ASX340CS2C00SPEDD3-GEVK [ONSEMI]

1/4-Inch Color CMOS NTSC/PAL Digital Image SOc;
ASX340CS2C00SPEDD3-GEVK
型号: ASX340CS2C00SPEDD3-GEVK
厂家: ONSEMI    ONSEMI
描述:

1/4-Inch Color CMOS NTSC/PAL Digital Image SOc

文件: 总74页 (文件大小:2189K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Features  
1/4-Inch Color CMOS NTSC/PAL Digital Image  
SOC with Overlay Processor  
ASX340CS Datasheet, Rev. F  
For the latest datasheet, please visit www.onsemi.com  
Features  
Table 1:  
Key Parameters  
Typical Value  
• Low-power CMOS image sensor with integrated  
image flow processor (IFP) and video encoder  
• 1/4-inch optical format, VGA resolution (640H x  
480V)  
Parameter  
5.6 m x 5.6 m active pinned-  
photodiode with high-sensitivity mode  
for low-light conditions  
Pixel size  
and type  
• 2x upscaling zoom and pan control  
40 additional columns and 36 additional rows to  
compensate for lens alignment tolerances  
728H x 560V (includes VGA active  
pixels,  
demosaic and lens alignment pixels)  
Sensor clear pixels  
• Option to use single 2.8V power supply with off-chip  
bypass transistor  
• Overlay generator for dynamic bitmap overlay  
• Integrated video encoder for NTSC/PAL with overlay  
capability and 10-bit I-DAC  
• On-chip image flow processor performs  
sophisticated processing, such as color recovery and  
correction, sharpening, gamma, lens shading  
correction, on-the-fly defect correction, auto white  
balancing, and auto exposure  
NTSC output  
PAL output  
720H x 487V  
720H x 576V  
Optical area (clear  
pixels)  
4.077mm x 3.136mm  
Optical format  
Frame rate  
¼-inch  
50/60 fields/sec  
Progressive scan  
RGB standard Bayer  
Sensor scan mode  
Color filter array  
• Auto black-level calibration  
Chief Ray Angle  
(CRA)  
• 10-bit, on-chip analog-to-digital converter (ADC)  
• Internal master clock generated by on-chip phase-  
locked loop (PLL)  
0°  
Shutter type  
Electronic rolling shutter (ERS)  
Exposure, white balance, black level  
offset correction, flicker detection and  
Automatic Functions avoidance, color saturation control,  
on the-fly defect correction, aperture  
correction  
Two-wire serial programming interface  
• Interface to low-cost EEPROM and Flash through SPI  
bus  
• High-level host command interface  
• Stand-alone operation support  
• Comprehensive tool support for overlay generation  
and lens correction setup  
• Development system with DevWare  
Exposure, white balance, horizontal  
and vertical blanking, color, sharpness,  
gamma correction, lens shading  
correction, horizontal and vertical  
image flip, zoom, windowing, sampling  
rates, GPIO control  
Programmable  
Controls  
Applications  
• Surveillance and video camera  
• Door bell camera  
Key parameters are continued on next page.  
See “New Features” on page 3.  
• Internet Protocol (IP) camera  
See “Ordering Information” on page 3  
ASX340CS_DS Rev. F Pub. 6/15 EN  
1
©Semiconductor Components Industries, LLC 2015,  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Applications  
Table 2:  
Key Parameters (continued)  
Typical Value  
Parameter  
Utilizes SPI interface to load overlay data from external flash/EEPROM memory with the  
following features:  
•Available in Analog output and BT656 Digital output  
•Overlay Size 360 x 480 pixel rendered into 720 x 480 (NTSC) or 720 x 576 (PAL)  
•Up to four (4) overlays may be blended simultaneously  
•Selectable readout: Rotating order user-selected  
•Dynamic scenes by loading pre-rendered frames from external memory  
•Palette of 32 colors out of 64,000  
Overlay Support  
•8 colors per bitmap  
•Blend factor dynamically-programmable for smooth transitions  
•Fast update rate of up to 30 fps  
•Every bitmap object has independent x/y position  
•Statistic Engine to calibrate optical alignment  
•Number Generator  
Windowing  
Programmable to any size  
Analog gain range  
ADC  
0.5–16x  
10-bit, on-chip  
Output interface  
Output data formats1  
Analog composite video out, single-ended or differential; 8-, 10-bit parallel digital output  
Digital: Raw Bayer 8-,10-bit, CCIR656, 565RGB, 555RGB, 444RGB  
Parallel: 27 MB/s  
NTSC: 60 fields/sec  
PAL: 50 fields/sec  
Data rate  
Two-wire I/F for register interface plus high-level command exchange. SPI port to interface to  
external memory to load overlay data, register settings, or firmware extensions.  
Control interface  
Input clock for PLL  
27 MHz  
SPI Clock Frequencies  
1.6875 – 18 MHz, programmable  
Analog: 2.8V 5ꢀ  
Core: 1.8V 5ꢀ (2.8V 5ꢀ power supply with off-chip bypass transistor generates a 1.70 -  
1.95V  
Supply voltage  
core voltage supply, which is acceptable for performance.)  
IO: 2.8V 5ꢀ  
Analog output only  
Full resolution at 60 fps: 236 mW  
Full resolution at 60 fps: 234 mW  
63-BGA, 7.5 mm x 7.5 mm, 0.65 mm pin pitch  
Operating: -30°C to 70°C  
Storage: -50°C to +150°C  
< 200e/s at 60°C with a gain of 1  
< 2ꢀ  
Power  
consumption  
Digital output only  
Package  
Ambient temperature  
Dark Current  
Column  
Row  
Fixed pattern  
noise  
< 2ꢀ  
Responsivity  
16.5 V/lux-s at 550 nm  
46 dB  
Signal to noise ratio (S/N)  
Pixel dynamic range  
74.8 dB  
ASX340CS_DS Rev. F Pub. 6/15 EN  
2
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
New Features  
New Features  
Automatic 50Hz/60Hz flicker detection  
2x upscaling zoom and pan/tilt control  
Independent control of colorburst parameters in the NTSC/PAL encoder  
Horizontal field of view adjustment between 700 and 720 pixels on the analog output  
Option to use single 2.8V power supply with off-chip bypass transistor  
SPI EEPROM support for lower cost system design.  
Ordering Information  
Table 3:  
Available Part Numbers  
Part Number  
Product Description  
VGA 1/4" SOC Demo3 Kit  
VGA 1/4" SOC Demo Kit  
VGA 1/4" SOC Head Board  
VGA 1/4" SOC Head Board  
VGA 1/4" SOC  
Orderable Product Attribute Description  
ASX340CS2C00SPEAD3-GEVK  
ASX340CS2C00SPEAD-GEVK  
ASX340CS2C00SPEAH3-GEVB  
ASX340CS2C00SPEAH-GEVB  
ASX340CS2C00SPED0-DPBR  
ASX340CS2C00SPED0-DRBR  
ASX340CS2C00SPED0-TPBR  
ASX340CS2C00SPED0-TRBR  
ASX340CS2C00SPEDD3-GEVK  
Dry Pack with Protective Film, Double Side BBAR Glass  
Dry Pack without Protective Film, Double Side BBAR Glass  
Tape & Reel with Protective Film, Double Side BBAR Glass  
Tape & Reel without Protective Film, Double Side BBAR Glass  
VGA 1/4" SOC  
VGA 1/4" SOC  
VGA 1/4" SOC  
VGA 1/4" SOC Demo3 Kit  
See the ON Semiconductor Device Nomenclature document (TND310/D) for a full  
description of the naming convention used for image sensors. For reference documenta-  
tion, including information on evaluation kits, please visit our web site at  
www.onsemi.com.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
3
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Table of Contents  
Table of Contents  
Features. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
New Features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Ordering Information. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
General Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
Pin Descriptions and Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
SOC Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Sensor Pixel Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
System Configuration and Usage Modes. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .24  
Multicamera Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
External Signal Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Slave Two-Wire Serial Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Overlay Capability. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Serial Memory Partition. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Overlay Adjustment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Overlay Character Generator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Modes and Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .47  
Electrical Specifications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Spectral Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
Package and Die Dimensions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Revision History. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73  
ASX340CS_DS Rev. F Pub. 6/15 EN  
4
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
List of Figures  
List of Figures  
Figure 1:  
Figure 2:  
Figure 3:  
Figure 4:  
Figure 5:  
Figure 6:  
Figure 7:  
Figure 8:  
Internal Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7  
System Block Diagram. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8  
Using a Crystal Instead of an External Oscillator. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9  
Sensor Core Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Pixel Array Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .14  
Image Capture Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .15  
Pixel Color Pattern Detail (top right corner). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .16  
Spatial Illustration of Image Readout. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .17  
Color Pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .18  
Color Bars . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
Gamma Correction Curve. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .22  
Multicamera System Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .25  
External Signal Processing Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26  
Power-Up Sequence – Configuration Options Flow Chart . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28  
Interface Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30  
Host Command Process Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31  
Single READ from Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Single Read from Current Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38  
Sequential READ, Start from Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Sequential READ, Start from Current Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Single WRITE to Random Location. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .39  
Sequential WRITE, Start at Random Location . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .40  
Overlay Data Flow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .41  
Memory Partitioning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Overlay Calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43  
Internal Block Diagram Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .44  
Example of Character Descriptor 0 Stored in ROM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .45  
Full Character Set for Overlay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
CCIR656 8-Bit Parallel Interface Format for 525/60 (625/50) Video Systems . . . . . . . . . . . . . . . . . . . .47  
Typical CCIR656 Vertical Blanking Intervals for 525/60 Video System. . . . . . . . . . . . . . . . . . . . . . . . . .48  
Typical CCIR656 Vertical Blanking Intervals for 625/50 Video System. . . . . . . . . . . . . . . . . . . . . . . . . .49  
Primary Clock Relationships . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .50  
Typical I/O Equivalent Circuits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .52  
NTSC Block . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Serial Interface. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .53  
Digital Output I/O Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Slew Rate Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Configuration Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Power Down Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
FRAME_SYNC to FRAME_VALID/LINE_VALID. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
Reset to SPI Access Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Reset to Serial Access Delay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
Reset to AE/AWB Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
SPI Output Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Video Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Equivalent Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
V Pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Two-Wire Serial Bus Timing Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Quantum Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .71  
63-Ball iBGA Package Outline Drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .72  
Figure 9:  
Figure 10:  
Figure 11:  
Figure 12:  
Figure 13:  
Figure 14:  
Figure 15:  
Figure 16:  
Figure 17:  
Figure 18:  
Figure 19:  
Figure 20:  
Figure 21:  
Figure 22:  
Figure 23:  
Figure 24:  
Figure 25:  
Figure 26:  
Figure 27:  
Figure 28:  
Figure 29:  
Figure 30:  
Figure 31:  
Figure 32:  
Figure 33:  
Figure 34:  
Figure 35:  
Figure 36:  
Figure 37:  
Figure 38:  
Figure 39:  
Figure 40:  
Figure 41:  
Figure 42:  
Figure 43:  
Figure 44:  
Figure 45:  
Figure 46:  
Figure 47:  
Figure 48:  
Figure 49:  
Figure 50:  
Figure 51:  
ASX340CS_DS Rev. F Pub. 6/15 EN  
5
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
List of Tables  
List of Tables  
Table 1:  
Table 2:  
Table 3:  
Table 4:  
Table 5:  
Table 6:  
Table 7:  
Table 8:  
Key Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1  
Key Parameters (continued). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2  
Available Part Numbers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3  
Pin Descriptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10  
Pin Assignments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
Reset/Default State of Interfaces. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .12  
EIA Color Bars (NTSC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
EBU Color Bars (PAL). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
NTSC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .19  
PAL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .20  
YCbCr Output Data Ordering. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
RGB Ordering in Default Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
2-Byte Bayer Format . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .23  
System Manager Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
Overlay Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33  
GPIO Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Flash Manager Host Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Sequencer Host Commands. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Patch Loader Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Miscellaneous Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .34  
Calibration Stats Host Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .35  
Two-Wire Interface ID Address Switching . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .36  
Transfer Time Estimate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42  
Character Generator Details. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .46  
Field, Vertical Blanking, EAV, and SAV States 525/60 Video System . . . . . . . . . . . . . . . . . . . . . . . . . . . .48  
Field, Vertical Blanking, EAV, and SAV States for 625/50 Video System . . . . . . . . . . . . . . . . . . . . . . . . .49  
Output Data Ordering in DOUT RGB Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Output Data Ordering in Sensor Stand-Alone Mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .51  
Parallel Digital Output I/O Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .54  
Slew Rate for PIXCLK and DOUT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .55  
Configuration Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .56  
Power Up Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .57  
Power Down Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
FRAME_SYNC to FRAME_VALID/LINE_VALID Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58  
RESET_BAR Delay Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .59  
SPI Data Setup and Hold Timing. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .60  
Absolute Maximum Ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Electrical Characteristics and Operating Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .61  
Video DAC Electrical Characteristics–Single-Ended Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Video DAC Electrical Characteristics–Differential Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .62  
Digital I/O Parameters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63  
Power Consumption – Condition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
Power Consumption – Condition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64  
NTSC Signal Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .65  
Video Timing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66  
Equivalent Pulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .67  
V Pulse. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .68  
Two-Wire Serial Bus Characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69  
Table 9:  
Table 10:  
Table 11:  
Table 12:  
Table 13:  
Table 14:  
Table 15:  
Table 16:  
Table 17:  
Table 18:  
Table 19:  
Table 20:  
Table 21:  
Table 22:  
Table 23:  
Table 24:  
Table 25:  
Table 26:  
Table 27:  
Table 28:  
Table 29:  
Table 30:  
Table 31:  
Table 32:  
Table 33:  
Table 34:  
Table 35:  
Table 36:  
Table 37:  
Table 38:  
Table 39:  
Table 40:  
Table 41:  
Table 42:  
Table 43:  
Table 44:  
Table 45:  
Table 46:  
Table 47:  
Table 48:  
ASX340CS_DS Rev. F Pub. 6/15 EN  
6
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
General Description  
General Description  
The ON Semiconductor ASX340CS is a VGA-format, single-chip CMOS active-pixel  
digital image sensor for surveillance, door bell, and IP camera applications. It captures  
high-quality color images at VGA resolution and outputs NTSC or PAL interlaced  
composite video.  
The VGA CMOS image sensor features ON Semiconductors breakthrough low-noise  
imaging technology that achieves superior image quality (based on signal-to-noise ratio  
and low-light sensitivity) while maintaining the inherent size, cost, low power, and inte-  
gration advantages of ON Semiconductor's advanced active pixel CMOS process tech-  
nology.  
The ASX340CS is a complete camera-on-a-chip. It incorporates sophisticated camera  
functions on-chip and is programmable through a simple two-wire serial interface or by  
an attached SPI EEPROM or Flash memory that contains setup information that may be  
loaded automatically at startup.  
The ASX340CS performs sophisticated processing functions including color recovery,  
color correction, sharpening, programmable gamma correction, auto black reference  
clamping, auto exposure, 50Hz/60Hz flicker detection and avoidance, lens shading  
correction, auto white balance (AWB), and on-the-fly defect identification and correc-  
tion.  
The ASX340CS outputs interlaced-scan images at 60 or 50 Fields per second, supporting  
both NTSC and PAL video formats. The image data can be output on one or two output  
ports:  
Composite analog video (single-ended and differential output support)  
Parallel 8-, 10-bit digital  
Architecture  
Internal Block Diagram  
Figure 1:  
Internal Block Diagram  
SPI  
2. 8V  
1 .8 V  
Two-Wire I/F  
2
4
Camera Control  
SPI & 2W I/F  
Interface  
AWB  
AE  
640 x 480 Active Array  
Image Flow Processor  
Overlay  
Graphics  
Generation  
8
10  
Color & Gamma Correction  
Color Space Conversion  
Edge Enhancement  
¼” VGA ROI  
BT -656  
@ 60 frames per sec.  
NTSC /  
PAL  
VideoEncoder  
DAC  
ASX340CS_DS Rev. F Pub. 6/15 EN  
7
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Architecture  
System Block Diagram  
The system block diagram will depend on the application. The system block diagram in  
Figure 2 shows all components; optional peripheral components are highlighted.  
Control information will be received by a microcontroller through the automotive bus to  
communicate with the ASX340CS through its two-wire serial bus. Optional components  
will vary by application.  
Figure 2:  
System Block Diagram  
27 MHz  
EXTCLK  
XTAL  
RESET_BAR  
FRAME _SYNC  
Serial Data  
EEPROM/Flash  
1KB - 16MB  
System Bus  
SPI  
μC  
2WIRE I/F  
DAC_REF  
LP Filter  
Composite  
Video  
PAL /NTSC  
DAC _POS  
DAC _NEG  
4.7kΩ  
75Ω  
V
DD_DAC (2.8V)  
DD_PLL (2.8.V)  
DD_IO (2.8V)  
V
V
2.8V  
.
Optional  
V
AA _PIX (2.8V)  
V
AA (2.8V)  
V
DD (1.8V)  
V
REG_BASE  
]
D
OUT  
[7:0  
CCIR 656/  
GPO  
D
OUT_  
LSB0, 1  
PIXCLK  
FRAME_VALID  
LINE_VALID  
ASX340CS_DS Rev. F Pub. 6/15 EN  
8
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Architecture  
Crystal Usage  
As an alternative to using an external oscillator, a fundamental 27 MHz crystal may be  
connected between EXTCLK and XTAL. Two small loading capacitors of 10–22 pF of NPO  
dielectric should be added as shown in Figure 3.  
ON Semiconductor does not recommend using the crystal option for applications above  
85°C. A crystal oscillator with temperature compensation is recommended.  
Figure 3:  
Using a Crystal Instead of an External Oscillator  
Sensor  
18pF -NPO  
EXTCLK  
XTAL  
27.000 MHz  
18pF -NPO  
Note:  
Value of load cap is Xtal-dependent. Xtal with small load cap is recommended.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
9
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Pin Descriptions and Assignments  
Pin Descriptions and Assignments  
Table 1:  
Pin Descriptions  
Pin Name  
Pin Number  
Type  
Description  
Clock and Reset  
A2  
EXTCLK  
Input  
Master input clock (27MHz): This can either be a square-wave generated from an  
oscillator (in which case the XTAL input must be left unconnected) or connected  
directly to a crystal.  
B1  
D2  
XTAL  
Output  
Input  
If EXTCLK is connected to one pin of a crystal, this signal is connected to the other  
pin; otherwise this signal must be left unconnected.  
RESET_BAR  
Asynchronous active-low reset: When asserted, the device will return all interfaces  
to their reset state. When released, the device will initiate the boot sequence. This  
signal has an internal pull-up resistor.  
E1  
FRAME_SYNC  
Input  
This input can be used to set the output timing of the ASX340CS to a fixed point in  
the frame.  
The input buffer associated with this input is permanently enabled. This signal  
must be connected to GND if not used.  
Register Interface  
F1  
F2  
E2  
SCLK  
SDATA  
SADDR  
Input  
Input/Output  
Input  
These two signals implement serial communications protocol for access to the  
internal registers and variables.  
This signal controls the device ID that will respond to serial communication  
commands.  
Two-wire serial interface device ID selection:  
0: 0x90  
1: 0xBA  
SPI Interface  
D4  
SPI_SCLK  
Output  
Clock output for interfacing to an external SPI memory such as Flash/EEPROM.  
Tri-state when RESET_BAR is asserted.  
E4  
H3  
H2  
SPI_SDI  
SPI_SDO  
SPI_CS_N  
Input  
Data in from SPI device. This signal has an internal pull-up resistor.  
Data out to SPI device. Tri-state when RESET_BAR is asserted.  
Chip selects to SPI device. Tri-state when RESET_BAR is asserted.  
Output  
Output  
(Parallel) Pixel Data Output  
F7  
G7  
E6  
FRAME_VALID  
LINE_VALID  
PIXCLK  
Input/Output Pixel data from the ASX340CS can be routed out on this interface and processed  
externally.  
Input/Output  
Output  
To save power, these signals are driven to a constant logic level unless the parallel  
pixel data output or alternate (GPIO) function is enabled for these pins.  
This interface is disabled by default.  
F8, D6, D7,  
C6, C7, B6,  
B7, A6  
DOUT[7:0]  
Output  
The slew rate of these outputs is programmable.  
These signals can also be used as general purpose input/outputs.  
B3  
C2  
DOUT_LSB1  
DOUT_LSB0  
Input/Output When the sensor core is running in bypass mode, it will generate 10 bits of output  
data per pixel. These two pins make the two LSB of pixel data available externally.  
Leave DOUT_LSB1 unconnected if not used. To save power, these signals are driven  
to a constant logic level unless the sensor core is running in bypass mode or the  
alternate function is enabled for these pins.The slew rate of these outputs is  
programmable.  
Input/Output  
ASX340CS_DS Rev. F Pub. 6/15 EN  
10  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Pin Descriptions and Assignments  
Table 1:  
Pin Descriptions (continued)  
Pin Number  
Pin Name  
Type  
Description  
Composite Video Output  
F5  
DAC_POS  
Output  
Positive video DAC output in differential mode.  
Video DAC output in single-ended mode. This interface is enabled by default using  
NTSC/PAL signalling. For applications where composite video output is not  
required, the video DAC can be placed in a power-down state under software  
control.  
G5  
A4  
DAC_NEG  
DAC_REF  
Output  
Output  
Negative video DAC output in differential mode.  
External reference resistor for the video DAC.  
Manufacturing Test Interface  
D3  
G2  
F3  
TDI  
TDO  
Input  
Output  
Input  
Input  
Input  
Input  
Input  
JTAG Test pin (Reserved for Test Mode)  
JTAG Test pin (Reserved for Test Mode)  
JTAG Test pin (Reserved for Test Mode)  
JTAG Test pin (Reserved for Test Mode)  
Connect to GND.  
TMS  
C3  
C4  
G6  
F6  
TCK  
TRST_N  
ATEST1  
ATEST2  
Analog test input. Connect to GND in normal operation.  
Analog test input. Connect to GND in normal operation.  
GPIO  
C1  
A3  
GPIO12  
GPIO13  
Input/Output Dedicated general-purpose input/output pin.  
Input/Output Dedicated general-purpose input/output pin.  
Power  
G4  
VREG_BASE  
VDD  
Supply  
Supply  
Voltage regulator control. Leave floating if not used.  
A5, A7, D8,  
E7, G1, G3  
Supply for VDD core: 1.8V nominal. Can be connected to the output of the  
transistor of the off-chip bypass transistor or an external 1.8V power supply.  
B2, B8, C8,  
E3, E8, G8,  
H8  
VDD_IO  
Supply  
Supply for digital IOs: 2.8V nominal.  
H5  
A8  
VDD_DAC  
VDD_PLL  
VAA  
Supply  
Supply  
Supply  
Supply  
Supply for video DAC: 2.8V nominal.  
Supply for PLL: 2.8V nominal.  
B4, H6  
H7  
Analog power: 2.8V nominal.  
VAA_PIX  
Reserved  
DGND  
Analog pixel array power: 2.8V nominal. Must be at same voltage potential as VAA.  
Leave floating for normal operation.  
H4  
B5, C5, D1,  
D5, H1  
Supply  
Supply  
Digital ground.  
Analog ground.  
E5, F4  
AGND  
ASX340CS_DS Rev. F Pub. 6/15 EN  
11  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Pin Descriptions and Assignments  
Pin Assignments  
Pin 1 is not populated with a ball. That allows the device to be identified by an additional  
marking.  
Table 2:  
Pin Assignments  
1
2
3
GPIO13  
DOUT_LSB1  
TCK  
4
DAC_REF  
VAA  
5
6
7
8
VDD_PLL  
VDD_IO  
VDD_IO  
VDD  
A
B
C
D
EXTCLK  
VDD_IO  
DOUT_LSB0  
RESET_BAR  
SADDR  
VDD  
DOUT0  
DOUT2  
DOUT4  
DOUT6  
VDD  
XTAL  
GPIO12  
GND  
GND  
GND  
GND  
AGND  
DOUT1  
DOUT3  
DOUT5  
VDD  
TRST_N  
SPI_SCLK  
SPI_SDI  
AGND  
TDI  
E
F
FRAME_SYNC  
SCLK  
VDD_IO  
TMS  
PIXCLK  
ATEST2  
ATEST1  
VAA  
VDD_IO  
DOUT7  
VDD_IO  
VDD_IO  
SDATA  
DAC_POS  
DAC_NEG  
VDD_DAC  
FRAME_VALID  
LINE_VALID  
VAA_PIX  
G
H
VDD  
TDO  
VDD  
VREG_BASE  
Reserved  
GND  
SPI_CS_N  
SPI_SDO  
Table 3:  
Reset/Default State of Interfaces  
Name  
Reset State  
Default State  
Notes  
EXTCLK  
XTAL  
Clock running or stopped  
Clock running  
N/A  
Input  
Input  
Input  
N/A  
Asserted  
N/A  
RESET_BAR  
SCLK  
De-asserted  
N/A  
Input. Must always be driven to high via  
a pull-up resistor in the range of 1.5 to 4.7 k.  
SDATA  
SADDR  
High impedance  
N/A  
High impedance  
N/A  
Input/Output. Must always be driven to high  
via  
a pull-up resistor in the range of 1.5 to 4.7 k.  
Input. Must be permanently tied to VDD_IO or  
GND.  
SPI_SCLK  
SPI_SDI  
High impedance.  
Driven, logic 0  
Output. Output enable is R0x0032[13].  
Internal pull-up enabled.  
Internal pull-up enabled  
Input. Internal pull-up is permanently  
enabled.  
SPI_SDO  
High impedance  
High impedance  
Driven, logic 0  
Driven, logic 1  
High impedance  
Output enable is R0x0032[13].  
Output enable is R0x0032[13].  
SPI_CS_N  
FRAME_VALID  
LINE_VALID  
High impedance  
Input/Output. This interface disabled by  
default. Input buffers (used for GPIO function)  
powered down by default, so these pins can  
be left unconnected (floating). After reset,  
these pins are powered up, sampled, then  
powered down again as part of the auto-  
configuration mechanism. See Note 2.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
12  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Pin Descriptions and Assignments  
Table 3:  
Name  
Reset/Default State of Interfaces (continued)  
Reset State  
Default State  
Notes  
PIXCLK  
DOUT7  
High impedance  
Driven, logic 0  
DOUT6  
DOUT5  
Output. This interface disabled by default.  
See Note 1.  
DOUT4  
DOUT3  
DOUT2  
DOUT1  
DOUT0  
DOUT_LSB1  
DOUT_LSB0  
High impedance  
High impedance  
High impedance  
HIgh impedance  
Input/Output. This interface disabled by  
default. Input buffers (used for GPIO function)  
powered down by default, so these pins can  
be left unconnected (floating). After reset,  
these pins are powered-up, sampled, then  
powered down again as part of the auto-  
configuration mechanism.  
DAC_POS  
DAC_NEG  
DAC_REF  
TDI  
High impedance  
Driven  
Output. Interface disabled by hardware reset  
and enabled by default when the device starts  
streaming.  
Internal pull-up enabled  
High impedance  
Internal pull-up enabled  
High impedance  
Input. Internal pull-up means that this pin can  
be left unconnected (floating).  
TDO  
TMS  
Output. Driven only during appropriate parts  
of the JTAG shifter sequence.  
Internal pull-up enabled  
Internal pull-up enabled  
N/A  
Internal pull-up enabled  
Internal pull-up enabled  
N/A  
Input. Internal pull-up means that this pin can  
be left unconnected (floating).  
TCK  
Input. Internal pull-up means that this pin can  
be left unconnected (floating).  
TRST_N  
Input. Must always be driven to a valid logic  
level. Must be driven to GND for normal  
operation.  
FRAME_SYNC  
GPIO12  
N/A  
N/A  
Input. Must always be driven to a valid logic  
level. Must be driven to GND if not used.  
High impedance  
High impedance  
Input/Output. This interface disabled by  
default. Input buffers (used for GPIO function)  
powered down by default, so these pins can  
be left unconnected (floating).  
GPIO13  
High impedance  
High impedance  
Input/Output. This interface disabled by  
default. Input buffers (used for GPIO function)  
powered down by default, so these pins can  
be left unconnected (floating).  
ATEST1  
ATEST2  
N/A  
N/A  
N/A  
N/A  
Must be driven to GND for normal operation.  
Must be driven to GND for normal operation.  
Notes: 1. The reason for defining the default state as logic 0 rather than high impedance is this: when wired  
in a system (for example, on ON Semiconductor’s demo boards), these outputs will be connected,  
and the inputs to which they are connected will want to see a valid logic level. No current drain  
should result from driving these to a valid logic level (unless there is a pull-up at the system level).  
2. These pads have their input circuitry powered down, but they are not output-enabled. Therefore,  
they can be left floating but they will not drive a valid logic level to an attached device.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
13  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
SOC Description  
SOC Description  
Detailed Architecture Overview  
Sensor Core  
The sensor consists of a pixel array, an analog readout chain, a 10-bit ADC with programmable  
gain and black offset, and timing and control as illustrated in Figure 4.  
Figure 4:  
Sensor Core Block Diagram  
Control Register  
Communication  
Bus  
Active Pixel  
to IFP  
Sensor (APS)  
Array  
Timing and Control  
Clock  
Sync  
Signals  
10-Bit Data  
to IFP  
Analog Processing  
ADC  
Pixel Array Structure  
The sensor core pixel array is configured as 792 columns by 560 rows, as shown in  
Figure 5.  
Figure 5:  
Pixel Array Description  
(64, 0)  
(104, 36)  
lens alignment rows  
demosaic rows  
Pixel logical address = (0, 0)  
Active pixel array  
640 x 480  
Pixel logical address = (791, 559)  
demosaic rows  
lens alignment rows  
(751, 523)  
(not to scale)  
Black rows used internally for automatic black level adjustment are not addressed by  
default, but can be read out in raw output mode through a register setting.  
There are 728 columns by 560 rows of optically-active pixels (that is, clear pixels) that  
include a pixel boundary around the VGA (640 x 480) image to avoid boundary effects  
during color interpolation and correction. Among the 728 columns by 560 rows of clear  
ASX340CS_DS Rev. F Pub. 6/15 EN  
14  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
SOC Description  
pixels, there are 36 lens alignment rows on the top and bottom, and 40 lens alignment  
columns on the left and right; and there are 4 demosaic rows and 4 demosaic columns  
on each side.  
Figure 6 illustrates the process of capturing the image. The original scene is flipped and  
mirrored by the sensor optics. Sensor readout starts at the lower right corner. The image  
is presented in true orientation by the output display.  
Figure 6:  
Image Capture Example  
SCENE  
(Front view)  
OPTICS  
IMAGE SENSOR  
(Rear view)  
IMAGE CAPTURE  
Row by Row  
Start Rasterization  
Start Readout  
IMAGE RENDERING  
DISPLAY  
(Front view)  
ASX340CS_DS Rev. F Pub. 6/15 EN  
15  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Sensor Pixel Array  
Sensor Pixel Array  
The active pixel array is 640 x 480 pixels. In addition, there are 72 rows and 80 columns  
for lens alignment and 8 rows and 8 columns for demosaic.  
Figure 7:  
Pixel Color Pattern Detail (top right corner)  
Column Readout Direction  
.
.
Black Pixels  
First Lens Alignment  
.
Pixel  
(64, 0)  
G
B
G
B
G
B
R
G
R
G
B
G
B
G
B
R
G
R
G
B
G
B
G
B
R
G
R
G
B
G
B
G
B
Row  
Readout  
Direction  
...  
G
R
G
R
G
R
G
G
G
Output Data Format  
The sensor core image data are read out in progressive scan order. Valid image data are  
surrounded by horizontal and vertical blanking, shown in Figure 8.  
For NTSC output, the horizontal size is stretched from 640 to 720 pixels. The vertical size  
is 243 pixels per field; 240 image pixels and 3 dark pixels that are located at the bottom of  
the image field.  
For PAL output, the horizontal size is also stretched from 640 to 720 pixels. The vertical  
size is 288 pixels per field.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
16  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Sensor Pixel Array  
Figure 8:  
Spatial Illustration of Image Readout  
P0,0 P0,1 P0,2.....................................P0,n-1 P0,n  
P2,0 P2,1 P2,2.....................................P2,n-1 P2,n  
00 00 00 .................. 00 00 00  
00 00 00 .................. 00 00 00  
Horizontal  
Blanking  
Valid Image Odd Field  
Pm-2,0 Pm-2,1.....................................Pm-2,n-1 Pm-2,n 00 00 00 .................. 00 00 00  
Pm,0 Pm,1.....................................Pm,n-1 Pm,n  
00 00 00 .................. 00 00 00  
00 00 00 ..................................... 00 00 00  
00 00 00 ..................................... 00 00 00  
00 00 00 .................. 00 00 00  
00 00 00 .................. 00 00 00  
Vertical/Horizontal  
Blanking  
Vertical Even Blanking  
00 00 00 .................. 00 00 00  
00 00 00 .................. 00 00 00  
00 00 00 ..................................... 00 00 00  
00 00 00 ..................................... 00 00 00  
P1,0 P1,1 P1,2.....................................P1,n-1 P1,n  
P3,0 P3,1 P3,2.....................................P3,n-1 P3,n  
00 00 00 .................. 00 00 00  
00 00 00 .................. 00 00 00  
Horizontal  
Blanking  
Valid Image Even Field  
Pm-1,0 Pm-1,1.....................................Pm-1,n-1 Pm-1,n 00 00 00 .................. 00 00 00  
Pm+1,0 Pm+1,1..................................Pm+1,n-1 Pm+1,n 00 00 00 .................. 00 00 00  
00 00 00 ..................................... 00 00 00  
00 00 00 ..................................... 00 00 00  
00 00 00 .................. 00 00 00  
00 00 00 .................. 00 00 00  
Vertical/Horizontal  
Blanking  
Vertical Odd Blanking  
00 00 00 .................. 00 00 00  
00 00 00 .................. 00 00 00  
00 00 00 ..................................... 00 00 00  
00 00 00 ..................................... 00 00 00  
ASX340CS_DS Rev. F Pub. 6/15 EN  
17  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Sensor Pixel Array  
Image Flow Processor  
Image and color processing in the ASX340CS are implemented as an image flow  
processor (IFP) coded in hardware logic. During normal operation, the embedded  
microcontroller will automatically adjust the operation parameters. The IFP is broken  
down into different sections, as outlined in Figure 9.  
Figure 9:  
Color Pipeline  
RAW 10  
Pixel Array  
ADC  
Raw Data  
IFP  
Test Pattern  
Generator  
MUX  
Black  
Level  
Subtraction  
Digital Gain Control  
Lens Shading  
Correction  
Defect Correction,  
Noise Reduction,  
Color Interpolation  
Statistics  
Engine  
8-bit  
RGB  
RGB to YUV  
10/12-Bit  
RGB  
8-bit  
YUV  
Color Correction  
Color Kill  
Aperture  
Correction  
Output  
Gamma  
Correction  
Formatting  
YUV to RGB  
(12-to-8 Lookup)  
Overlay Control  
Output  
Interface  
Parallel Output Mux  
Analog Output Mux  
Parallel  
Output  
NTSC/PAL  
ASX340CS_DS Rev. F Pub. 6/15 EN  
18  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Sensor Pixel Array  
Test Patterns  
During normal operation of the ASX340CS, a stream of raw image data from the sensor  
core is continuously fed into the color pipeline. For test purposes, this stream can be  
replaced with a fixed image generated by a special test module in the pipeline. The  
module provides a selection of test patterns sufficient for basic testing of the pipeline.  
NTSC/PAL Test Pattern Generation  
There is a built-in standard EIA (NTSC) and EBU (PAL) color bars to support hue and  
color saturation characterization. Each pattern consists of seven color bars (white,  
yellow, cyan, green, magenta, red, and blue). The Y, Cb and Cr values for each bar are  
detailed in Tables 4 and 5.  
Figure 10: Color Bars  
Table 4:  
EIA Color Bars (NTSC)  
Nominal Range  
White  
Yellow  
Cyan  
Green  
Magenta  
Red  
Blue  
Y
16 to 235  
16 to 240  
16 to 240  
180  
128  
128  
162  
44  
131  
156  
44  
112  
72  
84  
65  
35  
Cb  
Cr  
184  
198  
100  
212  
212  
114  
142  
58  
Table 5:  
EBU Color Bars (PAL)  
Nominal Range  
White  
Yellow  
Cyan  
Green  
Magenta  
Red  
Blue  
Y
16 to 235  
16 to 240  
16 to 240  
235  
128  
128  
162  
44  
131  
156  
44  
112  
72  
84  
65  
35  
Cb  
Cr  
184  
198  
100  
212  
212  
114  
142  
58  
CCIR-656 Format  
The color bar data is encoded in 656 data streams. The duration of the blanking and  
active video periods of the generated 656 data are summarized in Tables 6 and 7.  
Table 6:  
NTSC  
Line Numbers  
1-3  
Field  
Description  
Blanking  
2
1
4-19  
Blanking  
ASX340CS_DS Rev. F Pub. 6/15 EN  
19  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Sensor Pixel Array  
Table 6:  
NTSC (continued)  
Line Numbers  
20-263  
Field  
Description  
Active video  
Blanking  
1
1
2
2
264-265  
266-282  
283-525  
Blanking  
Active Video  
Table 7:  
PAL  
Line Numbers  
1-22  
Field  
Description  
Blanking  
1
1
1
2
2
2
23-310  
Active video  
Blanking  
311-312  
313-335  
336-623  
624-625  
Blanking  
Active video  
Blanking  
Black Level Subtraction and Digital Gain  
Image stream processing starts with black level subtraction and multiplication of all  
pixel values by a programmable digital gain. Both operations can be independently set  
to separate values for each color channel (R, Gr., Gb, B). Independent color channel  
digital gain can be adjusted with registers. Independent color channel black level adjust-  
ments can also be made. If the black level subtraction produces a negative result for a  
particular pixel, the value of this pixel is set to 0.  
Positional Gain Adjustments (PGA)  
Lenses tend to produce images whose brightness is significantly attenuated near the  
edges. There are also other factors causing fixed pattern signal gradients in images  
captured by image sensors. The cumulative result of all these factors is known as image  
shading. The ASX340CS has an embedded shading correction module that can be  
programmed to counter the shading effects on each individual R, Gb, Gr., and B color  
signal.  
The Correction Function  
The correction functions can then be applied to each pixel value to equalize the  
response across the image as follows:  
P
(row,col)=P  
(row,col)*f(row,col)  
(EQ 1)  
corrected  
sensor  
where P is the pixel values and f is the color dependent correction functions for each  
color channel.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
20  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Sensor Pixel Array  
Color Interpolation  
In the raw data stream fed by the sensor core to the IFP, each pixel is represented by a  
10-bit integer number, which can be considered proportional to the pixel's response to a  
one-color light stimulus, red, green, or blue, depending on the pixel's position under the  
color filter array. Initial data processing steps, up to and including the defect correction,  
preserve the one-color-per-pixel nature of the data stream, but after the defect correc-  
tion it must be converted to a three-colors-per-pixel stream appropriate for standard  
color processing. The conversion is done by an edge-sensitive color interpolation  
module. The module pads the incomplete color information available for each pixel  
with information extracted from an appropriate set of neighboring pixels. The algorithm  
used to select this set and extract the information seeks the best compromise between  
preserving edges and filtering out high frequency noise in flat field areas. The edge  
threshold can be set through register settings.  
Color Correction and Aperture Correction  
To achieve good color fidelity of the IFP output, interpolated RGB values of all pixels are  
subjected to color correction. The IFP multiplies each vector of three pixel colors by a  
3 x 3 color correction matrix. The three components of the resulting color vector are all  
sums of three 10-bit numbers. Since such sums can have up to 12 significant bits, the bit  
width of the image data stream is widened to 12 bits per color (36 bits per pixel). The  
color correction matrix can be either programmed by the user or automatically selected  
by the auto white balance (AWB) algorithm implemented in the IFP. Color correction  
should ideally produce output colors that are corrected for the spectral sensitivity and  
color crosstalk characteristics of the image sensor. The optimal values of the color  
correction matrix elements depend on those sensor characteristics and on the spectrum  
of light incident on the sensor. The color correction variables can be adjusted through  
register settings.  
To increase image sharpness, a programmable 2D aperture correction (sharpening filter)  
is applied to color-corrected image data. The gain and threshold for 2D correction can  
be defined through register settings.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
21  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Sensor Pixel Array  
Gamma Correction  
The ASX340CS includes a block for gamma correction that can adjust its shape based on  
brightness to enhance the performance under certain lighting conditions. Two custom  
gamma correction tables may be uploaded corresponding to a brighter lighting condi-  
tion and a darker lighting condition. At power-up, the IFP loads the two tables with  
default values. The final gamma correction table used depends on the brightness of the  
scene and takes the form of an interpolated version of the two tables.  
The gamma correction curve (as shown in Figure 11) is implemented as a piecewise  
linear function with 19 knee points, taking 12-bit arguments and mapping them to 8-bit  
output. The abscissas of the knee points are fixed at 0, 64, 128, 256, 512, 768, 1024, 1280,  
1536, 1792, 2048, 2304, 2560, 2816, 3072, 3328, 3584, 3840, and 4096. The 8-bit ordinates  
are programmable through registers.  
Figure 11: Gamma Correction Curve  
RGB to YUV Conversion  
For further processing, the data is converted from RGB color space to YUV color space.  
Color Kill  
To remove high-or low-light color artifacts, a color kill circuit is included. It affects only  
pixels whose luminance exceeds a certain preprogrammed threshold. The U and V  
values of those pixels are attenuated proportionally to the difference between their lumi-  
nance and the threshold.  
YUV Color Filter  
As an optional processing step, noise suppression by one-dimensional low-pass filtering  
of Y and/or UV signals is possible. A 3- or 5-tap filter can be selected for each signal.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
22  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Sensor Pixel Array  
YUV-to-RGB/YUV Conversion and Output Formatting  
The YUV data stream emerging from the colorpipe can either exit the color pipeline as-is  
or be converted before exit to an alternative YUV or RGB data format.  
Output Format and Timing  
YUV/RGB Data Ordering  
The ASX340CS supports swapping YCbCr mode, as illustrated in Table 8.  
YCbCr Output Data Ordering  
Table 8:  
Mode  
Data Sequence  
Cri  
Default (no swap)  
Swapped CbCr  
Swapped YC  
Cbi  
Cri  
Yi  
Yi  
Yi  
Yi+1  
Yi+1  
Cri  
Cbi  
Yi+1  
Yi+1  
Cbi  
Cri  
Swapped CbCr, YC  
Yi  
Cbi  
The RGB output data ordering in default mode is shown in Table 9. The odd and even  
bytes are swapped when luma/chroma swap is enabled. R and B channels are bit-wise  
swapped when chroma swap is enabled.  
Table 9:  
RGB Ordering in Default Mode  
Mode (Swap Disabled)  
Byte  
D7D6D5D4D3D2D1D0  
565RGB  
555RGB  
444xRGB  
x444RGB  
Odd  
Even  
Odd  
Even  
Odd  
Even  
Odd  
Even  
R7R6R5R4R3G7G6G5  
G4G3G2B7B6B5B4B3  
0 R7R6R5R4R3G7G6  
G5G4G3B7B6B5B4B3  
R7R6R5R4G7G6G5G4  
B7B6B5B4 0 0 0 0  
0 0 0 0 R7R6R5R4  
G7G6G5G4B7B6B5B4  
Uncompressed 10-Bit Bypass Output  
Raw 10-bit Bayer data from the sensor core can be output in bypass mode in two ways:  
Using 8 data output signals (DOUT[7:0]) and GPIO[1:0]. The GPIO signals are the least  
significant 2 bits of data.  
Using only 8 signals (DOUT[7:0]) and a special 8 + 2 data format, shown in Table 10.  
Table 10:  
2-Byte Bayer Format  
Byte  
Bits Used  
8 data bits  
Bit Sequence  
D9D8D7D6D5D4D3D2  
0 0 0 0 0 0 D1D0  
Odd bytes  
Even bytes  
2 data bits + 6 unused bits  
Readout Formats  
Progressive format is used for raw Bayer output.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
23  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
System Configuration and Usage Modes  
Output Formats  
ITU-R BT.656 and RGB Output  
TheASX340CS can output processed video as a standard ITU-R BT.656 (CCIR656)  
stream, an RGB stream, or as unprocessed Bayer data. The ITU-R BT.656 stream contains  
YCbCr 4:2:2 data with embedded synchronization codes. This output is typically suitable  
for subsequent display by standard video equipment or JPEG/MPEG compression.  
Colorpipe data (pre-lens correction and overlay) can also be output in YCbCr 4:2:2 and a  
variety of RGB formats in 640 by 480 progressive format in conjunction with  
LINE_VALID and FRAME_VALID.  
The ASX340CS can be configured to output 16-bit RGB (565RGB), 15-bit RGB (555RGB),  
and two types of 12-bit RGB (444RGB). Refer to Table 24 and Table 25 on page 45 for  
details.  
Bayer Output  
Unprocessed Bayer data are generated when bypassing the IFP completely—that is, by  
simply outputting the sensor Bayer stream as usual, using FRAME_VALID, LINE_VALID,  
and PIXCLK to time the data. This mode is called sensor bypass mode.  
Output Ports  
Composite Video Output  
The composite video output DAC is external-resistor-programmable and supports both  
single-ended and differential output. The DAC is driven by the on-chip video encoder  
output.  
Parallel Output  
Parallel output uses either 8-bit or 10-bit output. Eight-bit output is used for ITU-R  
BT.656 and RGB output. Ten-bit output is used for raw Bayer output.  
Zoom Support  
The ASX340CS supports zoom x1 and x2 modes, in interlaced and progressive scan  
modes. The progressive support is limited to the VGA at either 60 fps or 50 fps.  
In the zoom x2 modes, the sensor is configured for QVGA (320 x 240), and the zoom x2  
window can be configured to pan around the VGA window.  
FOV Stretch Support  
The ASX340CS supports the ability to control the active 'width' of the TV output line,  
between 692 and 720 pixels. The hardware supports two margins, each a maximum of 14  
pixels width, and has to be an even number of pixels.  
System Configuration and Usage Modes  
How a camera based on the ASX340CS will be configured depends on what features are  
used. There are essentially three configuration modes for ASX340CS: Auto-Config Mode,  
Flash-Config Mode, and Host-Config Mode. Refer to System Configuration and Usage  
Modes in the Developer Guide document for details.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
24  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Multicamera Support  
Multicamera Support  
Two or more ASX340CS sensors may be synchronized to a frame by asserting the  
FRAME_SYNC signal. At that point, the sensor and video encoder will reset without  
affecting any register settings. The ASX340CS may be triggered to be synchronized with  
another ASX340CS or an external event.  
Figure 12: Multicamera System Block Diagram  
Decoder/DSP  
Dual Camera  
CVBS  
CVBS  
ASX340  
Camera 1  
Camera 2  
OSC  
F_SYNC  
ASX340  
F_SYNC  
1
System Bus  
μC  
ASX340CS_DS Rev. F Pub. 6/15 EN  
25  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
External Signal Processing  
An external signal processor can take data from ITU656 or raw Bayer output format and  
post-process or compress the data in various formats.  
Figure 13: External Signal Processing Block Diagram  
27 MHz  
Serial  
EXTCLK  
SPI  
EEPROM/Flash  
1KB to 16MB  
VIDEO_P  
VIDEO_N  
CVBS  
PAL/NTSC  
Signal processor  
DOUT [7:0]  
PIXCLK  
ASX340CS_DS Rev. F Pub. 6/15 EN  
26  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
Device Configuration  
After power is applied and the device is out of reset by de-asserting the RESET_BAR pin,  
it will enter a boot sequence to configure its operating mode. There are essentially three  
three configuration modes: Flash/EEPROM Config, Auto Config, and Host Config. Figure  
14: “Power-Up Sequence – Configuration Options Flow Chart,” on page 22 contains  
more details on the configuration options.  
The SOC firmware supports a System Configuration phase at start-up. This consists of  
five modes of execution:  
1. Flash Detection  
2. Flash-Config  
3. Auto-Config  
4. Host-Config  
5. Change-Config (commences streaming - completes the System Configuration mode).  
The System Configuration phase is entered immediately after the firmware initializes  
following SOC power-up or reset. By default, the firmware first enters the Flash Detec-  
tion mode.  
The Flash Detection mode attempts to detect the presence of an SPI Flash or EEPROM  
device:  
If no device is detected, the firmware then samples the SPI_SDI pin state to determine  
the next mode:  
– If SPI_SDI == 0 then it enters the Host-Config mode.  
– If SPI_SDI == 1 then it enters the Auto-Config mode.  
If a device is detected, the firmware switches to the Flash-Config mode.  
In the Flash-Config phase, the firmware interrogates the device to determine if it  
contains valid configuration records:  
If no records are detected, then the firmware enters the Auto-Config mode.  
If records are detected, the firmware processes them. By default, when all Flash  
records are processed the firmware switches to the Host-Config mode. However, the  
records encoded into the Flash can optionally be used to instruct the firmware to  
proceed to one of the other mode (auto-config/change-config).  
The Auto-Config mode uses the FRAME_VALID, LINE_VALUE, DOUTT_LSB0 and DOUT-  
T_LSB1 pins to configure the operation of the device, such as video format and pedestal  
(refer to the Developer Guide for more details). After Auto-Config completes the firm-  
ware switches to the Change-Config mode.  
In the Host-Config mode, the firmware performs no configuration, and remains idle  
waiting for configuration and commands from the host. The System Configuration  
phase is effectively complete and the SOC will take no actions until the host issues  
commands.  
In the Change-Config mode, the firmware performs a 'Change-Config' operation. This  
applies the current configuration settings to the SOC, and commences streaming. This  
completes the System Configuration phase.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
27  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
Power Sequence  
In power-up, the core voltage (1.8V) must trail the IO (2.8V) by a positive number. All  
2.8V rails can be turned on at the same time or follow the power-up sequence in Figure  
39: “Power Up Sequence,” on page 51.  
In power down, the sequence is reversed. The core voltage (1.8V) must be turned off  
before any 2.8V. Refer to Figure 40: “Power Down Sequence,” on page 52 for details.  
Figure 14: Power-Up Sequence – Configuration Options Flow Chart  
Power Up/ RESET  
EEPROM/Flash  
device present?  
yes  
no  
EEPROM/Flash  
contents valid?  
no  
yes  
SPI _SDI = 0?  
no  
Parse  
EEPROM/Flash  
Content  
(optional)  
:
Auto-Config  
Change-Config  
Disable Auto-Config  
(default)  
Auto Configuration:  
Auto-Config  
_
FRAME VALID  
Wait for Host  
Command  
LINE_VALID  
DOUT_LSB 0  
DOUT_LSB 1  
Host Config  
Wait for Host  
Command  
Change-Config  
Change Config  
Wait for Host  
Command  
ASX340CS_DS Rev. F Pub. 6/15 EN  
28  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
Supported NVM Devices  
The ASX340CS supports a variety of SPI NVM devices. Refer to Flash/EEPROM Program-  
ming section in Developer Guide document for details.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
29  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
Host Command Interface  
ON Semiconductors sensors and SOCs contain numerous registers that are accessed  
through a two-wire interface with speeds up to 400 kHz.  
The ASX340CS in addition to writing or reading straight to/from registers or firmware  
variables, has a mechanism to write higher level commands, the Host Command Inter-  
face (HCI). Once a command has been written through the HCI, it will be executed by on  
chip firmware and the results are reported back. In general, registers shall not be  
accessed with the exception of registers that are marked for “User Access.”  
EEPROM or Flash memory is also available to store commands for later execution.  
Under DMA control, a command is written into the SOC and executed.  
For a complete spec on host commands, refer to the ASX340CS Host Command Interface  
Specification.  
Figure 15: Interface Structure  
14  
bit  
15  
0
1
0
Host Command to FW  
Response from FW  
Addr 0x40  
command register  
door bell  
bit  
15  
0
Addr 0xFC00  
Parameter 0  
cmd_handler_params_pool_0  
cmd_handler_params_pool_1  
cmd_handler_params_pool_2  
Addr 0xFC02  
Addr 0xFC04  
Addr 0xFC06  
Addr 0xFC08  
Addr 0xFC0A  
Addr 0xFC0C  
cmd_handler_params_pool_3  
cmd_handler_params_pool_4  
cmd_handler_params_pool_5  
cmd_handler_params_pool_6  
cmd_handler_params_pool_7  
Addr 0xFC0E  
Parameter 7  
ASX340CS_DS Rev. F Pub. 6/15 EN  
30  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
Host Command Process Flow  
Figure 16: Host Command Process Flow  
Issue  
Command  
Wait for a  
response?  
No  
Host could insert an  
optional delay here  
Yes  
Read Command  
register  
Host could insert an  
optional delay here  
Read Command  
register  
No  
No  
Doorbell  
bit clear ?  
Doorbell bit  
clear?  
Yes  
At this point  
Command Register  
Yes  
contains response code  
Command has  
parameters  
?
Command  
has response  
parameters ?  
No  
Yes  
Write parameters  
Yes  
No  
to  
Parameter Pool  
Read response  
parameters from  
Parameter Pool  
Write command  
to  
Command register  
Done  
ASX340CS_DS Rev. F Pub. 6/15 EN  
31  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
Command Flow  
The host issues a command by writing (through a two-wire interface bus) to the  
command register. All commands are encoded with bit 15 set, which automatically  
generates the host command (doorbell) interrupt to the microprocessor.  
Assuming initial conditions, the host first writes the command parameters (if any) to the  
parameters pool (in the command handler's logical page), then writes the command to  
command register. The SOC firmware interrupt handler then signals the Command  
Handler task to process the command.  
If the host wishes to determine the outcome of the command, it must poll the command  
register waiting for the doorbell bit to be cleared. This indicates that the firmware  
completed processing the command. When the doorbell bit is cleared, the contents of  
the command register indicate the command's result status. If the command generated  
response parameters, the host can now retrieve these from the parameters pool.  
Note:  
The host must not write to the parameters pool, nor issue another command, until  
the previous command completes. This is true even if the host does not care about the  
result of the previous command. Therefore, the host must always poll the command  
register to determine the state of the doorbell bit, and ensure the bit is cleared before  
issuing a command.  
For a complete command list and further information consult the Host Command Inter-  
face Specification.  
An example of how (using DevWare) a command may be initiated in the form of a  
“Preset” follows.  
Issue the SYSMGR_SET_STATE Command  
All DevWare presets supplied by ON Semiconductor poll and test the doorbell bit after  
issuing the command. Therefore there is no need to check if the doorbell bit is clear  
before issuing the next command.  
# Set the desired next state in the parameters pool(SYS_STATE_ENTER_CON-  
FIG_CHANGE)  
REG= 0xFC00, 0x2800 // CMD_HANDLER_PARAMS_POOL_0  
# Issue the HC_SYSMGR_SET_STATE command  
REG= 0x0040, 0x8100 // COMMAND_REGISTER  
# Wait for the FW to complete the command (clear the Doorbell bit)  
POLL_FIELD= COMMAND_REGISTER, DOORBELL,!=0, DELAY=10, TIMEOUT=100  
# Check the command was successful  
ERROR_IF= COMMAND_REGISTER, HOST_COMMAND,!=0, "Set State command  
failed",  
ASX340CS_DS Rev. F Pub. 6/15 EN  
32  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
Summary of Host Commands  
Table 11 on page 27 through Table 18 on page 29 show summaries of the host  
commands. The commands are divided into the following sections:  
System Manager  
Overlay  
GPIO  
Flash Manager  
Sequencer  
Patch Loader  
Miscellaneous  
Calibration Stats  
Following is a summary of the Host Interface commands. The description gives a quick  
orientation. The “Type” column shows if it is an asynchronous or synchronous  
command. For a complete list of all commands including parameters, consult the Host  
Command Interface Specification document.  
Table 11:  
System Manager Commands  
System Manager  
Host Command  
Value  
0x8100  
0x8101  
Type  
Description  
Set State  
Get State  
Synchronous  
Synchronous  
Request the system enter a new state  
Get the current state of the system  
Table 12:  
Overlay Host Commands  
Overlay Host Command  
Enable Overlay  
Get Overlay State  
Set Calibration  
Set Bitmap Property  
Get Bitmap Property  
Set String Property  
Load Buffer  
Value  
Type  
Description  
0x8200  
0x8201  
0x8202  
0x8203  
0x8204  
0x8205  
0x8206  
0x8207  
0x8208  
0x8209  
0x820A  
0x820B  
0x820C  
0x820D  
0x820E  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Asynchronous  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Synchronous  
Asynchronous  
Enable or disable the overlay subsystem  
Retrieve the state of the overlay subsystem  
Set the calibration offset  
Set a property of a bitmap  
Get a property of a bitmap  
Set a property of a character string  
Load an overlay buffer with a bitmap (from Flash)  
Retrieve status of an active load buffer operation  
Write directly to an overlay buffer  
Read directly from an overlay buffer  
Enable or disable an overlay layer  
Retrieve the status of an overlay layer  
Set the character string  
Load Status  
Write Buffer  
Read Buffer  
Enable Layer  
Get Layer Status  
Set String  
Get String  
Get the current character string  
Load a character string (from Flash)  
Load String  
ASX340CS_DS Rev. F Pub. 6/15 EN  
33  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
Table 13:  
GPIO Host Commands  
GPIO Host Command  
Set GPIO Property  
Get GPIO Property  
Set GPO State  
Value  
Type  
Description  
0x8400  
0x8401  
0x8402  
0x8403  
0x8404  
0x8405  
Synchronous Set a property of one or more GPIO pins  
Synchronous Retrieve a property of a GPIO pin  
Synchronous Set the state of a GPO pin or pins  
Get GPIO State  
Synchronous Get the state of a GPI pin or pins  
Set GPI Association  
Get GPI Association  
Synchronous Associate a GPI pin state with a Command Sequence stored in SPI Flash  
Synchronous Retrieve an GPIO pin association  
Table 14:  
Flash Manager Host Commands  
Flash Manager  
Host Command  
Value  
Type  
Description  
Get Lock  
0x8500  
0x8501  
0x8502  
0x8503  
0x8504  
0x8505  
0x8506  
0x8507  
0x8508  
0x8509  
0x850A  
Asynchronous Request the Flash Manager access lock  
Synchronous Retrieve the status of the access lock request  
Synchronous Release the Flash Manager access lock  
Synchronous Configure the Flash Manager and underlying SPI Flash subsystem  
Asynchronous Read data from the SPI Flash  
Lock Status  
Release Lock  
Config  
Read  
Write  
Asynchronous Write data to the SPI Flash  
Erase Block  
Erase Device  
Query Device  
Status  
Asynchronous Erase a block of data from the SPI Flash  
Asynchronous Erase the SPI Flash device  
Asynchronous Query device-specific information  
Synchronous Obtain status of current asynchronous operation  
Synchronous Configure the attached SPI NVM device  
Config Device  
Table 15:  
Sequencer Host Commands  
Sequencer Host  
Command  
Value  
0x8606  
0x8607  
Type  
Description  
Refresh  
Synchronous  
Synchronous  
Refresh the automatic image processing algorithm configuration  
Retrieve the status of the last Refresh operation  
Refresh Status  
Table 16:  
Patch Loader Host Commands  
Patch Loader Host  
Command  
Value  
Type  
Asynchronous  
Description  
Load Patch  
Status  
0x8700  
0x8701  
0x8702  
0x8706  
Load a patch from SPI Flash and automatically apply  
Get status of an active Load Patch or Apply Patch request  
Apply a patch (already located in Patch RAM)  
Reserve RAM to contain a patch  
Synchronous  
Asynchronous  
Synchronous  
Apply Patch  
Reserve RAM  
Table 17:  
Miscellaneous Host Commands  
Miscellaneous Host Command  
Invoke Command Seq  
Value  
Type  
Synchronous  
Synchronous  
Description  
0x8900  
0x8901  
0x8902  
Invoke a sequence of commands stored in NVM  
Configures the Command Sequencer processor  
Wait for a system event to be signalled  
Config Command Seq Processor  
Wait For Event  
Synchronous  
ASX340CS_DS Rev. F Pub. 6/15 EN  
34  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
External Signal Processing  
Table 18:  
Calibration Stats Host Commands  
Calibration Stats Host  
Command  
Value  
0x8B00  
0x8B01  
Type  
Asynchronous  
Synchronous  
Description  
Control  
Read  
Start statistics gathering  
Read the results back  
ASX340CS_DS Rev. F Pub. 6/15 EN  
35  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Slave Two-Wire Serial Interface  
Slave Two-Wire Serial Interface  
The two-wire serial interface bus enables read/write access to control and status regis-  
ters within the ASX340CS. This interface is designed to be compatible with the MIPI Alli-  
ance Standard for Camera Serial Interface 2 (CSI-2) 1.0, which uses the electrical  
characteristics and transfer protocols of the two-wire serial interface specification.  
The interface protocol uses a master/slave model in which a master controls one or  
more slave devices. The sensor acts as a slave device. The master generates a clock  
(SCLK) that is an input to the sensor and used to synchronize transfers.  
Data is transferred between the master and the slave on a bidirectional signal (SDATA).  
SDATA is pulled up to VDD_IO off-chip by a pull-up resistor in the range of 1.5 to 4.7k  
resistor.  
Protocol  
Data transfers on the two-wire serial interface bus are performed by a sequence of low-  
level protocol elements, as follows:  
a start or restart condition  
a slave address/data direction byte  
a 16-bit register address  
an acknowledge or a no-acknowledge bit  
data bytes  
a stop condition  
The bus is idle when both SCLK and SDATA are HIGH. Control of the bus is initiated with  
a start condition, and the bus is released with a stop condition. Only the master can gen-  
erate the start and stop conditions.  
The SADDR pin is used to select between two different addresses in case of conflict with  
another device. If SADDR is LOW, the slave address is 0x90; if SADDR is HIGH, the slave  
address is 0xBA. See Table 19.  
Table 19:  
Two-Wire Interface ID Address Switching  
SADDR  
Two-Wire Interface Address ID  
0
1
0x90  
0xBA  
Start Condition  
Data Transfer  
A start condition is defined as a HIGH-to-LOW transition on SDATA while SCLK is HIGH.  
At the end of a transfer, the master can generate a start condition without previously  
generating a stop condition; this is known as a “repeated start” or “restart” condition.  
Data is transferred serially, 8 bits at a time, with the MSB transmitted first. Each byte of  
data is followed by an acknowledge bit or a no-acknowledge bit. This data transfer  
mechanism is used for the slave address/data direction byte and for message bytes.  
One data bit is transferred during each SCLK clock period. SDATA can change when SCLK  
is low and must be stable while SCLK is HIGH.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
36  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Slave Two-Wire Serial Interface  
Slave Address/Data Direction Byte  
Bits [7:1] of this byte represent the device slave address and bit [0] indicates the data  
transfer direction. A “0” in bit [0] indicates a write, and a “1” indicates a read. The default  
slave addresses used by the ASX340CS are 0x90 (write address) and 0x91 (read address).  
Alternate slave addresses of 0xBA (write address) and 0xBB (read address) can be  
selected by asserting the SADDR input signal.  
Message Byte  
Message bytes are used for sending register addresses and register write data to the slave  
device and for retrieving register read data. The protocol used is outside the scope of the  
two-wire serial interface specification.  
Acknowledge Bit  
Each 8-bit data transfer is followed by an acknowledge bit or a no-acknowledge bit in the  
SCLK clock period following the data transfer. The transmitter (which is the master when  
writing, or the slave when reading) releases SDATA. The receiver indicates an acknowl-  
edge bit by driving SDATA LOW. As for data transfers, SDATA can change when SCLK is  
LOW and must be stable while SCLK is HIGH.  
No-Acknowledge Bit  
Stop Condition  
The no-acknowledge bit is generated when the receiver does not drive SDATA low during  
the SCLK clock period following a data transfer. A no-acknowledge bit is used to termi-  
nate a read sequence.  
A stop condition is defined as a LOW-to-HIGH transition on SDATA while SCLK is HIGH.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
37  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Slave Two-Wire Serial Interface  
Typical Operation  
A typical READ or WRITE sequence begins by the master generating a start condition on  
the bus. After the start condition, the master sends the 8-bit slave address/data direction  
byte. The last bit indicates whether the request is for a READ or a WRITE, where a “0”  
indicates a WRITE and a “1” indicates a READ. If the address matches the address of the  
slave device, the slave device acknowledges receipt of the address by generating an  
acknowledge bit on the bus.  
If the request was a WRITE, the master then transfers the 16-bit register address to which  
a WRITE will take place. This transfer takes place as two 8-bit sequences and the slave  
sends an acknowledge bit after each sequence to indicate that the byte has been  
received. The master will then transfer the 16-bit data, as two 8-bit sequences and the  
slave sends an acknowledge bit after each sequence to indicate that the byte has been  
received. The master stops writing by generating a (re)start or stop condition. If the  
request was a READ, the master sends the 8-bit write slave address/data direction byte  
and 16-bit register address, just as in the write request. The master then generates a  
(re)start condition and the 8-bit read slave address/data direction byte, and clocks out  
the register data, 8 bits at a time. The master generates an acknowledge bit after each  
8-bit transfer. The data transfer is stopped when the master sends a no-acknowledge bit.  
Single READ from Random Location  
Figure 17 shows the typical READ cycle of the host to the ASX340CS. The first two bytes  
sent by the host are an internal 16-bit register address. The following 2-byte READ cycle  
sends the contents of the registers to host.  
Figure 17: Single READ from Random Location  
M+1  
P
Previous RegAddress, N  
Reg Address, M  
Read Data  
Read Data  
[7:0]  
S
Slave Address  
0
A
Reg Address[15:8]  
A
Reg Address[7:0]  
A
Sr Slave Address  
1
A
A
A
[15:8]  
S = start condition  
P = stop condition  
Sr =restart condition  
A = acknowledge  
slave to master  
master toslave  
A = no-acknowledge  
Single READ from Current Location  
Figure 18 shows the single READ cycle without writing the address. The internal address  
will use the previous address value written to the register.  
Figure 18: Single Read from Current Location  
Previous Reg Address, N  
Reg Address, N+1  
Slave Address  
N+2  
Read Data  
[7:0]  
Read Data  
[15:8]  
Read Data  
[15:8]  
Read Data  
[7:0]  
A
S
Slave Address  
1
A
A
P
S
1 A  
A
A P  
ASX340CS_DS Rev. F Pub. 6/15 EN  
38  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Slave Two-Wire Serial Interface  
Sequential READ, Start from Random Location  
This sequence (Figure 19) starts in the same way as the single READ from random loca-  
tion (Figure 17 on page 32). Instead of generating a no-acknowledge bit after the first  
byte of data has been transferred, the master generates an acknowledge bit and  
continues to perform byte READs until “L” bytes have been read.  
Figure 19: Sequential READ, Start from Random Location  
Previous Reg Address, N  
Reg Address, M  
M+1  
A
Read Data  
M+L  
A
S
Slave Address  
M+1  
0
Reg Address[15:8]  
A
Reg Address[7:0]  
Sr  
A
Slave Address  
1
A
M+2  
M+L-2  
M+L-1  
M+3  
Read Data  
(15:8)  
Read Data  
(15:8)  
Read Data  
(7:0)  
Read Data  
(15:8)  
Read Data  
(7:0)  
Read Data  
(7:0)  
Read Data  
(15:8)  
Read Data  
(7:0)  
A
A
A
A
A P  
A
A
A
Sequential READ, Start from Current Location  
This sequence (Figure 20) starts in the same way as the single READ from current loca-  
tion (Figure 18). Instead of generating a no-acknowledge bit after the first byte of data  
has been transferred, the master generates an acknowledge bit and continues to  
perform byte reads until “L” bytes have been read.  
Figure 20: Sequential READ, Start from Current Location  
Previous Reg Address, N  
N+1  
A
N+2  
A
N+L-1  
N+L  
P
Read Data
Read Data  
Read Data  
Read Data  
(15:8)  
Read Data  
Read Data  
(15:8)  
Read Data  
Read Data  
A
A
A
A
A
S
Slave Address 1 A  
(7:0)  
(7:0)  
(7:0)  
A
(15:8)  
(15:8)  
(7:0)  
Single Write to Random Location  
Figure 21 shows the typical WRITE cycle from the host to the ASX340CS.The first 2 bytes  
indicate a 16-bit address of the internal registers with most-significant byte first. The  
following 2 bytes indicate the 16-bit data.  
Figure 21: Single WRITE to Random Location  
Previous Reg Address, N  
Reg Address, M  
Write Data  
M+1  
P
A
A
S
Slave Address  
0
Reg Address[15:8]  
Reg Address[7:0]  
A
A
A
ASX340CS_DS Rev. F Pub. 6/15 EN  
39  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Slave Two-Wire Serial Interface  
Sequential WRITE, Start at Random Location  
This sequence (Figure 22) starts in the same way as the single WRITE to random location  
(Figure 21). Instead of generating a no-acknowledge bit after the first byte of data has  
been transferred, the master generates an acknowledge bit and continues to perform  
byte writes until “L” bytes have been written. The WRITE is terminated by the master  
generating a stop condition.  
Figure 22: Sequential WRITE, Start at Random Location  
Previous Reg Address, N  
Reg Address, M  
Write Data  
M+1  
S
Slave Address  
M+1  
0
Reg Address[15:8]  
A
Reg Address[7:0]  
A
A
A
A
M+2  
M+L-2  
M+L-1  
M+3  
M+L  
P
Write Data  
Write Data  
Write Data  
(15:8)  
Write Data  
(7:0)  
Write Data  
Write Data  
Write Data  
Write Data  
A
A
A
A
A
(15:8) (7:0)  
A
A
(15:8) (7:0)  
A
A
(15:8) (7:0)  
ASX340CS_DS Rev. F Pub. 6/15 EN  
40  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Overlay Capability  
Overlay Capability  
Figure 23 highlights the graphical overlay data flow of theASX340CS. The images are  
separated to fit into 2KB blocks of memory after compression.  
Up to four overlays may be blended simultaneously  
Overlay size 360 x 480 pixels rendered into a display area of 720 x 480 pixels (NTSC) or  
720 x 576 (PAL)  
Selectable readout: rotating order is user programmable  
Dynamic movement through predefined overlay images  
Palette of 32 colors out of 64,000 with eight colors per bitmap  
Blend factors may be changed dynamically to achieve smooth transitions  
The host commands allow a bitmap to be written piecemeal to a memory buffer through  
2
the I C, and also through DMA direct from SPI Flash memory. Multiple encoding passes  
may be required to fit an image into a 2KB block of memory; alternatively, the image can  
be divided into two or more blocks to make the image fit. Every graphic image may be  
positioned in an x/y direction and overlap with other graphic images.  
The host may load an image at any time. Under control of DMA assist, data are trans-  
ferred to the off-screen buffer in compressed form. This assures that no display data are  
corrupted during the replenishment of the four active overlay buffers.  
Figure 23: Overlay Data Flow  
Overlay buffers: 2KB each  
Flash  
Decompress  
Blend and Overlay  
Bitmaps - compressed  
Off-screen  
buffer  
Note:  
These images are not actually rendered, but show conceptual objects and object blending.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
41  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Serial Memory Partition  
Serial Memory Partition  
The contents of the Flash/EEPROM memory partition logically into three blocks (see  
Figure 24):  
Memory for overlay data and descriptors  
Memory for register settings, which may be loaded at boot-up  
Firmware extensions or software patches; in addition to the on-chip firmware, exten-  
sions reside in this block of memory  
These blocks are not necessarily contiguous.  
Figure 24: Memory Partitioning  
Flash  
Partitioning  
Fixed-size  
Fixed-size  
Overlays – RLE  
Overlays – RLE  
12-byte Header  
Overlay  
Data  
RLE Encoded  
Data  
2KB  
Lens Shading  
Correction  
Parameter  
Alternate  
Register Setting  
External Memory Speed Requirement  
For a 2KB block of overlay to be transferred within a frame time to achieve maximum  
update rate, the serial memory has to be a certain speed.  
Table 20:  
Transfer Time Estimate  
Frame Time  
SPI Clock  
Transfer Time to 2KB  
33.3ms  
4.5 MHz  
1ms  
ASX340CS_DS Rev. F Pub. 6/15 EN  
42  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Overlay Adjustment  
Overlay Adjustment  
To ensure a correct position of the overlay to compensate for assembly deviation, the  
overlay can be adjusted with assistance from the overlay statistics engine:  
The overlay statistics engine supports a windowed 8-bin luma histogram, either row-  
wise (vertical) or column-wise (horizontal).  
The example calibration statistics can be used to perform an automatic successive-  
approximation search of a cross-hair target within the scene.  
On the first frame, the firmware performs a coarse horizontal search, followed by a  
coarse vertical search in the second frame.  
In subsequent frames, the firmware reduces the region-of-interest of the search to the  
histogram bins containing the greatest accumulator values, thereby refining the  
search.  
The resultant X, Y location of the cross-hair target can be used to assign a calibration  
value of offset selected overlay graphic image positions within the output image.  
The calibration statistics patch also supports a manual mode, which allows the host  
to access the raw accumulator values directly.  
Figure 25: Overlay Calibration  
ASX340CS_DS Rev. F Pub. 6/15 EN  
43  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Overlay Character Generator  
The position of the target will be used to determine the calibration value that shifts the  
X,Y position of adjustable overlay graphics.  
The overlay calibration is intended to be applied on a device by device basis “in system,”  
which means after the camera has been installed. ON Semiconductor provides basic  
programming scripts that may reside in the SPI Flash memory to assist in this effort.  
Overlay Character Generator  
In addition to the four overlay layers, a fifth layer exists for a character generator overlay  
string.  
There are a total of:  
16 alphanumeric characters available  
22 characters maximum per line  
16 x 32 pixels with 1-bit color depth  
Any update to the character generator string requires the string to be passed in its  
entirety with the Host Command. Character strings have their own control properties  
aside from the Overlay bitmap properties.  
Figure 26: Internal Block Diagram Overlay  
BT656  
Overlay  
Layer3  
Layer2  
Layer1  
Layer0  
Register Bus  
User Registers  
Data Bus  
DMA/CPU  
Timing control  
Number  
Generator  
ROM  
BT656  
ASX340CS_DS Rev. F Pub. 6/15 EN  
44  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Overlay Character Generator  
Character Generator  
The character generator can be seen as the fifth top layer, but instead of getting the  
source from RLE data in the memory buffers, it has a predefined 16 characters stored in  
ROM.  
All the characters are 1-bit depth color and are sharing the same YCbCr look up table.  
Figure 27: Example of Character Descriptor 0 Stored in ROM  
ROM 15 14 13 12 11 10  
9
8
7
6
5
4
3
2
1
0
0x00  
0x02  
0x04  
0x06  
0x08  
0x0a  
0x0c  
0x0e  
0x10  
0x12  
0x14  
0x16  
0x18  
0x1a  
0x1c  
0x1e  
0x20  
0x22  
0x24  
0x26  
0x28  
0x2a  
0x2c  
0x2e  
0x30  
0x32  
0x34  
0x36  
0x38  
0x3a  
0x3c  
0x3e  
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
0
0
1
0
0
1
0
0
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
0
0
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
1
1
1
1
1
1
1
1
1
1
1
1
1
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
It can show a row of up to 22 characters of 16 x 32 pixels resolution (32 x 32 pixels when  
blended with the BT 656 data).  
ASX340CS_DS Rev. F Pub. 6/15 EN  
45  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Overlay Character Generator  
Character Generator Details  
Table 21 shows the characters that can be generated.  
Table 21:  
Character Generator Details  
Item  
Quantity  
Description  
16-bit character  
1 bpp color  
22  
1
Coder for one of these characters: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, /, (space), :, –, (comma), (period)  
Depth of the bit map is 1 bpp  
It is the responsibility of the user to set up proper values in the character positioning to  
fit them in the same row (that is one of the reasons that 22 is the maximum number of  
characters).  
Note:  
No error is generated if the character row overruns the horizontal or vertical limits of  
the frame.  
Full Character Set for Overlay  
Figure 28 shows all of the characters that can be generated by theASX340CS.  
Figure 28: Full Character Set for Overlay  
0x0 0x4 0x8 0xC  
0x1 0x5 0x9 0xD  
0x2 0x6 0xA 0xE  
0x3 0x7 0xB 0xF  
ASX340CS_DS Rev. F Pub. 6/15 EN  
46  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Modes and Timing  
This section provides an overview of the typical usage modes and related timing infor-  
mation for the ASX340CS.  
Composite Video Output  
The external pin DOUT_LSB0 can be used to configure the device for default NTSC or PAL  
operation (auto-config mode). This and other video configuration settings are available  
as register settings accessible through the serial interface.  
NTSC  
Both differential and single-ended connections of the full NTSC format are supported.  
The differential connection that uses two output lines is used for low noise or long  
distance applications. The single-ended connection is used for PCB tracks and screened  
cable where noise is not a concern. The NTSC format has three black lines at the bottom  
of each image for padding (which most LCDs do not display).  
PAL  
The PAL format is supported with 576 active image rows.  
Single-Ended and Differential Composite Output  
The composite output can be operated in a single-ended or differential mode by simply  
changing the external resistor configuration. Refer to the Developer Guide for configura-  
tion options.  
Parallel Output (DOUT)  
The DOUT[7:0] port supports both progressive and Interlaced mode. Progressive mode  
(with FV and LV signal) include raw bayer(8 or 10 bit), YCbCr, RGB. Interlaced mode is  
CCIR656 compliant.  
Figure 29 shows the data that is output on the parallel port for CCIR656. Both NTSC and  
PAL formats are displayed. The blue values in Figure 29 represent NTSC (525/60). The  
red values represent PAL (625/50).  
Figure 29: CCIR656 8-Bit Parallel Interface Format for 525/60 (625/50) Video Systems  
Start of digital line  
Start of digital active line  
Next line  
EAV CODE  
BLANKING  
SAV CODE  
CO-SITED  
_
CO-SITED _  
Digital  
video  
stream  
F
F
0
0
0
0
X
Y
8
0
1
0
8
0
1
0
8
0
1
0
F
F
0
0
0
0
X
Y
C
B
C
R
C
B
C
R
C
R
F
F
Y
Y
Y
Y
Y
4
4
268  
280  
4
4
1440  
1440  
1716  
1728  
ASX340CS_DS Rev. F Pub. 6/15 EN  
47  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Figure 30 on page 42 shows detailed vertical blanking information for NTSC timing. See  
Table 22 on page 42 for data on field, vertical blanking, EAV, and SAV states.  
Figure 30: Typical CCIR656 Vertical Blanking Intervals for 525/60 Video System  
Line 4  
Line 1 (V = 1)  
Line 20 (V = 0)  
Line 264 (V = 1)  
Blanking  
Field 1 Active Video  
Blanking  
Field 1  
(F = 0)  
Odd  
266  
Field 2  
(F = 1)  
Even  
Line 283 (V = 0)  
Line 525 (V = 0)  
Field 2 Active Video  
H = 1  
EAV  
H = 0  
SAV  
Table 22:  
Field, Vertical Blanking, EAV, and SAV States 525/60 Video System  
H
(EAV)  
H
(SAV)  
Line Number  
F
V
1–3  
1
0
0
0
1
1
1
1
0
1
1
0
1
1
1
1
1
1
0
0
0
0
0
0
4–9  
20–263  
264–265  
266–282  
283–525  
Figure 31 shows detailed vertical blanking information for PAL timing. See Table 23 on  
page 43 for data on field, vertical blanking, EAV, and SAV states.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
48  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Figure 31: Typical CCIR656 Vertical Blanking Intervals for 625/50 Video System  
Line 1 (V = 1)  
Line 23 (V = 0)  
Blanking  
Field 1 Active Video  
Blanking  
Field 1  
(F = 0)  
Odd  
Line 311 (V = 1)  
Line 336 (V = 0)  
Field 2  
(F = 1)  
Even  
Field 2 Active Video  
Blanking  
Line 624 (V = 1)  
Line 625 (V = 1)  
H =1  
EAV  
H = 0  
SAV  
Table 23:  
Field, Vertical Blanking, EAV, and SAV States for 625/50 Video System  
H
(EAV)  
H
(SAV)  
Line Number  
F
V
1–22  
0
0
0
1
1
1
1
0
1
1
0
1
1
1
1
1
1
1
0
0
0
0
0
0
23–310  
311–312  
313–335  
336–623  
624–625  
ASX340CS_DS Rev. F Pub. 6/15 EN  
49  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Reset and Clocks  
Reset  
Power-up reset is asserted or de-asserted with the RESET_BAR pin, which is active LOW.  
In the reset state, all control registers are set to default values. See “Device Configura-  
tion” on page 21 for more details on Auto, Host, and Flash configurations.  
Soft reset is asserted or de-asserted by the two-wire serial interface program. In soft-  
reset mode, the two-wire serial interface and the register bus are still running. All control  
registers are reset using default values.  
Clocks  
The ASX340CS has two primary clocks:  
A master clock coming from the EXTCLK signal.  
In default mode, a pixel clock (PIXCLK) running at 2 * EXTCLK. In raw Bayer bypass  
mode, PIXCLK runs at the same frequency as EXTCLK.  
When the ASX340CS operates in sensor stand-alone mode, the image flow pipeline  
clocks can be shut off to conserve power.  
The sensor core is a master in the system. The sensor core frame rate defines the overall  
image flow pipeline frame rate. Horizontal blanking and vertical blanking are influenced  
by the sensor configuration, and are also a function of certain image flow pipeline func-  
tions. The relationship of the primary clocks is depicted in Figure 32.  
The image flow pipeline typically generates up to 16 bits per pixel—for example, YCbCr  
or 565RGB—but has only an 8-bit port through which to communicate this pixel data.  
To generate NTSC or PAL format images, the sensor core requires a 27 MHz clock.  
Figure 32: Primary Clock Relationships  
Sensor  
Master Clock  
EXTCLK  
Sensor Core  
Sensor  
Pixel Clock  
10 bits/pixel  
1 pixel/clock  
Colorpipe  
16 bits/pixel  
1 pixel/clock  
Output Interface  
16 bits/pixel (TYP)  
0.5 pixel/clock  
ASX340CS_DS Rev. F Pub. 6/15 EN  
50  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Floating Inputs  
The following ASX340CS pins cannot be floated:  
SDATA–This pin is bidirectional and should not be floated  
FRAME_SYNC  
TRST_N  
SCLK  
SADDR  
ATEST1  
ATEST2  
Output Data Ordering  
Table 24:  
Output Data Ordering in DOUT RGB Mode  
Mode  
(Swap Disabled)  
Byte  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
First  
Second  
First  
R7  
G4  
0
R6  
G3  
R7  
G4  
R6  
B6  
0
R5  
G2  
R6  
G3  
R5  
B5  
0
R4  
B7  
R5  
B7  
R4  
B4  
0
R3  
B6  
R4  
B6  
G7  
0
G7  
B5  
R3  
B5  
G6  
0
G6  
B4  
G7  
B4  
G5  
0
G5  
B3  
G6  
B3  
G4  
0
565RGB  
555RGB  
Second  
First  
G5  
R7  
B7  
0
444xRGB  
x444RGB  
Second  
First  
R7  
B7  
R6  
B6  
R5  
B5  
R4  
B4  
Second  
G7  
G6  
G5  
G4  
Note:  
Output Data Ordering in Sensor Stand-Alone Mode  
PIXCLK is 54 MHz when EXTCLK is 27 MHz.  
Table 25:  
Mode  
D7  
D6  
D5  
D4  
D3  
D2  
D1  
D0  
B2  
DOUT_LSB1  
DOUT_LSB0  
B9  
B8  
B7  
B6  
B5  
B4  
B3  
B1  
B0  
10-bit Output  
Note:  
PIXCLK is 27 MHz when EXTCLK is 27 MHz.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
51  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
I/O Circuitry  
Figure 33 illustrates typical circuitry used for each input, output, or I/O pad.  
Figure 33: Typical I/O Equivalent Circuits  
V
DD_IO  
Input Pad  
Pad  
Receiver  
GND  
DD_IO  
V
SPI_SDI and RESET_BAR  
Input Pad  
Pad  
Receiver  
GND  
VDD_IO  
Receiver  
I/O Pad  
Pad  
Slew  
Rate  
Control  
GND  
V
DD_IO  
SCLK and XTAL_IN  
Input Pad  
Pad  
Receiver  
GND  
XTAL  
Pad  
Output Pad  
VDD_IO  
GND  
Note:  
All I/O circuitry shown above is for reference only. The actual implementation may be different.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
52  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Figure 34: NTSC Block  
NTSC Block  
VDD_DAC  
Pad  
DAC_REF  
Pad  
Pad  
DAC_POS  
DAC_NEG  
ESD  
ESD  
ESD  
Resistor  
4.7kΩ/2.35kΩ  
GND  
Note:  
All I/O circuitry shown above is for reference only. The actual implementation may be different.  
Figure 35: Serial Interface  
ASX340CS_DS Rev. F Pub. 6/15 EN  
53  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
I/O Timing  
Digital Output  
By default, the ASX340CS launches pixel data, FV, and LV synchronously with the falling  
edge of PIXCLK. The expectation is that the user captures data, FV, and LV using the  
rising edge of PIXCLK. The timing diagram is shown in Figure 36.  
As an option, the polarity of the PIXCLK can be inverted from the default by program-  
ming R0x0016[14].  
Figure 36: Digital Output I/O Timing  
t
extclk_period  
Input  
EXTC LK  
PIXC LK  
Output  
t
t
pixclkf_dout  
dout_ho  
Output  
Output  
D
OUT [7 :0]  
t
dout_su  
t
fvlv_ho  
t
pixclkf_fvlv  
FR AM E_VALID  
LIN E _VALID  
t
fvlv_su  
Table 26:  
Parallel Digital Output I/O Timing  
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V;  
VDD_PLL = 2.8V; VDD_DAC = 2.8V; Default slew rate  
Signal  
Parameter  
fextclk  
Conditions  
Min  
6
Typ  
27  
37  
50  
27  
37.04  
50  
Max  
54  
Unit  
MHz  
ns  
max ±100 ppm  
t
EXTCLK  
extclk_period  
18.52  
45  
166.67  
55  
Duty cycle  
fpixclk  
tpixclk_period  
Duty cycle  
tpixclkf_dout  
6
54  
MHz  
ns  
PIXCLK1  
DATA[7:0]  
FV/LV  
18.52  
45  
166.67  
55  
1.55  
18  
1.9  
ns  
t
dout_su  
20  
ns  
t
dout_ho  
18  
20  
ns  
tpixclkf_fvlv  
tfvlv_su  
1.6  
15  
3.05  
16  
ns  
ns  
tfvlv_ho  
20  
21  
ns  
Note:  
PIXCLK can be inverted from the default by programming R0x0016[14].  
ASX340CS_DS Rev. F Pub. 6/15 EN  
54  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Slew Rate  
Table 27:  
Slew Rate for PIXCLK and DOUT  
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; V_PIX = 2.8V;  
VDD_PLL = 2.8V; VDD_DAC = 2.8V; T = 25°C; CLOAD = 40 pF  
PIXCLK  
DOUT[7:0]  
Typical  
Rise Time  
Typical  
Fall Time  
Typical  
Rise Time  
Typical  
Fall Time  
R0x30 [10:8]  
R0x30 [2:0]  
Unit  
000  
001  
010  
011  
100  
101  
110  
111  
NA  
NA  
7.0  
5.2  
4.0  
3.0  
2.4  
1.9  
NA  
NA  
6.9  
5.0  
3.8  
2.8  
2.2  
1.7  
000  
001  
010  
011  
100  
101  
110  
111  
15.0  
9.0  
6.8  
5.2  
3.8  
3.3  
3.0  
2.8  
13.5  
8.5  
6.0  
4.8  
3.5  
3.3  
3.0  
2.8  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
Figure 37: Slew Rate Timing  
90ꢀ  
10ꢀ  
PIXCLK  
t
ris e  
tfa ll  
90ꢀ  
10ꢀ  
D
OUT  
tris e  
t
fa ll  
ASX340CS_DS Rev. F Pub. 6/15 EN  
55  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Configuration Timing  
During start-up, the Dout_LSB0, LV and FV are sampled. Setup and hold timing for the  
RESET_BAR signal with respect to DOUT_LSB0, LV, and FV are shown in Figure 38 and  
Table 28. These signals are sampled once by the on-chip firmware, which yields a long  
t
HOLD time.  
Figure 38: Configuration Timing  
RESET_BAR  
t
t
SETUP  
HOLD  
DOUT_LSB0  
FRAME_VALID  
LINE_VALID  
Valid Data  
Table 28:  
Configuration Timing  
Signal  
Parameter  
Min  
0
Typ  
Max  
Unit  
s  
t
SETUP  
DOUT_LSB0, FRAME_VALID, LINE_VALID  
t
HOLD  
50  
s  
ASX340CS_DS Rev. F Pub. 6/15 EN  
56  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Figure 39: Power Up Sequence  
VDD_PLL  
VDD_DAC (2.8)  
t0  
VAA_PIX  
VAA (2.8)  
t1  
VDD_IO (2.8)  
t2  
VDD (1.8)  
tx  
EXTCLK  
RESET_BAR  
t4  
t5  
t3  
Internal  
(NTSC/PAL)  
Initialization  
Hard Reset  
Patch Config  
SPI or Host  
Streaming  
Notes: 1. RESET_BAR may not exceed VDD_IO + 0.3V.  
2. The 2.8V plane (VAA, VAA_PIX, VDD_PLL, VDD_DAC, VDD_IO) must remain at a higher voltage than  
the 1.8V core voltage at all times.  
Table 29:  
Power Up Sequence  
Definition  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
VDD_PLL to VAA/VAA_PIX  
VAA/VAA_PIX to VDD_IO  
VDD_IO to VDD  
t0  
t1  
t2  
tx  
t3  
t4  
0
0
s  
s  
s  
0
301  
Xtal settle time  
102  
ms  
Hard Reset  
Clock cycle  
ms  
Internal Initialization  
50  
Notes: 1. Xtal settling time is component-dependent (Xtal, Oscillator, and so on) and usually takes about  
10ms ~100ms.  
2. Hard reset time is the minimum time required after power rails are settled. Ten clock cycles are  
required for the sensor itself, assuming all power rails are settled. In a circuit where Hard reset is  
performed by the RC circuit, then the RC time must include the all power rail settle time and Xtal.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
57  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Figure 40: Power Down Sequence  
V
DD (1.8)  
t0  
V
DD_IO (2.8)  
t1  
VAA_PIX  
VAA (2.8)  
t2  
VDD_PLL  
V
DD_DAC (2.8)  
EXTCLK  
t3  
Power Down until next Power Up Cycle  
Table 30:  
Power Down Sequence  
Definition  
Symbol  
Minimum  
Typical  
Maximum  
Unit  
VDD to VDD_IO  
t0  
t1  
t2  
t3  
0
0
s  
s  
s  
VDD_IO to VAA/VAA_PIX  
VAA/VAA_PIX to VDD_PLL/DAC  
0
1001  
Power Down until Next Power Up Time  
ms  
(1) t3 is required between power down and next power up time, all decoupling caps from  
regulators must completely discharged before next power up.  
Figure 41: FRAME_SYNC to FRAME_VALID/LINE_VALID  
tFRAME_SYNC  
FRAME_SYNC  
tFRMSYNH_FVH  
FRAME_VALID  
LINE_VALID  
Table 31:  
FRAME_SYNC to FRAME_VALID/LINE_VALID Parameters  
Parameter  
Name  
Conditions  
Min  
Typ  
Max  
Unit  
FRAME_SYNC to FV/LV  
tFRAME_SYNC  
tFRMSYNC_FVH  
tFRAMESYNC  
Auto Config mode  
1.21  
30  
ms  
ms  
ASX340CS_DS Rev. F Pub. 6/15 EN  
58  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Modes and Timing  
Figure 42: Reset to SPI Access Delay  
R ESET_BAR  
tRSTH_CSL  
SPI_CS_N  
Figure 43: Reset to Serial Access Delay  
RESET_BAR  
tRSTH_SDATAL  
SDATA  
Figure 44: Reset to AE/AWB Image  
RESET_BAR  
VIDEO  
First Frame  
Overlay from  
AE/AWB settled  
tRSTH_FVL  
Flash  
tRSTH_OVL  
tRSTH_AEAWB  
Table 32:  
RESET_BAR Delay Parameters  
Parameter  
Name  
Condition  
Min  
Typ  
Max  
Unit  
Power up delay 2.8V to 1.8V  
0.1  
18  
ms  
ms  
ms  
ms  
ms  
ms  
RESET_BAR HIGH to SPI_CS_N LOW  
RESET_BAR HIGH to SDATA LOW  
RESET_BAR HIGH to FRAME_VALID  
RESET_BAR HIGH to first Overlay  
RESET_BAR HIGH to AE/AWB settled  
tRSTH_CSL  
tRSTH_SDATAL  
tRSTH_FVL  
1.8  
235  
235  
tRSTH_OVL  
tRSTH_AEAWB  
400  
ASX340CS_DS Rev. F Pub. 6/15 EN  
59  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
Electrical Specifications  
Figure 45: SPI Output Timing  
tCS_SCLK  
SPI_CS_N  
SPI_SCLK  
SPI_SDI  
tSCLK_SDO  
ts u  
SPI_SDO  
Table 33:  
SPI Data Setup and Hold Timing  
Parameter  
Description  
Min  
Typ  
Max  
Units  
fSPI_SCLK  
tsu  
tSCLK_SDO  
tCS_SCLK  
SPI_SCLK Frequency  
1.6875  
4.5  
18  
110  
110  
MHz  
ns  
Setup time  
Hold time  
ns  
Delay from falling edge of SPI_CS_N to rising edge of SPI_SCLK  
230  
ns  
ASX340CS_DS Rev. F Pub. 6/15 EN  
60  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
Caution Stresses greater than those listed in Table 34 may cause permanent damage to the device.  
This is a stress rating only, and functional operation of the device at these or any other con-  
ditions above those indicated in the operational sections of this specification is not implied.  
Exposure to absolute maximum rating conditions for extended periods may affect reliabil-  
ity.  
Table 34:  
Absolute Maximum Ratings  
Rating  
Symbol  
Parameter  
Min  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-0.3  
-50  
Max  
Unit  
V
Digital power (1.8V)  
I/O power (2.8v)  
2.4  
VDD  
4
V
VDD_IO  
VAA  
VAA Analog power (2.8V)  
Pixel array power (2.8v)  
PLL power (2.8V)  
4
V
4
V
VAA_PIX  
VDD_PLL  
VDD_DAC  
VIN  
4
4
V
DAC power (2.8V)  
DC Input Voltage  
V
VDD_IO+0.3  
VDD_IO+0.3  
150  
V
DC Output Voltage  
Storage temperature  
V
VOUT  
°C  
TSTG  
Table 35:  
Electrical Characteristics and Operating Conditions  
Condition  
Parameter1  
Min  
Typ  
1.8  
2.8  
2.8  
2.8  
2.8  
2.8  
Max  
Unit  
V
Core digital voltage (VDD)  
IO digital voltage (VDD_IO)  
Video DAC voltage (VDD_DAC)  
PLL Voltage (VDD_PLL)  
1.70  
2.66  
2.66  
2.66  
2.66  
2.66  
1.95  
2.94  
2.94  
2.94  
2.94  
2.94  
10  
V
V
V
Analog voltage (VAA)  
V
Pixel supply voltage (VAA_PIX)  
V
Leakage current  
EXTCLK: HIGH or LOW  
A  
°C  
°C  
Imager operating temperature2  
Storage temperature  
–30  
–50  
+70  
+150  
Notes: 1. VAA and VAA_PIX must all be at the same potential to avoid excessive current draw. Care must be  
taken to avoid excessive noise injection in the analog supplies if all three supplies are tied together.  
2. The imager operates in this temperature range, but image quality may degrade if it operates  
beyond the functional operating temperature range.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
61  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
Table 36:  
Video DAC Electrical Characteristics–Single-Ended Mode  
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V;  
VDD_PLL = 2.8V; VDD_DAC = 2.8V  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
Resolution  
DNL  
10  
0.2  
-
bits  
bits  
bits  
V
0.4  
INL  
0.7  
3.5  
Output local load  
Output pad (DAC_POS)  
Unused output (DAC_NEG)  
Single-ended mode, code 000h  
Single-ended mode, code 3FFh  
Single-ended mode, code 000h  
Single-ended mode, code 3FFh  
Estimate  
75  
-
0
-
Output voltage  
Output current  
.02  
-
1.30  
0.26  
17.33  
-
-
V
-
mA  
mA  
mA  
V
-
Supply current  
DAC_REF  
25.0  
DAC Reference  
1.15 +/-0.2  
4.7  
-
-
R DAC_REF  
DAC Reference  
K  
Table 37:  
Video DAC Electrical Characteristics–Differential Mode  
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V;  
VDD_PLL = 2.8V; VDD_DAC = 2.8V  
Parameter  
Condition  
Min  
Typ  
Max  
Unit  
DNL  
INL  
0.2  
0.8  
0.25  
2.5  
Bits  
Bits  
Output local load  
Differential mode per pad  
(DAC_POS and DAC_NEG)  
37.5  
Output voltage  
Differential mode, code 000h, pad dacp  
Differential mode, code 000h, pad dacn  
Differential mode, code 3FFh, pad dacp  
Differential mode, code 3FFH, pad dacn  
Differential mode, code 000h, pad dacp  
Differential mode, code 000h, pad dacn  
Differential mode, code 3FFh, pad dacp  
Differential mode, code 3FFH, pad dacn  
.02  
1.30  
1.30  
.02  
V
V
V
V
Output current  
.53  
mA  
mA  
mA  
mA  
V
34.7  
34.7  
.53  
Differential output,  
midlevel  
0.65  
Supply current  
DAC_REF  
Estimate  
50  
mA  
V
DAC Reference  
DAC Reference  
1.15 +/-0.2  
2.35  
R DAC_REF  
K  
ASX340CS_DS Rev. F Pub. 6/15 EN  
62  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
Table 38:  
Signal  
Digital I/O Parameters  
TA = Ambient = 25°C; All supplies at 2.8V  
Parameter Definitions  
Load capacitance  
Condition  
Min  
5
Typ  
Max  
30  
Unit  
pF  
All  
Outputs  
VOH  
VOL  
IOH  
Output high voltage  
Output low voltage  
2.5  
–0.3  
VDD_IO  
V
0.4  
8
V
VDD_IO = 2.8V,  
VOH= 2.5V  
mA  
Output high current  
Output low current  
IOL  
VDD_IO = 2.8V,  
VOH=0.4V  
8
mA  
All  
Inputs  
VIH  
VIL  
IIN  
Input high voltage  
Input low voltage  
Input leakage current  
0.7 * VDD_IO  
VDD_IO + 0.3  
V
V
–0.3  
–2  
0.3 * VDD_IO  
2
A  
pF  
Signal CAP Input signal  
capacitance  
3.5  
Notes: 1. All inputs are protected and may be active when all supplies (2.8V and 1.8V) are turned off.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
63  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
Power Consumption, Operating Mode  
Table 39:  
Power Consumption – Condition 1  
fEXTCLK = 27 MHz; VDD = 1.8V; VDD _IO = 2.8V; VAA =2.8V;VAA_PIX=2.8V;  
VDD _PLL = 2.8V; VDD _DAC = 2.8V  
Power Plane  
Supply  
Condition 1  
Typ Power  
Max Power  
Unit  
VDD  
1.8  
2.8  
2.8  
2.8  
2.8  
2.8  
55  
5
65  
10  
mW  
mW  
mW  
mW  
mW  
mW  
mW  
VDD_IO  
VAA  
Parallel off  
95  
112  
5
VAA_PIX  
VDD_DAC  
VDD_PLL  
2.5  
65  
Single 75  
70  
20  
25  
242.5  
287  
Total  
Analog output uses single-ended mode: DAC_Pos = 75, DAC_Neg = open, parallel  
output is disabled.  
Table 40:  
Power Consumption – Condition 2  
fEXTCLK = 27 MHz; VDD = 1.8V; VDD _IO = 2.8V; VAA =2.8V;VAA_PIX=2.8V;  
VDD _PLL = 2.8V; VDD _DAC = 2.8V  
Power Plane  
Supply  
Condition 2  
Typ Power  
Max Power  
Unit  
VDD  
1.8  
2.8  
2.8  
2.8  
2.8  
2.8  
55  
30  
65  
50  
112  
5
mW  
mW  
mW  
mW  
mW  
mW  
mW  
VDD_IO  
VAA  
Parallel on  
95  
VAA_PIX  
VDD_DAC  
VDD_PLL  
2.5  
2
VDAC off  
5
20  
25  
262  
204.5  
Total  
Analog output is disabled; parallel output is enabled.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
64  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
NTSC Signal Parameters  
Table 41:  
NTSC Signal Parameters  
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V;  
VDD_PLL = 2.8V; VDD_DAC = 2.8V  
Parameter  
Conditions  
Min  
15734.25  
59.94  
148  
Typ  
15734.27  
59.94  
148  
Max  
15734.28  
59.94  
148  
Units  
Hz  
Hz  
ns  
Notes  
Line Frequency  
Field Frequency  
Sync Rise Time  
Sync Fall Time  
Sync Width  
148  
148  
148  
ns  
4.74  
4.74  
4.74  
s  
Sync Level  
38  
39.9  
42  
IRE  
IRE  
s  
2, 4  
2, 4  
Burst Level  
38  
39.7  
42  
Sync to Setup  
9.44  
9.44  
9.44  
(with pedestal off)  
Sync to Burst Start  
Front Porch  
5.33  
1.33  
6.5  
5.33  
1.33  
7.5  
5.33  
1.33  
8.5  
s  
s  
Black Level  
IRE  
IRE  
1, 2, 4  
White Level  
90  
100  
110  
1, 2, 3, 4  
Notes: 1. Black and white levels are referenced to the blanking level.  
2. NTSC convention standardized by the IRE (1 IRE = 7.14mV).  
3. Encoder contrast setting R0x011 = R0x001 = 0.  
4. DAC ref = 2.8k, load = 37.5  
ASX340CS_DS Rev. F Pub. 6/15 EN  
65  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
Figure 46: Video Timing  
A
D
E
C
B
J
F
K
H
G
H
Table 42:  
Video Timing  
Signal  
NTSC  
27 MHz  
PAL  
27 MHz  
Units  
A
B
C
D
E
H Period  
Hsync to burst  
burst  
1716  
144  
63  
1728  
153  
66  
Clocks  
Clocks  
Clocks  
Clocks  
Clocks  
Clocks  
Clocks  
Clocks  
Clocks  
Clocks  
Hsync to Signal  
Video Signal  
255  
1423  
36  
279  
1413  
39  
F
Front  
G
H
J
Hsync Period  
128  
4
128  
4
Sync rising/falling edge  
Back overscan (BOS)  
Front overscan (FOS)  
9
14  
K
8
13  
ASX340CS_DS Rev. F Pub. 6/15 EN  
66  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
Figure 47: Equivalent Pulse  
L
I
J
K
K
Table 43:  
Equivalent Pulse  
Signal  
NTSC  
27 MHz  
PAL  
27 MHz  
Units  
I
J
H/2 Period  
Pulse width  
858  
64  
4
864  
64  
4
Clocks  
Clocks  
Clocks  
Clocks  
K
L
Pulse rising/falling edge  
Signal to pulse  
38  
41  
ASX340CS_DS Rev. F Pub. 6/15 EN  
67  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
Figure 48: V Pulse  
M
O
N
P
P
Table 44:  
V Pulse  
NTSC  
27 MHz  
PAL  
27 MHz  
Signal  
Units  
M
N
O
P
H/2 Period  
Pulse width  
858  
730  
128  
4
864  
736  
128  
4
Clocks  
Clocks  
Clocks  
Clocks  
V pulse interval  
Pulse rising/falling edge  
ASX340CS_DS Rev. F Pub. 6/15 EN  
68  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
Two-Wire Serial Bus Timing  
Figure 49 and Table 45 describe the timing for the two-wire serial interface.  
Figure 49: Two-Wire Serial Bus Timing Parameters  
SDATA  
t
t
f
t
t
t
t
t
t
BUF  
SU;DAT  
LOW  
f
r
HD;STA  
r
SCLK  
t
t
SU;STA  
t
HD;STA  
SU;STO  
t
t
HIGH  
HD;DAT  
P
S
S
Sr  
Table 45:  
Parameter  
Two-Wire Serial Bus Characteristics  
fEXTCLK = 27 MHz; VDD = 1.8V; VDD_IO = 2.8V; VAA = 2.8V; VAA_PIX = 2.8V;  
VDD_PLL = 2.8V; VDD_DAC = 2.8V; TA = 25°C  
Standard-Mode  
Fast-Mode  
Symbol  
Min  
Max  
Min  
Max  
Unit  
SCLK Clock Frequency  
fSCL  
0
100  
0
400  
KHz  
Hold time (repeated) START condition.  
After this period, the first clock pulse is  
generated  
tHD;STA  
4.0  
-
0.6  
-
s  
LOW period of the SCLKclock  
HIGH period of the SCLKclock  
Set-up time for a repeated START condition  
Data hold time  
tLOW  
tHIGH  
tSU;STA  
tHD;DAT  
tSU;DAT  
tr  
4.7  
4.0  
4.7  
04  
-
1.3  
0.6  
0.6  
06  
-
s  
s  
s  
s  
ns  
ns  
ns  
s  
s  
-
-
-
-
0.95  
-
3.455  
Data set-up time  
250  
-
-
1000  
300  
-
1006  
20 + 0.1Cb7  
20 + 0.1Cb7  
0.6  
Rise time of both SDATA and SCLK signals  
Fall time of both SDATA and SCLK signals  
Set-up time for STOP condition  
300  
300  
-
tf  
-
tSU;STO  
tBUF  
4.0  
4.7  
Bus free time between a STOP and START  
condition  
-
1.3  
-
Capacitive load for each bus line  
Serial interface input pin capacitance  
SDATA max load capacitance  
SDATA pull-up resistor  
Cb  
CIN_SI  
CLOAD_SD  
RSD  
-
-
400  
3.3  
30  
-
-
400  
3.3  
30  
pF  
pF  
-
-
pF  
1.5  
4.7  
1.5  
4.7  
K  
Notes: 1. This table is based on I2C standard (v2.1 January 2000). Philips Semiconductor.  
2. Two-wire control is I2C-compatible.  
3. All values referred to VIHmin = 0.9 VDD and VILmax = 0.1VDD levels. Sensor EXCLK = 27 MHz.  
4. A device must internally provide a hold time of at least 300 ns for the SDATA signal to bridge the  
undefined region of the falling edge of SCLK.  
5. The maximum tHD;DAT has only to be met if the device does not stretch the LOW period (tLOW) of  
the SCLK signal.  
6. A Fast-mode I2C-bus device can be used in a Standard-mode I2C-bus system, but the requirement  
tSU;DAT 250 ns must then be met. This will automatically be the case if the device does not stretch  
the LOW period of the SCLK signal. If such a device does stretch the LOW period of the SCLK signal, it  
ASX340CS_DS Rev. F Pub. 6/15 EN  
69  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Electrical Specifications  
must output the next data bit to the SDATA line tr max + tSU;DAT = 1000 + 250 = 1250 ns (according  
to the Standard-mode I2C-bus specification) before the SCLK line is released.  
7. Cb = total capacitance of one bus line in pF.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
70  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Spectral Characteristics  
Spectral Characteristics  
Figure 50: Quantum Efficiency  
60  
50  
40  
30  
20  
10  
0
Red  
GreenR  
GreenB  
Blue  
350  
450  
550  
650  
750  
850  
950  
1050  
1150  
Wavelength (nm)  
ASX340CS_DS Rev. F Pub. 6/15 EN  
71  
©Semiconductor Components Industries, LLC, 2015.  
Package and Die Dimensions  
Figure 51: 63-Ball iBGA Package Outline Drawing  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Revision History  
Revision History  
Rev. F . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6/1/15  
Updated “Ordering Information” on page 3  
Rev. E . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .5/29/15  
Updated to ON Semiconductor template  
Removed Confidential marking  
Updated “Ordering Information” on page 3  
Rev. D. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9/24/12  
Updated Table 38, “Electrical Characteristics and Operating Conditions,” on page 62  
Updated Table 39, “Video DAC Electrical Characteristics–Single-Ended Mode,” on  
page 63  
Updated Table 44, “NTSC Signal Parameters,” on page 66  
Updated Table 45, “Video Timing: Specification from Rec. ITU-R BT.470,” on page 67  
Updated Figure 47: “Equalizing Pulse,” on page 68  
Updated Table 46, “Equalizing Pulse: Specification from Rec. ITU-R BT.470,” on  
page 68  
Updated Table 47, “V Pulse: Specification from Rec. ITU-R BT.470,” on page 69  
Rev. C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .6/27/11  
Updated Figure 49: “Two-Wire Serial Bus Timing Parameters,” on page 70  
Updated Table 41, “Digital I/O Parameters,” on page 64  
Updated Table 48, “Two-Wire Serial Bus Characteristics,” on page 70  
Rev. B . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .4/23/12  
Updated to Production  
Updated Table 1, “Key Parameters,” on page 1 and Table 2, “Key Parameters  
(continued),” on page 2  
Updated “System Block Diagram” on page 9  
Updated Table 4, “Pin Descriptions,” on page 11  
Updated Table 6: “Reset/Default State of Interfaces,” on page 13  
Updated “Pixel Array Structure” on page 15  
Updated “FOV Stretch Support” on page 25  
Updated “System Configuration and Usage Modes” on page 25  
Updated “Power Sequence” on page 29  
Updated Figure 14: “Power-Up Sequence – Configuration Options Flow Chart,” on  
page 29  
• Updated “Supported NVM Devices” on page 30  
Deleted “Supported SPI Commands”on page 30  
Updated “Single-Ended and Differential Composite Output” on page 48  
Updated Table 29, “Parallel Digital Output I/O Timing,” on page 55  
Updated Table 30, “Slew Rate for PIXCLK and Dout,” on page 56  
Updated Table 32, “Power Up Sequence,” on page 58  
Updated Table 33, “Power Down Sequence,” on page 59  
Updated Table 34, “FRAME_SYNC to FRAME_VALID/LINE_VALID Parameters,” on  
page 59  
Updated Table 38, “Electrical Characteristics and Operating Conditions,” on page 62  
ASX340CS_DS Rev. F Pub. 6/15 EN  
73  
©Semiconductor Components Industries, LLC, 2015.  
ASX340CS: 1/4-Inch Color CMOS NTSC/PAL Digital Image Sensor  
Revision History  
Added “Spectral Characteristics” on page 71  
Updated Figure 51: “63-Ball iBGA Package Outline Drawing,” on page 72  
Rev. A . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1/6/12  
Initial release  
ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. SCILLC owns the  
rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/  
Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its  
products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including  
without limitation special, consequential or incidental damages. “Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications  
and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey  
any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body,  
or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur.  
Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and  
distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such  
unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Opportunity/Affirmative Action Employer.  
This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ASX340CS_DS Rev. F Pub. 6/15 EN  
74  
©Semiconductor Components Industries, LLC, 2015 .  

相关型号:

ASX342ATSC00XPED0-DP

CMOS 图像传感器片上系统,VGA,1/4"
ONSEMI

ASX342ATSC00XPED0-DR

CMOS 图像传感器片上系统,VGA,1/4"
ONSEMI

ASX342ATSC00XPED0-TP

CMOS 图像传感器片上系统,VGA,1/4"
ONSEMI

ASX342ATSC00XPED0-TR

CMOS 图像传感器片上系统,VGA,1/4"
ONSEMI

ASX344ATSC00XUEA0-DPBR

CMOS 图像传感器片上系统,VGA,1/4"
ONSEMI

ASX344ATSC00XUEA0-DRBR

CMOS 图像传感器片上系统,VGA,1/4"
ONSEMI

ASX344ATSC00XUEA0-DRBR1

CMOS 图像传感器片上系统,VGA,1/4"
ONSEMI

ASX344ATSC00XUEA0-TPBR

CMOS 图像传感器片上系统,VGA,1/4"
ONSEMI

ASX344ATSC00XUEA0-TRBR

CMOS 图像传感器片上系统,VGA,1/4"
ONSEMI

ASX350AT3C00XPEA0-DP

CMOS Image Sensor System-on-Chip, VGA, 1/5"
ONSEMI

ASX350AT3C00XPEA0-DP1

CMOS Image Sensor System-on-Chip, VGA, 1/5"
ONSEMI

ASX350AT3C00XPEA0-DR

CMOS Image Sensor System-on-Chip, VGA, 1/5"
ONSEMI