set  
to 1 or 2 (i.e., stop using Pn406).  
Pn407  
Speed limit (Torque)  
0 to 10000 Unit  
Setting  
range  
r/min  
Default  
setting  
3000  
Restart  
power?  
No  
• Set the speed limit for Torque Control Mode.  
Note The following speed limit functions are available: Analog speed limit (when Pn002.1 = 1), and  
Pn407 (speed limit). The speed limit is set to whichever is the smaller. Refer to 4-4-3 Torque  
Control (Torque) for details.  
Torque Command Setting (Pn408: Default Setting 0000)  
Pn408.0  
Torque command settings -- Selects notch filter 1 function (All operation modes)  
Setting  
range  
0, 1  
Unit  
---  
Default  
setting  
0
Restart  
power?  
No  
Setting Explanation  
Setting  
Explanation  
0
1
Notch filter 1 function not used.  
Notch filter 1 used in torque commands. (Set the frequency using Pn409, and set the Q value  
using Pn40A).  
• Set whether or not to use notch filter 1 for internal torque commands (current loop commands).  
• Use the notch filter to prevent mechanical resonance. This function can be used to raise the speed  
loop gain and to shorten positioning time.  
Note 1. With W-series AC Servo Drivers, two notch filters can be set: notch filter 1 and notch filter 2.  
Note 2. For details on notch filters, refer to 4-7-10 Torque Command Filter (All Operating Modes).  
Pn408.1  
Torque command settings -- Not used.  
--- Unit ---  
Setting  
range  
Default  
setting  
0
Restart  
power?  
No  
No  
Note Do not change setting.  
Pn408.2  
Torque command settings -- Selects notch filter 2 function (All operation modes)  
Setting  
range  
0, 1  
Unit  
---  
Default  
setting  
0
Restart  
power?  
4-58  
Operation  
Chapter 4  
Setting Explanation  
Setting  
Explanation  
0
1
Notch filter 2 function not used.  
Notch filter 2 used in torque commands. (Set the frequency using Pn40B, and set the Q value in  
Pn40C.)  
• Set whether or not to use notch filter 2 for internal torque commands (current loop commands).  
• Use the notch filter to prevent mechanical resonance. This function can be used to increase the  
speed loop gain and to shorten positioning time.  
Note 1. With W-series AC Servo Drivers, two notch filters can be set: notch filter 1 and notch filter 2.  
Note 2. For details on notch filters, refer to 4-7-10 Torque Command Filter (All Operating Modes).  
Pn408.3  
Torque command settings -- Not used.  
--- Unit ---  
Setting  
range  
Default  
setting  
0
Restart  
power?  
No  
No  
Note Do not change setting.  
Pn409  
Notch filter 1 frequency (All operation modes)  
Setting  
range  
50 to 2000 Unit  
Hz  
Default  
setting  
2000  
Restart  
power?  
• Enabled when Pn408.0 (notch filter 1 function selection) is set to 1.  
• Sets the mechanical resonance frequency.  
Note For details on notch filters, refer to 4-7-10 Torque Command Filter (All Operating Modes).  
Pn40A  
Notch filter 1 Q value (All operation modes)  
Setting  
range  
50 to 1000 Unit  
× 0.01  
Default  
setting  
70  
Restart  
power?  
No  
• Enabled when Pn408.0 (notch filter 1 function selection) is set to 1.  
• Sets the Q value for notch filter 1.  
Note For details on notch filters, refer to 4-7-10 Torque Command Filter (All Operating Modes).  
Pn40C  
Notch filter 2 frequency (All operation modes)  
Setting  
range  
50 to 2000 Unit  
Hz  
Default  
setting  
2000  
Restart  
power?  
No  
• Enabled when Pn408.2 (notch filter 2 function selection) is set to 1.  
• Sets the mechanical resonance frequency.  
Note For details on notch filters, refer to 4-7-10 Torque Command Filter (All Operating Modes).  
Pn40D  
Notch filter 2 Q value (All operation modes)  
Setting  
range  
50 to 1000 Unit  
× 0.01  
Default  
setting  
70  
Restart  
power?  
No  
4-59  
Operation  
Chapter 4  
• Enabled when Pn408.2 (notch filter 2 function selection) is set to 1.  
• Set the Q value for notch filter 2.  
Note For details on notch filters, refer to 4-7-10 Torque Command Filter (All Operating Modes).  
Pn40F  
2nd step 2nd torque command filter frequency (All operation modes)  
Setting  
range  
100 to 2000 Unit  
Hz  
Default  
setting  
2000  
Restart  
power?  
No  
No  
No  
No  
No  
Pn410  
2nd step 2nd torque command filter Q value (All operation modes)  
Setting  
range  
50 to 1000 Unit  
× 0.01  
Default  
setting  
70  
Restart  
power?  
Pn411  
3rd step torque command filter time constant (All operation modes)  
Setting  
range  
0 to 65535 Unit  
µs  
Default  
setting  
0
Restart  
power?  
Pn412  
1st step 2nd torque command filter time constant (All operation modes)  
Setting  
range  
0 to 65535 Unit  
× 0.01 ms  
Default  
setting  
100  
Restart  
power?  
Pn413  
Not used.  
Setting  
range  
---  
Unit  
---  
Default  
setting  
100  
Restart  
power?  
Note Do not change setting.  
Pn414  
Not used.  
---  
Setting  
range  
Unit  
---  
Default  
setting  
100  
Restart  
power?  
No  
Note Do not change setting.  
Pn420  
Damping for vibration suppression on stopping (Position)  
Setting  
range  
10 to 100  
Unit  
%
Default  
setting  
100  
Restart  
power?  
No  
No  
Pn421  
Vibration suppression starting time (Position)  
Setting  
range  
0 to 65535 Unit  
ms  
Default  
setting  
1000  
Restart  
power?  
Note For details on vibration suppression when stopped, refer to 4-7-11 Vibration Suppression when  
Stopping (Position).  
Pn422  
Gravity compensation torque  
Setting  
range  
20000 to  
20000  
Unit  
× 0.01%  
Default  
setting  
0
Restart  
power?  
No  
4-60  
Operation  
Chapter 4  
Pn456  
Sweep torque command amplitude  
1 to 800 Unit  
Setting  
range  
%
Default  
setting  
15  
Restart  
power?  
No  
Note Detection accuracy tends to increase with a higher command amplitude, but mechanical vibra-  
tion and noise are temporarily increased. When changing the command amplitude, increase  
the amplitude value little by little while observing the conditions.  
Sequence Parameters (from Pn500)  
Pn501  
Not used.  
---  
Setting  
range  
Unit  
---  
Default  
setting  
10  
Restart  
power?  
No  
No  
Note Do not change setting.  
Pn502  
Rotation speed for motor rotation detection (All operation modes)  
Setting  
range  
1 to 10000 Unit  
r/min  
Default  
setting  
20  
Restart  
power?  
• Set the rotation speed for outputting TGON (Servomotor rotation detection output).  
• TGON turns ON when the Servomotor rotation speed is greater than the set value.  
Note Related parameter: Pn50E.2 (TGON signal output terminal allocation).  
Pn503  
Speed conformity signal output width (Speed)  
Setting  
range  
0 to 100  
Unit  
r/min  
Default  
setting  
10  
Restart  
power?  
No  
• Set the allowable fluctuation range (rotation speed) for outputting VCMP (speed conformity output)  
during speed control.  
• VCMP turns ON when the difference between the speed command value and Servomotor rotation  
speed is less than the set value.  
Note Related parameter: Pn50E.1 (VCMP signal output terminal allocation).  
Pn506  
Brake timing 1 (all operation modes)  
0 to 50 Unit × 10 ms  
Setting  
range  
Default  
setting  
0
Restart  
power?  
No  
No  
No  
Pn507  
Brake command speed (all operation modes)  
Setting  
range  
0 to 10000 Unit  
r/min  
Default  
setting  
100  
50  
Restart  
power?  
Pn508  
Brake timing 2 (all operation modes)  
10 to 100 Unit × 10 ms  
Setting  
range  
Default  
setting  
Restart  
power?  
4-61  
Operation  
Chapter 4  
• This parameter sets the BKIR (brake interlock output) timing to control the electromagnetic brake  
ON/OFF when a Servomotor with a brake is used.  
• This setting prevents damage to the machinery and the Servomotor holding brake.  
• Pn506 (brake timing 1): Set the lag time from BKIR OFF to Servo OFF.  
• Pn507 (brake command speed): Set the rotation speed for turning OFF BKIR.  
• Pn508 (brake timing 2): Set the standby time from Servo OFF to BKIR OFF.  
• When RUN is OFF while the Servomotor is stopped, first turn OFF BKIR, wait for the duration set in  
Pn506, then turn OFF the Servo.  
• When RUN is OFF while the Servomotor is stopped, if a Servo alarm occurs, and the main circuit  
power supply is OFF, the Servomotor will decelerate and the rotation speed will fall. When the rota-  
tion speed falls to below the Pn507 setting, BKIR will be turned OFF.  
Note 1. Related parameter: Pn50F.2 (BKIR signal output terminal allocation).  
Note 2. Refer to 4-4-6 Brake Interlock (All Operating Modes) for details of brake interlock functions.  
Pn509  
Momentary hold time (All operation modes)  
Setting  
range  
20 to 1000 Unit  
ms  
Default  
setting  
20  
Restart  
power?  
No  
• Sets the time during which alarm detection is disabled if a momentary power failure occurs.  
• When the power supply voltage to the Servo Driver is OFF, the Servo Driver detects that the power  
supply is OFF and turns OFF the Servo. The 20 ms default setting means that if the power supply  
voltage is recovered within 20 ms, operation will continue without the Servo being turned OFF.  
• In the following cases, the Servo is turned OFF regardless of the Pn509 setting:  
• If the load is too great, and A.410 (insufficient voltage) occurs during a momentary power stop-  
page.  
• If the control power supply falls during a momentary power stoppage, and cannot be con-  
trolled.  
Pn50A  
Input signal selection 1 (All operation  
modes)  
Default set- 1881  
ting  
Restart  
power?  
Yes  
Pn50B  
Input signal selection 2 (All operation  
modes)  
Default set- 8882  
ting  
Restart  
power?  
Yes  
Note Refer to 4-3-2 Important Parameters.  
Pn50C  
Pn50D  
Input signal selection 3 (All operation  
modes)  
Default set- 8888  
ting  
Restart  
power?  
Yes  
Yes  
Input signal selection 4 (All operation  
modes)  
Default set- 8888  
ting  
Restart  
power?  
Note Do not change setting.  
Pn50E  
Output signal selection 1 (All operation Default set- 0000  
modes) ting  
Restart  
power?  
Yes  
4-62  
Operation  
Chapter 4  
Pn50F  
Output signal selection 2 (All operation Default set- 0100  
modes) ting  
Restart  
power?  
Yes  
Pn510  
Pn511  
Pn512  
Output signal selection 3 (All operation Default set- 0000  
Restart  
power?  
Yes  
Yes  
Yes  
modes)  
ting  
Input signal selection 5 (All operation  
modes)  
Default set- 6543  
ting  
Restart  
power?  
Output signal reverse (All operation  
modes)  
Default set- 0000  
ting  
Restart  
power?  
Note Refer to 4-3-2 Important Parameters.  
Pn513  
Not used.  
Default set- 0321  
ting  
Restart  
power?  
Yes  
Yes  
Note Do not change setting.  
Pn515  
Not used.  
Default set- 8888  
ting  
Restart  
power?  
Note Do not change setting.  
Pn51B  
Not used.  
---  
Setting  
range  
Unit  
---  
Default  
setting  
1000  
Restart  
power?  
No  
No  
Note Do not change setting.  
Pn51E  
Deviation counter overflow warning level (Position)  
Setting  
range  
10 to 100  
Unit  
%
Default  
setting  
100  
Restart  
power?  
• Set the deviation counter overflow warning detection level using the ratio (%) for Pn520 (deviation  
counter overflow level).  
• When the deviation counter residual pulses exceed the set value, a deviation counter overflow  
warning (A.900) will occur.  
Pn520  
Deviation counter overflow level (Position)  
Setting  
range  
1 to  
1073741823  
Unit  
Command Default  
unit setting  
262144  
Restart  
power?  
No  
• Set the deviation counter overflow alarm detection level for position control.  
• A Servo alarm occurs when the accumulated pulses in the deviation counter exceed the set value.  
• Set the deviation counter overflow level to the number of command units suitable for the system  
and operation pattern (e.g., the number of command units required for 2 to 3 rotations).  
4-63  
Operation  
Chapter 4  
Pn522  
Positioning completed range 1 (Position)  
Setting  
range  
0 to  
1073741823  
Unit  
Command Default  
unit setting  
3
Restart  
power?  
No  
• Set the deviation counter value for outputting INP1 (positioning completed 1) during position con-  
trol.  
• INP1 turns ON when the accumulated pulses in the deviation counter fall below the set value.  
Note Related parameters: Pn50E.0 (INP1 signal output terminal allocation), Pn524 (Positioning  
completed range 2)  
Pn524  
Positioning completed range 2 (Position)  
Setting  
range  
1 to  
1073741824  
Unit  
Command Default  
unit setting  
3
Restart  
power?  
No  
• Set the deviation counter value for outputting INP2 (positioning completed 2) during position con-  
trol.  
• INP2 turns ON when the accumulated pulses in the deviation counter fall below the set value.  
• For example, using INP2 as a near signal output, processing time can be shortened by receiving  
the INP2 signal and preparing the next sequence by the time positioning is completed (i.e., by the  
time INP1 turns ON). In that case, set a number greater for Pn524 that is greater than the setting for  
Pn522.  
Note Related parameters: Pn510.0 (INP2 signal output terminal allocation), Pn522 (Positioning  
completed range 1)  
Pn526  
Deviation counter overflow level at Servo-ON (Position)  
Setting  
range  
1 to  
1073741823  
Unit  
Command Default  
unit setting  
262144  
Restart  
power?  
No  
• Set the deviation counter overflow alarm detection level for Servo ON.  
• A Servo alarm occurs when the accumulated pulses in the deviation counter exceed the set value.  
Pn528  
Deviation counter overflow warning level at Servo-ON (Position)  
Setting  
range  
10 to 100  
Unit  
%
Default  
setting  
100  
Restart  
power?  
No  
• Set the deviation counter overflow warning detection level for Servo ON to a percentage of Pn526  
(deviation counter overflow alarm level at Servo-ON ).  
• The deviation counter overflow warning at Servo ON (A.901) is generated when the accumulated  
pulses in the deviation counter exceed the set value.  
Pn529  
Speed limit level at Servo-ON (Position)  
0 to 10000 Unit r/min  
Setting  
range  
Default  
setting  
10000  
Restart  
power?  
No  
• Set the speed limit to use if the Servo is turned ON when there are position deviation pulses in the  
deviation counter.  
4-64  
Operation  
Chapter 4  
Pn52A  
Not used.  
---  
Setting  
range  
Unit  
---  
---  
Default  
setting  
20  
Restart  
power?  
No  
Note Do not change setting.  
Pn52F  
Not used.  
---  
Setting  
range  
Unit  
Default  
setting  
FFF  
Restart  
power?  
No  
Note Do not change setting.  
Program JOG: Pn530 to Pn536  
Pn530.0  
Program JOG operation related switches -- Program JOG operating pattern (All operation  
modes)  
Setting  
range  
0 to 5  
Unit  
---  
Default  
setting  
0
Restart  
power?  
No  
Setting Explanation  
Setting  
Explanation  
0
1
2
(Waiting time Pn535 Forward movement Pn531) × Number of movement operations Pn536  
(Waiting time Pn535 Reverse movement Pn531) × Number of movement operations Pn536  
(Waiting time Pn535 Forward movement Pn531) × Number of movement operations Pn536  
(Waiting time Pn535 Reverse movement Pn531) × Number of movement operations Pn536  
3
4
5
(Waiting time Pn535 Reverse movement Pn531) × Number of movement operations Pn536  
(Waiting time Pn535 Forward movement Pn531) × Number of movement operations Pn536  
(Waiting time Pn535 Forward movement Pn531 Waiting time Pn535 Reverse movement  
Pn531) × Number of movement operations Pn536  
(Waiting time Pn535 Reverse movement Pn531 Waiting time Pn535 Forward movement  
Pn531) × Number of movement operations Pn536  
Pn530.1  
Program JOG operation related switches -- Not used.  
Setting  
range  
---  
Unit  
---  
Default  
setting  
0
0
0
Restart  
power?  
No  
No  
No  
Note Do not change setting.  
Pn530.2  
Program JOG operation related switches -- Not used.  
Setting  
range  
---  
Unit  
---  
Default  
setting  
Restart  
power?  
Note Do not change setting.  
Pn530.3  
Program JOG operation related switches -- Not used.  
Setting  
range  
---  
Unit  
---  
Default  
setting  
Restart  
power?  
4-65  
Operation  
Chapter 4  
Note Do not change setting.  
Pn531  
Program JOG movement distance (All operation modes)  
Setting  
range  
1 to  
1073741824  
Unit  
Command Default  
unit setting  
32768  
Restart  
power?  
No  
No  
No  
No  
No  
Pn533  
Program JOG movement speed (All operation modes)  
Setting  
range  
1 to 10000 Unit  
r/min  
Default  
setting  
500  
Restart  
power?  
Pn534  
Program JOG acceleration/deceleration time (All operation modes)  
Setting  
range  
2 to 10000 Unit  
ms  
Default  
setting  
100  
Restart  
power?  
Pn535  
Program JOG waiting time (All operation modes)  
Setting  
range  
0 to 10000 Unit  
ms  
Default  
setting  
100  
Restart  
power?  
Pn536  
Number of program JOG movement (All operation modes)  
Setting  
range  
1 to 1000  
Unit  
Times  
Default  
setting  
1
Restart  
power?  
Note For details on the program JOG function, refer to 4-4-13 Program JOG Operation.  
Pn540  
Gain limit (Position, speed)  
10 to 2000 Unit  
Setting  
range  
× 0.1 Hz  
Default  
setting  
2000  
Restart  
power?  
No  
• As the value is increased, response improves but vibration becomes easier. Likewise, as the value  
is decreased, operation becomes more stable but response declines.  
Pn550  
Analog monitor 1 offset voltage (All operation modes)  
Setting  
range  
10000 to  
Unit  
× 0.1 V  
Default  
setting  
0
0
Restart  
power?  
No  
No  
10000  
Pn551  
Analog monitor 2 offset voltage (All operation modes)  
Setting  
range  
10000 to  
10000  
Unit  
× 0.1 V  
Default  
setting  
Restart  
power?  
• When Pn006 is set to 0102, Pn422 [%] to 10.0, and Pn550 to 3.0 [V]:  
Analog monitor 1: Torque command  
= {(1) × (Torque command [%] 10%) × 10} + 3 [V]  
If the torque here is 52%  
= {(1) × (52 [%] 10 [%]) × 1 [V]/100 [%]} + 3 [V]  
= 7.2 [V] (Analog monitor 1 output voltage)  
Other Parameters (from Pn600)  
Pn600  
Regeneration resistor capacity (All operation modes)  
Setting  
range  
0 to (varies Unit  
by model)  
× 10 W  
Default  
setting  
0
Restart  
power?  
No  
4-66  
Operation  
Chapter 4  
• If using an External Regeneration Resistor or External Regeneration Resistance Unit, set the  
regeneration absorption amount. Set the regeneration absorption amount for when the temperature  
rises above 120°C, not the nominal amount. (Refer to 3-3-3 Regenerative Energy Absorption by  
External Regeneration Resistance for details.)  
• A.920 (Regenerative overload warning and A.320 (Regenerative overload alarm) are detected  
based on the set value.  
Note If an External Regeneration Resistor or External Regeneration Resistance Unit is not con-  
nected, set Pn600 to 0.  
Pn800.0  
Communications control -- MECHATROLINK-II communications check mask (All operation  
modes)  
Setting  
range  
0 to 3  
Unit  
---  
Default  
setting  
0
Restart  
power?  
No  
Setting Explanation  
Setting  
Explanation  
0
1
2
3
Normal  
Ignore communications errors (A.E6@).  
Ignore WDT errors (A.E5@).  
Ignore communications errors (A.E6@) and WDT errors (A.E5@).  
• This function is used for ignoring communications alarm checks in operations such as debugging  
during trial operation.  
When it is used for normal operation,0 (with check) must be set.  
Pn800.1  
Communications control -- Warning check mask (All operation modes)  
Setting  
range  
0 to 7  
Unit  
---  
Default  
setting  
4
Restart  
power?  
No  
Setting Explanation  
Setting  
Explanation  
0
1
2
3
4
5
6
7
Normal  
Ignore data setting warning (A. 94@).  
Ignore command warning (A. 95@).  
Ignore A.94@ and A.95@.  
Ignore communications warning (A. 96@).  
Ignore A.94@ and A.96@.  
Ignore A.95@ and A.96@.  
Ignore A.94@, A.95@ and A.96@.  
• Depending on the setting for Pn800.1, warnings are not detected for A. 94@, A. 95@, and A. 96@.  
(Warnings are detected for A. 94@ and A. 95@ A. in the default settings.)  
4-67  
Operation  
Chapter 4  
• When connecting to the CJ1W-NCF71 or CS1W-NCF71, always use the default setting (4) or a set-  
ting of 0.  
Pn800.2  
Communications control -- Communications error count at single transmission (All operation  
modes)  
Setting  
range  
0 to F  
Unit  
---  
Default  
setting  
0
Restart  
power?  
No  
Setting Explanation  
Setting  
Explanation  
0 to F  
Detects communications errors (A.E60) if errors occur consecutively for the set value plus two  
times.  
Pn800.3  
Communications control -- Not used.  
Setting  
range  
---  
Unit  
---  
Default  
setting  
0
Restart  
power?  
No  
Note Do not change setting.  
Pn801.0  
Function selection application 6 (software LS) -- Software limit function (All operation modes)  
Setting  
range  
0 to 3  
Unit  
---  
Default  
setting  
3
Restart  
power?  
No  
Setting Explanation  
Setting  
Explanation  
0
1
2
3
Software limit enabled.  
Forward software limit disabled.  
Reverse software limit disabled.  
Forward/reverse software limits disabled.  
• Enables or disables software limits. Software limit function settings are executed according to the  
next user constant. Software limits are enabled in the cases described below. In all other cases,  
software limits do not go into effect even when the software limit range is exceeded.  
When the origin is established (when the No-origin Flag is OFF for the CJ1W-NCF71, CS1W-  
MCH71, CJ1W-MCH71)  
When an infinite length axis is used (CS1W-MCH71, CJ1W-MCH71)  
Set enable/disable with the above setting method described above.  
Pn801.1  
Function selection application 6 (software LS) -- Not used.  
Setting  
range  
---  
Unit  
---  
Default  
setting  
0
Restart  
power?  
No  
Note Do not change setting.  
Pn801.2  
Function selection application 6 (software LS) -- Software limit check using reference (Position)  
Setting  
range  
0, 1  
Unit  
---  
Default  
setting  
0
Restart  
power?  
No  
4-68  
Operation  
Chapter 4  
Setting Explanation  
Setting  
Explanation  
0
1
No software limit check using reference  
Software limit check using reference  
• Sets whether or not the software limit check will be in effect when position commands are input.  
If the software limit is reached or exceeded when the target position is input, the specified target  
value is decelerated to a stop at the software limit's set position.  
• When connecting to the CJ1W-NCF71 or CS1W-NCF71, always use the default setting (0: No soft-  
ware limit check using reference).  
Pn801.3  
Function selection application 6 (software LS) -- Not used.  
Setting  
range  
---  
Unit  
---  
Default  
setting  
0
Restart  
power?  
No  
No  
No  
Note Do not change setting.  
Pn802  
Not used.  
---  
Setting  
range  
Unit  
---  
Default  
setting  
0000  
Restart  
power?  
Note Do not change setting.  
Pn803  
Zero point width (Position)  
0 to 250 Unit  
Setting  
range  
Command Default  
unit setting  
10  
Restart  
power?  
Note This parameter sets origin position detection (ZPOINT).  
Pn804  
Forward software limit (All operation modes)  
Setting  
range  
1073741823 Unit  
to  
1073741823  
Command Default  
unit setting  
819191808 Restart  
power?  
No  
No  
Pn806  
Reverse software limit (All operation modes)  
Setting  
range  
1073741823 Unit  
to  
Command Default  
unit setting  
819191808 Restart  
power?  
1073741823  
• This parameter sets the software limits in the + and directions.  
The area is set to match the direction, so be sure to set the direction limit lower than the + direc-  
tion limit.  
Pn808  
Absolute encoder zero point position offset (All operation modes, absolute)  
Setting  
range  
1073741823 Unit  
to  
1073741823  
Command Default  
unit setting  
0
Restart  
power?  
No  
• The encoder position and machine coordinate system position (APOS) offsets for when an absolute  
encoder is used can be set.  
4-69  
Operation  
Chapter 4  
• The settings are shown below. To take the machine coordinate system origin (0) as the encoder  
position (X), set Pn808 to X.  
Origin  
Machine coordinate system position (APOS)  
Pn808  
Encoder position ×  
Encoder position  
Encoder position: origin  
Acceleration/Deceleration Speed Parameters (Pn80A to Pn812)  
Pn80A  
First step linear acceleration parameter (Position)  
1 to 65535 Unit Default  
Setting  
range  
× 10000  
100  
Restart  
power?  
No  
No  
Command setting  
2
unit/s  
• Sets the step 1 acceleration speed for when two-step acceleration is used.  
Pn80B  
Second step linear acceleration parameter (Position)  
1 to 65535 Unit Default  
Setting  
range  
× 10000  
100  
Restart  
power?  
Command setting  
2
unit/s  
• Sets the step 2 acceleration for when two-step acceleration is executed, or the one-step accelera-  
tion parameter for when one-step acceleration is executed.  
Pn80C  
Acceleration parameter switching speed (Position)  
Setting  
range  
0 to 65535 Unit  
× 100 Com- Default  
mand unit/s setting  
0
Restart  
power?  
No  
• Sets the switching speed for the step 1 and step 2 acceleration for when two-step acceleration is  
executed. When using one-step acceleration, set the acceleration parameter switching speed  
(Pn80C) to 0.  
Pn80D  
First step linear deceleration parameter (Position)  
1 to 65535 Unit Default  
Setting  
range  
× 10000  
100  
Restart  
power?  
No  
Command setting  
2
unit/s  
• Sets the step 1 deceleration for when two-step acceleration is used.  
Pn80E  
Second step linear deceleration parameter (Position)  
1 to 65535 Unit Default  
Setting  
range  
× 10000  
100  
Restart  
power?  
No  
Command setting  
2
unit/s  
• Sets the step 2 deceleration for when two-step deceleration is executed. When using one-step  
acceleration, set Pn80E as the one-step deceleration parameter.  
4-70  
Operation  
Chapter 4  
Pn80F  
Deceleration parameter switching speed (Position)  
Setting  
range  
0 to 65535 Unit  
× 100 Com- Default  
mand unit/s setting  
0
Restart  
power?  
No  
• This parameter sets the switching speed for the step 1 and step 2 deceleration when two-step  
deceleration is executed. When using one-step acceleration, set the deceleration parameter switch-  
ing speed (Pn80F) to 0.  
Pn810  
Exponential acceleration/deceleration bias (Position)  
0 to 32767 Unit Command Default  
unit/s setting  
Setting  
range  
0
Restart  
power?  
No  
• Sets the bias for when an exponential filter is used for the position command filter.  
Pn811  
Exponential acceleration/deceleration time constant (Position)  
Setting  
range  
0 to 5100  
Unit  
× 0.1 ms  
Default  
setting  
0
Restart  
power?  
No  
• This parameter sets the time constant for when an exponential filter is used for the position com-  
mand filter.  
Pn812  
Moving average time (Position)  
0 to 5100 Unit × 0.1 ms  
Setting  
range  
Default  
setting  
0
Restart  
power?  
No  
• Sets the average movement time for when and an average movement filter is used for the position  
command filter. Set when using S-curve acceleration/deceleration.  
Pn813  
Not used.  
---  
Setting  
range  
Unit  
---  
Default  
setting  
0
Restart  
power?  
No  
• If the Servo Driver is used with the CJ1W-MCH71 or CS1W-MCH71, this parameter will be set to  
0032.  
If parameters are edited with the WMON-ML2 connected, this parameter will set to 0000.  
If this happens, you must reset this parameter to 0032 from the CJ1W-MCH71 or CS1W-MCH71.  
Note Do not change setting.  
Pn814  
Final travel distance for external positioning (Position)  
Setting  
range  
1073741823 Unit  
to  
1073741823  
Command Default  
unit setting  
100  
Restart  
power?  
No  
• Sets the distance from the external signal input position when external positioning is executed. For  
a negative direction or if the distance is short, operation is reversed after decelerating to a stop.  
Origin Search Parameters (Pn816 to Pn819)  
Pn816.0  
Zero point return mode settings -- Zero point return direction (Position)  
Setting  
range  
0, 1  
Unit  
---  
Default  
setting  
0
Restart  
power?  
No  
4-71  
Operation  
Chapter 4  
Setting Explanation  
Setting  
Explanation  
0
1
Forward  
Reverse  
• Sets the direction for executing origin search.  
Pn816.1  
Zero point return mode settings -- Not used.  
Setting  
range  
---  
Unit  
---  
Default  
setting  
0
Restart  
power?  
No  
No  
No  
Note Do not change setting.  
Pn816.2  
Zero point return mode settings -- Not used.  
Setting  
range  
---  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Note Do not change setting.  
Pn816.3  
Zero point return mode settings -- Not used.  
Setting  
range  
---  
Unit  
---  
Default  
setting  
0
Restart  
power?  
Note Do not change setting.  
Pn817  
Zero point return approach speed 1 (Position)  
Setting  
range  
0 to 65535 Unit  
× 100 Com- Default  
50  
Restart  
power?  
No  
No  
mand unit/s setting  
• Sets the origin search speed after the deceleration limit switch signal turns ON.  
Pn818  
Zero point return approach speed 2 (Position)  
Setting  
range  
0 to 65535 Unit  
× 100 Com- Default  
mand unit/s setting  
5
Restart  
power?  
• Sets the origin search speed from when the deceleration limit switch signal turns ON until it turns  
OFF.  
Pn819  
Final travel distance to return to zero point (Position)  
Setting  
range  
1073741823 Unit  
to  
1073741823  
Command Default  
unit/s setting  
100  
Restart  
power?  
No  
• Sets the distance from the latch signal input position to the origin, for when origin search is exe-  
cuted. If the final travel distance is in the opposite direction from the origin return direction or if the  
distance is short, operation is reversed after decelerating to a stop.  
Pn81B  
Not used.  
---  
Setting  
range  
Unit  
---  
Default  
setting  
0
Restart  
power?  
No  
4-72  
Operation  
Chapter 4  
Note Do not change setting.  
Pn81C  
Not used.  
---  
Setting  
range  
Unit  
---  
---  
Default  
setting  
0
0
Restart  
power?  
No  
Note Do not change setting.  
Pn81D  
Not used.  
---  
Setting  
range  
Unit  
Default  
setting  
Restart  
power?  
No  
Note Do not change setting.  
Input Signal Monitor Parameter (Pn81E)  
Pn81E  
Not used.  
---  
Setting  
range  
Unit  
---  
---  
Default  
setting  
0000  
Restart  
power?  
No  
No  
Note Do not change setting.  
Pn81F  
Not used.  
---  
Setting  
range  
Unit  
Default  
setting  
0
Restart  
power?  
Note Do not change setting.  
Latch Area Parameters (Pn820, Pn822)  
Pn820  
Not used.  
---  
Setting  
range  
Unit  
Unit  
---  
---  
Default  
setting  
00000000  
00000000  
Restart  
power?  
No  
No  
Pn822  
Not used.  
---  
Setting  
range  
Default  
setting  
Restart  
power?  
Note Do not change setting.  
Option Monitor Parameters (Pn824, Pn825)  
Pn824  
Not used.  
---  
Setting  
range  
Unit  
---  
Default  
setting  
0000  
Restart  
power?  
No  
• If the Servo Driver is used with the CJ1W-MCH71 or CS1W-MCH71, this parameter will be set to  
0032. If parameters are edited with the WMON-ML2 connected, this parameter will set to 0000. If  
this happens, you must reset this parameter to 0032 from the CJ1W-MCH71 or CS1W-MCH71.  
4-73  
Operation  
Chapter 4  
Note Do not change setting.  
Pn825  
Not used.  
---  
Setting  
range  
Unit  
---  
Default  
setting  
0000  
Restart  
power?  
No  
• If the Servo Driver is used with the CJ1W-MCH71 or CS1W-MCH71, this parameter will be set to  
0024. If parameters are edited with the WMON-ML2 connected, this parameter will set to 0000. If  
this happens, you must reset this parameter to 0024 from the CJ1W-MCH71 or CS1W-MCH71.  
Note Do not change setting.  
Other Unused Parameters  
Pn900 to  
Pn910  
Not used.  
Setting  
range  
---  
Unit  
---  
---  
Default  
setting  
---  
---  
Restart  
power?  
No  
No  
Note Do not change setting.  
Pn920 to  
Pn95F  
Not used.  
---  
Setting  
range  
Unit  
Default  
setting  
Restart  
power?  
Note Do not change setting.  
4-74  
Operation  
Chapter 4  
4-4 Operation Functions  
4-4-1 Position Control (Position)  
Functions  
• Position control is performed according to commands from MECHATROLINK-II.  
• The motor is rotated by the command value multiplied by the gear ratio (Pn20E, Pn210).  
Controller  
(MECHATROLINK-II Model)  
OMNUC W-series Servo Driver  
Position Control Mode  
Motion Control Unit  
CS1W-MCH71  
CJ1W-MCH71  
Electronic gears  
(Pn20E, Pn210)  
OMNUC W-series  
Servomotor  
Positioning command  
executed.  
G1/G2  
Position Control Unit  
CJ1W-NCF71  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn20E  
Electronic gear ratio  
G1 (numerator)  
Set the pulse rates for the position command  
value and the Servomotor travel amount.  
4-4-9 Electronic  
Gear Function  
(Position)  
0.001 G1/G2 1000  
Pn210  
Electronic gear ratio  
G2 (denominator)  
Related Functions  
• The main functions related to position control that can be used during position control are as fol-  
lows:  
Function name  
Explanation  
Reference  
Feed-forward function Adds the position command value differential to the speed loop 4-7-2 Feed-for-  
to reduce positioning time.  
ward Function  
(Position)  
Bias function  
Calculates number of bias rotations for the speed loop to reduce 4-7-1 Bias Func-  
positioning time.  
tion (Position)  
Torque limit function  
Limits the Servomotor's torque output.  
4-4-7 Torque Limit  
Function (All Oper-  
ating Modes)  
P control switching  
function  
Switches the speed control loop automatically from PI control to 4-7-7 P Control  
P control to lower Servo rigidity. (Switching conditions can be  
selected.)  
Switching (Posi-  
tion, Speed)  
4-75  
Operation  
Chapter 4  
Applicable Controller Commands  
Controller  
Commands and instructions  
CJ1W-NCF71  
According to absolute and relative move commands.  
CS1W-MCH71  
CJ1W-MCH71  
According to axis move instructions (MOVE, MOVL, MOVEC, etc.).  
Note For details on commands and instructions, refer to the manual for the specific Unit.  
4-4-2 Speed Control (Speed)  
Function  
• Speed control is performed according to commands from MECHATROLINK-II.  
Controller  
OMNUC W-series Servo Driver  
(MECHATROLINK-II Model)  
Motion Control Unit  
CS1W-MCH71  
CJ1W-MCH71  
Speed Control Mode  
OMNUC W-series  
Servomotor  
Speed command  
Position Control Unit  
CJ1W-NCF71  
Related Functions  
• The main functions related to speed control that can be used during speed control are as follows:  
Function name  
Explanation  
Reference  
Soft start function  
Sets the soft start for the speed command.  
4-4-8 Soft Start  
Function (Speed)  
Torque limit function  
This function limits the Servomotor's output torque output.  
4-4-7 Torque Limit  
Function (All Oper-  
ating Modes)  
P control switching  
function  
Switches the speed control loop automatically from PI control to 4-7-7 P Control  
P control to lower Servo rigidity (you can select the switching  
conditions).  
Switching (Posi-  
tion, Speed)  
Applicable Controller Commands  
Controller  
Commands and instructions  
CJ1W-NCF71  
According to speed control instructions.  
CS1W-MCH71  
CJ1W-MCH71  
According to speed control instructions (SPEED, SPEEDR).  
Note For details on commands and instructions, refer to the manual for the specific Unit.  
4-76  
Operation  
Chapter 4  
4-4-3 Torque Control (Torque)  
Function  
Torque control is performed according to commands from MECHATROLINK-II.  
Controller  
OMNUC W-series Servo Driver  
(MECHATROLINK-II Model)  
Motion Control Unit  
CS1W-MCH71  
CJ1W-MCH71  
Torque Control Mode  
OMNUC W-series  
Servomotor  
Torque command  
Position Control Unit  
CJ1W-NCF71  
Related Functions  
• Functions related to torque control that can be used during torque control are as follows:  
Function name  
Explanation  
Reference  
Torque limit function  
This function limits the Servomotor's torque output.  
4-4-7 Torque Limit  
Function (All Oper-  
ating Modes)  
Speed limit function  
This function limits the Servomotor rotation speed from becom- 4-4-10Speed Limit  
ing too high. Function (Torque)  
Note Servomotor rotation speed during torque control changes depending on the Servomotor load  
conditions (friction, external force, inertia). Apply safety measures at the machinery to prevent  
Servomotor runaway.  
Applicable Controller Commands  
Controller  
Commands and instructions  
According to torque control commands.  
According to torque control commands (TORQUE, TORQUER).  
CJ1W-NCF71  
CS1W-MCH71  
CJ1W-MCH71  
Note For details on commands and instructions, refer to the manual for the specific Unit.  
4-77  
Operation  
Chapter 4  
4-4-4 Forward and Reverse Drive Prohibit (All Operating  
Modes)  
Functions  
• When forward drive prohibit (POT: CN1-7) and reverse drive prohibit (NOT: CN1-8) are OFF, stops  
the Servomotor rotating (Pin No. is allocated in the default settings).  
You can stop the Servomotor from rotating beyond the device's movement range by connecting a lit  
input.  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn50A.3  
Pn50B.0  
Input signal selection You must allocate both POT and NOT.  
4-3-2 Important  
Parameters  
1: POT signal selection  
Input signal selection  
Note: As the default setting, they are allocated  
to CN1 pins 7 and 8.  
2: NOT signal selec-  
tion  
Pn001  
Pn406  
Function selection  
application switch 1  
Set the stop method when POT and NOT in  
Pn001.1 (stop selection for drive prohibition  
input) are OFF.  
If Pn001.1 is set to 0 (stop according to  
Pn001.0 setting), be sure to set Pn001.0 (stop  
selection for alarm generation with Servo OFF).  
4-3-2 Important  
Parameters  
Emergency stop  
torque  
If Pn001.1 is set to 1 or 2, set emergency stop 4-3-3 Parameter  
torque in Pn406.  
Details  
Operation  
Stopping Methods when Forward/Reverse Drive Prohibit is OFF  
Deceleration Method  
Stopped Status  
Servo unlocked  
Pn001.0  
"0" or "1"  
Dynamic brake  
Pn001.1  
"0"  
"2"  
POT (NOT) is OFF  
Free run  
Pn001.1  
"2"  
Servo unlocked  
"1" or "2"  
Emergency stop torque (Pn406)  
See note 1.  
"1"  
Servo locked  
Note 1. If the Servomotor stops in this mode during position control, the position loop is disabled.  
Note 2. The position method used during torque control depends on Pn001.0 setting (the P001.1  
setting is unrelated).  
Note 3. With a vertical load, the load may fall due to its own weight if it is left at a drive prohibit input.  
We recommend that you set the stop method for the drive prohibit input (Pn001.1) for decel-  
erating with the emergency stop torque, and then set stopping with the servo locked (SV: 1)  
to prevent the load from falling.  
4-78  
Operation  
Chapter 4  
ON  
OFF  
ON  
POT (forward  
drive prohibited)  
Forward direction  
Position  
Position  
NOT (reverse  
drive prohibited)  
Reverse direction ←  
OFF  
Only forward drive allowed  
Both forward and reverse  
drive allowed  
Only reverse drive allowed  
Note 1. When a command to travel in a prohibited direction within the drive prohibit area is input, the  
Servomotor is stopped using the method set in Pn001.1. If a command to travel in the op-  
posite direction is input, the Servomotor automatically resumes operation.  
Note 2. With position control, the feedback pulses and command pulses continue to be counted  
without the deviation counter's residual pulses being reset. If the drive prohibit input turns  
ON in this state (i.e., drive permitted), the position will be shifted by the amount of the resid-  
ual pulses.  
4-4-5 Encoder Dividing Function (All Operating Modes)  
Functions  
• With this function, any number of pulses can be set for encoder signals output from the Servo  
Driver.  
• The number of pulses per Servomotor revolution can be set within a range of 16 to (number of  
encoder resolution pulses). The upper limit is 1,073,741,824 pulses/rotation.  
• Use this function for the following applications:  
When using a controller with a low response frequency.  
When it is desirable to set a pulse rate that is easily divisible.  
(For example, in a mechanical system in which a single Servomotor revolution corresponds to a  
travel of 10 mm, if the resolution is 5 µm/pulse, set the encoder divider rate to 2,000 (pulses/revolu-  
tion).  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn212  
Encoder divider rate  
Set the number of encoder pulses to be output. 4-3-3 Parameter  
(See notes 1, 2, and 3). Details  
Note 1. The default setting is 1,000 (pulses/rotation), and the setting range is 16 to 1,073,741,824  
(pulses/rotation).  
Note 2. These parameters are enabled when the power is turned ON again after having been turned  
OFF. (Check to see that the LED display has gone OFF.)  
Note 3. If a value greater than the encoder resolution is set, operation will proceed according to the  
formula: (divider rate setting) = (encoder resolution)  
4-79  
Operation  
Chapter 4  
• For Servomotors with encoders of 17-bit resolution (32,768 encoder pulses/rotation) or greater, set  
the value at the increments shown below when the encoder divider rate (Pn212) is set.  
Conforming  
encoder  
resolution  
Encoder divider rate  
Pn212 (Pulses/revolution)  
Pn212 setting conditions  
Servomotor rotation  
speed upper limit (r/min)  
at the set encoder divider  
rate  
17 bits min.  
16 to 16384  
1-pulse increments  
2-pulses increments  
4-pulse increments  
8-pulse increments  
16-pulse increments  
6000  
5
16386 to 32768  
32772 to 65536  
65544 to 131072  
131088 to 262144  
984 × 10 /Pn212  
18 bits min.  
19 bits min.  
20 bits  
Note If the above setting range or setting conditions are not satisfied, a dividing pulse output setting  
error alarm (A.041) will be output. Also, if the Servomotor rotation speed upper limit for the set  
encoder divider rate is exceeded, a dividing pulse output overspeed alarm (A.511) will be out-  
put.  
Setting Example  
• Encoder with 17-bit resolution:  
Pn212 can be set to 25,000 pulses/rotation, but Pn212 cannot be set to 25,001 pulses/rotation or  
A.041 will be output.  
Output Example  
• When Pn212 is set to 16 (16 pulse outputs per rotation)  
Set value: 16  
PAO  
PBO  
1 rotation  
Operation  
• Incremental pulses are output from the Servo Driver through a frequency divider.  
Encoder  
E
Driver  
Phase A  
Phase B  
Phase Z  
Frequency  
divider  
S
Processing  
circuitry  
• The output phases of the encoder signal output from the Servo Driver are as shown below (when  
divider ratio Pn212 = encoder resolution).  
Forward rotation side  
Reverse rotation side  
Phase A  
Phase B  
Phase Z  
Phase A  
Phase B  
Phase Z  
4-80  
Operation  
Chapter 4  
• When the encoder divider rate is set to other than 2n (16,384, 8,192, 4,096, 2,048, 1,024, etc.), the  
phase difference for phases A and B is not 90°, but scatters for time T. (See the diagram below.)  
Phase A  
t1 = nT, t2 = (n + 1)T  
Phase B  
t1  
t2  
t1  
t1  
t1  
t1  
t2  
In this diagram, T represents the processing circuit output between phase A and phase B, and n is  
an integer that satisfies the following formula (with digits below the decimal point discarded).  
n = resolution/encoder divider rate  
Phase A  
Input to frequency divider  
(processing circuit output)  
Phase B  
T
4-4-6 Brake Interlock (All Operating Modes)  
Precautions for Using Electromagnetic Brake  
• The electromagnetic brake Servomotor with a brake is a non-excitation brake especially for holding.  
First stop the Servomotor, then turn OFF the power supply to the brake before setting the parame-  
ters. If the brake is applied while the Servomotor is operating, the brake disk may become damaged  
or malfunction due to friction, causing damage to the Servomotor.  
Function  
You can set the BKIR (brake interlock) signal output timing to turn ON and OFF the electromagnetic  
brake.  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn50F.2  
Output signal selec-  
tions 2: BKIR signal  
selection  
Be sure to allocate BKIR. (See note.)  
4-4-3 Torque Con-  
trol (Torque)  
Pn506  
Pn507  
Pn508  
Brake timing 1  
This parameter sets the BKIR output timing.  
Pn506: Sets lag time from BKIR OFF to Servo Reverse Drive Pro-  
OFF.  
4-4-4 Forward and  
Brake command speed  
Brake timing 2  
hibit (All Operat-  
Pn507: Sets the rotation speed for turning BKIR ing Modes)  
OFF.  
Pn508: Sets the standby time from Servo OFF  
to BKIR OFF.  
Note As the default setting, BKIR is allocated to CN1 pins 1 and 2.  
4-81  
Operation  
Chapter 4  
Operation  
RUN Timing (When Servomotor Is Stopped)  
ON  
RUN  
OFF  
0 to 35 ms  
Approx. 2 ms  
ON  
BKIR (brake interlock)  
OFF  
ON  
Brake power supply  
OFF  
200 ms max.  
100 ms max.  
ON  
Brake operation  
OFF  
+V  
Speed command  
or pulse command  
See note 1.  
V  
Pn506 (See note 2.)  
Servomotor  
energizing  
Energized  
Deenergized  
Note 1. The time from turning ON the brake power supply to the brake being released is 200 ms  
max. Set the speed command (pulse command) to be given after the brake has been re-  
leased, taking this delay into account.  
Note 2. The time from turning OFF the brake power supply to the brake engaging is 100 ms max. If  
using the Servomotor on a vertical axis, set Pn506 (brake timing 1) so that the Servomotor  
deenergizes after the brake has engaged, taking this delay into account.  
Power Supply Timing (when Servomotor Is Stopped)  
ON  
Main circuit power supply  
OFF  
25 to 35 ms  
ON  
BKIR (brake interlock)  
OFF  
Pn506 (See note.)  
Servomotor  
energized  
Energized  
Deenergized  
Note The time from turning OFF the brake power supply to the brake engaging is 100 ms max. If  
using the Servomotor on a vertical axis, set Pn506 (brake timing 1) so that the Servomotor  
deenergizes after the brake has engaged, in consideration of this delay.  
4-82  
Operation  
Chapter 4  
RUN, Error, and Power Supply Timing (When Servomotor Is Stopped)  
ON  
Main circuit power supply  
OFF  
ON  
RUN  
OFF  
ON  
ALM (alarm output)  
OFF  
(See note 2.)  
ON  
BKIR (brake interlock)  
OFF  
Energized  
Servomotor  
energized  
Deenergized  
Approx. 10 ms  
(See note 1.)  
Braking using dynamic brake  
(when Pn001.0 = 0)  
Servomotor rotation speed  
PN507 (brake command speed)  
Note 1. During the approximately 10 ms from the Servomotor deenergizing to dynamic brake being  
applied, the Servomotor will continue to rotate due to its momentum.  
Note 2. If the Servomotor rotation speed falls below the speed set in Pn507 (brake command speed)  
or the time set in Pn508 (brake timing 2) after the Servomotor deenergizes is exceeded, the  
BKIR (brake interlock) signal is turned OFF.  
4-4-7 Torque Limit Function (All Operating Modes)  
Functions  
• The torque limit function limits the Servomotor's output torque.  
• This function can be used to protect the Servomotor and mechanical system by preventing exces-  
sive force or torque on the mechanical system when the machine (moving part) pushes against the  
workpiece with a steady force, such as in a bending machine.  
4-83  
Operation  
Chapter 4  
• There are four methods that can be used to limit the torque (pin No. is allocated at the factory):  
Function  
CJ1W-NCF71  
CS1W-MCH71  
CJ1W-MCH71  
Limiting steady torque during opera-  
Limit the steady force applied during normal operation with user  
tion with user parameters (all operation parameters Pn402 (forward torque limit) and Pn403 (reverse torque  
modes) limit).  
Limiting torque when an external signal Limit the torque with user parameters Pn404 (For- ---  
turns ON with user parameters (all  
operation modes)  
ward rotation external current limit) and Pn405  
(Reverse rotation external current limit), by turning  
ON the axis operation output bit area's forward and  
reverse rotation current limit designation and start-  
ing axis operation.  
Limiting torque with option command  
values (speed)  
Use option command values as torque limit values. ---  
Limiting torque when an external signal Limit torque using option command values as  
turns ON with option command values torque limit values by turning ON the axis operation  
---  
(speed)  
output bit area's forward and reverse rotation cur-  
rent limit designation and starting axis operation.  
Note For details on commands and instructions, refer to the manual for the specific Unit.  
• When torque limit is ON, CLIMT (current limit detection) signal is output (if the signal has been allo-  
cated using parameter Pn50F.0).  
• If multiple torque limits are enabled, the output torque is limited to the minimum limit value.  
Parameters Requiring Settings  
Limiting Steady Torque During Operation with User Parameters (All Operating  
Modes)  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn402  
Forward torque limit  
Set the output torque limit for the forward direc- 4-3-3 Parameter  
tion as a percentage of the rated torque (setting Details  
range: 0% to 800%).  
Pn403  
Reverse torque limit  
Set the output torque limit for the reverse direc- 4-3-3 Parameter  
tion as a percentage of the rated torque (setting Details  
range: 0% to 800%).  
Note 1. Set these parameters to 350 (the default setting) when the torque limit function is not being  
used.  
Note 2. If the connected Servomotor is set to a value greater than the maximum momentary torque,  
the maximum momentary torque will become the set limit.  
4-84  
Operation  
Chapter 4  
Limiting Operation with External Signals (All Operating Modes) (CJ1W-NCF71 Only)  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn404  
Forward rotation exter- Set the output torque limit when the forward  
nal current limit  
4-3-3 Parameter  
rotation current limit designation is ON as a per- Details  
centage of the Servomotor rated torque (setting  
range: 0% to 800%).  
Pn405  
Reverse rotation exter- Set the output torque limit when the reverse  
nal current limit rotation current limit designation is ON as a per- Details  
4-3-3 Parameter  
centage of the Servomotor rated torque (setting  
range: 0% to 800%).  
Note If the connected Servomotor is set to a value greater than the maximum momentary torque,  
the maximum momentary torque will become the set limit.  
Limiting Torque with Option Command Values (Speed) (CJ1W-NCF71 Only)  
• When 1 is set for Pn002.0 (Torque command input change), torque limit values can be specified  
with option command values.  
Unit: %; command range: 0 to 399% (% of Servomotor momentary maximum torque)  
• Limiting torque by option command values operates by taking option command value 1 as the for-  
ward torque limit and option command value 2 as the reverse torque limit.  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn002.0  
Torque command input Set Pn002.0 to 1 (option command value used 4-3-3 Parameter  
switching as torque limit command). Details  
Limiting Torque with Option Command Values by Turning ON External Signals  
(Speed) (CJ1W-NCF71 Only)  
• If 3 is set for Pn002.0 (Torque command input switching), torque limit values can be specified with  
option command values when the forward or reverse rotation current limit designation is turned ON.  
Unit: %; command range: 0 to 399% (% of Servomotor momentary maximum torque)  
• When the forward rotation current limit designation turns ON, option command value 1 is taken as  
the forward torque limit and the torque limit functions for forward rotation.  
• When the reverse rotation current limit designation turns ON, option command value 2 is taken as  
the reverse torque limit and the torque limit functions for reverse rotation.  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn002.0  
Torque command input Set Pn002.0 to 3 (Option command value used 4-3-3 Parameter  
switching  
as torque limit value, according to the forward/ Details  
reverse rotation current limit designation).  
4-85  
Operation  
Chapter 4  
4-4-8 Soft Start Function (Speed)  
Functions  
• This function accelerates and decelerates the Servomotor in the set acceleration and deceleration  
times.  
You can set the acceleration and deceleration independently of each other using the trapezoidal  
acceleration and deceleration curve.  
• The soft start processes speed command value switching to reduce shock during acceleration and  
deceleration.  
• This function is effective for simple positioning and speed switching operations.  
Note Do not use this function for a position controller with an acceleration/deceleration function.  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn305  
Soft start acceleration Set the acceleration time from 0 (r/min.) to the 4-4-4 Forward and  
time  
maximum rotation speed (setting range: 0 to  
10,000 (ms)).  
Reverse Drive Pro-  
hibit (All Operat-  
ing Modes)  
Pn306  
Soft start deceleration Set the deceleration time from maximum rota- 4-4-4 Forward and  
time  
tion speed to 0 (r/min.) Setting range: 0 to  
10,000 (ms).  
Reverse Drive Pro-  
hibit (All Operat-  
ing Modes)  
Note 1. If not using the soft start function, set this parameter to 0 (default setting).  
Note 2. The actual acceleration and deceleration time is as follows:  
speed command (r/min.)  
Actual acceleration (deceleration time) =  
× soft start acceleration (deceleration) time  
maximum No. rotations (r/min.)  
Servomotor speed  
+r/min  
Max. No. rotations  
(See note.)  
Speed command  
0
Time  
Actual acceleration time  
Actual deceleration time  
Pn305  
Pn306  
Note The maximum rotation speeds are as follows:  
• 3,000-r/min. Servomotor: 5,000 r/min.  
• 3,000-r/min. Flat-style Servomotor: 5,000 r/min.  
• 1,000-r/min. Servomotor: 2,000 r/min.  
• 1,500-r/min. Servomotor (450 W to 1.8 kW): 3,000 r/min.  
4-86  
Operation  
Chapter 4  
4-4-9 Electronic Gear Function (Position)  
Functions  
• This function rotates the Servomotor for the number of pulses obtained by multiplying the command  
pulses by the electronic gear ratio.  
• This function is enabled under the following conditions.  
When fine-tuning the position and speed of two lines that are to be synchronous.  
When using a position controller with a low command pulse frequency.  
When you want to set the travel distance for machinery per pulse to 0.01 mm, for example.  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn20E  
Electronic gear ratio  
G1 (numerator)  
Set the pulse rate for the command pulse and 4-3-3 Parameter  
Servomotor travel distance. When G1/G2 = 1, if Details  
the pulse (encoder resolution × 4) is input, the  
Servomotor will rotate once (i.e., the internal  
Pn210  
Electronic gear ratio  
G2 (denominator)  
driver will rotate × 4). (See note 1.)  
Note 1. Set within the range 0.001 G1/G2 1000.  
Note 2. These parameters become effective when the power is turned ON again after having been  
turned OFF. (Check to see that the LED display has gone OFF.)  
Note 3. With the default setting (G1/G2 = 4), the Servomotor will rotate once when the encoder res-  
olution pulses are input.  
Note 4. One position deviation (deviation counter) display and positioning completed range pulse  
make one input pulse. (This is called a command unit.)  
Operation  
Servomotor with 2,048 (Pulses/Rotation) Encoder  
• When set to G1/G2 = 8192/1000, the operation is the same as for a 1,000-pulses/rotation Servo-  
motor.  
Servomotor  
(Encoder resolution:  
Servo Driver  
2,048 pulses/rotation)  
Electronic  
gear  
G1  
8,192 pulses  
Position command  
1000  
G2  
8192  
1000  
=
1 rotation (8,192 pulses)  
4-87  
Operation  
Chapter 4  
4-4-10 Speed Limit Function (Torque)  
Functions  
• This function limits Servomotor rotation speed when torque control is used.  
• Set a limit so that the Servomotor rotation speed does not exceed the maximum speed of the  
mechanical system.  
• Outside of the speed limit range, a torque in proportion to the difference from the speed limit value  
is generated to slow down the Servomotor rotation speed. In such cases the number of Servomotor  
rotations does not necessarily match the speed limit value. (The number of Servomotor rotations  
varies depending on the load.)  
• The two ways to limit the speed are given in the following table. The Controllers that support each  
method are also shown.  
Function  
CJ1W-NCF71  
CS1W-MCH71  
CJ1W-MCH71  
Limiting using a constant fixed speed  
limit (parameter setting) for torque con-  
trol  
Use Pn407 (speed limit).  
Limiting the speed by means of an  
option command value  
Use option command value 1 as the speed control ---  
value.  
Note For details on commands and instructions, refer to the manual for the specific Unit.  
• When the speed limit is in operation, VLIMT (speed limit detection) is output (when the signal has  
been allocated in Pn50F.1).  
• When there are multiple speed limit functions in effect, Servomotor rotation speed is limited by the  
smallest value.  
Parameters Requiring Settings  
Limiting Using a Constant Fixed Speed Limit (Parameter Setting) for Torque Control  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn407  
Speed limit  
Set the speed limit for torque control.  
Setting range: 0 to 10,000 (r/min).  
4-3-3 Parameter  
Details  
Limiting Speeds with Option Command Values (CJ1W-NCF71 Only)  
• When 1 is set for Pn002.1 (Speed command input change), speed limit values can be specified with  
option command value 1.  
Unit: 0.001%; command range: 0 to 100.000% (% of maximum number of Servomotor rotations)  
• Speed limits based on option command values are the same for forward and reverse rotation.  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn002.1  
Speed command input Set Pn002.1 to 1 (option command value used 4-3-3 Parameter  
change as speed limit command). Details  
4-88  
Operation  
Chapter 4  
4-4-11 Acceleration/Deceleration Function (Position)  
Functions  
• This function sets the speed during acceleration and deceleration to two levels.  
• The setting is made by a host device from MECHATROLINK-II.  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn80A  
First-step linear accel- Sets the step 1 acceleration for when two-step 4-3-3 Parameter  
eration parameter  
acceleration is used.  
Details  
Pn80B  
Pn80C  
Second-step linear  
Sets the step 2 acceleration for when two-step 4-3-3 Parameter  
acceleration parameter acceleration is executed. When using one-step Details  
acceleration, set this parameter as a one-step  
acceleration parameter.  
Acceleration parame- Sets the switching speed for the step 1 and step 4-3-3 Parameter  
ter switching speed  
2 acceleration when two-step acceleration is  
executed. When using one-step acceleration,  
set 0 for this parameter.  
Details  
Pn80D  
Pn80E  
First-step linear decel- Sets the step 1 deceleration for when two-step 4-3-3 Parameter  
eration parameter  
deceleration is used.  
Details  
Second-step linear  
Sets the step 2 deceleration for when two-step 4-3-3 Parameter  
deceleration parame- deceleration is executed. When using one-step Details  
ter  
deceleration, set this parameter as a one-step  
deceleration parameter.  
Pn80F  
Deceleration parame- Sets the switching speed for the step 1 and step 4-3-3 Parameter  
ter switching speed  
2 deceleration when two-step deceleration is  
executed. When using one-step deceleration,  
set 0 for this parameter.  
Details  
Pn810  
Pn811  
Exponential accelera- Sets the bias for when an exponential filter is  
tion/deceleration bias used for the position command filter.  
4-3-3 Parameter  
Details  
Exponential accelera- Sets the time constant for when an exponential 4-3-3 Parameter  
tion/deceleration time filter is used for the position command filter.  
constant  
Details  
Pn812  
Moving average time  
Sets the moving average time for when and an 4-3-3 Parameter  
average movement filter is used for the position Details  
command filter. Set when using S-curve accel-  
eration/deceleration.  
Note When trapezoidal acceleration/deceleration (not using two-step acceleration/deceleration) is  
executed, set Pn80C and Pn80F to 0, set the acceleration speed in Pn80B, and set the decel-  
eration speed in Pn80E.  
4-89  
Operation  
Operation  
Speed  
Chapter 4  
Pn80B  
Pn80C  
Pn80E  
Pn80F  
Pn80A  
Pn80D  
Time  
4-4-12 Sequence Input Signals (All Operating Modes)  
Functions  
• These are sequence input signals for controlling Servo Driver operation. They must be connected  
as required.  
• Used for purposes such as latching the feedback position.  
Parameters Requiring Settings  
• Input Signals  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn511.1  
Pn511.2  
Pn511.3  
Input signal selections External latch signals 1, 2, and 3  
4-3-2 Important  
Parameters  
5 -- EXT1 signal allo-  
cation  
Note: As the default setting, the signals are  
allocated to CN1 pins 10, 11, and 12.  
Input signal selections  
5 -- EXT2 signal allo-  
cation  
Input signal selections  
5 -- EXT3 signal allo-  
cation  
Connection  
• Connect sequence input signals as shown in the following diagram.  
4-90  
Operation  
Chapter 4  
Servo Driver  
+24-V voltage  
+24 V  
CN1  
6
3.3 kΩ  
+24VIN  
Photocoupler  
Host device  
13  
9
DEC  
POT  
7
NOT  
8
EXT1  
EXT2  
EXT3  
10  
11  
12  
0 V  
4-4-13 Program JOG Operation  
This is an auxiliary function that enables continuous automatic operation, determined by preset oper-  
ating patterns, movement distances, movement speeds, acceleration/deceleration times, and num-  
bers of repeat operations, to be executed using a Digital Operator. Just like the JOG operation mode,  
this function can operate a Servomotor for trial operation without being connected to a host device.  
Also, continually repeated operations according to position control are enabled, making it possible to  
check command units and the electronic gear, and to execute simple positioning operations.  
4-91  
Operation  
Chapter 4  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn530.0  
Program JOG opera-  
tion related switches --  
Program JOG operat-  
ing pattern  
Set the program JOG operating pattern.  
4-3-3 Parameter  
Details  
Pn531  
Program JOG move-  
ment distance  
Set the program JOG movement distance.  
Setting range: 1 to 1,073,741,824 (command  
units)  
4-3-3 Parameter  
Details  
Pn533  
Pn534  
Program JOG move-  
ment speed  
Sets the program JOG movement speed.  
Setting range: 1 to 10,000 (r/min)  
4-3-3 Parameter  
Details  
Program JOG acceler- Set the acceleration/deceleration time for pro- 4-3-3 Parameter  
ation/deceleration time gram JOG operation. Details  
Setting range: 2 to 10,000 (ms)  
Program JOG waiting Set the program JOG waiting time (the time that 4-3-3 Parameter  
Pn535  
Pn536  
time  
the Servomotor is to be stopped).  
Setting range: 0 to 10,000 (ms)  
Details  
Number of program  
JOG movements  
Sets the number of repetitions of the operating 4-3-3 Parameter  
pattern set in Pnn530.0, under the conditions  
set in Pn531 to Pn535.  
Details  
Setting range: 1 to 1,000 (times)  
Precautions  
The following restrictions apply during operation.  
• When setting this function, set the operating range for the machinery and the safe operating speed  
in user constants such as the program JOG movement distance and the program JOG movement  
speed.  
• This function is executed with the Servo Driver in Servo ready status. It cannot be executed while  
the Servo is ON.  
• If the Servo ON command is ON, turn it OFF.  
• If user parameter Pn50A.1 is set to 7 and Servo-ON is selected to be always enabled, clear the  
always enabled setting for the Servo-ON signal.  
• The mode during program JOG operation is the position control mode, but pulse command inputs  
to the Servo Driver are prohibited and not received.  
• The overtravel function is disabled in JOG mode, but it is enabled for program JOG operation.  
• The SEN signal is always enabled when an absolute encoder is used.  
• Functions such as position command filters, that can be used for position control, can be used.  
• This function cannot be executed when Pn200.2 is set to 1 (Deviation counter not reset when Servo  
is OFF).  
4-92  
Operation  
Chapter 4  
Program Operating Patterns  
Pn530.0: 0 (Waiting time Pn535 Forward movement Pn531) × Number of movement operations  
Pn536  
Speed line dia-  
Number of travel operations Pn536  
gram  
Pn531  
Travel  
distance  
Pn531  
Travel  
distance  
Pn531  
Travel  
distance  
Travel speed  
Pn533  
Speed 0  
Up Key ON  
Acceleration/  
deceleration  
time Pn534  
Waiting time  
Pn535  
Waiting time  
Waiting time  
Pn535  
Pn535  
Servomotor oper-  
ating status  
(Stopped) (Forward  
operation)  
(Stopped) (Forward (Stopped) (Forward  
operation) operation)  
Pn530.0: 1 (Waiting time Pn535 Reverse movement Pn531) × Number of movement operations  
Pn536  
Speed line dia-  
Number of travel operations Pn536  
gram  
Speed 0  
Pn531  
Travel  
distance  
Pn531  
Travel  
distance  
Pn531  
Travel  
distance  
Travel speed  
Pn533  
Down Key ON  
Acceleration/  
deceleration  
time Pn534  
Waiting time  
Waiting time  
Waiting time  
Pn535  
Pn535  
Pn535  
Servomotor oper-  
ating status  
(Stopped) (Reverse  
operation)  
(Stopped) (Reverse (Stopped) (Reverse  
operation) operation)  
4-93  
Operation  
Chapter 4  
Pn530.0: 2 (Waiting time Pn535 Forward movement Pn531) × Number of movement operations  
Pn536  
(Waiting time Pn535 Reverse movement Pn531) × Number of movement operations  
Pn536  
Speed line dia-  
gram  
Number of travel operations Pn536  
Number of travel operations Pn536  
Acceleration/  
deceleration  
time Pn534  
Pn531  
Travel  
distance  
Pn531  
Travel  
distance  
Waiting time  
Pn535  
Waiting time  
Pn535  
Travel speed  
Pn533  
Speed 0  
Travel speed  
Pn533  
Up Key ON  
Pn531  
Travel  
distance  
Pn531  
Travel  
distance  
Acceleration/  
deceleration  
time Pn534  
Waiting time  
Waiting time  
Pn535  
Pn535  
Servomotor oper-  
ating status  
(Stopped) (Forward  
operation)  
(Stopped) (Forward  
operation)  
(Stopped) (Reverse (Stopped) (Reverse  
operation) operation)  
Pn530.0: 3 (Waiting time Pn535 Reverse movement Pn531) × Number of movement operations  
Pn536  
(Waiting time Pn535 Forward movement Pn531) × Number of movement operations  
Pn536  
Speed line dia-  
gram  
Number of travel operations Pn536  
Number of travel operations Pn536  
Acceleration/  
deceleration  
Waiting time  
Pn535  
time Pn534  
Waiting time  
Pn535  
Down Key ON  
Waiting time  
Pn535  
Pn531  
Travel  
distance  
Pn531  
Travel  
distance  
Travel speed  
Pn533  
Speed 0  
Pn531  
Travel  
distance  
Pn531  
Travel  
distance  
Waiting time  
Pn535  
Travel  
speed  
Pn533  
Acceleration/  
deceleration  
time Pn534  
Servomotor oper-  
ating status  
(Stopped) (Reverse (Stopped) (Reverse (Stopped) (Forward  
operation) operation) operation)  
(Stopped) (Forward  
operation)  
4-94  
Operation  
Chapter 4  
Pn530.0: 4 (Waiting time Pn535 Forward movement Pn531 Waiting time Pn535 Forward  
movement Pn531) × Number of movement operations Pn536  
Speed line dia-  
gram  
Number of travel operations Pn536  
Pn531  
Travel  
distance  
Travel speed  
Pn533  
Speed 0  
Travel speed  
Pn533  
Up Key ON  
Waiting time  
Pn535  
Pn531  
Travel  
distance  
Waiting time  
Pn535  
Acceleration/  
deceleration  
time Pn534  
Servomotor oper-  
ating status  
(Stopped) (Forward (Stopped) (Reverse  
operation) operation)  
(Stopped)  
Pn530.0:5 (Waiting time Pn535 Reverse movement Pn531 Waiting time Pn535 Reverse  
movement Pn531) × Number of movement operations Pn536  
Speed line dia-  
gram  
Number of travel operations Pn536  
Acceleration/decel-  
eration time Pn534  
Pn531  
Travel  
distance  
Waiting time  
Pn535  
Waiting time  
Pn535  
Down Key ON  
Speed 0  
Travel speed  
Pn533  
Pn531  
Travel  
distance  
Servomotor oper-  
ating status  
(Stopped) (Reverse (Stopped) (Forward  
operation) operation)  
(Stopped)  
4-95  
Operation  
Chapter 4  
4-5 Trial Operation Procedure  
When you have finished installation, wiring, verifying Servomotor and Servo Driver  
operations (i.e., jog operation), and setting the user parameters, perform a trial  
operation. The main purpose of a trial operation is to confirm that the Servo System is  
operating correctly electrically. Make sure that the host controller and all the  
programming devices are connected, then turn ON the power. First perform a trial  
operation at low speed to confirm that the system is operating correctly. Next, perform  
a normal run pattern to confirm that the system is operating correctly.  
Note 1. If an error occurs during the trial operation, refer to Troubleshooting to eliminate the cause.  
Then check for safety and reset the alarm, and then retry the trial operation.  
Note 2. If the system vibrates due to insufficient gain adjustment, making it difficult to check the op-  
eration, refer to 4-6 Making Adjustments, and adjust the gain.  
Preparation for Trial Operation  
Turn OFF the Power  
Some parameters are enabled by turning OFF the Unit, then turning it ON again. Consequently, first  
turn OFF the power to the control circuits and main circuits.  
Mechanical System Connection  
Firmly connect the Servomotor shaft and the load (i.e., the mechanical system). Tighten screws to  
make sure they are not loose.  
Absolute Encoder Setup ABS  
If using Servomotor with an absolute encoder, refer to 4-2-2 Absolute Encoder Setup and Battery  
Changes for the setup procedure. After performing a jog operation, the amount of multi-turn rotation  
may be too large, so when connecting the absolute encoder to the mechanical system, be sure to set  
the rotation speed to zero.  
Turning OFF the Servomotor  
Set up the system so that the power and the RUN command can be turned OFF to enable turning  
OFF Servomotor immediately if an error occurs in the machinery.  
Trial Operation  
1.Turn ON the Power Supply.  
Turn ON the power supply to the control circuits and main circuits, and then turn ON the RUN  
command.  
• Check that the Servomotor is ON.  
4-96  
Operation  
Chapter 4  
2.Low-speed Operation  
• Send a low speed command from the host controller to rotate the Servomotor. (The definition  
of low speed varies depending on the mechanical system, but a rough estimate is 1/10 to 1/5  
normal operating speed.)  
• Check the following items.  
Is the emergency stop operating correctly?  
Are the limit switches operating correctly?  
Is the operating direction of the machinery correct?  
Are the operating sequences correct?  
Are there any abnormal sounds or vibration?  
Is any error (or alarm) generated?  
Note 1. If anything abnormal occurs, refer to Chapter 5 Troubleshooting and apply the appropriate  
countermeasures.  
Note 2. If the system vibrates due to insufficient gain adjustment, making it difficult to check the op-  
eration, refer to 4-6 Making Adjustments, and adjust the gain.  
3.Operation Under Actual Load Conditions  
• Operate the Servomotor in a regular pattern and check the following items.  
Is the operating speed correct? (Use the speed feedback monitor.)  
Is the load torque roughly equivalent to the measured value? (Use the torque command monitor and  
the accumulated load monitor.)  
Are the positioning points correct?  
When an operation is repeated, is there any discrepancy in positioning?  
Are there any abnormal sounds or vibration?  
Is either the Servomotor or the Servo Driver abnormally overheating?  
Is any error (or alarm) generated?  
Note 1. Refer to 4-9 Using Monitor Output for how to display the speed feedback monitor, torque  
command monitor, and the cumulative load rate monitor.  
Note 2. If anything abnormal occurs, refer to Chapter 5 Troubleshooting and apply the appropriate  
countermeasures.  
Note 3. If the system vibrates due to insufficient gain adjustment impeding, making it difficult to  
check the operation, refer to 4-6 Making Adjustments, and adjust the gain.  
4.Completing the Trial Operation  
• Performing the above completes the trial operation. Next, adjust the gain to improve command  
efficiency. (Refer to 4-6 Making Adjustments for details.)  
4-97  
Operation  
Chapter 4  
4-6 Making Adjustments  
The OMNUC R88D-WN@@@-ML2 Series is equipped with a responsive auto-tuning  
function. When auto-tuning cannot be used, make adjustments manually.  
4-6-1 Adjustment Methods  
The Servo gain can be adjusted either using auto-tuning for simple adjustment or using manual  
adjustment. auto-tuning is performed using the Computer Monitor Software. The features of the vari-  
ous means of adjustment are listed in the following table. Select the method that is most suitable for  
the purpose.  
Note Refer to 6-3 Restrictions.  
Adjustment method  
Advanced auto-tuning An automatic operation pattern is used to Use this method to automatically calcu-  
with inertia automatically calculated the inertia ratio late the Servo gain. A stroke must be pro-  
Description  
Guidelines for selection  
and set the Servo gain and notch filter.  
vided for the automatic operation pattern.  
Gain adjustment is possible only using  
the automatic operation pattern.  
Advanced auto-tuning An automatic operation pattern is used to Use this method when manually setting  
without inertia automatically set the Servo gain and the Servo gain in Pn103. A stroke must  
notch filter. The inertia ratio is not calcu- be provided for the automatic operation  
lated.  
pattern. Gain adjustment is possible only  
using the automatic operation pattern.  
One-parameter auto- One parameter is set to adjust and bal-  
Use this method when manually setting  
the Servo gain in Pn103. Machine  
response can be monitored while chang-  
ing just one parameter to reduce the trou-  
ble of manual tuning. The results are  
judged by the user.  
tuning  
ance the following four parameters.  
These are adjusted during operation from  
the host.  
• Position loop gain  
• Speed loop gain  
• Speed loop integration constant  
Torque command filter time constant  
Manual tuning  
The Servo gain parameters are adjusted Use this method when suitable adjust-  
at the discretion of the user.  
ments cannot be achieved using autotun-  
ing.  
4-6-2 Advanced Auto-tuning  
What is Advanced Auto-tuning?  
• Advanced auto-tuning is a control function that estimates the operating inertia, increases the Servo  
gain, and automatically seeks a no-vibration range that matches the characteristics of the machin-  
ery.  
• Advanced auto-tuning is executed from the Computer Monitor Software.  
4-98  
Operation  
Chapter 4  
Note Advanced auto-tuning cannot be used in the following cases.  
• When the load inertia fluctuates at 200 ms or less.  
• When the load rigidity is low and mechanisms (such as belt drive inputs) tends to vibrate, or  
viscosity friction is high.  
• When the range of movement is narrow, e.g., only several rotations.  
• When movement is possible only in a fixed direction.  
• When P (proportional) control is used.  
Use the following method to make adjustments if any of the above conditions apply, or if operation is  
not satisfactory when normal auto-tuning is executed.  
• Set Pn103 (Inertia ratio), and then execute one-parameter tuning or manual adjustment.  
User Parameters Related to Advanced Auto-tuning  
• The following user parameters are set automatically by advanced auto-tuning.  
Pn100 Speed loop gain  
Pn101 Speed loop integration constant  
Pn102 Position loop gain  
Pn103 Inertia ratio  
Pn401 1st step 1st torque command filter time constant  
• The following parameters are also set automatically as required.  
Pn408.0 Torque command setting -- Notch filter selection 1  
Pn409 Notch filter 1 frequency  
Pn408.2 Torque command setting -- Notch filter selection 2  
Pn40C Notch filter 2 frequency  
• If the electronic gear ratio is not set within the following range, an A042 error (parameter combina-  
tion error) will occur. Always set the electronic gear ratio within the following range.  
Electronic gear ratio (Pn20E/Pn210) 218  
4-6-3 One-parameter Tuning  
What is One-parameter Tuning?  
• One-parameter tuning is a function that smoothly changes the status of four gain parameters  
(Pn100, Pn101, Pn102, Pn401) during operation by changing just one tuning level.  
• One-parameter tuning is used to adjust the Servo gain at the user's discretion, while checking  
Servo and machinery responses.  
Parameters Related to One-parameter Tuning  
• The following user parameters are set automatically by one-parameter tuning.  
Pn100 Speed loop gain  
Pn101 Speed loop integration constant  
Pn102 Position loop gain  
Pn401 1st step 1st torque command filter time constant  
4-99  
Operation  
Chapter 4  
4-6-4 Manual Tuning  
Rigidity Settings During Tuning  
• If the gain is adjusted as an initial setting using manual tuning, tuning can be performed compara-  
tively quickly. Therefore it is recommended that the rigidity be set first.  
• Select the rigidity setting to suit the mechanical system from the following 10 levels.  
• The speed loop handles both PI and I-P control.  
Switching between PI and I-P control is performed by means of the Pn10B.1 setting. Setting  
Pn10B.1 to 0 switches to PI control, and setting it to 1 switches to I-P control. The new setting is  
enabled by turning the power OFF and back ON after the setting has been made.  
1.Speed Loop PI Control  
Response  
Rigidity  
setting  
Position Speed loop Speed loop 1st step 1st  
Representative  
applications (mechanical  
system)  
loop gain  
gain  
(Hz)  
Pn100  
integration  
constant  
(ms)  
torque  
command  
filter time  
constant  
(ms)  
1  
(s )  
Pn102  
Pn101  
Pn401  
Low  
01  
15.0  
15.0  
60.00  
45.00  
30.00  
2.50  
2.00  
1.30  
Articulated robots, har-  
monic drives, chain drives,  
belt drives, rack and pinion  
drives, etc.  
02  
03  
20.0  
30.0  
20.0  
30.0  
Medium  
High  
04  
40.0  
40.0  
20.00  
1.00  
XY tables, Cartesian-coor-  
dinate robots, general-pur-  
pose machinery, etc.  
05  
06  
07  
08  
09  
10  
60.0  
60.0  
15.00  
10.00  
8.00  
7.00  
6.00  
5.00  
0.70  
0.50  
0.40  
0.35  
0.30  
0.25  
Ball screws (direct cou-  
pling), feeders, etc.  
80.0  
80.0  
100.0  
120.0  
140.0  
160.0  
100.0  
120.0  
140.0  
160.0  
Note Make sure that the location of the decimal point is correct when setting the parameters.  
2.Speed Loop I-P Control  
Response  
Rigidity  
setting  
Position Speed loop Speed loop 1st step 1st  
Representative  
applications (mechanical  
system)  
loop gain  
gain  
(Hz)  
integration  
constant  
(ms)  
torque  
command  
filter time  
constant  
(ms)  
1  
(s )  
Pn102  
Pn100  
Pn101  
Pn401  
Low  
01  
15.0  
15.0  
18.00  
14.00  
9.00  
2.50  
2.00  
1.30  
Articulated robots, har-  
monic drives, chain drives,  
belt drives, rack and pinion  
drives, etc.  
02  
03  
20.0  
30.0  
20.0  
30.0  
Medium  
04  
40.0  
40.0  
7.00  
1.00  
XY tables, Cartesian-coor-  
dinate robots, general-pur-  
pose machinery, etc.  
4-100  
Operation  
Chapter 4  
Response  
Rigidity  
setting  
Position Speed loop Speed loop 1st step 1st  
Representative  
applications (mechanical  
system)  
loop gain  
gain  
(Hz)  
Pn100  
integration  
constant  
(ms)  
torque  
command  
filter time  
constant  
(ms)  
1  
(s )  
Pn102  
Pn101  
Pn401  
High  
05  
60.0  
60.0  
4.50  
3.50  
3.00  
2.50  
2.00  
2.00  
0.70  
0.50  
0.40  
0.35  
0.30  
0.25  
Ball screws (direct cou-  
pling), feeders, etc.  
06  
07  
08  
09  
10  
80.0  
80.0  
100.0  
120.0  
140.0  
160.0  
100.0  
120.0  
140.0  
160.0  
Note 1. Make sure that the location of the decimal point is correct when setting the parameters.  
Note 2. The Servo System loop gain will rise in response to a higher rigidity setting, shortening the  
positioning time. If the setting is too large, however, the machinery may vibrate. In that case,  
make the setting smaller.  
Manual Tuning-related User Parameters  
• The following user parameters are set by manual tuning.  
Pn100 Speed loop gain  
Pn101 Speed loop integration constant  
Pn102 Position loop gain  
Pn103 Inertia ratio  
Pn401 1st step 1st torque command filter time constant  
Manually Adjusting Servo Gain  
1.Increase the speed loop gain (Pn100) as much as possible without having the machinery vibrate,  
and simultaneously reduce the speed loop integration constant (Pn101).  
2.Adjust the 1st step 1st torque command filter time constant (Pn401) and set it so there is no vibra-  
tion.  
3.Repeat steps 1 and 2, and return 10% to 20% from the changed values.  
4.For position control, increase the position loop gain (Pn102) to the point where the machinery does  
not vibrate.  
4-101  
Operation  
Chapter 4  
Position control loop  
Position  
Speed control loop  
Move  
com-  
mand  
Speed pattern  
Speed  
Servomotor  
Speed  
Tf  
Current  
conver-  
sion unit  
Power  
conver-  
sion unit  
Deviation  
counter  
M
Speed  
com-  
control unit  
KV, Ti  
loop gain  
Kp  
Time  
mand  
Speed loop  
Current loop  
PG  
Position loop  
Encoder  
Servopack  
Host device  
Kp: Position loop gain (Pn102)  
(provided by user)  
Kv: Speed loop gain (Pn100)  
Ti: Speed loop integration constant (Pn101)  
Tf: First-level No. 1 torque command filter time constant (Pn401)  
Procedure for Adjusting Gain  
• A Servo System control block is configured of a position loop, a speed loop, and a current loop.  
• The current loop is the most interior, followed by the speed loop and then the position loop.  
• An output from an exterior loop is an input for an interior loop. As a condition for the exterior loop to  
operate properly, the interior loop must be able to give a sufficient response to that input. In other  
words, high response is required from the interior loop. Also, when adjusting gain, the adjustment  
proceeds from the interior loop gain.  
• In order for the current loop to have a sufficient response, it is adjusted at the time of shipping.  
Therefore first adjust the speed loop, and then the position loop.  
• The speed loop adjustment increases tracking for speed commands. Perform this adjustment in  
servolock status, while checking the Servo rigidity (the force holding the position against external  
force).  
• The position loop adjustment increases tracking for position commands. Input the position com-  
mand in the actual operating pattern while checking the positioning time.  
4-102  
Operation  
Chapter 4  
4-7 Advanced Adjustment Functions  
4-7-1 Bias Function (Position)  
Functions  
• The bias function shortens positioning time by adding bias revolutions to speed commands (i.e.,  
commands to the speed control loop).  
• If the residual pulses in the deviation counter exceed the setting in Pn108 (bias addition band), the  
speed set in Pn107 (bias rotational speed) is added to the speed command, and when the residual  
pulses in the deviation counter are within the setting in Pn108, adding to the number of bias rota-  
tions stops.  
• By setting the following user constants and providing a bias to the speed command unit in the  
Servo Driver, the settling time can be shortened during positioning control.  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn107  
Bias rotational speed Set the rotation speed to be added to the bias 4-3-3 Parameter  
(setting range: 0 to 450 (r/min.)). Details  
Pn108  
Bias addition band  
Set the residual pulses to be added to the num- 4-3-3 Parameter  
ber of bias rotations using command units (set- Details  
ting range: 0 to 250 (command units)).  
Note 1. When not using the bias function, set Pn107 to 0.  
Note 2. If the bias rotational speed is set too high, it will cause Servomotor operation to be unstable.  
The optimum setting depends on the load, the gain, and the bias addition band, so adjust  
the setting while observing the Servomotor response. (Begin with a bias setting of Pn107 =  
0, and gradually increase it.)  
Setting Procedure  
• Complete the gain adjustment before adjusting the bias.  
• Increase the Pn107 (bias rotational speed) setting until positioning time is minimal. At this point, if  
there are no problems with using overshoot, adjustments are complete.  
• If the overshoot is too large, increase Pn108 (bias addition band) to reduce it.  
To shorten positioning time, make the settings according to the mechanical conditions. The bias  
addition band (Pn108) is the value that indicates by position deviation pulses the timing for adding  
the bias (Pn107). Bias is added when the position deviation pulses exceed the set value for the bias  
addition band.  
4-103  
Operation  
Chapter 4  
Operation  
Speed command  
When bias is set  
No bias  
Bias addition band  
(Pn108)  
Bias  
(Pn107)  
Position error pulses  
Bias  
(Pn107)  
Bias addition band  
(Pn108)  
4-7-2 Feed-forward Function (Position)  
Functions  
• This function shortens positioning time by automatically, in the Servo Driver, adding the position  
command value differential to the speed loop.  
• Perform feed-forward compensation to increase Servo gain efficiency, thus improving response.  
There is very little effect, however, on systems with sufficiently high position loop gain.  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn109  
Feed forward amount Set the feed-forward gain (setting rage: 0 to 100 4-3-3 Parameter  
(%)).  
Details  
Pn10A  
Feed forward com-  
mand filter  
Set the feed-forward command filter (primary  
lag). (Setting range: 0 to 6400 (× 0.01 ms).)  
4-3-3 Parameter  
Details  
Note When not using the feed-forward function, set Pn10A to 0.  
Setting Procedure  
• Finish adjusting the gain before adjusting the feed-forward.  
• Increase the Pn109 (feed-forward amount) setting until positioning time is minimal. At this point, if  
there are no problems with using overshoot, adjustments are complete. A high setting may cause  
the machinery to vibrate. With ordinary machinery, set the gain to 80% maximum. (Adjust the gain  
while checking the machine response.)  
• If the overshoot is too large, increase Pn10A (feed-forward command filter) to reduce the it.  
• In the Servo Driver, feed forward compensation is applied to position control. This function is used  
to shorten positioning time. If the value is set too high, the machinery may vibrate. Set it to 80% or  
less.  
4-104  
Operation  
Chapter 4  
Operation  
Differential  
Pn109  
Pn10A  
Speed command  
+
Position command  
+
+
Position loop  
gain (Kp)  
Encoder feedback  
4-7-3 Torque Feed-forward Function (Speed)  
Functions  
• The torque feed-forward function reduces the acceleration time by adding the torque feed-forward  
command value to the current loop.  
• Normally a differential value is generated in the controller and this value is input as the torque feed-  
forward command value.  
Controller  
Servo Driver  
(MECHATROLINK-II)  
Position Control Unit  
CJ1W-NCF71  
Communi-  
cations I/F  
processing  
Torque  
FF com-  
pensation  
Pn100  
Pn101  
Pn401  
+
+
Current  
loop  
Speed  
loop  
Speed command  
+
Speed  
Current  
detection  
detection  
Pn212  
Encoder divider  
rate  
E
M
Block Diagram: Torque Feed-forward Function Used  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn002.0  
Torque command input Set Pn002.0 to 2 (Option command value used 4-3-3 Parameter  
switching as torque feed-forward command value) Details  
4-105  
Operation  
Chapter 4  
Operation  
+
Speed command value  
0
+
Torque feed-forward  
command value  
+
Without the torque feed-forward function  
Servomotor output torque  
Without the torque feed-forward function  
+r/min  
Servomotor operation  
0
Note If torque feed-forward is input when the Servomotor's rotation speed is fixed, the rotation speed  
won't match the speed command. Design the Controller's circuit so that torque feed-forward is  
applied only when the Servomotor is accelerating or decelerating.  
Applicable Controller Commands  
Controller  
Commands and instructions  
According to option command values during speed control.  
Not available.  
CJ1W-NCF71  
CS1W-MCH71  
CJ1W-MCH71  
Note For details on commands and instructions, refer to the manual for the specific Unit.  
4-7-4 Automatic Gain Switching (Position)  
Functions  
• This function switches the speed loop and position loop gain.  
• When Pn139.0 (Gain switching selection switch) is set to 1, and the conditions set in Pn139.1 (Gain  
switching condition A) and Pn139.2 (Gain switching condition B) are satisfied, the No. 1 gain and  
the No. 2 gain are switched alternately. Switching from the No. 1 gain to the No. 2 gain occurs when  
gain switching condition A is satisfied, and switching from the No. 2 gain to the No. 1 gain occurs  
when gain switching condition B is satisfied.  
4-106  
Operation  
Chapter 4  
Gain Switching Combinations  
Switched  
gain  
Speed loop gain  
Speed loop integral  
time constant  
Position loop gain  
Torque command  
filter  
No. 1 gain Pn100 Speed loop  
gain  
Pn101 Speed loop  
integration  
Pn102 Position loop  
gain  
Pn401 1st step 1st  
torque com-  
constant  
mand filter  
time constant  
No. 2 gain Pn104 Speed loop  
gain 2  
Pn105 Speed loop  
integration  
Pn106 Position loop  
gain 2  
Pn412 1st step 2nd  
torque com-  
constant 2  
mand filter  
time constant  
Automatic Gain Switching Pattern  
• Automatic Switching Pattern 1 (Pn139.0: 1)  
Waiting time 1  
Switching time 1 Pn131  
Pn135  
Condition A  
Pn139.1  
No. 1 gain  
Pn100  
No. 2 gain  
Pn104  
Pn101  
Pn105  
Pn102  
Pn106  
Pn401  
Pn412  
Condition B  
Pn139.2  
Waiting time 2  
Switching time 2 Pn132  
Pn136  
• Even when the switching conditions are met, switching is not executed during the gain switching  
waiting time. This is effective for when switching conditions are not stable, or when detailed timing is  
set. The switching time is set to reduce shock during gain switching, and the gain is directly  
switched during this time. The gain switching waiting time and switching time can be set for No. 1 to  
No. 2 and No. 2 to No. 1 gain as shown in the following table.  
Automatic Gain Switching  
Parameter setting Switching condition  
Switching gain  
No. 1 to No. 2 gain  
No. 2 to No. 1 gain  
Gain switching  
waiting time  
Gain switching  
time  
Pn139.0: 1 Condition A met.  
Waiting time 1  
Pn135  
Switching time 1  
Pn131  
(Automatic switch- Pn139.1  
ing pattern 1)  
Condition B met.  
Waiting time 2  
Pn136  
Switching time 2  
Pn132  
Pn139.2  
Gain Switching Waiting Time and Gain Switching Time  
• The following diagram shows the relationship between the gain switching waiting time and the gain  
switching time constant. In this example, automatic gain switching pattern 1 takes the turning ON of  
positioning completed signal 1 (INP1) as the condition, and operation is switched from the position  
loop gain (Pn102) to the No. 2 position loop gain (Pn106). The switching condition is satisfied when  
the INP1 signal turns ON, and then, from that point, operation pauses for the delay time set in  
Pn135. Then the gain is directly changed from Pn102 to Pn106 during the switching time set in  
Pn131.  
4-107  
Operation  
Chapter 4  
Waiting time Switching time  
Pn135 Pn131  
Pn102  
Position loop gain  
Pn106  
No. 2 position  
loop gain  
INP1  
Switching condition A met.  
• Automatic gain switching is also possible with less-deviation control, in addition to the standard PI  
and I-P control. The following table shows the gain combinations for less-deviation control. The  
method for setting the switching conditions, and the settings for the gain switching waiting time and  
gain switching time are the same as for PI and I-P control. For details on adjusting less-deviation  
control, refer to 4-7-9 Less-deviation Control (Position).  
Automatic Gain Switching Combinations for Less-deviation Control  
Switching Servo rigidity Speed feedback filter  
gain time constant  
Integral compensation processing Pn1A7.0  
0
1
2
3
No. 1 gain Servo rigidity Speed feedback filter Disabled  
Enabled  
Enabled  
Disabled  
Pn1A0  
time constant  
Pn1A2  
No. 2 gain Servo rigidity 2 Speed feedback filter Disabled  
Enabled  
Disabled  
Enabled  
Pn1A1  
time constant 2  
Pn1A3  
• Observe the following points when using the gain switching function.  
The control method corresponds to less-deviation control as well as to IP and I-P control.  
If automatic switching is interrupted in progress by an event such as Servo OFF or an alarm, the  
No. 1 gain is set.  
4-108  
Operation  
Chapter 4  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn139.0  
Pn139.1  
Automatic gain  
changeover related  
switches 1 -- Gain  
switching selection  
switch  
Set Pn139.0 to 1 (Automatic switching pattern 4-3-3 Parameter  
1) in order to use the automatic gain switching Details  
function.  
Automatic gain  
Set the condition for switching from No. 1 gain 4-3-3 Parameter  
changeover related  
switches 1 -- Gain  
switching condition A  
to No. 2.  
Details  
Pn131  
Pn135  
Gain switching time 1 Set the switching time for switching from No. 1 4-3-3 Parameter  
gain to No. 2.  
Details  
Setting range: 0 to 65,535 (ms)  
Gain switching waiting Set the time for starting to switch from No. 1  
4-3-3 Parameter  
Details  
time 1  
gain to No. 2 after gain switching condition A  
has been satisfied.  
Setting range: 0 to 65,535 (ms)  
Pn139.2  
Automatic gain  
Set the switching time for switching from No. 2 4-3-3 Parameter  
gain to No. 1. Details  
changeover related  
switches 1 -- Gain  
switching condition B  
Pn132  
Pn136  
Gain switching time 2 Set the switching time for switching from No. 2 4-3-3 Parameter  
gain to No. 1.  
Details  
Setting range: 0 to 65,535 (ms)  
Gain switching waiting Set the time for starting to switch from No. 2  
4-3-3 Parameter  
Details  
time 2  
gain to No. 1 after gain switching condition B  
has been satisfied.  
Setting range: 0 to 65,535 (ms)  
Pn104  
Pn105  
No. 2 speed loop gain Set the speed loop gain for the No. 2 gain.  
Setting range: 10 to 20,000 (× 0.1 Hz)  
No.2 speed loop inte- Set the speed loop integral time constant for the 4-3-3 Parameter  
4-3-3 Parameter  
Details  
gration constant  
No. 2 gain.  
Details  
Setting range: 15 to 51,200 (× 0.01 ms)  
Pn106  
No. 2 position loop  
gain.  
Set the position loop gain for the No. 2 gain.  
Setting range: 10 to 20,000 (× 0.01/s)  
4-3-3 Parameter  
Details  
4-7-5 Speed Feedback Compensation (Position, Speed)  
Functions  
• This function shortens positioning time.  
• This function works to lower the speed loop feedback gain, and raise the speed loop gain and posi-  
tion loop gain. Consequently, response to commands is improved, and positioning time can be  
shortened. Noise sensitivity is lowered, however, so positioning time cannot be shortened where  
there is external force applied, such as with the vertical axis.  
• Using speed feedback compensation is effective in suppressing vibration and raising the speed  
loop gain. If the speed loop gain can be raised, the position loop gain can be raised as well, so this  
can effectively reduce the settling time for positioning.  
4-109  
Operation  
Chapter 4  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn110.1  
Normal autotuning  
switches -- Speed  
feedback compensa-  
tion function selection  
To use the speed feedback compensation func- 4-3-3 Parameter  
tion, set Pn110.1 to 0 (speed feedback com-  
pensation function ON).  
Details  
Pn111  
Speed feedback com- Adjusts the speed loop feedback gain.  
pensating gain Setting range: 1 to 500 (%)  
4-3-3 Parameter  
Details  
• Reduce the setting value for Pn111 (speed feedback compensating gain) to increase the speed  
loop gain and position loop gain. If the value is too small, the response may vibrate.  
• For this function to be used, it is a prerequisite that the inertia ratio (Pn103) value be correctly set.  
Make sure that the inertia ratio is set correctly.  
Setting Procedure  
To perform adjustment, monitor position deviation and torque commands. Either monitor the analog  
monitor output or use Computer Monitor Software.  
• Follow 4-6-4 Manual Tuning to adjust Pn100 (speed loop gain), Pn101 (speed loop integration con-  
stant), Pn102 (position loop gain), and Pn401 (1st step 1st torque command filter time constant) to  
quickly set the position deviation to zero without the torque command vibrating.  
• After completing tuning, lower Pn111 to 10, and adjust Pn100, Pn101, Pn102, and Pn401 in the  
same way.  
• Repeat this adjustment procedure and perform optional adjustment.  
Adjustment Example  
Speed  
command  
Position  
deviation output  
Speed loop gain,  
speed loop integra-  
tion constant  
1st step 1st tor-  
que command  
filter time con-  
stant (Pn401)  
Torque command  
Speed feedback  
Position loop  
gain (Pn102)  
(Pn100, Pn101)  
Speed feedback  
compensation (Pn111)  
Speed feedback  
compensation function  
selection (Pn110.1)  
Speed feedback compensation function  
This section describes the adjustment method for when speed loop gain cannot be raised due to  
vibration in the mechanical system. If speed loop feedback compensation is added, be sure to moni-  
tor position deviation and torque commands with the analog monitor while adjusting the Servo gain.  
(Refer to 4-9 Using Monitor Output.)  
1.Set user constant Pn110 to 0002.  
• Speed feedback compensation will be used.  
4-110  
Operation  
Chapter 4  
2.Gradually raise the speed loop gain (Pn100) with PI control, while lowering the speed loop inte-  
gration constant (Pn101). At this time, equalize the set values for the speed loop gain (Pn100) and  
the position loop gain (Pn102). The relationship between the speed loop gain and the integral time  
constant is shown in the equation below. Take the value derived from this equation as the criterion  
for the integration constant (Pn101) set value.  
Speed loop integration constant (Pn101) = 4000/2π × Pn100 set value  
Speed loop gain setting unit: [× 0.1 Hz]  
When setting the speed loop integration constant (Pn101), confirm the unit. The setting unit for  
Pn101 is [× 0.01ms]. This differs from the setting units for speed loop gain [× 0.1 Hz] and position  
loop gain [× 0.1/s], but the numbers set are the same.  
3.Repeat step 2 and raise the gain while monitoring the settling time conditions with an analog mon-  
itor position deviation and the vibration conditions with a torque command. If oscillation can be  
heard or if vibration increases too much, gradually increase the 1st step 1st torque command filter  
time constant (Pn401).  
4.Raise only the position loop gain little by little. When the gain has been raised to approximately  
the limit, go to the next step. Lower the speed feedback compensation gain (Pn111) from 100% to  
90%. Then repeat steps 2 and 3 above.  
5.Further lower the speed feedback compensation gain from 90%, and repeat steps 2 to 4 to shorten  
the settling time. If the speed feedback compensation value is lowered too much, however, the re-  
sponse waveform will oscillate.  
6.Seek the lowest settling time, in a range where torque command waveforms and position deviation  
monitored by the analog monitor do not become unstable through oscillation.  
7.The Servo gain adjustment is complete at the point where the positioning time cannot be short-  
ened any further.  
Note When the speed feedback compensation function is used, the speed loop gain and position  
loop gain can normally be raised. However, if the compensation value is greatly changed with  
the speed loop gain and position loop gain raised, or if the speed feedback compensation func-  
tion is disabled (i.e., Pn110.1 set to 1), the machinery may strongly vibrate and cause damage  
to the machinery.  
4-7-6 Speed Feedback Filter (Position, Speed)  
Functions  
• This function sets the primary filter for the speed feedback gain.  
• Use the filter function when you cannot raise the speed loop feedback due to mechanical system  
vibration, etc.  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn308  
Speed feedback filter Set the filter time constant for the speed feed- 4-3-3 Parameter  
time constant back. (Setting range: 0 to 65535 (× 0.01 ms).) Details  
4-111  
Operation  
Chapter 4  
• Set the primary delay filter for the speed loop speed feedback. The feedback speed will be evened  
out and vibration will be reduced. If a large value is entered, it will contribute to delay and response  
will be reduced.  
Setting Procedure  
• Measure the machinery vibration cycle, and set Pn508 (speed feedback filter time constant) to that  
value.  
4-7-7 P Control Switching (Position, Speed)  
Functions  
• For speed control, to suppress overshooting during acceleration and deceleration.  
• For position control, to suppress undershooting during positioning operations and shorten the set-  
tling time.  
Operation Examples  
Speed  
Overshooting  
Actual Servomotor movement  
Command  
Time  
Undershooting  
Settling time  
• The P control switching function automatically switches the control mode from PI control to P con-  
trol, with the status amount in the Servo Driver above or below the detection point set by the user  
constant.  
Note 1. The P control switching function is used when it is necessary to push Servo Driver perfor-  
mance to it's limits in order to obtain especially high-speed positioning. To perform adjust-  
ments, it is necessary to monitor the speed response waveform.  
Note 2. In normal operation, sufficient control can be executed by means of the speed loop gain and  
position loop gain set by auto-tuning operations. Also, even when overshooting or under-  
shooting occurs, it can be suppressed by setting the acceleration/deceleration time constant  
for the host device and the soft start time (Pn305, Pn306) and the position command accel-  
eration/deceleration time constant (Pn216) for the Servo Driver.  
4-112  
Operation  
Chapter 4  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn10B.0  
Pn10C  
Speed control setting - Sets the condition for switching the speed loop 4-3-3 Parameter  
- P control switching  
condition  
from PI control to P control. Use Pn10C to  
Pn10F to make the switching level settings.  
Details  
P control switching  
(torque command)  
Set when Pn10B.0 = 0 (switch using internal  
4-3-3 Parameter  
torque command value). Set the conditions for Details  
switching to P control using the ratio (%) of the  
Servomotor rated torque. (Setting range: 0 to  
800%)  
Pn10D  
Pn10E  
Pn10F  
P control switching  
(speed command)  
Set when Pn10B.0 = 1 (switch using speed  
command value). Set the speed (r/min.) to  
switch to P control. (Setting range: 0 to  
10,000 r/min)  
4-3-3 Parameter  
Details  
P control switching  
(acceleration com-  
mand)  
Set when Pn10B.0 = 2 (switch using accelera- 4-3-3 Parameter  
tion command value). Set the acceleration (r/  
min./s) to switch to P control. (Setting range: 0  
to 30,000 r/min/s)  
Details  
P control switching  
(deviation pulse)  
Set when Pn10B.0 = 3 (switch using deviation 4-3-3 Parameter  
pulse value). Set the deviation pulse value  
(command unit) to switch to P control. (Setting  
range: 0 to 10,000 command units)  
Details  
P Control Switching Condition Taken as Internal Torque Command (Pn10B.0 = 0)  
• When the torque command is equal to or greater than the torque set in the user constant (Pn10C),  
the speed loop is switched to P control. For the Servo Driver this mode is set at the factory as the  
standard setting. The torque command level is set to 200%.  
Torque command  
+Pn10C  
Torque  
command  
Servomotor  
speed  
0
Command speed  
Speed  
Pn10C  
P
PI control  
PI  
P
PI control  
• Operation Example  
When P control switching is not used, and PI control is always used, the torque during acceleration  
and deceleration may be saturated and the Servomotor speed may overshoot or undershoot. Using  
P control switching suppresses torque saturation and eliminates Servomotor speed overshooting  
and undershooting.  
Without P control switching  
With P control switching  
Overshooting  
Servo-  
motor  
speed  
Servomotor  
speed  
Under-  
shooting  
Time  
Time  
4-113  
Operation  
Chapter 4  
P Control Switching Condition Taken as Speed Command (Pn10B.0 = 1)  
• When the speed command is equal to or greater than the speed set in the user constant (Pn10D),  
the speed loop is switched to P control.  
Speed command  
Speed  
Pn10D  
Servomotor  
speed  
Time  
PI  
P control  
PI control  
• Operation Example  
Used to shorten the settling time. In general, the speed loop gain must be raised in order to shorten  
the settling time, but in this case overshooting and undershooting are suppressed.  
Without P control switching  
With P control switching  
Speed  
command  
Servomotor  
speed  
Servomotor  
speed  
Long settling time  
Speed loop gain raised.  
Overshooting  
Servo-  
motor  
speed  
Servomotor  
speed  
Under-  
shooting  
Settling time  
Time  
P Control Switching Condition Taken as Acceleration Speed (Pn10B.0 = 2)  
• When the Servomotor acceleration speed is equal to or greater than the acceleration speed set in  
the user constant (Pn10E), the speed loop is switched to P control.  
Servomotor acceleration speed  
+Pn10E  
Acceleration  
speed  
Servomotor  
speed  
0
Command speed  
Speed  
Pn10E  
PI control  
P PI control  
PI  
P
• Operation Example  
When P control switching is not used, and PI control is always used, the torque during acceleration  
and deceleration may be saturated and the Servomotor speed may overshoot or undershoot. Using  
P control switching suppresses torque saturation and eliminates Servomotor speed overshooting  
and undershooting.  
Without P control switching  
With P control switching  
Overshooting  
Servo-  
motor  
speed  
Servomotor  
speed  
Under-  
shooting  
Time  
Time  
4-114  
Operation  
Chapter 4  
P Control Switching Condition Taken as Position Deviation Pulses (Pn10B.0 = 3)  
• When the Servomotor position deviation pulses are equal to or greater than the number of pulses  
set in the user constant (Pn10F), the speed loop is switched to P control.  
Command  
Servomotor speed  
Pn10F  
Speed  
Position  
deviation  
pulses  
Time  
PI  
P control  
PI control  
• Operation Example  
Used to shorten the settling time. In general, the speed loop gain must be raised in order to shorten  
the settling time, but in this case overshooting and undershooting are suppressed.  
Without P control switching  
With P control switching  
Speed  
command  
Servomotor  
speed  
Servomotor  
speed  
Long settling time  
Speed loop gain raised.  
Overshooting  
Servomotor  
speed  
Servo-  
motor  
speed  
Under-  
shooting  
Settling time  
Time  
4-7-8 Predictive Control (Position)  
Predictive control is a method for minimizing future deviation by using machine characteristics and  
target values in position control mode to predict deviation.  
The R88D-WN@@@-ML2 Servo Driver provides two types of predictive control: predictive control for  
positioning, which aims at shortening the settling time, and predictive control for tracking, which aims  
at reducing tracking deviation.  
With predictive control for positioning, future position commands are predicted in order to execute  
high-speed positioning. With predictive control for tracking, on the other hand, the tracking of position  
commands that are input is retained.  
The adjustment method is to simply enable predictive control, and then the recommended value is  
calculated and set according to the position loop gain (Kp) set at that time. If required, the adjustment  
can be further refined by means of user constants for minute adjustment.  
4-115  
Operation  
Chapter 4  
Predictive control position response  
Position command (host command)  
Position  
Predictive control used.  
Predictive control not used.  
Time  
Predictive control position deviation response  
Position deviation  
Predictive control used. Predictive control not used.  
Time  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn150.0  
Predictive control  
selection switches --  
Predictive control  
selection  
In order to use the predictive control function,  
set 1 (Predictive control used) for Pn150.0.  
4-3-3 Parameter  
Details  
Pn150.1  
Pn151  
Pn152  
Predictive control  
switches -- Predictive  
control type  
Set the predictive control type.  
4-3-3 Parameter  
Details  
Predictive control  
acceleration/decelera- dictive control.  
tion gain  
Set the acceleration/deceleration gain for pre- 4-3-3 Parameter  
Details  
Setting range: 0 to 300 (%)  
Predictive control  
weighting ratio  
Set the position deviation ratio for predictive  
control.  
4-3-3 Parameter  
Details  
Setting range: 0 to 300 (%)  
Predictive Control Type (Pn150.1)  
• Predictive control for tracking (Pn150.1 = 0)  
This function operates by retaining the tracking for position commands that are input. Use it when  
there is a need to retain the shape of position command tracking. The beginning of operation is  
delayed by several ms, however, from when the command is executed, so the positioning settling  
time is longer than the positioning predictive control.  
4-116  
Operation  
Chapter 4  
• Predictive control for positioning (Pn150.1 = 1)  
This function operates by anticipating future position commands. It starts operation simultaneous-  
ly with a command and is effective in shortening positioning time.  
The tracking is different from the command tracking shape. With machinery that is prone to vibra-  
tion, the vibration may increase when stopping. In that case, even with a positioning application,  
use predictive control for tracking.  
Predictive control for  
positioning:  
Enables high-speed positioning.  
Predictive control for tracking:  
Retains command shape.  
Position  
Position command  
Position propor-  
tional control  
Time  
Predictive Control Acceleration/Deceleration Gain (Pn151)  
As this value is increased, the settling time is shortened without significantly changing the maximum  
position deviation. If the value is set too high, overshooting will occur. The following diagram shows  
an example of position deviation during operation by a trapezoidal speed command. Raising the pre-  
dictive control acceleration/deceleration gain changes the position deviation from the dotted line to  
the solid line and shortens the settling time.  
Position deviation  
Predictive control acceleration/deceleration  
gain (Pn151) is raised.  
Time  
Predictive Control Weighting Ratio (Pn152)  
As this value is increased, the tracking deviation is reduced. If the positioning completed range is  
large, this is also effective in shortening the settling time. If the value is set too high, torque vibration  
and overshooting may occur. The following diagram shows an example of position deviation during  
operation by a trapezoidal speed command. Raising the predictive control weighting ratio changes  
the position deviation from the dotted line to the solid line and lowers the tracking deviation.  
4-117  
Operation  
Chapter 4  
Predictive control weighting  
ratio (Pn152) is raised.  
Position deviation  
Time  
Procedure for Adjusting Predictive Control  
• Use the following procedure for adjusting predictive control.  
1.Adjust by normal control.  
Functions such as one-parameter tuning or auto-tuning can be used.  
2.Change the predictive control selection switches.  
Change the predictive control selection switches to use predictive control. After changing the  
switch, the power must be turned OFF and back ON.  
3.Adjust the predictive control parameters.  
Adjust the predictive control parameters as required, while checking the response.  
4-118  
Operation  
Chapter 4  
Start operation with the predictive  
control OFF (Pn150.0 = 0), and adjust  
the parameters such as the Kp and Ky  
filters.  
Related parameters  
Pn150: Predictive control selection  
switch  
Pn151: Predictive control  
acceleration/deceleration gain  
Pn152: Predictive control weighting ratio  
Pn102: Position loop gain  
One-parameter tuning  
Advanced auto-tuning can be used.  
Tracking control  
Positioning control?  
Tracking control?  
Positioning control  
Set the predictive control type to  
positioning (Pn150.1 = 1).  
Set the predictive control type to  
tracking (Pn150.1 = 0).  
Turn ON predictive control  
(Pn150.0 = 1), and turn ON the  
power.  
Predictive control will be set  
automatically, linked to the  
position loop gain (Pn102).  
Operates with predictive  
control basic adjustments.  
Specifications  
satisfied or  
No  
adjustment limited?  
Performance  
Eliminate overshooting  
Yes  
improvement?  
Eliminate  
overshooting?  
Lower the predictive control  
Performance improvement  
acceleration/deceleration gain  
(Pn151) or the predictive con-  
trol weighting ratio (Pn152)  
while checking for overshoot-  
ing due to position deviation.  
Shorten settling  
time?  
Reduce tracking  
deviation?  
Reduce tracking deviation  
Eliminate  
overshooting?  
No  
Shorten settling time.  
Yes  
Raise the predictive con-  
trol acceleration/deceler-  
ation gain (Pn151) to a  
range where overshoot-  
ing does not occur.  
Increase the predictive control  
weighting ratio (Pn152) to a  
range where overshooting  
does not occur and the torque  
waveform does not oscillate.  
Lower the position gain  
(Pn102) while checking for  
overshooting due to position  
deviation.  
End  
Applicable Restriction  
• Advanced auto-tuning cannot be used while the predictive control function is in use (Pn150.0 = 1).  
4-119  
Operation  
Chapter 4  
4-7-9 Less-deviation Control (Position)  
Less-deviation control is a method for shortening the settling time and lowering tracking deviation by  
reducing as much as possible the deviation during movement in position control mode. Using less-  
deviation one-parameter tuning makes it easy to perform adjustments. Also, when even higher per-  
formance is required, user adjustment constants for less-deviation control can be used to make  
minute adjustments.  
Position  
Position command  
(host command)  
No-deviation control used.  
No-deviation control not used.  
Time  
Position  
deviation  
No-deviation  
control not used.  
No-deviation  
control used.  
Time  
No-deviation control response waveform examples  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn10B.2  
Speed control setting - To execute less-deviation control, set Pn10B.2 4-3-3 Parameter  
- Position loop control to 1.  
method  
Details  
Pn1A0  
Pn1A1  
Pn1A2  
Servo rigidity  
Set the Servo rigidity for the No. 1 gain.  
Setting range: 1 to 500 (%)  
4-3-3 Parameter  
Details  
Servo rigidity 2  
Set the Servo rigidity for the No. 2 gain.  
Setting range: 1 to 500 (%)  
4-3-3 Parameter  
Details  
Speed feedback filter Set the speed feedback filter time constant for 4-3-3 Parameter  
time constant  
the No. 1 gain.  
Details  
Setting range: 30 to 3,200 (× 0.01 ms)  
Pn1A3  
Pn1A4  
Speed feedback filter Set the speed feedback filter time constant for 4-3-3 Parameter  
time constant 2  
the No. 2 gain.  
Setting range: 30 to 3,200 (× 0.01 ms)  
Details  
Torque command filter Adjust for less-deviation control (set Pn10B.2 to 4-3-3 Parameter  
time constant 2  
1).  
Details  
Setting range: 0 to 2,500 (× 0.01 ms)  
Pn1A7.0  
Utility control switches Set the integral compensation processing for  
-- Integral compensa- the No. 1 gain and the No. 2 gain during less-  
4-3-3 Parameter  
Details  
tion processing  
deviation gain switching.  
4-120  
Operation  
Chapter 4  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn1A9  
Pn1AA  
Pn1AB  
Pn1AC  
Utility integral gain  
Adjust the auxiliary integral gain.  
Setting range: 0 to 500 (Hz)  
4-3-3 Parameter  
Details  
Position proportional  
gain  
Adjust the position proportional gain.  
Setting range: 0 to 500 (Hz)  
4-3-3 Parameter  
Details  
Speed integral gain  
Adjust the speed integral gain.  
Setting range: 0 to 500 (Hz)  
4-3-3 Parameter  
Details  
Speed proportional  
gain  
Adjust the speed proportional gain  
Setting range: 0 to 2,000 (Hz)  
4-3-3 Parameter  
Details  
Procedure for Adjusting Less-deviation Control  
• Execute and adjust less-deviation control according to the following flowchart. The inertia ratio must  
be set first, and then the notch filter if required. Then select less-deviation control and turn the  
power OFF and back ON.  
4-121  
Operation  
Chapter 4  
Start  
Set the inertia ratio.  
Manually set Pn103 or use  
the inertia calculation  
function.  
Set the notch filter.  
Measure the frequency and  
set the notch filter if  
required.  
Set the no-deviation con-  
trol selection (Pn10B.2 =  
1).  
Turn ON the power.  
Execute less-deviation  
one-parameter tuning.  
Suitable  
result  
achieved?  
No  
Increase the value of  
Pn1A2.  
Yes  
End  
Yes  
Vibration?  
No  
Increase Pn1A4 to a  
value where there is  
no vibration.  
Increase Pn1AA to a  
value where there is  
no vibration.  
Increase Pn1A9 to a  
value where there is no  
vibration. (See note.)  
Note: For Pn1A9, take a fac-  
tor of 0.8 of Pn1AA as  
the upper limit.  
End  
4-122  
Operation  
Chapter 4  
Less-deviation Gain Switching  
• For details on gain switching when using less-deviation control, refer to the information on Auto-  
matic Gain Switching Combinations for Less-deviation Control in 4-7-4 Automatic Gain Switching  
(Position).  
Function Limitations when Less-deviation Control is Used  
• Auxiliary Functions  
The following auxiliary functions will not operate effectively even if they are selected.  
Advanced auto-tuning  
One-parameter tuning  
• Control Methods used for Normal Position Control  
The following control methods will not operate.  
Feed forward  
P control switching function  
Speed feedback compensation  
Predictive control  
Average movement filter  
4-7-10 Torque Command Filter (All Operating Modes)  
As shown in the following diagram, three torque command filters and two notch filters are wired in  
series in the torque command filter, and they are used independently. The notch filters can be  
enabled or disables by parameter settings.  
Torque-related  
function switch  
Pn408  
2nd step  
1st step  
1st torque  
command  
filter  
3rd step  
torque  
Torque  
command  
before filter  
Torque  
command  
after filter  
Notch  
filter 2  
Notch  
filter 1  
Pn409  
Pn40A  
2nd torque  
command  
filter  
command  
filter  
Pn40C  
Pn40D  
Pn40F  
Pn410  
Pn401  
Pn411  
Secondary  
delay filter  
Primary  
delay filter  
Notch filter  
Primary delay filter  
Notch filter  
4-123  
Operation  
Chapter 4  
Torque Command Filter  
Functions  
If vibration thought to be caused by the Servo Driver occurs in the machinery, adjusting the torque  
command filter time constant may cause the vibration to subside. The lower the value is set, the bet-  
ter the response of the control that can be achieved. There are limits, however, depending on the  
conditions of the machinery.  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn401  
1st step 1st torque  
command filter time  
constant  
Set the step 1 torque time constant for the  
torque command.  
Setting range: 0 to 65,535 (× 0.01 ms)  
4-3-3 Parameter  
Details  
Pn40F  
2nd step 2nd torque  
command filter fre-  
quency  
When using the 2nd step 2nd torque command 4-3-3 Parameter  
filter frequency, set a number other than  
2,000 Hz.  
Details  
Setting range: 100 to 2,000 (Hz)  
Pn410  
Pn411  
2nd step 2nd torque  
command filter Q value value.  
Setting range: 50 to 1,000 (× 0.01)  
3rd step torque com-  
mand filter time con-  
stant  
Set the 2nd step 2nd torque command filter Q 4-3-3 Parameter  
Details  
Set the 3rd step torque command filter time  
constant.  
4-3-3 Parameter  
Details  
Setting range: 0 to 65,535 (µs)  
Note The unit for the 3rd step torque command filter time constant is different from the units for the  
step 1 and step 2. The 2nd step 2nd torque command filter will be disabled if Pn40F (2nd step  
2nd torque command filter frequency) is set to 2,000 Hz.  
Notch Filter  
Functions  
• A notch filter can be set for internal torque commands (commands to the current loop). A notch filter  
is a function for lowering the response of the frequency that is set. The degree to which the  
response is to be lowered is set by the Q value.  
• If mechanical resonance is occurring, a notch filter can be used to prevent it. This makes it possible  
to shorten positioning time by raising the speed loop gain.  
• With W-series AC Servo Drivers, two notch filters (notch filters 1 and 2) can be set.  
Note This is a filter setting for the purpose of preventing machine resonance that cannot be elimi-  
nated by simply adjusting the gain. If it not set carefully, it may have the unintended effect of  
making machine operation unstable. Adjust the setting while monitoring machine operation by  
means such as the torque command monitor. Also, provide an emergency stop switch that can  
be pressed to immediately stop the machinery.  
4-124  
Operation  
Chapter 4  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn408.0  
Torque command set- When using notch filter 1, set Pn408.0 to 1  
ting -- Selects notch fil- (Notch filter 1 used).  
ter 1 function  
4-3-3 Parameter  
Details  
Pn409  
Notch filter 1 frequency Set the machine resonance frequency.  
Setting range: 50 to 2,000 (Hz)  
4-3-3 Parameter  
Details  
Pn40A  
Pn408.2  
Notch filter 1 Q value  
Set the Q value for notch filter 1.  
Setting range: 50 to 1,000 (× 0.01)  
4-3-3 Parameter  
Details  
Torque command set- When using notch filter 2, set Pn408.2 to 1  
ting -- Selects notch fil- (Notch filter 2 used).  
ter 2 function  
4-3-3 Parameter  
Details  
Pn40C  
Pn40D  
Notch filter 2 frequency Set the machine resonance frequency.  
Setting range: 50 to 2,000 (Hz)  
4-3-3 Parameter  
Details  
Notch filter 2 Q value  
Set the Q value for notch filter 2.  
Setting range: 50 to 1,000 (× 0.01)  
4-3-3 Parameter  
Details  
Note 1. The Q value determines the notch filter characteristics. The smaller the Q value is set, the  
larger the frequencies that lower response, so current loop response for frequencies other  
than for resonance frequencies is lowered. If the Q value is increased, the frequencies that  
lowers response can be reduced to the resonance frequencies. If the resonance frequencies  
vary due to influences such as the load or temperature, the effectiveness of the notch filter  
is decreased. Therefore determine the optimum setting while making adjustments.  
Note 2. Be very careful when setting the notch frequency (Pn409 or Pn40C). Do not set the notch  
frequency near the speed loop response frequency. Set the frequency at least four times  
greater than speed loop response frequency, or it may cause damage to the machinery.  
Note 3. Make sure that the Servomotor is stopped while the notch filter frequency (Pn409, Pn40C)  
is being changed. The Servomotor will vibrate if the frequency is changed during operation.  
4-125  
Operation  
Chapter 4  
Q value = 0.7  
Q value = 1.0  
Notch filter  
Notch filter  
100  
0
100  
0
Gain  
(db)  
Gain  
(db)  
100  
200  
300  
100  
200  
300  
104  
103  
102  
102  
103  
104  
Frequency (Hz)  
Frequency (Hz)  
Notch filter  
Notch filter  
0
0
100  
200  
300  
400  
100  
200  
300  
400  
Unit  
(deg)  
Unit  
(deg)  
104  
103  
102  
102  
103  
104  
Frequency (Hz)  
Frequency (Hz)  
Setting Procedure  
• Raise the value of Pn100 (speed loop gain) and measure the torque vibration frequency with the  
machinery barely vibrating. Either monitor the analog monitor output (torque command monitor) or  
use Computer Monitor Software.  
• Set the measured frequency in Pn409 (or Pn40C).  
• Minutely adjust Pn409 (or Pn40C) in order to minimize output vibration.  
• Gradually increase the Q value (Pn40A or Pn40C) in a range where vibration does become too  
great.  
• Again adjust Pn100 (Speed loop gain), Pn101 (Speed loop integration constant), Pn102 (Position  
loop gain), and Pn401 (1st step 1st torque command filter time constant according to the procedure  
described in 4-6-4 Manual Tuning.  
4-126  
Operation  
Chapter 4  
4-7-11 Vibration Suppression when Stopping (Position)  
Functions  
When the Servo gain is increased, there may be vibration (such as the limit cycle) while stopped,  
even though there is no vibration while moving. It was previously necessary to lower the response to  
a gain where vibration while stopped subsided, sacrificing response during movement. To suppress  
the vibration while movement is stopped, this function lowers the internal Servo gain only while  
movement is stopped. Use this function by adjusting the parameters given below. After the vibration  
suppression starting time (Pn421) has elapsed from the point where the position command is 0, the  
internal Servo gain will change to the percentage set for the damping for vibration suppression on  
stopping (Pn420).  
Position command  
Position command = 0  
Servo gain  
K
K
Pn421  
K × Pn420/100  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn420  
Damping for vibration Sets the gain reduction rate for when the Servo- 4-3-3 Parameter  
suppression on stop-  
ping  
motor is stopped.  
Setting range: 10 to 100%  
Details  
Pn421  
Vibration suppression Set the time for Pn420 to be enabled after the 4-3-3 Parameter  
starting time  
motor stops.  
Details  
Setting range: 0 to 65,535 (ms)  
Note Use when the damping for vibration suppression on stopping (Pn420) is 50% or higher, and the  
vibration suppression starting time (Pn421) is 10 ms or longer. If a low value is set, the  
response characteristics may be lowered and vibration may occur.  
4-127  
Operation  
Chapter 4  
4-7-12 Backlash Compensation (Position)  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn207.2  
Position control set-  
tings 2 -- Backlash  
compensation selec-  
tion  
To execute backlash compensation in the for-  
ward command direction, set Pn207.2 to 1 (For- Details  
ward compensation). To execute backlash  
compensation in the reverse command direc-  
tion, set Pn207.2 to 2 (Reverse compensation).  
4-3-3 Parameter  
Pn214  
Pn215  
Backlash compensa-  
tion amount  
Set the compensation amount in command  
units.  
Setting range: 32,767 to 32,767 (command  
units)  
4-3-3 Parameter  
Details  
Backlash compensa-  
tion time constant  
Set the time constant for backlash compensa- 4-3-3 Parameter  
tion.  
Details  
Setting range: 0 to 65,535 (× 0.01 ms)  
When Pn207.2 = 1  
• Executes in the forward direction the amount of backlash compensation set in Pn214.  
Machinery  
Servomotor axis  
Forward  
Machinery  
Servomotor axis  
When Pn207.2=2  
• Executes in the reverse direction the amount of backlash compensation set in Pn214.  
Machinery  
Servomotor axis  
Reverse  
Machinery  
Servomotor axis  
4-128  
Operation  
Chapter 4  
4-7-13 Position Integration (Position)  
Parameters Requiring Settings  
Parameter  
No.  
Parameter name  
Explanation  
Reference  
Pn11F  
Position integral time  
constant  
Set the integral time constant for the position  
loop.  
4-3-3 Parameter  
Details  
Setting range: 0 to 50,000 (× 0.1 ms)  
Note Effective for synchronous operations such as electronic cam and electronic shift.  
4-129  
Operation  
Chapter 4  
4-8 Using Displays  
OMNUC C-series AC Servomotors have unique Servo software that enables  
quantitative monitoring in real time, on digital displays, of changes in a variety of  
characteristics. Use these displays for checking the various characteristics during  
operation.  
4-8-1 Power, Charge, and COM Indicators  
• There are three indicators on the Servo Driver itself: Power, charge, and COM.  
With front cover open  
DF0300413 PC  
S/N D0039C242510001  
ON  
1
2
3
4
Power supply indicator  
COM indicator  
POWER  
COM  
200  
V
R88D-WN01H-ML2  
Charge indicator  
AC SERVO DRIVER  
POWER  
COM  
100W  
SW1  
C
N
6
A/B  
CHARGE  
L1  
Indicators  
Symbol  
Name  
Color  
Green  
Red  
Function  
POWER  
Power supply indicator  
Charge indicator  
Lit when control power supply is normal.  
CHARGE  
Lit when main-circuit power supply is charging.  
With Servo Drivers of 1 kW or less, lights dimly  
when the control power supply is ON.  
COM  
COM indicator  
Green  
Lights while MECHATROLINK-II communications  
are in progress.  
Note The indicator stays lit while the main circuit capacitor remains charged even after the power is  
turned OFF. Do not touch the Servo Driver terminal.  
4-130  
Operation  
Chapter 4  
4-8-2 Status Display Mode  
• The Status Display Mode indicates the internal status of the driver using bit display (LED ON/OFF),  
and symbol display (7-segment LEDs).  
• Status Display Mode is the mode in which the Servo Driver starts when the power supply is first  
turned ON.  
Status Display Mode Normal: Bit display  
Error: Symbol display (Example: A.020)  
Status  
Not lit  
Not lit  
Not lit  
Not lit  
display  
Bit Data Display Contents  
Servo ON/OFF  
Rotation detected  
CONNECT  
Detection during command input  
Bit data  
Contents  
Servomotor rotation detection Lit during Servomotor rotation.  
Servo ON/OFF  
Lit when Servo is OFF. Not lit while Servo is ON.  
Lit during command input.  
Command input detection  
CONNECT  
Lit when MECHATROLINK-II communications begin.  
Symbol Display Contents  
Bit data  
Contents  
Alarm display (Refer to alarm table.)  
a.@@@  
4-131  
Operation  
Chapter 4  
4-9 Using Monitor Output  
OMNUC W-series AC Servo Drivers output in analog form the Servomotor rotation  
speed, torque command, position difference, and other proportional voltage amounts  
from the Analog Monitor Output Connector (CN5). This function can be used in  
situations such as making fine gain adjustments or when a meter is attached to the  
control panel. Select the monitor items using parameters Pn006.0 to Pn006.1 and  
Pn007.0 to Pn007.1. Also, use parameters Pn006.2 and Pn007.2 to change scaling  
and Pn550 and Pn551 to adjust the offset.  
Analog Monitor Output Connector (CN5)  
• The Analog Monitor Output Connector (CN5) is located inside the top cover of the Servo Driver.  
Analog Monitor Output  
Connector (CN5)  
DF0300413 PC  
S/N D0039C242510001  
CN5 pin distribution (front panel view)  
ON  
1
2
3
4
POWER  
COM  
Driver pin header: DF11-4DP-2DS  
Cable connector socket: DF11-4DS-2C  
Cable connector contact: DF11-2428SCF  
(Manufactured by Hirose.)  
1
2
3
4
View with upper cover open  
Pin No.  
Symbol  
NM  
Name  
Function and interface  
1
2
Analog monitor 2  
Default setting: Speed monitor 1 V/1000 r/min. (change  
using Pn007.0-1)  
AM  
Analog monitor 1  
Default setting: Current monitor 1 V/rated torque  
(change using Pn006.0-1)  
3
4
GND  
GND  
Analog monitor ground  
Analog monitor ground  
Ground for analog monitors 1 and 2  
Note 1. Displays status with no change to scaling.  
Note 2. Maximum output voltage is 8 V. Exceeding this value may result in an abnormal output.  
(Clamped at 8 V.)  
Note 3. Output accuracy is approximately 15%.  
4-132  
Operation  
Chapter 4  
Analog Monitor Output Circuit  
Servo Driver  
47 Ω  
47 Ω  
CN5-1 NM (analog monitor 2)  
CN5-2 AM (analog monitor 1)  
CN5-3 GND (analog monitor ground)  
CN5-4 GND (analog monitor ground)  
Analog Monitor Cable (R88A-CMW001S)  
Use this cable to connect the Servo Driver's Analog Monitor Connector (CN5)  
7.3  
1000  
Servo Driver  
R88D-WT@  
External devices  
t = 6  
Servo Driver  
Symbol  
NM  
No.  
1
Red  
Connector socket model  
DF11-4DS-2C (Hirose)  
Connector socket model  
DF11-2428SCF (Hirose)  
White  
Black  
Black  
AM  
2
GND  
GND  
3
4
Cable: AWG24 × 4C UL1007  
Monitored Item Selection  
Pn006.0-1 Function selection application switches 6 -- Analog monitor 1 signal selection (All operation  
modes)  
Setting  
range  
00 to 1F  
Unit  
---  
Default  
setting  
2
Restart  
power?  
No  
Pn007.0-1 Function selection application switches 7 -- Analog monitor 2 signal selection (All operation  
modes)  
Setting  
range  
00 to 1F  
Unit  
---  
Default  
setting  
0
Restart  
power?  
No  
4-133  
Operation  
Chapter 4  
Setting Explanation  
Setting  
Explanation  
Servomotor rotation speed: 1 V/1000 r/min  
Speed command: 1 V/1000 r/min  
00  
01  
02  
Torque command -- Gravity compensation torque (Pn422): 1 V/100% or rated torque  
Position deviation (See note.): 0.05 V/1 command  
Position amp deviation (See note.): 0.05 V/ encoder pulse unit  
Position command speed (Rotation speed calculation): 1 V/1,000 r/min  
Not used.  
03  
04  
05  
06  
07  
Not used.  
08  
Positioning completed: Positioning completed, 5 V; positioning not completed, 0 V  
Speed feed forward: 1 V/1,000 r/min  
09  
0A  
0B to 1F  
Torque feed forward: 1 V/100% of rated torque  
Not used.  
• Set values are the same as for Pn006.0-1 and Pn007.0-1.  
Note 1. Displays status without offset adjustment and scaling changes.  
Note 2. For speed control, the position deviation monitor signal becomes 0.  
Pn006.2  
Function selection application switches 6 -- Analog monitor 1 signal multiplier selection (All  
operation modes)  
Setting  
range  
0 to 4  
Unit  
---  
Default  
setting  
0
Restart  
power?  
No  
Pn007.2  
Function selection application switches 7 -- Analog monitor 2 signal multiplier selection (All  
operation modes)  
Setting  
range  
0 to 4  
Unit  
---  
Default  
setting  
0
Restart  
power?  
No  
Setting Explanation  
Setting  
Explanation  
0
1
2
3
4
1x  
10x  
100x  
1/10x  
1/100x  
• Set values are the same as for Pn006.2 and Pn007.2.  
Pn550  
Analog monitor 1 offset voltage (All operation modes)  
Setting  
range  
10000 to  
Unit  
× 0.1 V  
Default  
setting  
0
0
Restart  
power?  
No  
No  
10000  
Pn551  
Analog monitor 2 offset voltage (All operation modes)  
Setting  
range  
10000 to  
10000  
Unit  
× 0.1 V  
Default  
setting  
Restart  
power?  
4-134  
Operation  
Chapter 4  
• When Pn006 = 0102, Pn422 = 100 [%], and Pn550 =3.0 [V]  
Analog monitor 1 = Torque command  
= {(1) × (Torque command [%] 10%) × 10} + 3 [V]  
If the torque here is 52%  
= {(1) × (52 [%] 10%) × 1 [V]/100 [%] × 10} + 3 [V]  
= 7.2 [V] (Analog monitor 1 output voltage)  
Note The analog monitor output voltage is 8 V max. If 8 V is exceeded, the output is fixed at 8 V.  
4-135  
Operation  
Chapter 4  
4-136  
Chapter 5  
Troubleshooting  
5-1 Measures when Trouble Occurs  
5-2 Alarms  
5-3 Troubleshooting  
5-4 Overload Characteristics (Electronic Thermal  
Characteristics)  
5-5 Periodic Maintenance  
5-6 Replacing the Absolute Encoder Battery (ABS)  
Troubleshooting  
Chapter 5  
5-1 Measures when Trouble Occurs  
5-1-1 Preventive Checks Before Trouble Occurs  
This section explains the preventive checks and analysis tools required to determine  
the cause of trouble when it occurs.  
Check the Power Supply Voltage  
• Check the voltage to the power supply input terminals.  
Main-circuit Power Supply Input Terminals (L1, L2, (L3))  
R88D-WN@H-ML2  
(50 to 400 W, 750W): Single-phase 200/230 V AC (170 to 253 V) 50/60 Hz  
(500 W to 3 kW): 3-phase 200/230 V AC (170 to 253 V) 50/60 Hz  
R88D-WN@L-ML2 (50 to 400 W): Single-phase 100/115 V AC (85 to 127 V) 50/60 Hz  
Control-circuit Power Supply Input Terminals (L1C, L2C)  
R88D-WN@H-ML2: Single-phase 200/230 V AC (170 to 253 V) 50/60 Hz  
R88D-WN@L-ML2: Single-phase 100/115 V AC (85 to 127 V) 50/60 Hz  
If the voltage falls outside of this range, there is a risk of malfunction, so make sure that the power  
supply is correct.  
• Make sure that the voltage of the sequence input power supply (+24 VIN Terminal (CN1-6 pin)) is  
within the range 23 to 25 VDC. If the voltage falls outside of this range, there is a risk of malfunc-  
tion, so make sure that the power supply is correct.  
Selecting Analysis Tools  
Check Whether an Alarm Has Occurred  
• If an alarm has occurred, check the alarm code (A.@@@), and perform analysis depending on the  
alarm code.  
• If an alarm has not occurred, perform analysis depending on the error.  
Note Refer to 5-3 Troubleshooting in either case.  
Types of Analysis Tools  
• The types of analysis tools are as follows:  
Servo Driver Indicators and Parameter Unit  
• Perform analysis using the display (7-segment LEDs) and the operation keys on the front panel of  
the Servo Driver. This manual explains analysis using these methods.  
5-2  
Troubleshooting  
Chapter 5  
Computer Monitor Software  
• Install and use the Computer Monitor Software. The following three items are required: A Windows  
95/98-compatible computer, Computer Monitor Software, and R88A-CCW002P@ Connecting  
Cable.  
• Refer to the Computer Monitor Software for operation details.  
5-1-2 Precautions  
When checking and verifying I/O after trouble has occurred, the Servo Driver may  
suddenly start to operate or suddenly stop, so take precautions. Also, do not attempt  
operations not specified in this manual.  
Precautions  
• Disconnect any cables before checking if they have burned out. Even if you have checked the con-  
duction of the wiring, there is a risk of conduction due to the return circuit.  
• If the encoder signal is lost, the Servomotor may run away, or an error may be generated. Make  
sure the Servomotor is disconnected from the mechanical system before checking the encoder sig-  
nal.  
• When measuring the encoder output, measure using the ground (CN1-16 pin) as standard. If mea-  
suring using an oscilloscope, measure using the differential between CH1 and CH2 to reduce inter-  
ference from noise.  
• When performing tests, first check that there are no personnel inside the machine facilities, and that  
the facilities will not be damaged even if the Servomotor runs away. Also, check that even if the Ser-  
vomotor runs away, you can immediately stop the machine using an emergency stop before per-  
forming the tests.  
Checking Alarm Codes at the Controller  
• The alarm codes that occur at the Servo Driver with regard to CS1W-MCH71 and CJ1W-MCH71  
Motion Control Units and CJ1W-NCF71 Position Control Units are stored in the Controller as shown  
below.  
Controller Alarm Codes  
• Alarm codes such as the following are stored at the Controller for alarms that occur at the Servo  
Driver.  
Controller alarm (error) code: 40@@ (Hex)  
The leftmost two digits from the Servo Driver's 3-digit alarm code are entered at the two boxes  
(@@).  
Example:Deviation counter overflow alarm at Servo-ON (A.d01).  
The alarm code stored at the Controller is 40D0 (hex).  
5-3  
Troubleshooting  
Chapter 5  
Controller Storage Area  
Controller  
Storage variable/bit name  
System variable  
Error log  
Storage data  
Motion Control Unit  
CS1W-MCH71  
CJ1W-MCH71  
Stored as detailed codes for the error  
log.  
Position Control Unit  
CJ1W-NCF71  
Input Area for individual axis operation Stored as error codes for errors occur-  
Axis alarm codes ring for individual axes.  
Note For details on the above variable/bit areas, refer to the users manual for the specific Controller.  
5-1-3 Replacing the Servomotor and Servo Driver  
Perform the following procedure to replace the Servomotor or Servo Driver.  
Replacing the Servomotor  
1.Replace the Servomotor.  
2.Perform origin teaching (if using position control).  
• When replacing the Servomotor, the Servomotor's specific origin position (Z-phase) may slip,  
so be sure to perform origin teaching.  
• Refer to the manual for the position controller you use for how to perform origin teaching.  
3.Set up the absolute encoder (ABS).  
• If using a Servomotor with an absolute encoder, when replacing the Servomotor, the absolute  
data in the absolute encoder will be cleared, so you need to set up the data again. Also, the  
rotation limit data will be different from before you replaced the Servomotor, so initialize the  
Motion Control Unit settings.  
Note Refer to 4-2-2 Absolute Encoder Setup and Battery Changes for details.  
• Also, if you have changed the setting in Pn205 (absolute encoder multi-turn limit setting), an  
A.CC (rotation speed mismatch) alarm will occur, so change the rotation limit setting (Fn013)  
using system check mode.  
Replacing the Servo Driver  
1.Make a note of the parameters.  
• If using Computer Monitor Software, start the program, and transfer and save all the parame-  
ters in the Servo Driver to the personal computer.  
• If not using Computer Monitor Software, transfer all of the parameters saved in the host to the  
Servo Driver.  
2.Replace the Servo Driver.  
3.Set the parameters.  
• If using Computer Monitor Software, transfer all the parameters stored in the personal com-  
puter to the Servo Driver.  
5-4  
Troubleshooting  
Chapter 5  
• If using Computer Monitor Software, transfer all of the parameters saved in the host to the Ser-  
vo Driver. Refer to the manuals for the host for operating procedures.  
4.Set up the absolute encoder (ABS).  
• If using a Servomotor with an absolute encoder, when replacing the Servomotor, the absolute  
data in the absolute encoder will be cleared, so you need to reset the data. Also, the multi-turn  
data will be different from before the Servo Driver was replaced. If the host device is a CS1W-  
MCH71 or CJ1W-MCH71, make the initial settings for the host device.  
Note Refer to 4-2-2 Absolute Encoder Setup and Battery Changes for details.  
5-5  
Troubleshooting  
Chapter 5  
5-2 Alarms  
If the Servo Driver detects an error, ALM (alarm output) and ALO1 to ALO3 (alarm  
codes) are output, the power drive circuit in the Servo Driver turns OFF, and the alarm  
is displayed. If the Servo Driver detects a warning (e.g., overload warning or  
regenerative overload warning), WARN (warning output) and ALO1 to ALO3 (warning  
codes) are output, and the warning is displayed. (Operation continues.)  
Note 1. Warning outputs and warning codes are output only if the parameters have been set  
(Pn50F.3, Pn001.1).  
Note 2. Refer to 5-3-1 Error Diagnosis Using Alarm Display for appropriate alarm countermeasures.  
Note 3. Cancel the alarm using one of the following methods. (Remove the cause of the alarm first.)  
Turn OFF the power supply, then turn it ON again.  
• Input a RESET signal from the host device.  
The following alarms can only be cancelled by turning OFF the power supply, then turning it ON  
again: A.02@, A.04@, A.100, A.810, A.820, A.840, A.850, A.860, A.b@@, A.C8@, A.C9@, A.CA0,  
A.Cb0, A.CC0, A.E02, A.E07, A.E08, A.E09, A.EA0, and A.EA1.  
Note 4. When an alarm occurs, the Servo Driver stops the Servomotor by the following methods.  
• DB stop: The Servomotor is stopped according to the method set in Pn001.0.  
• Zero-speed stop: The speed command at the Servo Driver is set to zero, and then the Servo-  
motor is stopped according to the method set in Pn001.0.  
Alarm Table  
Display  
Error detection function  
Cause of error  
Stopping  
method at  
alarm  
Alarm reset  
possible?  
a.020  
Parameter checksum error The Servo Driver's internal param- DB stop  
No  
1
eter data is abnormal.  
a.021  
a.022  
a.023  
a.02a  
a.02b  
a.030  
a.040  
a.04a  
Parameter format error 1  
The Servo Driver's internal param- DB stop  
eter data is abnormal.  
No  
No  
No  
No  
No  
Yes  
No  
No  
System parameter check- The Servo Driver's internal param- DB stop  
sum error 1 eter data is abnormal.  
Parameter password error The Servo Driver's internal param- DB stop  
eter data is abnormal.  
Parameter checksum error The Servo Driver's internal param- DB stop  
eter data is abnormal.  
System parameter check- The Servo Driver's internal param- DB stop  
sum error 2 eter data is abnormal.  
1
2
Main circuit detection error There is an error in the detection  
data for the power supply circuit.  
DB stop  
Parameter setting error 1  
A parameter value exceeds the set- DB stop  
ting range.  
Parameter setting error 2  
A parameter value exceeds the set- DB stop  
ting range.  
5-6  
Troubleshooting  
Chapter 5  
Display  
Error detection function  
Cause of error  
Stopping  
method at  
alarm  
Alarm reset  
possible?  
a.041  
Dividing pulse output set- The encoder divider rate setting is DB stop  
No  
ting error  
out of range or the set conditions  
are not satisfied.  
a.042  
a.050  
Parameter combination  
error  
A combination of multiple parame- DB stop  
ters is set out of range.  
No  
Combination error  
The combined capacity of the Ser- DB stop  
vomotor and the Servo Driver is  
unsuitable.  
Yes  
a.0b0  
Servo ON command  
invalid alarm  
After a function for executing Servo DB stop  
ON by means of Computer Monitor  
Software was used, an attempt was  
made to execute Servo ON using a  
host command.  
Yes  
a.100  
a.300  
Overcurrent or overheat-  
ing of radiation shield  
An overcurrent has occurred, or the DB stop  
Servo Driver's radiation shield has  
overheated.  
No  
Regeneration error  
The regeneration resistance is dis- DB stop  
connected or the regeneration tran-  
sistor is faulty.  
Yes  
a.320  
a.330  
Regeneration overload  
The regenerative energy exceeds Zero-speed  
Yes  
Yes  
the regeneration resistance.  
stop  
Main circuit power supply The method for providing power to DB stop  
setting error  
Overvoltage  
Low voltage  
Overspeed  
the main circuit does not match the  
Pn001 setting.  
a.400  
a.410  
a.510  
a.511  
The main-circuit DC voltage is  
abnormally high.  
DB stop  
Yes  
Yes  
Yes  
Yes  
The main-circuit DC voltage is low. Zero-speed  
stop  
The Servomotor's rotation speed is DB stop  
abnormally high.  
Dividing pulse output over- The Servomotor rotation speed  
DB stop  
speed  
upper limit set for the encoder  
divider rate setting (Pn212) was  
exceeded.  
a.520  
a.521  
a.710  
Vibration alarm  
Abnormal vibration was detected in DB stop  
the Servomotor rotation speed.  
Yes  
Yes  
Yes  
Auto-tuning alarm  
The inertia ratio was in error during DB stop  
auto-tuning.  
Overload (momentary  
maximum load)  
Operated for several seconds to  
several tens of seconds at a torque stop  
greatly exceeding the rating.  
Zero-speed  
a.720  
a.730  
Overload (continual maxi- Operated continually at a torque  
DB stop  
Yes  
Yes  
mum load)  
exceeding the rating.  
DB overload  
During DB (dynamic braking) oper- DB stop  
ation, rotation energy exceeds the  
DB capacity.  
a.740  
a.7a0  
Inrush resistance overload The main-circuit power supply has DB stop  
frequently and repeatedly been  
Yes  
Yes  
turned ON and OFF.  
Overheat  
The Servo Driver's radiation shield Zero-speed  
overheated. stop  
5-7  
Troubleshooting  
Chapter 5  
Display  
Error detection function  
Cause of error  
Stopping  
method at  
alarm  
Alarm reset  
possible?  
a.810  
Encoder backup error  
The encoder power supply was  
completely down, and position data  
was cleared.  
DB stop  
No  
a.820  
a.830  
a.840  
a.850  
a.860  
a.b31  
a.b32  
Encoder checksum error  
Encoder battery error  
Encoder data error  
The encoder memory checksum  
results are in error.  
DB stop  
No  
Yes  
No  
No  
No  
No  
No  
The absolute encoder backup bat- DB stop  
tery voltage has dropped.  
The encoder's internal data is in  
error.  
DB stop  
Encoder overspeed  
The encoder rotated at high speed DB stop  
when the power was ON.  
Encoder overheat  
The encoder's internal temperature DB stop  
is too high.  
Current detection error 1  
Current detection error 2  
Current detection error 3  
The phase-U current detector is in DB stop  
error.  
The phase-V current detector is in DB stop  
error.  
a.b33  
a.b6a  
The current detector is in error.  
DB stop  
No  
No  
MECHATROLINK commu- The MECHATROLINK communica- DB stop  
nications ASIC error 1 tions ASIC is in error.  
MECHATROLINK commu- A fatal error occurred in the  
a.b6b  
DB stop  
No  
nications ASIC error 2  
System alarm 0  
System alarm 1  
System alarm 2  
System alarm 3  
System alarm 4  
MECHATROLINK communications  
ASIC.  
a.bf0  
a.bf1  
a.bf2  
a.bf3  
a.bf4  
Servo Driver internal program error DB stop  
0 occurred.  
No  
No  
No  
No  
No  
Servo Driver internal program error DB stop  
1 occurred.  
Servo Driver internal program error DB stop  
2 occurred.  
Servo Driver internal program error DB stop  
3 occurred.  
Servo Driver internal program error DB stop  
4 occurred.  
a.c10  
a.c80  
Runaway detected  
Multi-turn data error  
Servomotor runaway occurred.  
DB stop  
DB stop  
Yes  
No  
Absolute encoder multi-turn data  
was cleared or could not be set  
correctly.  
a.c90  
Encoder communications No communication possible  
DB stop  
No  
error  
between the encoder and Servo  
Driver.  
a.c91  
a.c92  
Encoder communications An error occurred in the encoder's DB stop  
position data error position data calculations.  
Encoder communications An error occurred in the timer for  
No  
No  
DB stop  
timer error  
communications between the  
encoder and Servo Driver.  
a.ca0  
a.cb0  
Encoder parameter error  
Encoder echo-back error  
Encoder parameters are corrupted. DB stop  
No  
No  
The contents of communications  
with the encoder are wrong.  
DB stop  
5-8  
Troubleshooting  
Chapter 5  
Display  
Error detection function  
Cause of error  
Stopping  
method at  
alarm  
Alarm reset  
possible?  
a.cc0  
Multi-turn limit discrepancy The multi-turn limits for the encoder DB stop  
and the Servo Driver do not match.  
No  
a.d00  
a.d01  
Deviation counter overflow Position deviation pulses exceeded DB stop  
the level set for Pn520.  
Yes  
Yes  
Deviation counter overflow When Servo ON was executed, the DB stop  
alarm at Servo-ON  
accumulated number of position  
deviation pulses reached or  
exceeded the number set for  
Pn526.  
a.d02  
Deviation counter overflow If Servo ON is executed with posi- Zero stop  
Yes  
alarm by speed limit at  
Servo-ON  
tion deviation pulses accumulated,  
the speed is limited by the setting  
in Pn529. A command pulse was  
input during this period, without the  
limit being cleared, and the setting  
in Pn520 was exceeded.  
a.e00  
a.e01  
a.e02  
a.e07  
a.e08  
a.e09  
a.e40  
COM alarm 0  
COM alarm 1  
COM alarm 2  
COM alarm 7  
COM alarm 8  
COM alarm 9  
Servo Driver COM error 0  
occurred.  
Zero-speed  
stop  
Yes  
Yes  
No  
Servo Driver COM error 1  
occurred.  
Zero-speed  
stop  
Servo Driver COM error 2  
occurred.  
DB stop  
Servo Driver COM error 7  
occurred.  
DB stop  
No  
Servo Driver COM error 8  
occurred.  
Zero-speed  
stop  
No  
Servo Driver COM error 9  
occurred.  
Zero-speed  
stop  
No  
MECHATROLINK-II trans- There is an error in the setting for Zero-speed  
mission cycle setting error the MECHATROLINK-II communi- stop  
cations transmission cycle.  
Yes  
a.e50  
a.e51  
a.e60  
a.e61  
MECHATROLINK-II syn-  
chronization error  
A synchronization error occurred  
during MECHATROLINK-II commu- stop  
nications.  
Zero-speed  
Yes  
Yes  
Yes  
Yes  
MECHATROLINK-II syn-  
chronization failure  
A synchronization failure occurred Zero-speed  
during MECHATROLINK-II commu- stop  
nications.  
MECHATROLINK-II com- Communications errors occurred  
munications error  
Zero-speed  
stop  
continuously during MECHA-  
TROLINK-II communications.  
MECHATROLINK-II trans- An error occurred in the transmis- Zero-speed  
mission cycle error  
sion cycle during MECHA-  
TROLINK-II communications.  
stop  
a.ea0  
a.ea1  
a.ea2  
DRV alarm 0  
DRV alarm 1  
DRV alarm 2  
Servo Driver DRV error 0 occurred. DB stop  
Servo Driver DRV error 1 occurred. DB stop  
No  
No  
Yes  
Servo Driver DRV error 2 occurred. Zero-speed  
stop  
5-9  
Troubleshooting  
Chapter 5  
Display  
Error detection function  
Cause of error  
Stopping  
method at  
alarm  
Alarm reset  
possible?  
a.ed0  
a.f10  
Internal command error  
Missing phase detected  
A command error occurred in the  
Servo Driver.  
Zero-speed  
stop  
Yes  
Yes  
One phase from the three-phase  
main circuit power supply is not  
connecting.  
Zero-speed  
stop  
Warning Table  
Display  
Warning detection  
function  
Meaning  
a.900  
Deviation counter overflow The accumulated position deviation pulses equaled or exceeded the  
parameter (Pn520 × Pn51E/100) setting.  
a.901  
a.910  
a.911  
Deviation counter overflow The accumulated position deviation pulses when the Servo turned  
at Servo-ON  
ON equaled or exceeded the parameter (Pn526 × Pn528/100) set-  
ting.  
Overload  
This is a warning before the overload alarm (A.710 or A.720) is  
reached. If operation continues at this point, an alarm may be gener-  
ated.  
Vibration  
Faulty oscillation was detected in the Servomotor rotation speed.  
The detection level is the same as for A520, but the difference is in  
whether an alarm or warning is to be set by the Pn310 vibration  
detection switches.  
a.920  
Regeneration overload  
This is the warning display before the regenerative overload alarm  
(A.320) is reached. If operation continues at this point, an alarm may  
be generated.  
a.930  
a.941  
a.94a  
a.94b  
Absolute encoder battery This is the warning display indicating that the absolute encoder bat-  
warning tery voltage is low.  
Parameter change requir- A parameter requiring the power to be turned ON again was  
ing restarting  
changed.  
Data setting warning 1  
(parameter No.)  
There is an error in a command parameter number.  
Data setting warning 2 (out The setting outside of the command data range.  
of range)  
If the Servo Driver is connected to the CJ1W-MCH71 or CS1W-  
MCH71, the option monitor parameters may not be set correctly.  
Check the setting of Pn813 and change it to 0032 hex if any other  
value is set.  
a.94c  
a.94d  
a.95a  
a.95b  
Data setting warning 3  
(calculation error)  
A calculation error was detected.  
Data setting warning 4  
(parameter size)  
A non-conforming data size was detected.  
Command warning 1 (com- A command was specified even though the command conditions  
mand conditions not met) were not completely met.  
Command warning 2  
An unsupported command was specified.  
(unsupported command)  
a.95c  
a.95d  
a.95e  
a.960  
Command warning 3  
Command warning 4  
Command warning 5  
Command conditions set by parameters were not met.  
Command interference (mainly latch command interference)  
Sub-command and main command interference  
MECHATROLINK-II com- A communications error occurred during MECHATROLINK-II com-  
munications warning munications.  
5-10  
Troubleshooting  
Chapter 5  
Note 1. When Pn008.2 is set to 1 (Warnings not detected), the following warnings are not detected.  
A.900, A.901, A.910, A.911, A.920, A.930  
Note 2. Depending on the setting for Pn800.1 (Warning check mask), A.94@, A.95@, and A.96@  
warnings may not be detected. With the default setting, A.94@, A.95@, and A.96@ warnings  
are detected.  
5-11  
Troubleshooting  
Chapter 5  
5-3 Troubleshooting  
If an error occurs in the machinery, check the type of error using the alarm indicators  
and operation status, verify the cause, and take appropriate countermeasures.  
5-3-1 Error Diagnosis Using Alarm Display  
Display  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
a.020  
Parameter check- Occurs when the  
• The control voltage drops • Correct the power supply  
sum error 1  
control circuit  
power supply is  
turned ON.  
to a range of 30 to 60 V  
AC.  
and initialize the parame-  
ters.  
• The control circuit power • A constant was input  
supply was interrupted again after parameter ini-  
during parameter setting. tialization processing.  
• The upper limit for the  
number of parameter  
writes was exceeded  
(e.g., parameters were  
changed by the host  
device with every scan).  
• Replace the Servo  
Driver.  
(Correct the parameter  
writing method.)  
• The Servo Driver  
EEPROM and peripheral  
circuits are defective.  
• Replace the Servo  
Driver.  
a.021  
Parameter format Occurs when  
• The Servo Driver soft-  
ware is too old for the  
current parameters.  
• Replace the Servo  
Driver.  
error 1  
attempting to  
power up again  
after a parameter  
is written using the  
parameter copy  
function.  
• Write only parameters  
that are supported by the  
software version of the  
Servo Driver.  
a.022  
a.023  
System parameter Occurs when the  
checksum error 1 control circuit  
power supply is  
• The control voltage drops • Correct the power supply  
to a range of 30 to 60 V  
AC.  
and initialize the parame-  
ters.  
turned ON.  
• Replace the Servo  
Driver.  
Parameter pass-  
word error 1  
Occurs when the  
control circuit  
power supply is  
turned ON.  
• The Servo Driver board is • Replace the Servo  
defective. Driver.  
5-12  
Troubleshooting  
Chapter 5  
Display  
a.02a  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Parameter check- Occurs when the  
• The control voltage drops • Correct the power supply  
sum error 2  
control circuit  
power supply is  
turned ON.  
to a range of 30 to 60 V  
AC.  
and initialize the parame-  
ters.  
• The control circuit power • A constant was input  
supply was interrupted again after parameter ini-  
during parameter setting. tialization processing.  
• The upper limit for the  
number of parameter  
writes was exceeded  
(e.g., parameters were  
changed by the host  
device with every scan).  
• Replace the Servo  
Driver.  
(Correct the parameter  
writing method.)  
a.02b  
a.030  
System parameter Occurs when the  
checksum error 2 control circuit  
power supply is  
• The control voltage drops • Correct the power supply  
to a range of 30 to 60 V  
AC.  
and initialize the parame-  
ters.  
turned ON.  
• The Servo Driver  
EEPROM and peripheral  
circuits are defective.  
• Replace the Servo  
Driver.  
Main circuit detec- Occurs when the  
• Servo Driver is defective. • Replace the Servo  
Driver.  
tion error  
control circuit  
power supply is  
turned ON or dur-  
ing operation.  
a.040  
a.04a  
a.041  
Parameter setting Occurs when the  
• A value outside of the  
setting range was set in  
the parameters.  
• Reset the parameters  
within the setting range.  
error 1  
control circuit  
power supply is  
turned ON.  
Parameter setting  
error 2  
• The Servo Driver  
EEPROM and peripheral  
circuits are defective.  
• Replace the Servo  
Driver.  
Dividing pulse out- Occurs when the  
• The encoder dividing  
pulses set in Pn212 are  
out of range or do not  
meet the setting condi-  
tions.  
• Set an appropriate value  
for Pn212.  
put setting error  
control circuit  
power supply is  
turned ON.  
5-13  
Troubleshooting  
Chapter 5  
Display  
a.042  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Parameter combi- Occurs when pow- • Due to the change in the • Lower the value for the  
nation error  
ering up again  
electronic gear ratio  
electronic gear ratio  
(Pn20E, Pn210).  
after changing the  
electronic gear  
ratio (Pn20E,  
Pn210), or after  
changing to a Ser-  
vomotor with a dif-  
ferent number of  
encoder pulses.  
(Pn20E, Pn210) or the  
Servomotor, the speed  
for the program JOG  
operation command was  
out of the setting range.  
Occurs when the  
setting for the pro-  
gram JOG speed  
(Pn533) is  
• Due to the change in the • Increase the program  
program JOG speed  
(Pn533), the speed for  
the program JOG opera-  
tion command was out of  
the setting range.  
JOG speed (Pn533).  
changed.  
Occurs when pow- • Due to the change in the • Set the electronic gear  
ering up again and  
attempting to exe-  
cute advanced  
auto-tuning after  
changing the elec-  
tronic gear ratio  
(Pn20E, Pn210),  
or after changing  
to a Servomotor  
with a different  
number of encoder  
pulses.  
electronic gear ratio  
(Pn20E, Pn210) or the  
Servomotor, the travel  
speed for advanced auto-  
tuning was out of the set-  
ting range.  
ratio within the following  
range.  
Electronic gear ratio  
(Pn20E/Pn210) 218  
a.050  
Combination error Occurs when the  
control circuit  
• The Servo Driver capac- • Match the Servo Driver  
ity and the Servomotor  
capacity do not match.  
Servomotor capacity /  
Servo Driver capacity ≤  
1/4, or Servomotor  
capacity / Servo Driver  
capacity 4  
capacity to the capacity  
of the Servomotor.  
power supply is  
turned ON.  
• There is an error in a  
parameter written for the  
encoder.  
• Replace the Servomotor  
(encoder)  
• The Servo Driver board is • Replace the Servo  
defective.  
Driver.  
a.060  
Servo ON com-  
Occurs when the  
• A Servo ON command  
was input when a Servo  
ON command invalid  
alarm was in effect.  
Turn the control circuit  
power supply OFF and  
back ON.  
mand invalid alarm Servo is turned  
ON after one of the  
following functions  
is used: JOG, ori-  
gin search, pro-  
gram JOG,  
EasyFFT.  
5-14  
Troubleshooting  
Chapter 5  
Display  
a.100  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Overcurrent or  
overheating of  
radiation shield  
Occurs when the  
control circuit  
power supply is  
turned ON.  
• An overload alarm has  
been reset several times  
by turning OFF the  
power.  
• Change the alarm reset  
method.  
• There is a faulty connec- • Replace the Servo  
tion between the Servo  
Driver board and the  
thermoswitch.  
Driver.  
• The Servo Driver board is • Replace the Servo  
defective. Driver.  
Occurs when main • There is a faulty connec- • Correct the wiring.  
circuit power sup-  
ply is turned ON,  
or when an over-  
current occurs dur-  
ing Servomotor  
operation.  
tion between U, V, W, and  
the ground.  
• The ground wire is mak- • Correct the wiring.  
ing contact with another  
terminal.  
• There is a short between • Correct or replace the  
the ground and the U-,  
V-, or W- phase wire in  
the Servomotor's main-  
circuit cable.  
Servomotor's main-cir-  
cuit cable.  
• There is a short between • Correct or replace the  
the U-, V-, and W- phase  
wires in the Servomo-  
tor's main-circuit cable.  
Servomotor's main-cir-  
cuit cable.  
• The wiring for the regen- • Correct the wiring.  
eration resistance is  
incorrect.  
• There is a short between • Replace the Servo  
the Servo Driver U-, V-,  
and W- phase wires and  
the ground.  
Driver.  
• Servo Driver is defective. • Replace the Servo  
(The current feedback  
circuit, power transistor,  
or board is defective.)  
Driver.  
• There is a short between • Replace the Servomotor.  
the Servomotor U-, V-,  
and W- phase wires and  
the ground.  
• There is a short between • Replace the Servomotor.  
the Servomotor U-, V-,  
and W- phase wires.  
• The DB circuit is defec-  
tive.  
• Replace the Servo  
Driver.  
(Lighten the load or lower  
the rotation speed used.)  
5-15  
Troubleshooting  
Chapter 5  
Display  
a.100  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Overcurrent or  
overheating of  
radiation shield  
Occurs when main • The DB has frequent use. • Replace the Servo  
circuit power sup-  
ply is turned ON,  
or when an over-  
current occurs dur-  
ing Servomotor  
operation.  
(A DB overload alarm  
occurred.)  
Driver.  
(Reduce the frequency of  
DB use.)  
• An overload alarm has  
been reset several times  
by turning OFF the  
power.  
• Change the alarm reset  
method.  
• Was the load excessive, • Recheck the load and  
or was the regeneration  
processing capacity  
exceeded?  
operating conditions.  
• The Servo Driver was  
mounted in an unsuit-  
• Reduce the Servo  
Driver's ambient temper-  
able way (direction, spac- ature to 55°C or below.  
ing). (Is there heat  
radiation in the or is there  
a heating effect from the  
surroundings?)  
• The Servo Driver's fan is • Replace the Servo  
stopped.  
Driver.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
5-16  
Troubleshooting  
Chapter 5  
Display  
a.300  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Regeneration error Occurs when the  
control circuit  
• The Servo Driver board is • Replace the Servo  
defective. Driver.  
power supply is  
turned ON.  
Occurs when the  
main circuit power  
supply is turned  
ON.  
• For models of 400 W and • Connect regeneration  
below, a value other than  
zero is set for Pn600, and  
there is no external  
regeneration resistance  
installed.  
resistance, or set Pn600  
to zero if regeneration  
resistance is not  
required.  
• Check whether the  
regeneration resistance  
wiring is defective, loose,  
or disconnected.  
• Correct the wiring for the  
external regeneration  
resistance.  
• Servo Driver is defective. • Correct the wiring for the  
(The regeneration tran-  
sistor or the voltage  
detection component is  
defective.)  
external regeneration  
resistance.  
Occurs during nor- • Check whether the  
• Correct the wiring for the  
external regeneration  
resistance.  
mal operation.  
regeneration resistance  
wiring is defective, loose.  
• For models of 500 W or • Correct the wiring.  
greater, the jumper  
between B2 and B3 is  
disconnected.  
• The regeneration resis-  
tance is disconnected. (Is  
the regenerative energy  
increasing?)  
• Replace the regenera-  
tion resistance or replace  
the Servo Driver.  
(Recheck the load and  
operating conditions.)  
• Servo Driver is defective. • Replace the Servo  
(The regeneration tran-  
sistor or the voltage  
detection component is  
defective.)  
Driver.  
5-17  
Troubleshooting  
Chapter 5  
Display  
a.320  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Regeneration  
overload  
Occurs when the  
control circuit  
power supply is  
turned ON.  
• The Servo Driver board is • Replace the Servo  
defective. Driver.  
Occurs when the  
main circuit power  
supply is turned  
ON.  
• The power supply voltage • Correct the voltage.  
is 270 V or higher.  
Occurs during nor- • Regenerative energy is  
• Reselect the regenera-  
tion resistance amount,  
or recheck the load con-  
ditions and operating  
conditions.  
mal operation.  
excessive.  
(Large increase in  
regeneration resis-  
tor temperature)  
• Regeneration is continu-  
ous.  
Occurs during nor- • The capacity set in  
• Correct the setting for  
Pn600.  
mal operation.  
Pn600 is smaller than the  
external regeneration  
resistance capacity.  
(Small increase in  
regeneration resis-  
tor temperature)  
• Servo Driver is defective. • Replace the Servo  
Driver.  
Occurs during Ser- • Regenerative energy is  
• Reselect the regenera-  
tion resistance amount,  
or recheck the load con-  
ditions and operating  
conditions.  
vomotor decelera-  
tion.  
excessive.  
a.330  
Main circuit power Occurs when the  
• The Servo Driver board is • Replace the Servo  
defective. Driver.  
supply setting  
error  
control circuit  
power supply is  
turned ON.  
Occurs when the  
main circuit power  
supply is turned  
ON.  
• While in DC power sup- • For AC power supply  
ply input mode, AC power  
was supplied via L1 and  
L2 (or L1, L2, and L3).  
input, set Pn001.2 to 0.  
For DC power supply  
input, set Pn001.2 to 1.  
• While in AC power supply  
input mode, DC power  
was supplied via B1/ +  
and  
terminals.  
• Pn600 is not set to 0  
even though no regener-  
ation resistance is con-  
nected.  
5-18  
Troubleshooting  
Chapter 5  
Display  
a.400  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Overvoltage  
Occurs when the  
control circuit  
power supply is  
turned ON.  
• The Servo Driver board is • Replace the Servo  
defective.  
Driver.  
Occurs when the  
main circuit power  
supply is turned  
ON.  
• The AC power supply  
voltage is 290 V or  
higher.  
• Set the AC power supply  
voltage in the correct  
range.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
Occurs during nor- • Check the AC power sup- • Set the AC power supply  
mal operation.  
ply voltage. (Was there  
an excessive change in  
voltage?)  
voltage in the correct  
range.  
• The operating rotation  
frequency is high, and  
the load inertia is exces-  
sive. (The regeneration  
capacity is insufficient.)  
• Recheck the load and  
operating conditions.  
(Check the load inertia  
and minus load specifica-  
tions.)  
• Servo Driver is defective. • Replace the Servo  
Driver.  
Occurs during Ser- • The operating rotation  
• Check the load and oper-  
ating conditions.  
vomotor decelera-  
tion.  
frequency is high, and  
the load inertia is exces-  
sive.  
5-19  
Troubleshooting  
Chapter 5  
Display  
a.410  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Low voltage  
Occurs when the  
control circuit  
power supply is  
turned ON.  
• The Servo Driver board is • Replace the Servo  
defective.  
Driver.  
Occurs when the  
main circuit power  
supply is turned  
ON.  
• The AC power supply  
voltage is 120 V or lower. voltage in the correct  
range.  
• Set the AC power supply  
• The Servo Driver fuse is • Replace the Servo  
burned out.  
Driver.  
• Inrush current limit resis- • Replace the Servo  
tance disconnection  
(Check whether there is  
Driver. (Check the power  
supply voltage and  
an error in the power sup- reduce the frequency at  
ply voltage or an inrush  
current limit resistance  
overload.)  
which the main circuit is  
switched ON and OFF.)  
• Servo Driver is defective. • Replace the Servo  
Driver.  
Occurs during nor- • The AC power supply  
• Set the AC power supply  
voltage in the correct  
range.  
mal operation.  
voltage is low. (Check  
whether there was a  
large voltage drop.)  
• A momentary power  
interruption occurred.  
• Reset the alarm to  
restore operation.  
• The Servomotor main-cir- • Correct or replace the  
cuit cable is short-cir-  
cuited.  
Servomotor main-circuit  
cable.  
• The Servomotor is short- • Replace the Servomotor.  
circuited.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
5-20  
Troubleshooting  
Chapter 5  
Display  
a.510  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Overspeed  
Occurs when the  
control circuit  
power supply is  
turned ON.  
• The Servo Driver board is • Replace the Servo  
defective. Driver.  
Occurs when the  
Servo is turned  
ON.  
• The U, V, and W phases • Correct the Servomotor  
are wired out of order in  
the Servomotor.  
wiring.  
• The encoder wiring is  
incorrect.  
• Correct the encoder wir-  
ing.  
• Noise in the encoder wir- • Implement measures  
ing is causing malfunc-  
tioning.  
against noise in the  
encoder wiring.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
Occurs at start of • The U, V, and W phases • Correct the Servomotor  
Servomotor opera-  
tion or at high-  
speed rotation.  
are wired out of order in  
the Servomotor.  
wiring.  
• The encoder wiring is  
incorrect.  
• Correct the encoder wir-  
ing.  
• Noise in the encoder wir- • Implement measures  
ing is causing malfunc-  
tioning.  
against noise in the  
encoder wiring.  
• Position, speed com-  
mand inputs are exces-  
sive.  
• Lower the command  
value.  
• The command input gain • Correct the command  
setting is incorrect. input gain.  
• The Servo Driver board is • Replace the Servo  
defective.  
Driver.  
a.511  
a.520  
Dividing pulse out- Occurs during Ser- • The dividing pulse fre-  
• Lower the setting for the  
encoder divider rate  
(Pn212)  
put overspeed  
Vibration alarm  
vomotor operation.  
quency equaled or  
exceeded 1.6 MHz.  
• Lower the Servomotor  
rotation speed.  
Occurs during Ser- • An abnormal oscillation  
vomotor operation.  
• Lower the Servomotor  
rotation speed.  
was detected in the Ser-  
vomotor's rotation speed.  
• Lower the speed loop  
gain (Pn100).  
• The inertia ratio (Pn103) • Set a suitable value for  
value is greater than the  
actual value, or it is  
greatly fluctuating.  
the inertia ratio (Pn103).  
a.521  
Auto-tuning alarm Occurs during  
advanced auto-  
• The motor speed oscil-  
lated during operation.  
• Without using advanced  
auto-tuning, set Pn103  
by calculating the inertia  
ratio from various  
tuning.  
machine elements.  
5-21  
Troubleshooting  
Chapter 5  
Display  
a.710  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Overload (momen- Occurs when the  
• The Servo Driver board is • Replace the Servo  
tary maximum  
load)  
control circuit  
power supply is  
turned ON.  
defective.  
Driver.  
Occurs when the  
Servo is turned  
ON.  
• Servomotor wiring is  
incorrect (faulty wiring or  
connections).  
• Correct the Servomotor  
wiring.  
a.720  
Overload (contin-  
ual maximum load)  
• Encoder wiring is incor- • Correct the encoder wir-  
rect (faulty wiring or con-  
nections).  
ing.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
Occurs without the • Servomotor wiring is  
• Correct the Servomotor  
wiring.  
Servomotor rotat-  
ing by command  
input.  
incorrect (faulty wiring or  
connections).  
• Encoder wiring is incor- • Correct the encoder wir-  
rect (faulty wiring or con-  
nections).  
ing.  
• The starting torque  
exceeds the maximum  
torque.  
• Recheck the load condi-  
tions, the operating con-  
ditions, and the  
Servomotor capacity.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
a.730  
DB overload  
Occurs when the  
control circuit  
power supply is  
turned ON.  
• The Servo Driver board is • Replace the Servo  
defective.  
Driver.  
Occurs during Ser- • The Servo Driver board is • Replace the Servo  
vomotor opera-  
tion, except with  
Servo OFF.  
defective.  
Driver.  
Occurs with Servo • The rotation energy dur- • Check the following  
OFF during Servo-  
motor operation.  
ing DB stops exceeds the  
DB resistance capacity.  
items.  
(1) Lower the Servomo-  
tor's operating rotation  
frequency.  
(2) Reduce the load inertia.  
(3) Reduce the frequency  
of DB stops.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
5-22  
Troubleshooting  
Chapter 5  
Display  
a.740  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Inrush resistance Occurs when the  
overload  
• The Servo Driver board is • Replace the Servo  
defective. Driver.  
control circuit  
power supply is  
turned ON.  
Occurs at times  
other than when  
the main-circuit  
power supply is  
turned ON and  
OFF.  
• The Servo Driver board is • Replace the Servo  
defective.  
Driver.  
Occurs when the  
main-circuit power  
supply is turned  
ON and OFF.  
• The allowable main-cir-  
cuit power supply ON/  
OFF frequency was  
exceeded for the inrush  
current limit resistance.  
• Reduce the main circuit  
power supply ON/OFF  
frequency  
(to 5 times/min).  
• Servo Driver is defective. • Replace the Servo  
Driver.  
5-23  
Troubleshooting  
Chapter 5  
Display  
a.7a0  
Error  
Overheat  
Status when  
error occurs  
Cause of error  
Countermeasures  
Occurs when the • Servo Driver is defective. • Replace the Servo  
control circuit  
power supply is  
turned ON.  
Driver.  
• An overload alarm has  
been reset several times  
by turning OFF the  
power.  
• Change the alarm reset  
method.  
Overheating of  
radiation shield  
occurs when the  
main circuit power  
supply is turned  
ON, or during Ser-  
vomotor operation.  
• The load exceeds the  
rated load.  
• Recheck the load condi-  
tions, the operating con-  
ditions, and the  
Servomotor capacity.  
• The Servo Driver's ambi- • Reduce the Servo  
ent temperature exceeds  
55°C.  
Driver's ambient temper-  
ature to 55°C or below.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
• An overload alarm has  
been reset several times  
by turning OFF the  
power.  
• Change the alarm reset  
method.  
• There is a faulty connec- • Replace the Servo  
tion between the Servo  
Driver board and the Ser-  
vomotor switch.  
Driver.  
• Was the load excessive, • Recheck the load and  
or was the regeneration  
processing capacity  
exceeded?  
operating conditions.  
• The Servo Driver was  
mounted in an unsuit-  
• Reduce the Servo  
Driver's ambient temper-  
able way (direction, spac- ature to 55°C or below.  
ing). (Is there heat  
radiation in the panel or  
is there a heating effect  
from the surroundings?)  
• The Servo Driver's fan is • Replace the Servo  
stopped.  
Driver.  
5-24  
Troubleshooting  
Chapter 5  
Display  
a.810  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Encoder backup  
error  
Occurs when the  
control circuit  
power supply is  
turned ON.  
(Setting: Pn002.2  
= 1)  
• The Servo Driver board is • Replace the Servo  
defective. (When abso-  
lute values are used  
incrementally.)  
Driver.  
Occurs when the  
control circuit  
power supply is  
turned ON.  
Used with absolute  
value (setting:  
Pn002.2 = 0).  
• The power was turned  
ON for the first time to the  
absolute encoder.  
• Execute the encoder's  
setup operation.  
• The encoder cable was  
disconnected.  
• Check the connections  
and execute the  
encoder's setup opera-  
tion.  
• The encoder power sup- • Restore power to the  
ply (+5 V) from the Servo  
Driver and the battery  
power supply are both  
down.  
encoder (e.g., replacing  
the battery), and then  
execute the encoder's  
setup operation.  
• Absolute encoder is  
defective.  
• If the alarm is still not  
cleared even after exe-  
cuting the setup opera-  
tion again, then replace  
the encoder.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
a.820  
Encoder check-  
sum error  
Occurs when the  
control circuit  
power supply is  
turned ON or dur-  
ing operation.  
• Encoder is defective.  
(Encoder self-diagnosis)  
• If the problem continues  
to occur frequently even  
after the encoder has  
been set up, replace the  
Servomotor.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
Occurs when the  
SENSOR ON  
(SENS_ON) com-  
mand is executed.  
• Encoder is defective.  
(Encoder self-diagnosis)  
• If the problem continues  
to occur frequently even  
after the encoder has  
been set up, replace the  
Servomotor.  
a.830  
Encoder battery  
error  
Occurs when the  
control circuit  
power supply is  
turned ON.  
(Setting: Pn002 =  
1)  
• The Servo Driver board is • Replace the Servo  
defective. (When abso-  
lute values are used  
incrementally.)  
Driver.  
Occurs when the  
control circuit  
power supply is  
turned ON.  
Used with absolute  
value (setting:  
Pn002.2 = 0).  
• The battery has a faulty • Correct the battery con-  
connection or is discon-  
nected.  
nections.  
• The battery voltage is  
lower than the prescribed  
value (2.7 V).  
• Replace the battery and  
turn ON the encoder  
power again.  
• The Servo Driver board is • Replace the Servo  
defective. Driver.  
5-25  
Troubleshooting  
Chapter 5  
Display  
a.840  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Encoder data error Occurs when the  
control circuit  
• The encoder is malfunc- • If the problem continues  
tioning.  
to occur frequently after  
the encoder power is  
turned ON again, replace  
the Servomotor.  
power supply is  
turned ON.  
• The Servo Driver board is • Replace the Servo  
defective. Driver.  
• The encoder is malfunc- • Correct the encoder's  
Occurs during  
operation.  
tioning.  
peripheral wiring (sepa-  
rating the encoder and  
power lines, grounding,  
etc.).  
• Encoder is defective.  
• If the problem occurs fre-  
quently, replace the Ser-  
vomotor.  
• The Servo Driver board is • Replace the Servo  
defective. Driver.  
• The Servomotor is rotat- • Set the Servomotor to  
a.850  
Encoder over-  
speed  
Occurs when the  
control circuit  
power supply is  
turned ON.  
ing at 200 r/min or more  
when the encoder power  
is turned ON (or when  
the SEN signal turns ON  
for an absolute encoder).  
rotate at less than  
200 r/min when the  
encoder power is turned  
ON.  
• Encoder is defective.  
• Replace the Servomotor.  
• The Servo Driver board is • Replace the Servo  
defective.  
Driver.  
Occurs during  
operation.  
• Encoder is defective.  
• Replace the Servomotor.  
• The Servo Driver board is • Replace the Servo  
defective.  
Driver.  
a.860  
Encoder overheat Occurs when the • Encoder is defective.  
control circuit  
• Replace the Servomotor.  
• The Servo Driver board is • Replace the Servo  
power supply is  
turned ON.  
defective.  
Driver.  
Occurs during  
operation.  
• The Servomotor's ambi- • Lower the Servomotor's  
ent temperature is too  
high.  
ambient temperature to  
40°C or less.  
• The Servomotor load is  
greater than the rated  
load.  
• Operate the Servomotor  
with a load that is no  
more than the rated load.  
• Encoder is defective.  
• Replace the Servomotor.  
• The Servo Driver board is • Replace the Servo  
defective.  
Driver.  
a.b31  
a.b32  
Current detection Occurs when the  
• The phase-U current  
detection circuit is defec-  
tive.  
• Replace the Servo  
Driver.  
error 1  
control circuit  
power supply is  
turned ON or dur-  
ing operation.  
Current detection  
error 2  
• The phase-V current  
detection circuit is defec-  
tive.  
5-26  
Troubleshooting  
Chapter 5  
Display  
a.b33  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Current detection Occurs when the  
• The current detection cir- • Replace the Servo  
error 3  
Servo is turned  
ON.  
cuit is defective.  
Driver.  
• The Servomotor’s main  
circuit cable is broken.  
• Correct the Servomotor  
wiring.  
a.b6a  
a.b6b  
MECHATROLINK Occurs when the  
• The MECHATROLINK  
communications ASIC is  
defective.  
• Replace the Servo  
Driver.  
communications  
ASIC error 1  
control circuit  
power supply is  
turned ON or dur-  
ing operation.  
MECHATROLINK  
communications  
ASIC error 2  
a.bf0  
a.bf1  
a.bf2  
a.bf3  
a.bf4  
a.c10  
System alarm 0  
System alarm 1  
System alarm 2  
System alarm 3  
System alarm 4  
Occurs when the  
control circuit  
power supply is  
turned ON.  
• The Servo Driver board is • Replace the Servo  
defective. Driver.  
Runaway detected Occurs when the  
control circuit  
• The Servo Driver board is • Replace the Servo  
defective. Driver.  
power supply is  
turned ON.  
Occurs when the  
Servo is turned  
ON or when a  
• The U, V, and W phases • Correct the Servomotor  
are wired out of order in  
the Servomotor.  
wiring.  
command is input.  
• Encoder is defective.  
• Replace the Servomotor.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
a.c80  
Multi-turn data  
error  
Occurs when the  
control circuit  
power supply is  
turned ON.  
• Encoder is defective.  
• Replace the Servomotor.  
• The Servo Driver board is • Replace the Servo  
defective.  
Driver.  
Occurs when an  
encoder alarm is  
reset.  
• Encoder is defective.  
• Replace the Servomotor.  
• The Servo Driver board is • Replace the Servo  
defective.  
Driver.  
a.c90  
Encoder communi- Occurs when the  
• The encoder wiring is  
incorrect or the contact is  
faulty.  
• Correct the encoder wir-  
ing.  
cations error  
control circuit  
power supply is  
turned ON or dur-  
ing operation.  
• The encoder cable is car- • For the cable specifica-  
rying noise that does not tions, us twisted-pair wire  
accord with the specifica- or twisted-pair bound  
tions.  
shielded wire, core wire  
2
of 0.12 mm min., made  
of tin-coated soft copper.  
• The encoder cable is car- • Use a maximum wiring  
rying noise because the  
distance is too long.  
distance of 20 m.  
5-27  
Troubleshooting  
Chapter 5  
Display  
a.c91  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Encoder communi- Occurs when the  
cations position  
data error  
• The encoder cable is  
crimped, and deteriora-  
tion of the insulation is  
allowing noise to affect  
the signal line.  
• Correct the cable installa-  
tion.  
control circuit  
power supply is  
turned ON or dur-  
ing operation.  
• The encoder cable is  
bundled with, or close to,  
• Arrange the cable so that  
the encoder cable is not  
lines carrying a large cur- affected by surges.  
rent.  
• The electric potential of  
the FG is fluctuating due  
• Ground the machinery to  
prevent branching to the  
to influence from machin- encoder's FG.  
ery (such as welders) in  
the vicinity of the Servo-  
motor.  
a.c92  
Encoder communi- Occurs when the  
cations timer error control circuit  
power supply is  
• Noise is being carried to • Implement measures  
the line for signals com-  
ing from the encoder.  
against noise in the  
encoder wiring.  
turned ON or dur-  
ing operation.  
• The encoder is sub-  
• Reduce machine vibra-  
jected to excessive vibra- tion or securely mount  
tion and shock.  
the Servomotor.  
• Encoder is defective.  
• Replace the Servomotor.  
• The Servo Driver board is • Replace the Servo  
defective.  
Driver.  
a.ca0  
Encoder parame- Occurs when the  
• Encoder is defective.  
• Replace the Servomotor.  
ter error  
control circuit  
power supply is  
turned ON.  
• The Servo Driver board is • Replace the Servo  
defective. Driver.  
5-28  
Troubleshooting  
Chapter 5  
Display  
a.cb0  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Encoder echo-  
back error  
Occurs when the  
control circuit  
power supply is  
turned ON or dur-  
ing operation.  
• The encoder wiring is  
incorrect or the contact is  
faulty.  
• Correct the encoder wir-  
ing.  
• The encoder cable is car- • For the cable specifica-  
rying noise that does not tions, us twisted-pair wire  
accord with the specifica- or twisted-pair bound  
tions.  
shielded wire, core wire  
2
of 0.12 mm min., made  
of tin-coated soft copper.  
• The encoder cable is car- • Use a maximum wiring  
rying noise because the  
distance is too long.  
distance of 20 m.  
• The encoder cable is  
crimped, and deteriora-  
tion of the insulation is  
allowing noise to affect  
the signal line.  
• Correct the cable installa-  
tion.  
• The encoder cable is  
bundled with, or close to,  
• Arrange the cable so that  
the encoder cable is not  
lines carrying a large cur- affected by surges.  
rent.  
• The electric potential of  
the FG is fluctuating due  
• Ground the machinery  
ground to prevent  
to influence from machin- branching to the  
ery (such as welders) in  
the vicinity of the Servo-  
motor.  
encoder's FG.  
• Noise is being carried to • Implement measures  
the line for signals com-  
ing from the encoder.  
against noise in the  
encoder wiring.  
• The encoder is sub-  
• Reduce machine vibra-  
jected to excessive vibra- tion or securely mount  
tion and shock.  
the Servomotor.  
• Encoder is defective.  
• Replace the Servomotor.  
• The Servo Driver board is • Replace the Servo  
defective. Driver.  
• A Servo Driver parameter • Correct the setting for  
is set incorrectly. Pn205 (0 to 65,535).  
• The encoder's multi-turn • Change settings when an  
a.cc0  
Multi-turn limit dis- Occurs when the  
crepancy  
control circuit  
power supply is  
turned ON.  
limit setting was omitted  
or changed.  
alarm occurs.  
Occurs during  
operation.  
• The Servo Driver board is • Replace the Servo  
defective. Driver.  
5-29  
Troubleshooting  
Chapter 5  
Display  
a.d00  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Deviation counter Occurs when the  
• The Servo Driver board is • Replace the Servo  
overflow  
control circuit  
power supply is  
turned ON.  
defective.  
Driver.  
Occurs during  
high-speed rota-  
tion.  
• The Servomotor's U, V,  
and W wiring is incorrect  
(faulty connections).  
• Correct the Servomotor  
wiring.  
• Correct the encoder wir-  
ing.  
• The Servo Driver board is • Replace the Servo  
defective.  
Driver.  
Occurs without  
Servomotor rota-  
tion when there is  
a position com-  
mand.  
• The Servomotor's U, V,  
and W wiring is faulty.  
• Correct the Servomotor  
wiring.  
• The Servo Driver board is • Replace the Servo  
defective.  
Driver.  
Occurs when oper- • Servo Motor gain is  
• Increase the speed loop  
gain (Pn100) and the  
position loop gain  
(Pn102).  
ation is normal but  
a long command is  
sent.  
poorly adjusted.  
• The position command  
pulse frequency is too  
high.  
• Increase/decrease the  
position command pulse  
frequency slowly.  
• Use the smoothing func-  
tion.  
• Check the electronic gear  
ratio.  
• The deviation counter  
overflow level (Pn520) is  
not suitable.  
• Correct the setting for  
Pn520.  
• The load conditions  
(torque, inertia) do not  
conform to the Servomo-  
tor specifications.  
• Check the load and the  
Servomotor capacity.  
a.d01  
Deviation counter Occurs when the  
overflow alarm at control circuit  
• Position deviation pulses • Set so that the Servomo-  
have accumulated exces- tor does not operate with  
Servo-ON  
power supply is  
turned ON.  
sively with the Servo  
OFF.  
the Servo OFF.  
• Correct the detection  
level.  
• The Servomotor was  
operated form outside  
when the Servo was  
OFF.  
5-30  
Troubleshooting  
Chapter 5  
Display  
a.d02  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Deviation counter Occurs during Ser- • The Servo turned ON  
overflow alarm by vomotor drive.  
speed limit at  
• Set so that the Servomo-  
tor does not operate with  
the Servo OFF.  
with position deviation  
pulses accumulated, and  
command pulses were  
input during operation at  
the limit speed. Position  
deviation pulses accumu-  
lated exceeding the devi-  
ation counter overflow  
level (Pn520).  
Servo-ON  
• Correct the detection  
level.  
• Set a suitable value for  
the limit speed level at  
Servo-ON (Pn529).  
a.e00  
a.e01  
a.e02  
a.e07  
a.e08  
a.e09  
a.e40  
COM alarm 0  
COM alarm 1  
COM alarm 2  
COM alarm 7  
COM alarm 8  
COM alarm 9  
Occurs when the  
control circuit  
power supply is  
turned ON.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
• The conditions in 6-3  
Restrictions were not met • Make sure the conditions  
when using the Com-  
puter Monitor Software.  
in 6-3 Restrictions are  
met.  
MECHATROLINK- Occurs when  
• The MECHATROLINK-II • Set a suitable value for  
II transmission  
cycle setting error II communications  
are started.  
MECHATROLINK-  
transmission cycle set-  
ting is out of the range in  
the specifications.  
the MECHATROLINK-II  
transmission cycle.  
a.e50  
a.e51  
MECHATROLINK- Occurs during  
II synchronization MECHATROLINK-  
• The WDT data refreshing • Correct the WDT data  
for the host device is not  
correct.  
refreshing for the host  
device.  
error  
II communications.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
MECHATROLINK- Occurs when  
• The WDT data refreshing • Correct the WDT data  
II synchronization MECHATROLINK-  
for the host device was  
not correct when syn-  
chronous communica-  
tions started, so they  
could not be started.  
refreshing for the host  
device.  
failure  
II synchronous  
communications  
are started.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
a.e60  
MECHATROLINK- Occurs during  
II communications MECHATROLINK-  
• Correct the MECHA-  
TROLINK-II wiring.  
• Wire the MECHA-  
TROLINK-II communica-  
tions cable correctly.  
Connect the terminator  
correctly.  
error  
II communications.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
• A MECHATROLINK-II  
data reception error  
occurred due to noise.  
• Implement measures  
against noise (such as  
using MECHATROLINK-  
II communications cable,  
checking the FG wiring,  
and installing a ferrite  
core in the MECHA-  
TROLINK-II communica-  
tions cable).  
5-31  
Troubleshooting  
Chapter 5  
Display  
a.e61  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
MECHATROLINK- Occurs during  
II transmission  
cycle error  
• The MECHATROLINK-II • Eliminate the cause of  
transmission cycle fluctu- fluctuation in the host  
ated.  
MECHATROLINK-  
II communications.  
device transmission  
cycle.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
a.ea0  
a.ea1  
a.ea2  
DRV alarm 0  
DRV alarm 1  
DRV alarm 2  
Occurs when the • Servo Driver is defective. • Replace the Servo  
control circuit  
Driver.  
power supply is  
turned ON or dur-  
ing operation.  
a.ed0  
Internal command Occurs when  
• Parameters were edited • Do not edit parameters  
error  
MECHATROLINK-  
at a personal computer  
during MECHATROLINK- II communications.  
II communications.  
during MECHATROLINK-  
II communications  
are started, or dur-  
ing operation.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
a.f10  
Missing phase  
detected  
Occurs when the  
control circuit  
power supply is  
turned ON.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
Occurs when the  
main circuit power  
supply is turned  
ON.  
• The three-phase power  
supply is faulty.  
• Correct the power supply  
wiring.  
• The three-phase power  
supply is unbalanced.  
• Correct the power supply  
unbalance. (Switch the  
phase.)  
• Servo Driver is defective. • Replace the Servo  
Driver.  
Occurs during Ser- • There are faulty contacts • Correct the power supply  
vomotor drive.  
in the three-phase power  
supply wiring.  
wiring.  
• The three-phase power  
supply is unbalanced.  
• Correct the power supply  
imbalance.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
5-32  
Troubleshooting  
Chapter 5  
5-3-2 Error Diagnosis Using Warning Indicators  
Display  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
a.900  
Deviation counter Occurs during nor- • The Servo Driver board is • Replace the Servo  
overflow  
mal operation.  
defective.  
Driver.  
• The Servomotor's U, V,  
and W wiring is incorrect  
(faulty connections).  
• Correct the Servomotor  
wiring.  
• Correct the encoder wir-  
ing.  
• Servo Motor gain is  
poorly adjusted.  
• Increase the speed loop  
gain (Pn100) and the  
position loop gain  
(Pn102).  
• The position command  
pulse frequency is too  
high.  
• Increase/decrease the  
position command pulse  
frequency slowly.  
• Use the smoothing func-  
tion.  
• Check the electronic gear  
ratio.  
• A parameter setting  
(Pn520: Deviation  
counter overflow level) is  
incorrect.  
• Set a value other than  
zero for Pn520.  
• The load conditions  
(torque, inertia) do not  
conform to the Servomo-  
tor specifications.  
• Check the load and the  
Servomotor capacity.  
a.901  
Deviation counter Occurs when the  
overflow at Servo- Servo is turned  
• Position deviation pulses • Set so that the Servomo-  
have accumulated exces- tor does not operate with  
ON  
ON.  
sively with the Servo  
OFF.  
the Servo OFF.  
• Set so that position devi-  
ation pulses are cleared  
when the Servo is OFF.  
• Position deviation pulses  
were not set to be  
cleared with the Servo  
OFF, and the Servomo-  
tor was operated from  
outside.  
• Correct the detection  
level.  
5-33  
Troubleshooting  
Chapter 5  
Display  
a.910  
Error  
Overload  
Status when  
error occurs  
Cause of error  
Countermeasures  
Occurs when the • Servomotor wiring is  
Servo is turned  
ON.  
• Correct the Servomotor  
wiring.  
incorrect (faulty wiring or  
connections).  
• Encoder wiring is incor- • Correct the encoder wir-  
rect (faulty wiring or con-  
nections).  
ing.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
Occurs without  
Servomotor rota-  
tion by command  
input.  
• Servomotor wiring is  
incorrect (faulty wiring or  
connections).  
• Correct the Servomotor  
wiring.  
• Encoder wiring is incor- • Correct the encoder wir-  
rect (faulty wiring or con-  
nections).  
ing.  
• The starting torque  
exceeds the maximum  
torque.  
• Recheck the load condi-  
tions, the operating con-  
ditions, and the  
Servomotor capacity.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
Occurs during nor- • The effective torque  
• Recheck the load condi-  
exceeds the rated torque. tions, the operating con-  
ditions, and the  
mal operation.  
Servomotor capacity.  
• The temperature is high • Lower the temperature in  
in the Servo Driver's  
panel  
the panel to 55°C or less.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
a.911  
Vibration  
Occurs during nor- • The Servo Driver gain is • In order to set the correct  
mal operation.  
incorrect.  
gain, lower the speed  
loop gain (Pn100) and  
the position loop gain  
(Pn101), and increase fil-  
ter time constants such  
as the1st step 1st torque  
command filter time con-  
stant (Pn401).  
• The inertia ratio (Pn103) • Set a suitable value for  
value is greater than the  
actual value, or it is  
greatly fluctuating.  
the inertia ratio (Pn103).  
5-34  
Troubleshooting  
Chapter 5  
Display  
a.920  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Regeneration  
overload  
Occurs when the  
control circuit  
power supply is  
turned ON.  
• The Servo Driver board is • Replace the Servo  
defective.  
Driver.  
Occurs during nor- • Regenerative energy is  
• Reselect the regenera-  
tion resistance amount,  
or recheck the load con-  
ditions and operating  
conditions.  
mal operation.  
(Large increase in  
regeneration resis-  
tance tempera-  
ture)  
excessive.  
• Regeneration is continu-  
ous.  
Occurs during nor- • The capacity set in  
• Correct the setting for  
Pn600.  
mal operation.  
(Small increase in  
regeneration resis-  
tance tempera-  
ture)  
Pn600 is smaller than the  
external regeneration  
resistance capacity.  
• Servo Driver is defective. • Replace the Servo  
Driver.  
Occurs during Ser- • Regenerative energy is  
• Reselect the regenera-  
tion resistance amount,  
or recheck the load con-  
ditions and operating  
conditions.  
vomotor decelera-  
tion.  
excessive.  
a.930  
Absolute encoder Occurs when the  
• The Servo Driver board is • Replace the Servo  
defective. Driver.  
battery warning  
control circuit  
power supply is  
turned ON.  
Occurs when the  
control circuit  
power supply is  
turned ON.  
(Setting: Pn002 =  
1)  
• The Servo Driver board is • Replace the Servo  
defective. (When abso-  
lute values are used  
incrementally.)  
Driver.  
Occurs when four • The battery has a faulty • Correct the battery con-  
seconds or more  
have elapsed after  
the control power  
supply is turned  
ON. Used with  
absolute value  
(setting: Pn002.2 =  
0).  
connection or is discon-  
nected.  
nections.  
• The battery voltage is  
lower than the prescribed  
value (2.7 V).  
• Replace the battery and  
turn the encoder power  
supply ON again.  
• The Servo Driver board is • Replace the Servo  
defective.  
Driver.  
a.941  
a.94a  
Parameter change Occurs when  
• A parameter was  
Turn the power OFF and  
back ON.  
requiring restart  
parameters are  
changed.  
changed that required  
the power to be turned  
OFF and back ON.  
Data setting warn- Occurs when a  
• An unusable parameter  
number was used.  
• Use a correct parameter  
number.  
ing 1 (parameter  
No.)  
PRM_RD,  
PRM_W, or  
PPRM_WR com-  
mand is sent.  
5-35  
Troubleshooting  
Chapter 5  
Display  
a.94b  
Error  
Status when  
error occurs  
Cause of error  
Countermeasures  
Data setting warn- Occurs when a  
ing 2 (out of range) MECHATROLINK-  
II command is  
• An attempt was made to • Set a value in the setting  
set a value outside of the  
setting range for the com-  
mand data.  
range.  
• Check the setting of  
Pn813 and change it to  
sent.  
• If the Servo Driver is con- 0032 hex if any other  
nected to the CJ1W-  
MCH71 or CS1W-  
value is set.  
MCH71, the option moni-  
tor parameters may not  
be set correctly.  
a.94c  
Data setting warn- Occurs when a  
• An error occurred in the • Set a value in the setting  
ing 3 (calculation  
error)  
PRM_WR or  
PPRM_WR com-  
mand is sent.  
calculation results for the  
set value.  
range for the parameter.  
a.94d  
a.95a  
Data setting warn- Occurred during  
• The parameter size set  
by the command is not  
correct.  
• Use the correct parame-  
ter size.  
ing 4 (parameter  
size)  
MECHATROLINK-  
II communications.  
Commandwarning Occurred during  
1 (command con- MECHATROLINK-  
• The command transmis- • Satisfy all the command  
sion conditions have not  
been met.  
transmission conditions  
before sending the com-  
mand.  
ditions not met)  
II communications.  
a.95b  
a.95c  
Commandwarning Occurred during  
• An unsupported com-  
mand was received.  
• Do not send unsupported  
commands.  
2 (unsupported  
command)  
MECHATROLINK-  
II communications.  
Commandwarning Occurred during  
• A MECHATROLINK-II  
• Set the parameters  
3
MECHATROLINK-  
II communications.  
command cannot be exe- required for command  
cuted according to the  
setting conditions.  
execution.  
a.95d  
a.95e  
a.960  
Commandwarning Occurred during  
• The transmission condi- • Satisfy all the latch-  
4
MECHATROLINK-  
II communications.  
tions for a latch-related  
command have not been  
satisfied.  
related command trans-  
mission conditions before  
sending the command.  
Commandwarning Occurred during  
• The sub-command trans- • Satisfy all the sub-com-  
5
MECHATROLINK-  
II communications.  
mission conditions have  
not been satisfied.  
mand transmission con-  
ditions before sending  
the command.  
MECHATROLINK- Occurred during  
II communications MECHATROLINK-  
• Connection is faulty or  
line is disconnected.  
• Review the connector  
wiring.  
warning  
II communications.  
• Check for disconnec-  
tions in the communica-  
tions wiring.  
• Communications error  
due to noise or other fac-  
tors.  
• Implement noise counter-  
measures.  
• Check system operation  
and, if there are no prob-  
lems (or if the problems  
are acceptable), set to  
ignore the A.96@ warn-  
ing using the warning  
check mask.  
5-36  
Troubleshooting  
Chapter 5  
5-3-3 Troubleshooting by Means of Operating Status  
Symptom  
Probable cause  
Items to check  
Countermeasures  
The Servomotor  
does not start.  
The control power supply • Check the voltage between • Correct the control power  
is not ON.  
the control power supply  
terminals.  
supply ON circuit.  
The main circuit power  
supply is not ON.  
• Check the voltage between • Correct the main circuit  
the main circuit power sup-  
ply terminals.  
power supply ON circuit.  
The I/O (CN1) wiring is  
faulty or disconnected.  
• Check the condition and  
wiring of the CN1 connec-  
tor.  
• Correct the CN1 wiring.  
The Servomotor or  
encoder wiring is  
detached.  
• Checking the wiring.  
• Connect the wiring.  
There is an overload.  
• Operate without an over-  
load.  
• Either lighten the load or  
change to a Servomotor  
with greater capacity.  
Speed and position com-  
mands are not being input.  
• Check the input pins.  
• Correct the speed and  
position inputs.  
The input signal selections • Check the settings for the  
• Correct Check the settings  
for the input signal selec-  
tions (Pn50A to Pn50D).  
(Pn50A to Pn50D) are set  
incorrectly.  
input signal selections  
(Pn50A to Pn50D).  
The type of encoder being • Is it an incremental or an  
• Match the setting in  
used is different from the  
parameter setting.  
absolute encoder?  
Pn002.2 to the type of  
encoder that is being used.  
The Servo-ON (SV-ON)  
command is not being  
sent.  
• Check the host device com- • Specify the Servo-ON (SV-  
mands. ON) command.  
The sensor ON  
• Check the host device com- • Send commands to the  
(SENS_ON) command is  
not being sent.  
mands.  
Servo Driver in the correct  
sequence.  
The forward drive prohibit • Check the POT and NOT  
Turn ON the POT and NOT  
input signals.  
(POT) and reverse drive  
prohibit (NOT) input sig-  
nals are remaining OFF.  
input signals.  
Servo Driver is defective.  
• The Servo Driver board is • Replace the Servo Driver.  
defective.  
The Servomotor  
operates momen-  
tarily but then  
stops.  
Servomotor wiring is faulty. • Check the Servomotor wir- • Correct the Servomotor  
ing. wiring.  
• Check the encoder wiring. • Correct the encoder wiring.  
Encoder wiring is faulty.  
Wiring connections to the • Connections are unstable • Tighten any looseness at  
Servomotor rota-  
tion is unstable.  
Servomotor are faulty.  
at power line (phase U, V,  
W) or encoder connectors.  
the processing terminals  
and connectors.  
Servomotor  
rotates without any  
commands.  
Servo Driver is defective.  
• Servo Driver board is  
defective.  
• Replace the Servo Driver.  
5-37  
Troubleshooting  
Chapter 5  
Symptom  
Probable cause  
Items to check  
Countermeasures  
DB (dynamic  
brake) does not  
operate.  
The parameter setting is  
incorrect.  
• Check the setting for  
Pn001.0.  
• Correct the parameter set-  
ting.  
DB resistance is discon-  
nected.  
• Is there excessive inertia,  
rotation speed, or fre-  
quency of DB use?  
• Replace the Servo Driver  
and check the load system.  
DB drive circuit is defec-  
tive.  
• A DB circuit component is • Replace the Servo Driver.  
defective.  
The Servomotor is The mechanicalinstallation • Are Servomotor mounting • Tighten the mounting  
making strange  
noises.  
is faulty.  
screws loose?  
screws.  
• Are couplings off center?  
• Center the couplings.  
• Are couplings unbalanced? • Balance the couplings.  
There is a problem with the • Check for sounds and  
• If there are any abnormali-  
ties, please contact an  
OMRON representative.  
bearings.  
vibration around the bear-  
ings.  
The source of vibration is • Have any foreign objects  
• Consult with the maker of  
the machine.  
in another machine.  
gotten into the movable  
parts of the machine, or is  
there any damage or defor-  
mation?  
Noise is carried because  
the input signal line specifi-  
cations are incorrect.  
• Is twisted-pair wire or  
twisted-pair bound shielded  
• Make sure that input signal  
lines conform to the specifi-  
cations.  
2
core wire of 0.12 mm min.,  
made of tin-coated soft  
copper, being used?  
Noise is carried because  
the encoder cable specifi-  
cations are incorrect.  
• Is twisted-pair wire or  
twisted-pair bound shielded  
• Make sure that the encoder  
cable conforms to the spec-  
ifications.  
2
core wire of 0.12 mm min.,  
made of tin-coated soft  
copper, being used?  
The encoder cable is car- • Use a maximum wiring dis- • Make sure that the encoder  
rying noise because the  
distance exceeds the oper-  
ating range.  
tance of 50 m.  
cable distance conforms to  
the specifications.  
Noise interference is  
occurring because of dam-  
age to the encoder cable.  
• The encoder cable is  
crimped, or deterioration of  
the insulation is allowing  
noise to affect the signal  
line.  
• Correct the cable installa-  
tion.  
There is excessive noise  
interference to the encoder  
cable.  
• Is the encoder cable bun-  
dled with, or close to, lines  
carrying a large current?  
• Arrange the cable so that  
the encoder cable is not  
affected by surges.  
The electric potential of the • What is the grounding sta- • Ground the machinery to  
FG is fluctuating due to  
influence from machinery  
(such as welders) in the  
vicinity of the Servomotor.  
tus of equipment such as  
welding machines near the  
Servomotor (e.g., imper-  
fectly grounded, not  
prevent branching to the  
encoder's FG.  
grounded at all)?  
The Servo Driver pulse  
count is incorrect due to  
noise.  
• Is noise being carried to the • Implement measures  
line for signals coming from  
the encoder?  
against noise in the  
encoder wiring.  
5-38  
Troubleshooting  
Chapter 5  
Symptom  
Probable cause  
Items to check  
Countermeasures  
The Servomotor is There is interference due  
• Check for machine vibra-  
tion or faulty Servomotor  
mounting (mounting sur-  
face precision, secure fas-  
tening, centering, etc.).  
• Lower machine vibration or  
correct Servomotor mount-  
ing.  
making strange  
noises.  
to the encoder being sub-  
jected to excessive vibra-  
tion and shock.  
Encoder is defective.  
• Encoder is defective.  
• Replace the Servomotor.  
Servomotor oscil- The speed loop gain  
• Default: Kv = 80.0/Hz  
Refer to the instructions on  
adjusting gain in the user's  
manual.  
• Correct the setting for the  
speed loop gain (Pn100).  
lates at approx.  
200 to 400 Hz.  
(Pn100) is set too high.  
The position loop gain  
(Pn102) is set too high.  
• Default: Kv = 40.0/Hz  
Refer to the instructions on  
adjusting gain in the user's  
manual.  
• Correct the setting for the  
position loop gain (Pn102).  
The speed loop integral  
time constant (Pn101) set-  
ting is inappropriate.  
• Default: Ti = 20.00 ms  
Refer to the instructions on  
adjusting gain in the user's  
manual.  
• Correct the setting for the  
speed loop integral time  
constant (Pn101).  
The machine rigidity set-  
ting is inappropriate.  
• Check the machine rigidity • Correct the machine rigidity  
setting.  
setting.  
The inertia ratio (Pn103)  
data is inappropriate.  
• Check the inertia ratio  
(Pn103) data.  
• Correct the inertia ratio  
(Pn103) data.  
Frequency over-  
shooting when  
starting and stop-  
ping is too high.  
The speed loop gain  
(Pn100) is set too high.  
• Default: Kv = 80.0 Hz  
Refer to the instructions on  
adjusting gain in the user's  
manual.  
• Correct the setting for the  
speed loop gain (Pn100).  
The position loop gain  
(Pn102) is set too high.  
• Default: Kp = 40.0/s  
Refer to the instructions on  
adjusting gain in the user's  
manual.  
• Correct the setting for the  
position loop gain (Pn102).  
The speed loop integral  
time constant (Pn101) set-  
ting is inappropriate.  
• Default: Ti = 20.00 ms  
Refer to the instructions on  
adjusting gain in the user's  
manual.  
• Correct the setting for the  
speed loop integral time  
constant (Pn101).  
The machine rigidity set-  
ting is inappropriate.  
• Check the machine rigidity • Correct the machine rigidity  
setting.  
setting.  
The inertia ratio (Pn103)  
data is inappropriate.  
• Check the inertia ratio  
(Pn103) data.  
• Correct the inertia ratio  
(Pn103) data.  
• Use the Servomotor switch  
function.  
5-39  
Troubleshooting  
Chapter 5  
Symptom  
Probable cause  
Items to check  
Countermeasures  
Absolute encoder Noise is carried because  
position displace- the encoder cable specifi-  
• Check whether the cable is • Make sure that the encoder  
twisted-pair wire or twisted- cable conforms to the spec-  
ment error (The  
position in the host  
device's memory  
when the power is  
turned OFF is dif-  
ferent from the  
position when the  
power is next  
cations are incorrect.  
pair bound shielded core  
ifications.  
2
wire of 0.12 mm min.,  
made of tin-coated soft  
copper.  
The encoder cable is car- • Use a maximum wiring dis- • Make sure that the encoder  
rying noise because the  
distance exceeds the oper-  
ating range.  
tance of 50 m.  
cable distance conforms to  
the specifications.  
turned ON.)  
Noise interference is  
occurring because of dam-  
age to the encoder cable.  
• The encoder cable is  
crimped, or deterioration of  
the insulation is allowing  
noise to affect the signal  
line.  
• Correct the cable installa-  
tion.  
There is excessive noise  
interference to the encoder  
cable.  
• Is the encoder cable bun-  
dled with, or close to, lines  
carrying a large current?  
• Arrange the cable so that  
the encoder cable is not  
affected by surges.  
The electric potential of the • What is the grounding sta- • Ground the machinery to  
FG is fluctuated due to  
noise from machinery  
(such as welders) in the  
vicinity of the Servomotor.  
tus of equipment such as  
welding machines near the  
Servomotor (e.g., imper-  
fectly grounded, not  
prevent branching to the  
encoder's FG.  
grounded at all)?  
The Servo Driver pulse  
count is incorrect due to  
noise.  
• Is noise being carried to the • Implement measures  
line for signals coming from  
the encoder?  
against noise in the  
encoder wiring.  
There is interference due  
to the encoder being sub-  
jected to excessive vibra-  
tion and shock.  
• Check for machine vibra-  
tion or faulty Servomotor  
mounting (mounting sur-  
face precision, secure fas-  
tening, centering, etc.).  
• Reduce machine vibration  
or correct the Servomotor  
mounting.  
Encoder is defective.  
• Encoder is defective.  
• Replace the Servomotor.  
(Pulses are not changing.)  
Servo Driver is defective.  
• Multi-turn data is not output • Replace the Servo Driver.  
from the Servo Driver.  
5-40  
Troubleshooting  
Chapter 5  
Symptom  
Probable cause  
Items to check  
Countermeasures  
Overtravel (OT)  
(Travelling outside prohibit input signal does  
of the zone speci- not change. (POT (CN1-7  
fied by the host  
device)  
The forward/reverse drive • Is the voltage correct for  
• Use a +24-V external  
power supply.  
the external power supply  
(+24 V) for input signals?  
or NOT (CN1-8) is at H  
level.)  
• Is the operating status cor- • Correct the status of the  
rect for the overtravel limit  
switch?  
overtravel limit switch.  
• Is the wiring to the over-  
travel limit switch correct?  
• Correct the wiring to the  
overtravel limit switch.  
The forward/reverse drive • Does the external power  
• Eliminate the fluctuation in  
prohibit input signal is mal-  
functioning. (Does the POT  
or NOT signal sometimes  
change?)  
supply (+24 V) voltage fluc- the external power supply  
tuate?  
(+24 V) voltage.  
• Is overtravel limit switch  
operation unstable?  
• Stabilize overtravel limit  
switch operation.  
• Is the overtravel limit switch • Correct the wiring to the  
wiring correct (cable  
undamaged, screws tight-  
ened, etc.)  
overtravel limit switch.  
The forward/reverse drive • Check the POT signal  
• Correct the POT signal  
selection (Pn50A.3)  
prohibit input signal (POT/  
NOT) selection is incorrect.  
selection (Pn50A.3).  
• Check the NOT signal  
selection (Pn50B.0)  
• Correct the NOT signal  
selection (Pn50B.0)  
The Servomotor stopping • Is the free-run stopping  
• Check the settings for  
Pn001.0 and Pn001.1.  
method selection is incor-  
rect.  
method selected for the  
Servomotor?  
• Is free-run set for torque  
control?  
• Check the settings for  
Pn001.0 and Pn001.1.  
The overtravel limit switch • The overtravel limit switch • Set the overtravel limit  
position is inappropriate.  
position is less than the  
coasting amount.  
switch position correctly.  
Noise is carried because  
the encoder cable specifi-  
cations are incorrect.  
• Is twisted-pair wire or  
twisted-pair bound shielded  
• Make sure that the encoder  
cable conforms to the spec-  
ifications.  
2
core wire of 0.12 mm min.,  
made of tin-coated soft  
copper, being used?  
The encoder cable is car- • Use a maximum wiring dis- • Make sure that the encoder  
rying noise because the  
distance exceeds the oper-  
ating range.  
tance of 50 m.  
cable distance conforms to  
the specifications.  
Noise interference is  
occurring because of dam-  
age to the encoder cable.  
• The encoder cable is  
crimped, or deterioration of  
the insulation is allowing  
noise to affect the signal  
line.  
• Correct the cable installa-  
tion.  
There is excessive noise  
interference to the encoder  
cable.  
• Is the encoder cable bun-  
dled with, or close to, lines  
carrying a large current?  
• Arrange the cable so that  
the encoder cable is not  
affected by surges.  
5-41  
Troubleshooting  
Chapter 5  
Symptom  
Probable cause  
Items to check  
Countermeasures  
Overtravel (OT)  
The FG is fluctuating due • What is the grounding sta- • Ground the machinery to  
(Travelling outside to influence from machin-  
of the zone speci- ery (such as welders) in  
tus of equipment such as  
welding machines near the  
Servomotor (e.g., imper-  
fectly grounded, not  
prevent branching to the  
encoder's FG.  
fied by the host  
device)  
the vicinity of the Servomo-  
tor.  
grounded at all)?  
The Servo Driver pulse  
count is incorrect due to  
noise.  
• Is noise being carried to the • Implement measures  
line for signals coming from  
the encoder?  
against noise in the  
encoder wiring.  
There is interference due  
to the encoder being sub-  
jected to excessive vibra-  
tion and shock.  
• Check for machine vibra-  
tion or faulty Servomotor  
mounting (mounting sur-  
face precision, secure fas-  
tening, centering, etc.).  
• Reduce machine vibration  
or correct the Servomotor  
mounting.  
Encoder is defective.  
• Encoder is defective.  
• Replace the Servomotor.  
• Replace the Servo Driver.  
Servo Driver is defective.  
• Servo Driver is defective.  
The position is dis- The coupling between the • Is the coupling between the • Correct the coupling  
placed (without an machine and the Servomo-  
machine and the Servomo-  
tor displaced?  
between the machine and  
the Servomotor.  
alarm being out-  
put).  
tor is faulty.  
Noise is carried because  
the input signal line specifi-  
cations are incorrect.  
• Is twisted-pair wire or  
twisted-pair bound shielded  
• Make sure that input signal  
lines conform to the specifi-  
cations.  
2
core wire of 0.12 mm min.,  
made of tin-coated soft  
copper, being used?  
Encoder is defective.  
• Encoder is defective.  
• Replace the Servomotor.  
(Pulses are not changing.)  
(Pulses are not changing.)  
Servomotor is  
overheating.  
The ambient temperature • Measure the Servomotor's • Lower the ambient temper-  
is too high.  
ambient temperature.  
ature to 40°C or less.  
The Servomotor's surface • Visually check the surface. • Clean off dirt and oil from  
is dirty.  
the Servomotor's surface.  
There is an overload.  
• Operate without an over-  
load.  
• Recheck the load condi-  
tions, the operating condi-  
tions, and the Servomotor  
capacity.  
5-42  
Troubleshooting  
Chapter 5  
5-4 Overload Characteristics (Electronic Thermal  
Characteristics)  
An overload protection (electronic thermal) function is built into the Servo Driver to  
protect against Servo Driver or Servomotor overload. If an overload (A.710 to A.720)  
does occur, first clear the cause of the error and then wait at least one minute for the  
Servomotor temperature to drop before turning on the power again. If the power is  
turned on again too soon, the Servomotor coil may be damaged.  
Overload Characteristics Graph  
Overload characteristics are shown in the following table. If, for example, a current of three times the  
Servomotor's rated current flows continuously, it will be detected after approximately three seconds.  
10000  
1000  
B
100  
Operation time (s)  
A
10  
5
1
300  
150  
200  
250  
100  
Load rate (%)  
A : 3,000-r/min Servomotors, 30 to 400 W  
3,000-r/min Flat-style Servomotors, 100 to 400 W  
B : 3,000-r/min Servomotors, 750 W to 3 kW  
3,000-r/min Flat-style Servomotors, 750 W to 1.5 kW  
1,000-r/min Servomotors, 300 W to 2 kW  
1,500-r/min Servomotors, 450 W to 1.8 kW  
5-43  
Troubleshooting  
Chapter 5  
Interpreting the Graph  
If a current that is equivalent to the maximum torque is applied continuously to a Servomotor equiva-  
lent to B in the above graph, an overload will be detected in approximately 5 s.  
5-44  
Troubleshooting  
Chapter 5  
5-5 Periodic Maintenance  
Maintenance and Inspection Precautions  
!WARNING Do not attempt to disassemble, repair, or modify any Units. Any attempt to do so  
may result in malfunction, fire, or electric shock.  
!Caution  
Resume operation only after transferring to the new Unit the contents of the data  
required for operation. Not doing so may result in an unexpected operation.  
Servomotors and Servo Drivers contain many components and will operate properly  
only when each of the individual components is operating properly. Some of the  
electrical and mechanical components require maintenance depending on application  
conditions. In order to ensure proper long-term operation of Servomotors and Drivers,  
periodic inspection and part replacement is required according to the life of the  
components.  
The periodic maintenance cycle depends on the installation environment and application conditions  
of the Servomotor or Driver. Recommended maintenance times are listed below for Servomotors and  
Drivers. Use these for reference in determining actual maintenance schedules.  
Servomotors  
• Recommended Periodic Maintenance  
Bearings:  
Reduction gear: 20,000 hours  
Oil seal: 5,000 hours  
20,000 hours  
Application Conditions: Ambient Servomotor operating temperature of 40°C, within allowable shaft  
load, rated operation (rated torque and r/m), installed as described in oper-  
ation manual.  
• The radial loads during operation (rotation) on timing pulleys and other components contacting  
belts is twice the still load. Consult with the belt and pulley manufacturers and adjust designs and  
system settings so that the allowable shaft load is not exceeded even during operation. If a Servo-  
motor is used under a shaft load exceeding the allowable limit, the Servomotor shaft can break, the  
bearings can burn out, and other problems can occur.  
Servo Drivers  
• Recommended Periodic Maintenance  
Aluminum analytical capacitors: 50,000 hours, at an ambient Servo Driver operating temperature  
of 40°C, rated operation (rated torque), installed as described in  
operation manual.  
Axle fan: 30,000 hours, at an ambient Servo Driver operating temperature of 40°C and an ambient  
humidity of 65%.  
5-45  
Troubleshooting  
Chapter 5  
Absolute encoder backup battery: 50,000 hours, at an ambient Servo Driver operating tempera-  
ture of 20°C.  
• When using the Servo Driver under the continuous operation mode, cool the Servo Driver with fans  
and air conditioners to maintain an ambient operating temperature below 40°C.  
• The life of aluminum analytical capacitors is greatly affected by the ambient operating temperature.  
Generally speaking, an increase of 10°C in the ambient operating temperature will reduce capacitor  
life by 50%. We recommend that ambient operating temperature be lowered and the power supply  
time be reduced as much as possible to lengthen the maintenance times for Servo Drivers.  
• If the Servomotor or Servo Driver is not to be used for a long time, or if they are to be used under  
conditions worse than those described above, a periodic inspection schedule of five years is recom-  
mended. Please consult with OMRON to determine whether or not components need to be  
replaced.  
5-46  
Troubleshooting  
Chapter 5  
5-6 Replacing the Absolute Encoder Battery (ABS)  
Replace the absolute encoder backup battery if it has been used for at least five years,  
or if an A.930 (battery warning) warning or an A.830 (battery error) alarm occurs.  
Battery Model and Specifications  
Item  
Specification  
Absolute Encoder Backup Battery Unit  
Name  
Model numbers  
Battery model  
Battery voltage  
Current capacity  
R88A-BAT01W  
ER3V (Toshiba)  
3.6 V  
1,000 mA·h  
Note Refer to 2-8 Absolute Encoder Backup Battery Specifications for dimensions and wiring  
details.  
Battery Replacement Procedure  
• Replace the battery using the following replacement procedure. After replacing the battery, if a  
A.810 (backup error) alarm does not occur, the replacement is completed. If an A.810 alarm  
occurs, you need to set up the absolute encoder.  
1.Turn ON the power supply to the Servo Driver's control circuit.  
Turn ON the power supply to the Servo Driver's control circuit only. This will supply power to  
the absolute encoder.  
Note If an A.930 warning occurs when the power supply is ON, turn OFF only the main circuit  
power supply after completing operation and then perform the following replacement proce-  
dure. If the control circuit power supply is turned OFF, the absolute data in the absolute en-  
coder may be inadvertently cleared.  
2.Replace the battery.  
• Remove the old battery from the absolute encoder battery cable's battery holder, and discon-  
nect the connector to the battery from the battery connector.  
• Place the new battery in the battery holder, and insert the connector correctly into battery con-  
nector.  
3.Turn the power supply OFF, then ON again.  
• After correctly connecting the new battery, turn OFF the power supply to the Servo Driver, then  
turn it ON again.  
• If a Servo Driver alarm is not displayed, battery replacement is completed.  
Note If A.810 (backup error) is displayed, you need to set up the absolute encoder. Refer to 4-2-  
2 Absolute Encoder Setup and Battery Changes, and perform the setup and make the initial  
settings for the Motion Control Unit.  
5-47  
Troubleshooting  
Chapter 5  
5-48  
Chapter 6  
Appendix  
6-1 Connection Examples  
6-2 Parameter Setting Tables  
6-3 Restrictions  
Appendix  
Chapter 6  
6-1 Connection Examples  
Connection Example: Connecting to SYSMAC CS1W-MCH71, CJ1W-  
MCH71, CJ1W-NCF71 Position Control Units  
Main circuit power supply  
OFF  
ON  
NFB  
MC  
R
S
T
Main circuit contact  
Surge killer  
SUP  
3-phase 200/230 V AC 50/60Hz  
MC  
X1  
CJ1W-NCF71  
CJ1W-MCH71  
CS1W-MCH71  
Class-3 ground  
(100 or less)  
R88D-WN@-ML2  
TB  
L1C  
L2C  
L1  
MECHATROLINK-II  
Communications Cable  
MC  
CN6A/B  
FNY-W6003-@  
L2  
L3  
MLK  
DC reactor  
Terminating Resistor  
FNY-W6022  
B2  
B3  
R88M-W@  
Power Cable  
R88A-CAW@  
R88A-CAW@R  
Red  
White  
Blue  
CN1  
U
V
W
M
6
+24VI  
24 V DC  
Green/Yellow  
7
8
POT  
NOT  
9
DEC  
10  
11  
12  
EXT1  
EXT2  
EXT3  
Encoder Cable  
R88A-CRW@  
CN2  
R88A-CAW@R  
E
24 V DC  
X1  
3
4
ALM  
ALMCOI  
Note 1. The example shows a three-phase, 200-V AC input to the Servo Driver for the main circuit  
power supply. Be sure to provide a power supply and wiring conforming to the power supply  
specifications for the Servo Driver in use.  
Note 2. Incorrect signal wiring can cause damage to Units and the Servo Driver.  
Note 3. Leave unused signal lines open and do not wire them.  
Note 4. The diode recommended for surge absorption is the ERB44-02 (Fuji Electric).  
6-2  
Appendix  
Chapter 6  
6-2 Parameter Setting Tables  
Function Selection Parameters (from Pn000)  
Param- Param- Digit  
Name  
Setting  
Explanation  
Default  
setting  
Unit  
Setting Restart  
Set  
eter No.  
eter  
No.  
range power? value  
name  
Pn000  
Func-  
tion  
0
Reverse rota- 0  
tion  
CCW direction is taken for posi- 0000  
tive command  
---  
---  
Yes  
0@0@  
selec-  
tion  
1
CW direction is taken for positive  
command  
basic  
switches  
2 to 3  
Not used.  
1
2
Not used.  
0
(Do not change setting.)  
Unit No. set- 0 to F  
ting  
Servo Driver communications  
unit number setting (necessary  
for multiple Servo Driver connec-  
tions when using personal com-  
puter monitoring software)  
3
0
Not used.  
0
0
(Do not change setting.)  
Pn001  
Func-  
tion  
Stop selec-  
tion if an  
alarm occurs  
when Servo-  
motor is OFF  
Servomotor stopped by dynamic 0002  
brake.  
---  
---  
Yes  
0@@@  
selec-  
tion  
1
2
0
Dynamic brake OFF after Servo-  
motor stopped  
applica-  
tion  
switches  
1
Servomotor stopped with free  
run  
1
Stop selec-  
tion when  
drive prohib-  
ited is input  
Stop according to Pn001.0 set-  
ting (release Servomotor after  
stopping)  
1
2
0
1
Stop Servomotor using torque  
set in Pn406, and lock Servomo-  
tor after stopping  
Stop Servomotor using torque  
set in Pn406, and release Servo-  
motor after stopping  
2
AC/DC  
power input  
selection  
AC power supply: DC power  
supplied from L1, L2, (L3) termi-  
nals  
DC power supply: DC power  
from +1, terminals  
3
0
Not used.  
0
0
(Do not change setting.)  
Pn002  
Func-  
tion  
Torque com-  
mand input  
change (dur-  
ing speed  
control)  
Do not use option command  
value.  
0000  
---  
---  
Yes  
0@@@  
selec-  
tion  
1
2
Use option command value 1 as  
the torque limit value.  
applica-  
tion  
switches  
2
Use option command value 1 as  
the torque feed forward com-  
mand value.  
3
Use option command value 1 or  
2 as the torque limit value,  
according to the forward and  
reverse torque limits that are  
specified.  
1
Speed com-  
mand input  
change (dur-  
ing torque  
control)  
0
1
Do not use option command  
value.  
Use option command value 1 as  
the speed limit value.  
2
3
Operation  
0
1
Use as absolute encoder  
switch when  
using abso-  
lute encoder  
Use as incremental encoder  
Not used.  
0
(Do not change setting.)  
6-3  
Appendix  
Chapter 6  
Param- Param- Digit  
Name  
Setting  
Explanation  
Default  
setting  
Unit  
Setting Restart  
Set  
eter No.  
eter  
No.  
range power? value  
name  
Pn004  
Func-  
tion  
0
1
2
3
Not used.  
Not used.  
Not used.  
Not used.  
0
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
0110  
---  
---  
Yes  
011@  
1
1
0
selec-  
tion  
applica-  
tion  
switches  
4
Pn006  
Func-  
tion  
0 to 1 Analog moni- 00  
tor 1 (AM)  
Servomotor rotation speed: 1V/ 0002  
1000 r/min  
---  
---  
---  
0@@@  
selec-  
tion  
signal selec-  
01  
Speed command: 1 V/1000 r/min  
tion  
applica-  
tion  
switches  
6
02  
Torque command: gravity com-  
pensation torque (Pn422)  
(1 V per 100%)  
03  
04  
Position deviation: 0.05 V/1 com-  
mand unit  
Position amp error (after elec-  
tronic gear) (0.05 V per encoder  
pulse unit)  
05  
Position command speed  
(1 V/1,000 r/min)  
06  
07  
08  
Not used.  
Not used.  
Positioning completed command  
(Positioning completed: 5 V;  
positioning not completed: 0 V)  
09  
0A  
Speed feed forward  
(1 V/1,000 r/min)  
Torque feed forward  
(1 V per 100%)  
0B to 1F Not used.  
2
3
Analog moni-  
tor 1 signal  
multiplier  
0
1
2
3
4
0
1x  
10x  
selection  
100x  
1/10x  
1/100x  
Not used.  
(Do not change setting.)  
6-4  
Appendix  
Chapter 6  
Param- Param- Digit  
Name  
Setting  
Explanation  
Default  
setting  
Unit  
Setting Restart  
Set  
eter No.  
eter  
No.  
range power? value  
name  
Pn007  
Func-  
tion  
0 to 1 Analog moni- 00  
tor 2 (NM)  
Servomotor rotation speed:  
1V/1000 r/min  
0000  
---  
---  
---  
0@@@  
selec-  
tion  
signal selec-  
01  
Speed command: 1 V/1000 r/min  
tion  
applica-  
tion  
switches  
7
02  
Torque command: gravity com-  
pensation torque (Pn422)  
(1 V per 100%)  
03  
04  
Position deviation: 0.05 V/1 com-  
mand unit  
Position amp error (after elec-  
tronic gear) (0.05 V per encoder  
pulse unit)  
05  
Position command speed  
(1 V/1,000 r/min)  
06  
07  
08  
Not used.  
Not used.  
Positioning completed command  
(Positioning completed: 5 V;  
positioning not completed: 0 V)  
09  
0A  
Speed feed forward  
(1 V/1,000 r/min)  
Torque feed forward (1 V per  
100%)  
0B to 1F Not used.  
2
Analog moni-  
tor 2 signal  
multiplier  
0
1
2
3
4
0
0
1x  
10x  
selection  
100x  
1/10x  
1/100x  
3
0
Not used.  
(Do not change setting.)  
Pn008  
Func-  
tion  
Lowered bat-  
tery voltage  
alarm/warn-  
ing selection  
Regard battery voltage drop as  
alarm (A.830).  
4000  
---  
---  
Yes  
4@0@  
selec-  
tion  
1
Regard battery voltage drop as  
warning (A.930).  
applica-  
tion  
switches  
8
1
2
Not used.  
0
0
1
(Do not change setting.)  
Warnings detected.  
Warning  
detection  
selection  
Warnings not detected.  
3
Not used.  
4
(Do not change setting.)  
Servo Gain Parameters (from Pn100)  
Param- Parameter  
Explanation (See note 1.)  
Default  
setting  
Unit  
Setting Restart  
Set  
eter No.  
name  
range power? value  
Digit  
No.  
Name Setting Explanation (See note 2.)  
Pn100  
Pn101  
Speed loop Adjusts speed loop response.  
gain  
800  
× 0.1 Hz  
10 to  
---  
---  
20000  
Speed loop Speed loop integral time constant  
integration  
constant  
2000  
× 0.01 ms 15 to  
51200  
Pn102  
Pn103  
Pn104  
Pn105  
Position  
Adjusts position loop response.  
400  
× 0.1/s  
%
10 to  
---  
---  
---  
---  
loop gain  
20000  
Inertia ratio Set using the ratio between the machine system inertia and 300  
the Servomotor rotor inertia.  
0 to  
20000  
Speed loop Adjusts speed loop response (enabled by gain switching  
gain 2 input).  
800  
× 0.1 Hz  
10 to  
20000  
Speed loop Speed loop integral time constant (enabled by gain switching 2000  
integration  
constant 2  
× 0.01 ms 15 to  
input).  
51200  
Pn106  
Position  
Adjusts position loop response (enabled by gain switching  
400  
× 0.1/s  
10 to  
20000  
---  
loop gain 2 input).  
6-5  
Appendix  
Chapter 6  
Param- Parameter  
Explanation (See note 1.)  
Name Setting Explanation (See note 2.)  
Default  
setting  
Unit  
Setting Restart  
Set  
eter No.  
name  
range power? value  
Digit  
No.  
Pn107  
Pn108  
Pn109  
Bias rota-  
Sets position control bias.  
0
7
0
r/min  
0 to 450 ---  
tional speed  
Bias addi-  
tion band  
Sets the position control bias operation start using deviation  
counter pulse width.  
Command 0 to 250 ---  
unit  
Feed-for-  
ward  
amount  
Position control feed-forward compensation value  
%
0 to 100 ---  
Pn10A  
Pn10B  
Feed-for-  
ward com-  
mand filter  
Sets position control feed-forward command filter.  
0
× 0.01 ms 0 to  
---  
---  
6400  
Speed con-  
trol settings  
0
P control  
switching  
conditions  
0
Sets internal torque com- 0004  
mand value conditions  
(Pn10C).  
---  
---  
0@@@  
1
2
Sets speed command  
value conditions (Pn10d).  
Sets acceleration com-  
mand value conditions  
(Pn10E)  
3
4
Sets deviation pulse value  
conditions (Pn10F)  
No P control switching  
function  
1
2
3
Speed con-  
trol loop  
0
PI control  
Yes  
1
IP control  
switching  
2 to 3  
Not used.  
Position loop  
control  
method  
0
Standard position control  
Less deviation control  
Not used.  
1
2 to 3  
0
Not used.  
(Do not change setting.)  
Pn10C P control  
switching  
Sets level of torque command to switch from PI control to P 200  
control.  
%
0 to 800 ---  
(torque  
command)  
Pn10D P control  
switching  
Sets level of speed command to switch from PI control to P  
control.  
0
0
r/min  
r/min/s  
0 to  
---  
---  
10000  
(speed com-  
mand)  
Pn10E  
P control  
switching  
(accelera-  
tion com-  
mand)  
Sets level of acceleration command to switch from PI control  
to P control.  
0 to  
30000  
Pn10F  
Pn110  
P control  
switching  
(deviation  
pulse)  
Sets level of deviation pulses to switch from PI control to P  
control.  
10  
Command 0 to  
---  
unit  
10000  
Normal  
autotuning  
switches  
0
1
Normal auto-  
tuning  
2
(Do not change setting.)  
0012  
---  
---  
Yes  
00@@  
method  
Speed feed-  
back com-  
pensation  
function  
0
ON  
1
OFF  
2 to 3  
Not used.  
selection  
2
3
Not used.  
Not used.  
0
0
(Do not change setting.)  
(Do not change setting.)  
Pn111  
Speed feed- Adjusts speed loop feedback gain.  
100  
%
1 to 500 ---  
back com-  
pensating  
gain  
Pn119  
Pn11A  
Pn11E  
Not used.  
Not used.  
Not used.  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
500  
---  
---  
---  
---  
---  
---  
---  
---  
---  
500  
1000  
1000  
1000  
1000  
6-6  
Appendix  
Chapter 6  
Param- Parameter  
Explanation (See note 1.)  
Name Setting Explanation (See note 2.)  
Default  
setting  
Unit  
Setting Restart  
Set  
eter No.  
name  
range power? value  
Digit  
No.  
Pn11F  
Position  
integral time  
constant  
Position loop integral time constant  
0
× 0.1 ms  
0 to  
50000  
---  
Pn12B  
Not used.  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
400  
2000  
400  
400  
2000  
400  
0
---  
---  
---  
---  
---  
---  
ms  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
400  
Pn12C Not used.  
Pn12D Not used.  
2000  
400  
Pn12E  
Pn12F  
Pn130  
Pn131  
Not used.  
Not used.  
Not used.  
400  
2000  
400  
Gain switch- Switching time from No. 1 gain to No. 2 gain  
ing time 1  
0 to  
65535  
Pn132  
Pn135  
Gain switch- Switching time from No. 2 gain to No. 1 gain  
ing time 2  
0
0
ms  
ms  
0 to  
---  
---  
65535  
Gain switch- The time from when gain switching condition A is satisfied  
0 to  
65535  
ing waiting  
time 1  
until switching from the No. 1 gain to the No. 2 gain begins.  
Pn136  
Pn139  
Gain switch- The time from when gain switching condition B is satisfied  
0
ms  
---  
0 to  
---  
ing waiting  
time 2  
until switching from the No. 2 gain to the No. 1 gain begins.  
65535  
Automatic  
gain  
changeover  
related  
0
Gain switch-  
ing selection  
switch  
0
1
Manual gain switching  
0000  
---  
Yes  
0@@@  
Automatic switching pat-  
tern 1  
Automatic switching from  
No. 1 gain to No. 2 gain  
when gain switching condi-  
tion A is satisfied.  
switches 1  
Automatic switching from  
No. 2 gain to No. 1 gain  
when gain switching condi-  
tion B is satisfied.  
2 to 4  
0
Not used.  
1
Gain switch-  
ing condition  
A
Positioning completed out-  
put 1 (INP1) ON  
1
2
3
4
Positioning completed out-  
put 1 (INP1) OFF  
Positioning completed out-  
put 2 (INP2) ON  
Positioning completed out-  
put 2 (INP2) OFF  
The position command fil-  
ter output is 0, and also  
the position command  
input is 0.  
5
The position command  
input is not 0.  
2
3
Gain switch- 0 to 5  
Same as above.  
ing condition  
B
Not used.  
0
(Do not change setting.)  
Pn144  
Pn150  
Not used.  
(Do not change setting.)  
1000  
0210  
---  
---  
---  
---  
---  
1000  
Predictive  
control  
selection  
switches  
0
Predictive  
control selec-  
tion  
0
Predictive control not  
used.  
Yes  
02@@  
1
2
Predictive control used.  
Not used. (Do not change  
setting.)  
1
Predictive  
control type  
0
1
Predictive control for track-  
ing  
Predictive control for posi-  
tioning  
2
3
Not used.  
Not used.  
2
0
(Do not change setting.)  
(Do not change setting.)  
6-7  
Appendix  
Chapter 6  
Param- Parameter  
Explanation (See note 1.)  
Name Setting Explanation (See note 2.)  
Default  
setting  
Unit  
Setting Restart  
Set  
eter No.  
name  
range power? value  
Digit  
No.  
Pn151  
Predictive  
control  
accelera-  
tion/deceler-  
ation gain  
Adjusts acceleration and deceleration response for predic-  
tive control.  
100  
%
%
0 to 300 ---  
0 to 300 ---  
Pn152  
Predictive  
control  
weighting  
ratio  
Adjusts position deviation for predictive control.  
100  
Pn1A0  
Pn1A1  
Pn1A2  
Servo rigid- Adjusts the Servo rigidity for the No. 1 gain.  
ity  
60  
60  
72  
%
%
1 to 500 ---  
1 to 500 ---  
Servo rigid- Adjusts the Servo rigidity for the No. 2 gain.  
ity 2  
Speed feed- Sets the filter time constant for No. 1 gain speed feedback.  
× 0.01 ms 30 to  
---  
---  
---  
---  
back filter  
time con-  
stant  
3200  
Pn1A3  
Pn1A4  
Pn1A7  
Speed feed- Sets the filter time constant for No. 2 gain speed feedback.  
72  
36  
× 0.01 ms 30 to  
back filter  
time con-  
stant 2  
3200  
Torque com- Sets the filter time constant for the torque command.  
× 0.01 ms 0 to  
mand filter  
time con-  
stant 2  
2500  
Utility con-  
trol switches  
0
Integral com-  
pensation  
processing  
0
1
2
Integral compensation pro- 1121  
---  
---  
112@  
cessing not executed.  
Integral compensation pro-  
cessing executed.  
Integral compensation is  
executed for No. 1 gain  
and not for No. 2 gain for  
less-deviation gain switch-  
ing.  
3
Integral compensation is  
executed for No. 2 gain  
and not for No. 1 gain for  
less-deviation gain switch-  
ing.  
1
2
3
Not used.  
Not used.  
Not used.  
2
1
1
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
Pn1A9  
Utility inte-  
gral gain  
Adjusts the auxiliary integral response.  
37  
60  
Hz  
Hz  
0 to 500 ---  
0 to 500 ---  
Pn1AA Position pro- Adjusts the position proportional response.  
portional  
gain  
Pn1AB Speed inte- Adjusts the speed integral response.  
gral gain  
0
Hz  
Hz  
0 to 500 ---  
Pn1AC Speed pro- Adjusts the speed proportional response.  
120  
0 to  
---  
---  
portional  
gain  
2000  
Pn1B5  
Not used.  
(Do not change setting.)  
150  
---  
---  
150  
6-8  
Appendix  
Chapter 6  
Position Control Parameters (from Pn200)  
Param- Parame-  
eter No. ter name  
Explanation  
Default  
setting  
Unit  
Setting  
range  
Restart  
Set  
power? value  
Digit  
No.  
Name  
Setting  
Explanation  
Pn200  
Not used.  
0
Not used.  
Not used.  
Not used.  
Not used.  
0
0
1
0
(Do not change setting.) 0100  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
---  
---  
Yes  
0100  
1
2
3
Pn205  
Pn207  
Absolute  
encoder  
multi-turn  
limit set-  
ting  
Sets the multi-turn limit for when a Servomotor with an  
absolute encoder is used.  
65535  
Rotation  
---  
0 to 65535  
Yes  
Yes  
Position  
control  
settings 2  
0
1
2
Not used.  
Not used.  
0
1
0
1
(Do not change setting.) 0010  
(Do not change setting.)  
Disabled  
---  
@@10  
Backlash  
compensa-  
tion selec-  
tion  
Compensates to for-  
ward rotation side.  
2
0
Compensates to reverse  
rotation side.  
3
INP 1 output  
timing  
When the position devia-  
tion is below the INP1  
range.  
1
2
When the position devia-  
tion is below the INP1  
range and also the com-  
mand after the position  
command filter is 0.  
When the absolute value  
for the position deviation  
is below the INP1 range  
(Pn522) and also the  
position command input  
is 0.  
Pn209  
Pn20A  
Pn20E  
Not used. (Do not change setting.)  
Not used. (Do not change setting.)  
0
---  
---  
---  
---  
---  
---  
0
32768  
Yes  
Yes  
32768  
Electronic Sets the pulse rate for the command pulses and Servo  
gear ratio Servomotor travel distance.  
4
1 to  
1073741824  
G1  
(numera-  
tor)  
0.001 Pn20E/Pn210 1000  
Pn210  
Electronic  
gear ratio  
G2  
(denomi-  
nator)  
1
---  
1 to  
1073741824  
Yes  
Pn212  
Pn214  
Encoder  
divider  
rate  
Sets the number of output pulses per Servomotor rota-  
tion.  
1000  
0
Pulses/  
rotation  
16 to  
Yes  
---  
1073741824  
Backlash Mechanical system backlash amount (the mechanical  
Command 32767 to  
unit 32767  
compen-  
sation  
amount  
gap between the drive shaft and the shaft being driven)  
Pn215  
Backlash Sets the backlash compensation time constant.  
0
× 0.01 ms 0 to 65535  
---  
compen-  
sation  
time con-  
stant  
Pn216  
Pn217  
Pn281  
Not used. (Do not change setting.)  
Not used. (Do not change setting.)  
Not used. (Do not change setting.)  
0
---  
---  
---  
---  
---  
---  
---  
0
0
---  
0
20  
Yes  
20  
6-9  
Appendix  
Chapter 6  
Speed Control Parameters (from Pn300)  
Param- Parameter  
Explanation  
Default  
setting  
Unit  
Setting Restart  
Set  
eter No.  
name  
range power? value  
Digit  
No.  
Name  
Setting  
Explanation  
Pn300  
Pn301  
Pn302  
Pn303  
Pn304  
Not used.  
Not used.  
Not used.  
Not used.  
Jog speed  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
600  
100  
200  
300  
500  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
600  
100  
200  
300  
Sets rotation speed during jog operation.  
r/min  
0 to  
10000  
Pn305  
Pn306  
Soft start  
accelera-  
tion time  
Sets acceleration time during speed control soft start.  
Sets deceleration time during speed control soft start.  
(Do not change setting.)  
0
0
ms  
0 to  
---  
---  
10000  
Soft start  
decelera-  
tion time  
ms  
---  
0 to  
10000  
Pn307  
Pn308  
Not used.  
40  
0
---  
---  
---  
40  
Speed feed- Sets constant during filter of speed feedback.  
× 0.01 ms 0 to  
65535  
back filter  
time con-  
stant  
Pn310  
Vibration  
detection  
switches  
0
Vibration  
detection  
selection  
0
1
2
Vibration detection not  
used.  
0000  
---  
---  
---  
000@  
Gives warning (A.911)  
when vibration is detected.  
Gives warning (A.520)  
when vibration is detected.  
1
2
3
Not used.  
Not used.  
Not used.  
0
0
0
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
Pn311  
Pn312  
Vibration  
detection  
sensitivity  
Sets the vibration detection sensitivity.  
100  
50  
%
50 to  
500  
---  
---  
Vibration  
detection  
level  
Sets the vibration detection level  
r/min  
0 to  
5000  
Torque Control Parameters (from Pn400)  
Param- Parameter  
Explanation  
Default  
setting  
Unit  
Setting Restart  
Set  
eter No.  
name  
range power? value  
Digit  
No.  
Name  
Setting  
Explanation  
Pn400  
Pn401  
Not used.  
(Do not change setting.)  
30  
40  
---  
---  
---  
---  
30  
1st step 1st Sets the filter time constant for internal torque commands.  
× 0.01 ms 0 to  
torque com-  
mand filter  
time con-  
stant  
65535  
Pn402  
Pn403  
Pn404  
Forward  
Forward rotation output torque limit (rated torque ratio).  
Reverse rotation output torque limit (rated torque ratio).  
350  
350  
100  
%
%
%
0 to 800 ---  
0 to 800 ---  
0 to 800 ---  
torque limit  
Reverse  
torque limit  
Forward  
rotation  
external cur-  
rent limit  
Output torque limit during input of forward rotation current  
limit (rated torque ratio)  
Pn405  
Pn406  
Reverse  
Output torque limit during input of reverse rotation current  
limit (rated torque ratio)  
100  
%
%
0 to 800 ---  
0 to 800 ---  
rotation  
external cur-  
rent limit  
Emergency Deceleration torque when an error occurs (rated torque ratio) 350  
stop torque  
6-10  
Appendix  
Chapter 6  
Param- Parameter  
Explanation  
Setting  
Default  
setting  
Unit  
Setting Restart  
Set  
eter No.  
name  
range power? value  
Digit  
No.  
Name  
Explanation  
Pn407  
Pn408  
Speed limit Sets the speed limit in torque control mode.  
3000  
0000  
r/min  
0 to  
---  
---  
10000  
Torque com- 0  
mand set-  
ting  
Selectsnotch  
filter 1 func-  
tion.  
0
1
Notch filter 1 not used.  
---  
---  
0@0@  
Notch filter 1 used for  
torque commands.  
1
2
Not used.  
0
0
1
(Do not change setting.)  
Notch filter 2 not used.  
Selectsnotch  
filter 2 func-  
tion.  
Notch filter 2 used for  
torque commands.  
3
Not used.  
0
(Do not change setting.)  
Pn409  
Pn40A  
Notch filter  
1 frequency  
Sets notch filter 1 frequency for torque command.  
2000  
70  
Hz  
50 to  
2000  
---  
---  
---  
---  
---  
Notch filter  
1 Q value  
Sets Q value of notch filter 1.  
× 0.01  
Hz  
50 to  
1000  
Pn40C Notch filter  
2 frequency  
Sets the notch filter 2 frequency for torque commands.  
Sets Q value of notch filter 2.  
2000  
70  
50 to  
2000  
Pn40D Notch filter  
2 Q value  
× 0.01  
Hz  
50 to  
1000  
Pn40F  
2nd step  
2nd torque  
command  
filter fre-  
quency  
Sets the filter frequency for internal torque commands.  
2000  
100 to  
2000  
Pn410  
Pn411  
2nd step  
Sets the torque command filter Q value.  
70  
0
× 0.01  
µs  
50 to  
1000  
---  
---  
2nd torque  
command  
filter Q value  
3rd step  
Sets the filter time constant for internal torque commands.  
0 to  
65535  
torque com-  
mand filter  
time con-  
stant  
Pn412  
1st step 2nd Sets the filter time constant for No. 2 gain internal torque  
100  
× 0.01 ms 0 to  
65535  
---  
torque com- commands.  
mand filter  
time con-  
stant  
Pn413  
Pn414  
Pn420  
Not used.  
Not used.  
(Do not change setting.)  
(Do not change setting.)  
100  
100  
100  
---  
---  
%
---  
---  
---  
---  
100  
100  
---  
Damping for Sets the vibration suppression value while stopped.  
10 to  
100  
vibration  
suppres-  
sion on  
stopping  
Pn421  
Vibration  
suppres-  
sion start-  
ing time  
Sets the time from when the position command becomes 0 1000  
until the stopped vibration suppression begins.  
ms  
0 to  
65535  
---  
Pn422  
Pn456  
Gravity  
Sets the gravity compensation torque.  
0
× 0.01%  
20000 ---  
to  
compensa-  
tion torque  
20000  
Sweep  
Sets the sweep torque command amplitude.  
15  
%
1 to 800 ---  
torque com-  
mand ampli-  
tude  
6-11  
Appendix  
Chapter 6  
Sequence Parameters (from Pn500)  
Param- Parame-  
eter No. ter name  
Explanation  
Default  
setting  
Unit  
Setting  
range  
Restart  
Set  
power? value  
Digit  
No.  
Name  
Setting  
Explanation  
Pn501  
Pn502  
Not used. (Do not change setting.)  
10  
---  
---  
---  
---  
10  
Rotation  
Sets the number of rotations for the Servomotor rotation 20  
r/min  
1 to 10000  
speed for detection output (TGON).  
motor  
rotation  
detection  
Pn503  
Speed  
Sets the allowable fluctuation (number of rotations) for the 10  
speed conformity output (VCMP).  
r/min  
0 to 100  
---  
confor-  
mity sig-  
nal output  
width  
Pn506  
Pn507  
Brake tim- Sets the delay from the brake command to the Servomo-  
0
× 10 ms  
0 to 50  
---  
---  
ing 1  
tor turning OFF.  
Brake  
Sets the number of rotations for outputting the brake com- 100  
r/min  
0 to 10000  
command mand.  
speed  
Pn508  
Pn509  
Brake tim- Sets the delay time from the Servomotor turning OFF to 50  
× 10 ms  
10 to 100  
---  
---  
ing 2  
the brake command output.  
Momen-  
tary hold  
time  
Sets the time during which alarm detection is disabled  
when a power failure occurs.  
20  
ms  
20 to 1000  
Pn50A  
Input sig-  
nal selec-  
tions 1  
0
1
2
3
Not used.  
Not used.  
Not used.  
1
8
8
0
(Do not change setting.) 1881  
(Do not change setting.)  
---  
---  
Yes  
@881  
(Do not change setting.)  
POT (for-  
ward drive  
prohibited  
input) sig-  
nal Input  
terminal  
Allocated to CN1, pin 13:  
Valid for low input  
1
2
3
4
5
6
Allocated to CN1, pin 7:  
Valid for low input  
Allocated to CN1, pin 8:  
Valid for low input  
allocation  
Allocated to CN1, pin 9:  
Valid for low input  
Allocated to CN1, pin 10:  
Valid for low input  
Allocated to CN1, pin 11:  
Valid for low input  
Allocated to CN1, pin 12:  
Valid for low input  
7
8
9
Always enabled.  
Always disabled.  
Allocated to CN1, pin 13:  
Valid for high input  
A
B
C
D
E
F
Allocated to CN1, pin 7:  
Valid for high input  
Allocated to CN1, pin 8:  
Valid for high input  
Allocated to CN1, pin 9:  
Valid for high input  
Allocated to CN1, pin 10:  
Valid for high input  
Allocated to CN1, pin 11:  
Valid for high input  
Allocated to CN1, pin 12:  
Valid for high input  
6-12  
Appendix  
Chapter 6  
Param- Parame-  
eter No. ter name  
Explanation  
Setting  
Default  
setting  
Unit  
Setting  
range  
Restart  
Set  
power? value  
Digit  
No.  
Name  
Explanation  
Pn50B  
Input sig-  
nal selec-  
tions 2  
0
NOT  
0 to F  
Same as Pn50A.3.  
NOT (reverse drive pro-  
hibited) signal allocation  
8882  
---  
---  
Yes  
888@  
(reverse  
drive prohib-  
ited input)  
signal Input  
terminal  
allocation  
1
2
3
0
1
2
3
0
1
2
3
0
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
Not used.  
8
8
8
8
8
8
8
8
8
8
8
0
1
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
Pn50C Input sig-  
nal selec-  
(Do not change setting.) 8888  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.) 8888  
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
---  
---  
---  
---  
---  
---  
Yes  
Yes  
Yes  
8888  
tions 3  
Pn50D Input sig-  
nal selec-  
8888  
tions 4  
Pn50E  
Output  
signal  
selec-  
tions 1  
INP1 (posi-  
tioning com-  
pleted 1)  
signal out-  
put terminal  
allocation  
Not used.  
0000  
@@@@  
Allocated to CN1 pins 1,  
2
2
Allocated to CN1 pins  
23, 24  
3
Allocated to CN1 pins  
25, 26  
1
2
VCMP  
0 to 3  
Same as Pn50E.0.  
(speed con-  
formity) sig-  
nal output  
terminal  
VCMP (speed coinci-  
dence) signal allocation  
allocation  
TGON (ser- 0 to 3  
vomotor  
rotation  
detection)  
Same as Pn50E.0.  
TGON (Servomotor rota-  
tion detection) signal  
allocation  
signal out-  
put terminal  
allocation  
3
0
1
READY  
0 to 3  
Same as Pn50E.0.  
READY (servo ready)  
signal allocation  
(servo  
ready) sig-  
nal output  
terminal  
allocation  
Pn50F  
Output  
signal  
selec-  
tions 2  
CLIMT (cur- 0 to 3  
rent limit  
detection)  
signal out-  
put terminal  
allocation  
Same as Pn50E.0.  
CLIMT (current limit  
detection) signal alloca-  
tion  
0100  
---  
---  
Yes  
@@@@  
VLIMT  
0 to 3  
Same as Pn50E.0.  
VLIMT (speed limit  
detection) signal alloca-  
tion  
(speed limit  
detection)  
signal out-  
put terminal  
allocation  
2
3
BKIR (brake 0 to 3  
interlock)  
Same as Pn50E.0.  
BKIR (brake interlock)  
signal allocation.  
signal out-  
put terminal  
allocation  
WARN  
0 to 3  
Same as Pn50E.0.  
WARN (warning) signal  
allocation  
(warning)  
signal out-  
put terminal  
allocation  
6-13  
Appendix  
Chapter 6  
Param- Parame-  
eter No. ter name  
Explanation  
Setting  
Default  
setting  
Unit  
Setting  
range  
Restart  
Set  
power? value  
Digit  
No.  
Name  
Explanation  
Pn510  
Output  
signal  
selec-  
tions 3  
0
INP2 (posi- 0 to 3  
tioning com-  
pleted 2)  
Same as Pn50E.0.  
INP2 (positioning com-  
pleted 2) signal alloca-  
tion  
0000  
---  
---  
Yes  
000@  
signal out-  
put terminal  
allocation  
1
2
3
Not used.  
Not used.  
Not used.  
0
0
0
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
6-14  
Appendix  
Chapter 6  
Param- Parame-  
eter No. ter name  
Explanation  
Setting  
Default  
setting  
Unit  
Setting  
range  
Restart  
Set  
power? value  
Digit  
No.  
Name  
Explanation  
Pn511  
Input sig-  
nal selec-  
tions 5  
0
DEC signal  
input termi-  
nal alloca-  
tion  
0
1
2
3
4
5
6
Allocated to CN1, pin 13: 6543  
Valid for low input  
---  
---  
Yes  
@@@@  
Allocated to CN1, pin 7:  
Valid for low input  
Allocated to CN1, pin 8:  
Valid for low input  
Allocated to CN1, pin 9:  
Valid for low input  
Allocated to CN1, pin 10:  
Valid for low input  
Allocated to CN1, pin 11:  
Valid for low input  
Allocated to CN1, pin 12:  
Valid for low input  
7
8
9
Always enabled.  
Always disabled.  
Allocated to CN1, pin 13:  
Valid for high input  
A
B
C
D
E
F
Allocated to CN1, pin 7:  
Valid for high input  
Allocated to CN1, pin 8:  
Valid for high input  
Allocated to CN1, pin 9:  
Valid for high input  
Allocated to CN1, pin 10:  
Valid for high input  
Allocated to CN1, pin 11:  
Valid for high input  
Allocated to CN1, pin 12:  
Valid for high input  
1
EXT1 sig-  
nal input ter-  
minal  
0 to 3  
4
Always disabled.  
Allocated to CN1, pin 10:  
Valid for low input  
allocation  
5
6
Allocated to CN1, pin 11:  
Valid for low input  
Allocated to CN1, pin 12:  
Valid for low input  
7
Always enabled.  
Always disabled.  
Always disabled.  
8
9 to C  
D
Allocated to CN1, pin 10:  
Valid for high input  
E
Allocated to CN1, pin 11:  
Valid for high input  
F
Allocated to CN1, pin 12:  
Valid for high input  
2
3
EXT2 sig-  
nal input ter-  
minal  
0 to F  
Same as for Pn511.1.  
EXT2 signal allocation  
allocation  
EXT3 sig-  
nal input ter-  
minal  
0 to F  
Same as for Pn511.1.  
EXT3 signal allocation  
allocation  
6-15  
Appendix  
Chapter 6  
Param- Parame-  
eter No. ter name  
Explanation  
Setting  
Default  
setting  
Unit  
Setting  
range  
Restart  
Set  
power? value  
Digit  
No.  
Name  
Explanation  
Pn512  
Output  
signal  
reverse  
0
Output sig-  
nal reverse  
for CN1 pins  
1, 2  
0
1
Not reversed.  
Reversed.  
0000  
---  
---  
Yes  
0@@@  
1
2
3
Output sig-  
nal reverse  
for CN1 pins  
23, 24  
0
1
Not reversed.  
Reversed.  
Output sig-  
nal reverse  
for CN1 pins  
25, 26  
0
1
Not reversed.  
Reversed.  
Not used.  
0
(Do not change setting.)  
Pn513  
Pn515  
Pn51B  
Pn51E  
Not used. (Do not change setting.)  
Not used. (Do not change setting.)  
Not used. (Do not change setting.)  
0321  
8888  
1000  
---  
---  
---  
%
---  
---  
---  
Yes  
Yes  
---  
0321  
8888  
1000  
Deviation Sets the detection level for the deviation counter overflow 100  
10 to 100  
---  
counter  
overflow  
warning  
level  
warning.  
(A warning is output for Pn520 × Pn51E/100 or higher.)  
Pn520  
Pn522  
Pn524  
Pn526  
Deviation Sets the deviation counter overflow alarm detection level. 262144 Command 1 to  
---  
---  
---  
---  
counter  
overflow  
level  
Pn520 (Max. feed speed [command unit/s]/Pn102) × 2.0  
unit  
1073741823  
Position-  
ing com-  
pleted  
Setting range for positioning completed range 1 (INP1)  
3
3
Command 0 to  
unit  
1073741824  
range 1  
Position-  
ing com-  
pleted  
Setting range for positioning completed range 2 (INP2)  
Command 1 to  
unit  
1073741824  
range 2  
Deviation Sets the deviation counter overflow alarm detection level 262144 Command 1 to  
counter  
overflow  
level at  
for Servo ON.  
unit  
1073741823  
Servo-ON  
Pn528  
Pn529  
Deviation Sets the deviation counter overflow warning detection  
100  
%
10 to 100  
---  
---  
counter  
overflow  
warning  
level at  
level for Servo ON.  
Servo-ON  
Speed  
Sets the speed limit for when the Servo turns ON with  
10000  
r/min  
0 to 10000  
limit level position deviation accumulated.  
at Servo-  
ON  
Pn52A  
Pn52F  
Not used. (Do not change setting.)  
Not used. (Do not change setting.)  
20  
---  
---  
---  
---  
---  
---  
20  
FFF  
FFF  
6-16  
Appendix  
Chapter 6  
Param- Parame-  
eter No. ter name  
Explanation  
Setting  
Default  
setting  
Unit  
Setting  
range  
Restart  
Set  
power? value  
Digit  
No.  
Name  
Explanation  
Pn530  
Program  
JOG oper-  
ation  
0
Program  
JOG operat-  
ing pattern  
0
1
2
(Waiting time Pn535 0000  
Forward movement  
Pn531) × Number of  
movement operations  
Pn536  
---  
---  
---  
000@  
related  
switches  
(Waiting time Pn535 →  
Reverse movement  
Pn531) × Number of  
movement operations  
Pn536  
(Waiting time Pn535 →  
Forward movement  
Pn531) × Number of  
movement operations  
Pn536  
(Waiting time Pn535 →  
Reverse movement  
Pn531) × Number of  
movement operations  
Pn536  
3
(Waiting time Pn535 →  
Reverse movement  
Pn531) × Number of  
movement operations  
Pn536  
(Waiting time Pn535 →  
Forward movement  
Pn531) × Number of  
movement operations  
Pn536  
4
5
(Waiting time Pn535 →  
Forward movement  
Pn531 Waiting time  
Pn535 Reverse  
movement Pn531) ×  
Number of movement  
operations Pn536  
(Waiting time Pn535 →  
Reverse movement  
Pn531 Waiting time  
Pn535 Forward  
movement Pn531) ×  
Number of movement  
operations Pn536  
1
2
3
Not used.  
Not used.  
Not used.  
0
0
0
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
Pn531  
Pn533  
Pn534  
Program  
JOG  
Sets the program JOG movement distance.  
32768  
500  
Command 1 to  
---  
---  
---  
unit  
1073741823  
move-  
ment dis-  
tance  
Program  
JOG  
move-  
ment  
speed  
Sets the program JOG operation movement speed.  
r/min  
1 to 10000  
2 to 10000  
Program  
JOG  
Sets the acceleration/deceleration time for program JOG 100  
operation.  
ms  
accelera-  
tion/decel-  
eration  
time  
6-17  
Appendix  
Chapter 6  
Param- Parame-  
eter No. ter name  
Explanation  
Setting  
Default  
setting  
Unit  
Setting  
range  
Restart  
Set  
power? value  
Digit  
No.  
Name  
Explanation  
Pn535  
Pn536  
Program  
Sets the delay time from the program JOG operation start 100  
ms  
0 to 10000  
1 to 1000  
---  
JOG wait- input until operation starts.  
ing time  
Numberof Sets the number of repetitions of the program JOG opera- 1  
Times  
---  
program  
JOG  
movement  
tions.  
Pn540  
Pn550  
Gain limit Sets the gain limit.  
2000  
0
× 0.1 Hz  
× 0.1 V  
10 to 2000  
---  
---  
Analog  
monitor 1  
offset volt-  
age  
Sets the analog monitor 1 offset voltage.  
10000 to  
10000  
Pn551  
Analog  
monitor 2  
offset volt-  
age  
Sets the analog monitor 2 offset voltage.  
0
× 0.1 V  
10000 to  
---  
10000  
Other Parameters (from 600)  
Param- Parame-  
eter No. ter name  
Explanation  
Default  
setting  
Unit  
Setting  
range  
Restart  
Set  
power? value  
Digit  
No.  
Name  
Setting  
Explanation  
Pn600  
Regener- Setting for regeneration resistance load ratio monitoring  
0
× 10 W  
0 to (varies by ---  
model) (See  
note 2.)  
ation  
calculations  
resistor  
capacity  
(See note  
1.)  
Pn800  
Communi-  
cations  
control  
0
MECHA-  
0
1
Normal  
0040  
---  
---  
---  
0@@@  
TROLINK-II  
communica-  
tions check  
mask  
Ignore communications  
errors (A.E6@).  
2
3
Ignore WDT errors  
(A.E5@).  
Ignore communications  
errors (A.E6@) and  
WDT errors (A.E5@).  
1
Warning  
check mask  
0
1
Normal  
Ignore data setting  
warning (A. 94@).  
2
Ignore command warn-  
ing (A. 95@).  
3
Ignore A.94@ and  
A.95@.  
4
Ignore communications  
warning (A. 96@).  
5
Ignore A.94@ and  
A.96@.  
6
Ignore A.95@ and  
A.96@.  
7
Ignore A.94@, A.95@  
and A.96@.  
2
3
Communi-  
cationserror  
count at sin-  
gle trans-  
0 to F  
Detects communica-  
tions errors (A.E60) if  
errors occur consecu-  
tively for the set value  
plus two times.  
mission  
Not used.  
0
(Do not change setting.)  
6-18  
Appendix  
Chapter 6  
Param- Parame-  
eter No. ter name  
Explanation  
Setting  
Default  
setting  
Unit  
Setting  
range  
Restart  
Set  
power? value  
Digit  
No.  
Name  
Explanation  
Pn801  
Function  
selection  
applica-  
tion 6  
(software  
LS)  
0
Software  
limit function  
0
1
Software limit enabled. 0003  
---  
---  
---  
0@0@  
Forward software limit  
disabled.  
2
3
Reverse software limit  
disabled.  
Forward/reverse soft-  
ware limits disabled.  
1
2
Not used.  
0
0
(Do not change setting.)  
Software  
limit check  
using refer-  
ence  
No software limit check  
using reference  
1
0
Software limit check  
using reference  
3
Not used.  
(Do not change setting.)  
0000  
Pn802  
Pn803  
Not used. (Do not change setting.)  
---  
---  
---  
---  
Zero point Sets the origin position detection range.  
width  
10  
Command 0 to 250  
unit  
Pn804  
Pn806  
Pn808  
Forward  
software  
limit  
Sets the software limit for the positive direction.  
Note: Pn806 must be set lower than Pn804.  
8191  
Command 1073741823 ---  
91808  
unit  
to  
1073741823  
Reverse  
software  
limit  
Sets the software limit for the negative direction.  
Note: Pn806 must be set lower than Pn804.  
8191  
Command 1073741823 ---  
91808  
unit  
to  
1073741823  
Absolute  
encoder  
zero point  
position  
offset  
Sets the encoder position and machine coordinate sys-  
tem offsets for when an absolute encoder is used.  
0
Command 1073741823 ---  
unit  
to  
1073741823  
Pn80A  
Pn80B  
First step Sets the step 1 acceleration for when two-step accelera- 100  
× 10000  
1 to 65535  
1 to 65535  
0 to 65535  
1 to 65535  
1 to 65535  
0 to 65535  
---  
---  
---  
---  
---  
---  
---  
linear  
tion is used.  
Command  
unit/s2  
accelera-  
tion  
parameter  
Second  
step lin-  
Sets the step 2 acceleration for when two-step accelera- 100  
tion is executed, or the one-step acceleration parameter  
× 10000  
Command  
unit/s2  
ear accel- for when one-step acceleration is executed.  
eration  
parameter  
Pn80C Accelera- Sets the switching speed for the step 1 and step 2 accel-  
0
× 100  
tion  
eration when two-step acceleration is executed.  
Command  
unit/s  
parame-  
ter switch-  
ing speed  
Note: When used as one-step acceleration, 0 must be  
set.  
Pn80D First step Sets the step 1 deceleration for when two-step decelera- 100  
× 10000  
linear  
tion is used.  
Command  
unit/s2  
decelera-  
tion  
parameter  
Pn80E  
Pn80F  
Pn810  
Second  
step lin-  
Sets the step 2 deceleration for when two-step decelera- 100  
tion is executed, or the one-step deceleration parameter  
× 10000  
Command  
unit/s2  
ear decel- for when one-step deceleration is executed.  
eration  
parameter  
Decelera- Sets the switching speed for the step 1 and step 2 decel-  
0
0
× 100  
tion  
eration when two-step deceleration is executed.  
Command  
unit/s  
parame-  
ter switch-  
ing speed  
Note: When used as one-step acceleration, 0 must be  
set.  
Exponen- Sets the bias for when an exponential filter is used for the  
tial accel- position command filter.  
eration/  
decelera-  
tion bias  
Command 0 to 32767  
unit/s  
6-19  
Appendix  
Chapter 6  
Param- Parame-  
eter No. ter name  
Explanation  
Setting  
Default  
setting  
Unit  
Setting  
range  
Restart  
Set  
power? value  
Digit  
No.  
Name  
Explanation  
Pn811  
Exponen- Sets the time constant for when an exponential filter is  
0
× 0.1 ms  
0 to 5100  
---  
tial accel- used for the position command filter.  
eration/  
decelera-  
tion time  
constant  
Pn812  
Moving  
average  
time  
Sets the moving average time for when S-curve acceler-  
ation/deceleration is used, and an average movement fil-  
ter is used for the position command filter.  
0
0
× 0.1 ms  
0 to 5100  
---  
---  
Pn813  
Pn814  
Not used. (Do not change setting.)  
---  
---  
0
Final  
Sets the distance from the external signal input position 100  
Command 1073741823 ---  
travel dis- when external positioning is executed.  
unit  
to  
tance for  
external  
position-  
ing  
1073741823  
Note: For a negative direction or if the distance is short,  
operation is reversed after decelerating to a stop.  
Pn816  
Zero point  
return  
mode set-  
tings  
0
Zero point  
return direc-  
tion  
0
1
Forward direction  
Reverse direction  
0000  
---  
---  
---  
000@  
1
2
3
Not used.  
Not used.  
Not used.  
0
0
0
(Do not change setting.)  
(Do not change setting.)  
(Do not change setting.)  
Pn817  
Pn818  
Pn819  
Zero point Sets the origin search speed after the deceleration limit 50  
× 100  
0 to 65535  
0 to 65535  
---  
---  
return  
switch signal turns ON.  
Command  
unit/s  
approach  
speed 1  
Zero point Sets the origin search speed after the deceleration limit  
5
× 100  
return  
switch signal turns ON.  
Command  
unit/s  
approach  
speed 2  
Final  
Sets the distance from the latch signal input position to  
100  
Command 1073741823 ---  
travel dis- the origin, for when origin search is executed.  
unit  
to  
tance to  
return to  
zero point  
1073741823  
Note: If the final travel distance is in the opposite direc-  
tion from the origin return direction or if the distance is  
short, operation is reversed after decelerating to a stop.  
Pn81B  
Not used. (Do not change setting.)  
0
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
---  
0
Pn81C Not used. (Do not change setting.)  
Pn81D Not used. (Do not change setting.)  
0
0
0
0
Pn81E  
Pn81F  
Pn820  
Pn822  
Pn824  
Pn825  
Not used. (Do not change setting.)  
Not used. (Do not change setting.)  
Not used. (Do not change setting.)  
Not used. (Do not change setting.)  
Not used. (Do not change setting.)  
Not used. (Do not change setting.)  
Not used. (Do not change setting.)  
0000  
0
0000  
0
0
0
0
0
0000  
0000  
0000  
0000  
Pn900  
to  
Pn910  
Pn920  
to  
Pn95F  
Not used. (Do not change setting.)  
---  
---  
---  
Note 1. The normal setting is 0. If an external regeneration resistor is used, refer to 3-3-3 Regener-  
ative Energy Absorption by External Regeneration Resistance for the recommended setting.  
Note 2. The upper limit is the maximum output capacity (W) of the Servo Driver.  
6-20  
Appendix  
Chapter 6  
6-3 Restrictions  
This section describes the restrictions for the following functions of the Computer Monitor Software. If  
these restrictions are violated, a COM2 alarm (A.E02) may occur.  
1.Advanced auto-tuning  
2.Online vibration monitor  
3.Easy FFT  
4.Tracing  
Functions that cannot be used together with the above functions are listed in the following table. Use  
the default settings for any functions that cannot be used together with the above functions.  
Function  
Pn  
number  
Advanced auto-tuning  
Online  
vibration  
monitor  
Easy FFT  
Tracing  
Mode 0: With  
inertia  
Mode 1:  
Without  
inertia  
Commands via  
MECHATROLINK-  
II  
---  
---  
---  
OK  
---  
OK  
Jogging  
---  
---  
---  
---  
Speed feed for-  
ward compensa-  
tion  
Pn110.1  
Pn10B.2  
No  
OK  
No  
No  
No  
Less-deviation  
control  
---  
---  
No  
No  
No  
Predictive control Pn150.0  
---  
---  
OK  
No  
OK  
No  
OK  
OK  
Automatic gain  
switching  
Pn139.0  
No  
OK  
Backlash compen- Pn207.2  
sation  
No  
OK  
No  
No  
OK  
Vibration detection Pn310.0  
No  
OK  
No  
No  
OK  
OK  
OK  
OK  
No  
OK  
No  
No  
No  
OK  
No  
No  
OK  
OK  
OK  
OK  
Notch filter 1  
Notch filter 2  
Pn408.0  
Pn408.2  
Damping for vibra- Pn420  
tion suppression  
on stopping  
Pn421  
OK: Can be used together, No: Cannot be used together, ---: Not used together.  
6-21  
Appendix  
Chapter 6  
6-22  
Index  
brake interlock, 4-81  
Brake Interlock Output (BKIR), 2-68  
Brake Interlock Output Common (BKIRCOM), 2-68  
A
Absolute Encoder Backup Battery  
dimensions, 2-122  
replacing, 5-47  
specifications, 2-122  
Absolute Encoder Battery Cable  
specifications, 2-102, 2-112  
C
cables  
Analog Monitor Cable, 2-118  
Computer Monitor Cables, 2-119  
models, 2-3, 2-5  
specifications, 2-93  
charge indicator, 4-130  
absolute encoders  
setup, 4-6  
specifications, 2-92  
acceleration, 4-89  
adjustment  
CLIMT (Current Limit Detection Output), 2-67  
CN1  
precautions, 1-3  
advanced auto-tuning, 4-98  
Control I/O Connectors, 2-120  
control inputs, 2-61  
control outputs, 2-62  
pin arrangement, 2-63  
specifications, 2-60  
alarm codes  
checking, 5-3  
Alarm Output (ALM), 2-66  
Alarm Output Ground (ALMCOM), 2-66  
alarms, 5-6  
CN2  
table, 5-6  
troubleshooting, 5-12  
specifications, 2-68  
CN3  
ALM (Alarm Output), 2-66  
specifications, 2-69  
ALMCOM (Alarm Output Ground), 2-66  
Analog Monitor Cables, 2-118, 3-11, 4-133  
analog monitor output connector (CN5), 4-132  
specifications, 2-69  
CN5, 4-132  
Analog Monitor Cable, 2-118  
specifications, 2-69  
COM indicator, 4-130  
communications  
automatic gain switching, 4-106  
auto-tuning, 4-98  
specifications, 2-57  
Computer Monitor Cables, 2-119, 3-11  
Computer Monitor Software, 5-3  
connecting cables, 3-8  
B
connection examples, 6-2  
backlash compensation, 4-128  
connectors  
Backup Battery - Input (BATGND), 2-64  
Backup Battery + Input (BAT), 2-64  
BAT (Backup Battery + Input), 2-64  
BATGND (Backup Battery - Input), 2-64  
conforming to EC Directives, 3-6  
Control I/O Connectors, 2-120  
Encoder Connectors, 2-120  
specifications, 2-93  
contactors, 3-30  
Control I/O Connectors, 2-120  
battery  
replacing, 5-47  
bias function, 4-103  
bit data display, 4-131  
BKIR (Brake Interlock Output), 2-68  
BKIRCOM (Brake Interlock Output Common), 2-68  
control inputs  
list, 2-61  
pin arrangement, 2-63  
control output circuits, 2-64  
I-1  
Index  
control outputs  
F
pin arrangement, 2-63  
feed-forward function, 4-104  
Current Limit Detection Output (CLIMT), 2-67  
Forward Drive Prohibit (POT), 2-65, 4-78  
function selection parameters (from Pn000), 4-32  
D
DEC (Origin Return Deceleration Switch Signal), 2-65  
deceleration, 4-89  
G
gain adjustment, 4-102  
dimensions  
Absolute Encoder Backup Battery, 2-122  
AC Servo Drivers, 2-18  
AC Servomotors, 2-25  
with Economy Gears, 2-46  
with Standard Gears, 2-36  
Reactors, 2-124  
displays, 4-130  
bit data, 4-131  
status, 4-131  
gain parameters (from Pn100), 4-38  
H
harmonic currents  
countermeasures, 3-22  
I
symbols, 4-131  
drive prohibit, 4-78  
dynamic brake, 4-25  
I/O signals  
specifications, 2-60  
incremental encoders  
specifications, 2-91  
indicators, 4-130  
INP1, INP2 (Positioning Completed Outputs 1, 2), 2-66  
E
EC Directives  
inspection  
conforming connectors, 3-6  
electronic gear, 4-87  
electronic thermal characteristics, 5-43  
EMC Directives  
precautions, 5-45  
installation  
conditions, 3-3  
precautions, 1-2, 3-2  
wiring conditions, 3-23  
Encoder Cables, 2-3, 2-4, 3-10  
noise resistance, 3-31  
specifications, 2-101, 2-110  
L
less-deviation control, 4-120  
Encoder Connectors, 2-120  
encoder dividing function, 4-79  
encoder input  
M
specifications, 2-68  
encoders  
maintenance, 5-45  
precautions, 1-4, 5-45  
manual tuning, 4-100  
specifications, 2-91, 2-92  
error diagnosis  
MECHATROLINK-II Cable, 2-93  
MECHATROLINK-II Cables, 2-93, 3-9  
alarms, 5-12  
warning indicators, 5-33  
MECHATROLINK-II communications  
cable specifications, 2-93  
setup, 2-58  
specifications, 2-57  
MECHATROLINK-II Terminating Resistor, 2-93  
EXT1, EXT2, EXT3 (External Latch Signals 1, 2, 3), 2-66  
External Latch Signals 1, 2, 3 (EXT1, EXT2, EXT3), 2-66  
external regeneration resistance, 3-35  
External Regeneration Resistor  
specifications, 2-121  
I-2  
Index  
MECHATROLINK-II Terminating Resistors, 2-93, 3-9  
models, 2-2  
stop selection when drive prohibited is input (Pn001.1),  
4-25  
function selection application switches 2  
operation switch when using an absolute encoder  
(Pn002.2), 4-34  
N
speed command input change (Pn002.1), 4-34  
torque command input change (Pn002.0), 4-34  
function selection application switches 6  
software limit function (Pn801.0), 4-68  
function selection basic switches  
NFB (no-fuse breakers), 3-20, 3-26  
no-fuse breakers (NFB), 3-20, 3-26  
noise filters, 3-28  
noise resistance  
Encoder Cables, 3-31  
wiring, 3-19  
nomenclature, 1-5  
NOT (Reverse Drive Prohibit), 2-65  
notch filter, 4-125  
reverse rotation (Pn000.0), 4-25  
Unit No. setting (Pn000.2), 4-32  
gain parameters  
automatic gain changeover related switches 1 (Pn131 to  
Pn139), 4-45  
bias addition band (Pn108), 4-40  
bias rotational speed (Pn107), 4-40  
feed-forward amount (Pn109), 4-41  
feed-forward command filter (Pn10A), 4-41  
inertia ratio (Pn103), 4-39  
O
one-parameter tuning, 4-99  
operation  
less-deviation control parameters (Pn1A0 to Pn1AC),  
4-49  
precautions, 1-3  
preparations, 4-4  
procedure, 4-3  
trial operation, 4-96  
Origin Return Deceleration Switch Signal (DEC), 2-65  
overload characteristics, 5-43  
P control switching (acceleration command) (Pn10E),  
4-43  
P control switching (deviation pulse) (Pn10F), 4-43  
P control switching (speed command) (Pn10D), 4-42  
P control switching (torque command) (Pn10C), 4-42  
P control switching conditions (Pn10B.0), 4-41  
position loop control method (Pn10B.2), 4-42  
position loop gain (Pn102), 4-39  
position loop gain 2 (Pn106), 4-40  
P
predictive control selection switches (Pn150 to Pn152),  
P control switching, 4-112  
4-47  
speed control loop switching (Pn10B.1), 4-42  
speed feedback compensating gain (Pn111), 4-44  
parameter tables, 4-8, 6-3  
function selection parameters (from Pn000), 4-8  
other parameters (from Pn600), 4-22  
position control parameters (from Pn200), 4-13  
sequence parameters (from Pn500), 4-16  
Servo gain parameters (from Pn100), 4-10  
speed control parameters (from Pn300), 4-14  
torque control parameters (from Pn400), 4-15  
speed feedback compensation function selection  
(Pn110.1), 4-43  
speed loop gain (Pn100), 4-38  
speed loop gain 2 (Pn104), 4-39  
speed loop integration constant (Pn101), 4-38  
speed loop integration constant 2 (Pn105), 4-39  
I/O signal allocation (Pn50A, Pn50B, Pn50E to Pn512),  
parameters  
4-26  
absolute encoder zero point position offset (Pn808), 4-69  
important parameters, 4-24  
input signal selections (Pn50A, Pn50B, Pn511), 4-27  
input signal selections 1  
acceleration/deceleration parameters (Pn80A to Pn812),  
4-70  
details, 4-32  
POT (forward drive prohibited) signal (Pn50A.3), 4-27  
input signal selections 2  
final travel distance for external positioning (Pn814), 4-  
71  
NOT (reverse drive prohibited) signal (Pn50B.0), 4-28  
input signal selections 5  
forward software limit (Pn804), 4-69  
function selection application switches 1  
DEC (origin return deceleration LS) signal (Pn511.0),  
4-29  
stop selection if an alarm occurs when Servomotor is  
OFF (Pn001.0), 4-25  
I-3  
Index  
EXT1 (external latch signal 1) signal (Pn511.1), 4-29  
EXT2 (external latch signal 2) signal (Pn511.2), 4-29  
EXT3 (external latch signal 3) signal (Pn511.3), 4-29  
origin search parameters (Pn816 to Pn819), 4-71  
output signal reverse  
notch filter 1 Q value (Pn40A), 4-59  
notch filter 2 frequency (Pn40C), 4-59  
notch filter 2 Q value (Pn40D), 4-59  
reverse rotation external current limit (Pn405), 4-57  
reverse torque limit (Pn403), 4-57  
pins CN1-1 and 2 (Pn512.0), 4-31  
pins CN1-23 and 24 (Pn512.1), 4-31  
pins CN1-25 and 26 (Pn512.2), 4-31  
select notch filter 1 function (Pn408.0), 4-58  
select notch filter 2 function (Pn408.2), 4-58  
speed limit (Pn407), 4-58  
output signal selections 1  
zero point width (Pn803), 4-69  
INP1 (positioning completed 1) signal (Pn50E.0), 4-30  
READY (Servo ready) signal (Pn50E.3), 4-30  
zero-point return parameters (Pn816 to Pn819), 4-71  
peripheral devices  
TGON (Servomotor rotation direction) signal  
connection examples, 3-12  
personal computer monitor connector  
specifications, 2-69  
pin arrangement  
CN1, 2-63  
position control, 4-75  
position control parameters (from Pn200), 4-50  
position integration, 4-129  
Positioning Completed Outputs 1, 2 (INP1, INP2), 2-66  
POT (Forward Drive Prohibit), 2-65  
Power Cables, 2-3, 2-5, 3-6, 3-9  
specifications, 2-103, 2-112  
power indicator, 4-130  
precautions, 5-3  
adjustment, 1-3  
general, 1-1  
inspection, 1-4  
installation, 1-2, 3-2  
maintenance, 1-4  
maintenance and inspection, 5-45  
operation, 1-3, 4-2  
storage, 1-2  
transportation, 1-2  
wiring, 1-2, 3-2  
(Pn50E.2), 4-30  
VCMP (speed conformity) signal (Pn50E.1), 4-30  
output signal selections 2  
BKIR (brake interlock) signal (Pn50F.2), 4-31  
CLIMT (current limit detection) signal (Pn50F.0), 4-30  
VLIMT (speed limit detection) signal (Pn50F.1), 4-30  
WARN (warning) signal (Pn50F.3), 4-31  
output signal selections 3  
INP2 (positioning completed 2) signal (Pn510.0), 4-31  
position control parameters  
absolute encoder multi-turn limit setting (Pn205), 4-51  
backlash compensation amount (Pn214), 4-53  
backlash compensation selection (Pn207.2), 4-52  
backlash compensation time constant (Pn215), 4-53  
electronic gear ratio G1, G2 (Pn20E, Pn210), 4-52  
encoder divider rate (Pn212), 4-53  
soft start deceleration time (Pn306), 4-54  
regeneration resistor capacity (Pn600), 4-66  
reverse software limit (Pn806), 4-69  
sequence parameters  
brake command speed (Pn507), 4-61  
brake timing 1 (Pn506), 4-61  
brake timing 2 (Pn508), 4-61  
deviation counter overflow warning level (Pn51E), 4-  
63  
momentary hold time (Pn509), 4-62  
predictive control, 4-115  
program JOG operation, 4-91  
positioning completed range 1 (Pn522), 4-64  
positioning completed range 2 (Pn524), 4-64  
program jog settings (Pn530 to Pn536), 4-65  
rotation speed for motor rotation detection (Pn502), 4-  
Q
61  
Q value (notch filter), 4-59, 4-125  
speed conformity signal output width (Pn503), 4-61  
speed control parameters  
soft start acceleration time (Pn305), 4-54  
speed feedback filter time constant (Pn308), 4-55  
torque control parameters  
R
Reactors, 2-2, 3-15, 3-22  
dimensions, 2-124  
specifications, 2-124  
READY (Servo Ready Output), 2-67  
emergency stop torque (Pn406), 4-58  
forward rotation external current limit (Pn404), 4-57  
forward torque limit (Pn402), 4-57  
notch filter 1 frequency (Pn409), 4-59  
I-4  
Index  
regenerative energy, 3-32  
absorption capacity, 3-34  
communications, 2-57  
connectors, 2-93  
external regeneration resistance, 3-35  
replacing  
DC Reactor, 2-124  
Encoder Cables, 2-101, 2-110  
External Regeneration Resistor, 2-121  
incremental encoders, 2-91  
MECHATROLINK-II Cables, 2-93  
MECHATROLINK-II communications, 2-57  
Power Cables, 2-103, 2-112  
Servo Drivers, 2-50  
Servomotors, 2-71, 2-73  
Servomotors with Reduction Gears, 2-86  
terminal blocks, 2-56  
Absolute Encoder Backup Battery (ABS), 5-47  
Servomotor and Servo Driver, 5-4  
Reverse Drive Prohibit (NOT), 2-65, 4-78  
S
sequence parameters (from Pn500), 4-61  
Servo Drivers  
combinations with Servomotors, 2-16  
dimensions, 2-18  
installation conditions, 3-3  
regenerative energy absorption capacity, 3-34  
replacing, 5-4  
specifications, 2-50  
general, 2-50  
Speed Conformity Output (VCMP), 2-67  
speed control, 4-76  
speed control parameters (from Pn300), 4-54  
speed feedback compensation, 4-43, 4-109  
speed feedback filter, 4-111  
speed limit, 4-88  
performance, 2-51  
transmission times, 2-58  
Servo Ready Output (READY), 2-67  
Servomotor Rotation Detection Output (TGON), 2-67  
Speed Limit Detection Output (VLIMT), 2-68  
standards, 1-6  
startup, 4-4  
status display mode, 4-131  
surge absorbers, 3-27  
surge killers, 3-29  
symbol display, 4-131  
system block diagrams, 1-7  
system configuration, 1-4, 3-8  
Servomotors  
combinations with Servo Drivers, 2-16  
dimensions, 2-25  
installation conditions, 3-4  
replacing, 5-4  
specifications, 2-71  
general, 2-71  
performance, 2-73, 2-77, 2-80, 2-83  
with Economy Gears, 2-15  
combinations, 2-10  
T
terminal blocks  
dimensions, 2-46  
names and functions, 3-15  
specifications, 2-56  
wire sizes, 3-16  
with Reduction Gears  
specifications, 2-86  
with Standard Gears, 2-12  
combinations, 2-9  
dimensions, 2-36  
soft start, 4-86  
wiring, 3-15  
TGON (Servomotor Rotation Detection Output), 2-67  
torque command filter, 4-123  
torque control, 4-77  
specifications  
torque control parameters (from Pn400), 4-56  
torque feed-forward function, 4-105  
torque limit function, 4-83  
transmission times, 2-58  
trial operation procedure, 4-96  
troubleshooting, 5-2  
using alarm display, 5-12  
using operating status, 5-37  
Absolute Encoder Backup Battery, 2-122  
Absolute Encoder Battery Cable, 2-102  
absolute encoders, 2-92  
cables, 2-93  
CN1 (I/O signals), 2-60  
CN2 (encoder input), 2-68  
CN3 (personal computer monitor connector), 2-69  
CN5 (analog monitor output connector), 2-69  
I-5  
Index  
using warning indicators, 5-33  
tuning, 4-98  
V
VCMP (Speed Conformity Output), 2-67  
vibration suppression when stopping, 4-127  
VLIMT (Speed Limit Detection Output), 2-68  
W
WARN (Warning Output), 2-68  
warning labels, 1-5  
Warning Output (WARN), 2-68  
warnings  
table, 5-10  
troubleshooting, 5-33  
wiring  
conforming to EMC Directives, 3-23  
for noise resistance, 3-19  
precautions, 1-2, 3-2  
terminal blocks, 3-15  
I-6  
Revision History  
A manual revision code appears as a suffix to the catalog number on the front cover of the manual.  
Cat. No. I544-E1-06  
Revision code  
The following table outlines the changes made to the manual during each revision. Page numbers  
refer to the previous version.  
Revision  
code  
Date  
Revised content  
01  
02  
November 2004 Original production  
November 2006 Page 2-34: Graphics replaced, diagram numbers added, and dimensions D1, D4, D5, D6,  
E2, and F changed/added.  
Pages 2-38 and 2-39: Graphics replaced/added, diagram numbers added, and dimensions  
LM, D1, D4, D6, E2, and F changed/added.  
Page 2-44: Dimensions LM changed from 110 to 97.5 for 750 W model.  
Pages 2-45, 2-62, 3-11, and 3-12: Graphics corrected.  
Pages 2-84 and 2-85: Specifications changed from 50 W through 750 W models.  
Page 2-86: Specifications changed in top table.  
Pages 2-88 and 2-89: Weights and reduction gear inertia changed for 750 W models.  
Page 4-10: Settings changed for Pn110.  
Page 4-38: Last paragraph deleted from Pn103.  
Pages 4-38 and 4-38: Description of Pn106 changed.  
Pages 4-41, 4-43, 4-44, 4-55, 4-56, 4-109, and 4-111: Notes deleted.  
Pages 4-42 and 4-43: Material deleted.  
Page 4-46: Paragraph below graphic changed.  
Pages 4-81 and 4-82: “Power supply” changed to “main circuit power supply” in timing  
charts.  
Page 4-90: Last paragraph removed.  
Page 4-97: Section 4-6-1 changed.  
Page 4-98: Second paragraph removed.  
Page 4-110: Item 1 at top of page changed.  
Page 4-118: Parameter numbers removed at top of flowchart.  
Page 4-121: Flowchart changed.  
Page 4-122: Lists changed.  
Page 5-22: Part of description of A.S21 deleted.  
Page 5-30: Part of description of A.d01 deleted.  
Page 5-31: Countermeasure for A.d02 deleted, material added for A.E00, and countermea-  
sure for A.Ed0 deleted.  
Page 5-39: “When auto-tuning is used” and “when auto-tuning is not used” deleted in two  
places each.  
Page 6-6: Description of Pn110 changed.  
R-1  
Revision History  
Revision  
code  
Date  
Revised content  
03  
March 2007  
Back of front cover: Added general precautionary information above NOTICE.  
Under Warning Labels at front of manual: Added precautionary information about battery  
disposal.  
Page 2-3: Changed table titles and modified power cable capacity.  
Page 2-4: Added specifications for robot cables.  
Pages 2-26 and 2-27: Changed Servomotor capacities and added new models to the head-  
ings.  
Pages 2-60 and 2-66: Modified signal name WARN and changed OFF to ON in the descrip-  
tion.  
Page 2-66: Changed cable plug model number.  
Pages 2-71, 2-72, 2-76, 2-78, and 2-81: Changed specifications for applicable load inertia.  
Pages 2-73 and 2-76: Changed note 6.  
Pages 2-79 and 2-82: Added note 6.  
Pages 2-92: Added information on Servo Driver cables, Connector-Terminal Block Conver-  
sion Units, and motor cable specifications.  
Pages 2-93, 2-94, and 2-95: Modified the header levels and changed connector plug model  
number and connector socket model number.  
Page 2-102: Added robot cable specifications.  
Page 2-104: Changed connector plug model number.  
Page 3-8: Modified the servo system configuration.  
Page 3-9: Changed Servomotor capacity in the bottom table.  
Page 3-10: Changed Servomotor capacity in the top table and added information on robot  
cables.  
Pages 3-11, 3-12, 3-13, and 3-18: Changed grounding indication in the figure.  
Page 3-14: Changed description for frame ground at the bottom of the table.  
Page 3-20: Added a table for selecting non-fuse breakers to the top of the page.  
Pages 3-22 and 3-32: Modified the table under surge suppressors.  
Page 4-5: Added “Status Display (Bit Data)” at the bottom of the page.  
Page 4-6: Changed the paragraph and figure at the top of the page.  
Pages 4-7 and 6-3: Changed the explanation for reverse rotation setting 1.  
Page 4-29: Deleted a paragraph about WARN.  
Page 4-62: Added a paragraph under Pn520.  
Page 5-6: Modified signal name WARN.  
Page 5-36: Added a row for A.960 to the bottom of the table.  
Pages 5-43 and 5-44: Modified description and notes below the chart.  
Pages 6-2: Added a power cable model and an encoder model in the figure.  
04  
February 2008 Warning Labels page in front matter: Replaced figure at bottom of page.  
Page 2-72: Removed “protective structure” from table, removed note 2, and added material  
on protective structure.  
Page 2-95: Changed bottom figure.  
Page 2-99: Reversed “X1” and XB” in figure.  
Page 2-111: Corrected model number on left of second figure.  
Page 2-123: Added information on manufacturing code.  
Page 2-124: Corrected bottom figure.  
Pages 3-21 to 3-26: Removed material.  
Pages 3-33 and 3-35: Replaced section on leakage breakers.  
Page 4-24: Added notes.  
Page 4-57: Rewrote note.  
Pages 4-63, 4-68, 4-73, 5-10, and 5-35: Added information on using CJ1W-NCF71 and  
CS1W-NCF71.  
Page 5-43: Changed text below graph.  
05  
March 2009  
Added a new section 2-10 on MECHATROLINK-II Repeater specifications.  
Corrected mistakes and added information.  
R-2  
Revision History  
Revision  
code  
Date  
Revised content  
06  
December 2010 Page 2-62: Description added to the contents for TGONCOM.  
Page 2-67: Description added below the note for Motor Rotation Detection Output.  
Page 3-37: Information on Pn600 settings added below the note.  
Page 4-24: Note 1 modified.  
Pages 5-38 and 5-41: Wiring distance changed from 20 m to 50 m in the items to check col-  
umn.  
Page 6-20: Notes added below the table.  
R-3  
Revision History  
R-4  
OMRON Corporation  
Tokyo, JAPAN  
Industrial Automation Company  
Authorized Distributor:  
Contact: www.ia.omron.com  
Regional Headquarters  
OMRON EUROPE B.V.  
Wegalaan 67-69-2132 JD Hoofddorp  
The Netherlands  
OMRON ELECTRONICS LLC  
One Commerce Drive Schaumburg,  
IL 60173-5302 U.S.A.  
Tel: (31)2356-81-300/Fax: (31)2356-81-388  
Tel: (1) 847-843-7900/Fax: (1) 847-843-7787  
© OMRON Corporation 2004 All Rights Reserved.  
In the interest of product improvement,  
specifications are subject to change without notice.  
OMRON (CHINA) CO., LTD.  
Room 2211, Bank of China Tower,  
200 Yin Cheng Zhong Road,  
OMRON ASIA PACIFIC PTE. LTD.  
No. 438A Alexandra Road # 05-05/08 (Lobby 2),  
Alexandra Technopark,  
Printed in Japan  
1210  
PuDong New Area, Shanghai, 200120, China  
Tel: (86) 21-5037-2222/Fax: (86) 21-5037-2200  
Singapore 119967  
Tel: (65) 6835-3011/Fax: (65) 6835-2711  
Cat. No. I544-E1-06  

相关型号:

R88D-WN04L-ML2

SERVO DRIVER 2.8A 115V LOAD
OMRON

R88D-WN05H-ML2

SERVO DRIVER 3.8A 230V LOAD
OMRON

R88D-WN08H-ML2

SERVO DRIVER 5.5A 230V LOAD
OMRON

R88D-WN10H-ML2

SERVO DRIVER 7.6A 230V LOAD
OMRON

R88D-WN15H-ML2

SERVO DRIVER 11.6A 230V LOAD
OMRON

R88D-WN20H-ML2

SERVO DRIVER 18.5A 230V LOAD
OMRON

R88D-WNA5H-ML2

SERVO DRIVER 0.66A 230V LOAD
OMRON

R88D-WNA5L-ML2

SERVO DRIVER 0.66A 115V LOAD
OMRON

R88D-WT01HL

SERVO DRIVER 2.4A 115V LOAD
OMRON

R88D-WT02H

SERVO DRIVER 2.1A 230V LOAD
OMRON

R88D-WT02HL

SERVO DRIVER 3A 115V LOAD
OMRON

R88D-WT04H

SERVO DRIVER 2.8A 230V LOAD
OMRON