AX-SFUS-API-1-01-TX30 [ONSEMI]

射频收发器 SoC,Sigfox™ 验证的 RCZ2,超低功耗,带 API 库;
AX-SFUS-API-1-01-TX30
型号: AX-SFUS-API-1-01-TX30
厂家: ONSEMI    ONSEMI
描述:

射频收发器 SoC,Sigfox™ 验证的 RCZ2,超低功耗,带 API 库

射频 外围集成电路
文件: 总21页 (文件大小:274K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
AX-SFUS, AX-SFUS-API  
Ultra-Low Power,  
AT Command / API Controlled,  
Sigfox) Compliant  
Transceiver IC for Up-Link  
and Down-Link  
www.onsemi.com  
OVERVIEW  
Circuit Description  
8 GPIO pins  
AX−SFUS and AX−SFUS−API are ultra−low power  
single chip solutions for a node on the Sigfox network with  
both up− and down−link functionality. The AX−SFUS chip  
is delivered fully ready for operation and contains all the  
necessary firmware to transmit and receive data from the  
Sigfox network in the US (SIGFOX RCZ2 region). It  
connects to the customer product using a logic level RS232  
UART. AT commands are used to send frames and configure  
radio parameters.  
2 GPIO pins with selectable voltage measure  
functionality, differential (1 V or 10 V range) or  
single ended (1 V range) with 10 bit resolution  
2 GPIO pins with selectable sigma delta DAC  
output functionality  
2 GPIO pins with selectable output clock  
3 GPIO pins selectable as SPI master interface  
RX/TX switching Control  
The AX−SFUS−API variant is intended for customers  
wishing to write their own application software based on the  
AX−SF−LIB−1−GEVK library.  
Power Consumption**  
Ultra−low Power Consumption:  
Charge required to send a Sigfox OOB packet at  
24 dBm output power: 0.28 C  
Deepsleep mode current: 100 nA  
Sleep mode current: 1.3 mA  
Standby mode current: 0.5 mA  
Continuous radio RX−mode at 905.2 MHz :  
34 mA  
Features  
Functionality and Ecosystem  
Sigfox up−link and down−link functionality controlled  
by AT commands or API  
The AX−SFUS and AX−SF−API ICs are part of a  
whole development and product ecosystem available  
from ON Semiconductor for any Sigfox requirement.  
Other parts of the ecosystem include  
Continuous radio TX−mode at 902.2 MHz  
230 mA @ 24 dBm  
Ready to go development kit  
High Performance Narrow−band Sigfox RF Transceiver  
Receiver  
DVK−SFEU−[API]−1−GEVK including a 2 year  
Sigfox subscription  
Carrier frequency 905.2 MHz  
Data−rate 600 bps FSK  
®
Sigfox Ready certified reference design for the  
AX−SFUS and AX−SFUS−API ICs  
Sensitivity  
−128 dBm @ 600 bps, 905.2 MHz, GFSK  
0 dBm maximum input power  
General Features  
QFN40 5 mm x 7 mm package  
Supply range 2.7 V* − 3.6 V  
−40°C to 85°C  
Temperature sensor  
Supply voltage measurements  
Transmitter  
Carrier frequency 902.2 MHz  
Data−rate 600 bps PSK  
High efficiency, high linearity integrated power  
amplifier  
Maximum output power 24 dBm  
*Includes the RF frontend module, circuit as in Figure 5. The  
AX−SFUS chip alone is operational from 1.8 V to 3.6 V, a supply  
voltage below 2.0 V is considered an extreme condition.  
**Includes the RF frontend module, circuit as in Figure 5.  
Applications  
Sigfox networks up−link and down−link.  
© Semiconductor Components Industries, LLC, 2017  
1
Publication Order Number:  
July, 2017 − Rev. 3  
AX−SFUS/D  
AX−SFUS, AX−SFUS−API  
BLOCK DIAGRAM  
AX−SFUS / AX−SFUS−API  
CLKP  
CLKN  
CAL  
FILT  
TCXO  
interface  
RF synthesis  
ANTP1  
PA  
Transmit  
Receive  
Communication  
controller  
ANTP  
ANTN  
LNA  
UARTRX  
UARTTX  
UART  
DAC  
ADC  
GPIO[9:4,1:0]  
GPIO  
CPU  
RADIO_LED  
CPU_LED  
TX_LED  
RX_LED  
TX_EN  
dedicated  
status  
outputs  
RX_EN  
Program  
memory  
(FLASH)  
power mode control  
RAM  
Sigfox identity (ID, PAC)  
Sigfox compliant  
application  
(AX−SFUS only)  
Figure 1. Functional Block Diagram of the AX−SFUS / AX−SFUS−API  
www.onsemi.com  
2
AX−SFUS, AX−SFUS−API  
Table 1. PIN FUNCTION DESCRIPTIONS  
Symbol  
VDD_ANA  
Pin(s)  
1
Type  
Description  
P
Analog power output, decouple to neighboring GND  
Ground, decouple to neighboring VDD_ANA  
Differential receive input  
GND  
2
P
ANTP  
ANTN  
ANTP1  
GND  
3
A
4
A
Differential receive input  
5
N
Single ended transmit output  
6
P
P
Ground, decouple to neighboring VDD_ANA  
Analog power output, decouple to neighboring GND  
Ground  
VDD_ANA  
GND  
7
8
P
FILT  
9
A
Synthesizer filter  
L2  
10  
11  
12  
13  
14  
15  
16  
17  
A
Must be connected to pin L1  
L1  
A
Must be connected to pin L2  
NC  
N
Do not connect  
GPIO8  
GPIO7  
GPIO6  
GPIO5  
GPIO4  
I/O/PU  
I/O/PU  
I/O/PU  
I/O/PU  
I/O/PU  
General purpose IO  
General purpose IO, selectable SPI functionality (MISO)  
General purpose IO, selectable SPI functionality (MOSI)  
General purpose IO, selectable SPI functionality (SCK)  
General purpose IO, selectable SD DAC functionality, selectable dock  
functionality  
CPU_LED  
RADIO_LED  
VTCXO  
18  
19  
20  
21  
22  
23  
24  
25  
26  
27  
O
O
CPU activity indicator  
Radio activity indicator  
TCXO power  
O
GPIO9  
I/O/PU  
O
General purpose IO, wakeup from deep sleep  
UART transmit  
UARTTX  
UARTRX  
RX_LED  
TX_LED  
NC  
I/PU  
O
UART receive  
Receive activity indicator  
Transmit activity indicator  
Do not connect  
O
PD  
I/PU  
RESET_N  
Optional reset pin. Internal pull−up resistor is permanently enabled,  
nevertheless it is recommended to connect this pin to VDD_IO if it is not used.  
GND  
28  
29  
30  
P
P
Ground  
VDD_IO  
GPIO0  
Unregulated power supply  
I/O/A/PU  
General purpose IO, selectable ADC functionality, selectable SD DAC  
functionality, selectable clock functionality  
GPIO1  
TX_EN  
NC  
31  
32  
33  
34  
35  
36  
37  
38  
39  
I/O/A/PU  
General purpose IO, selectable ADC functionality  
Transmitter Enable (to frontend)  
Do not connect  
O
N
N
O
P
A
N
A
NC  
Do not connect  
RX_EN  
VDD_IO  
CAL  
Receiver Enable (to frontend)  
Unregulated power supply  
Connect to FILT as shown in the application diagram  
Do not connect  
NC  
CLKN  
TCXO interface  
www.onsemi.com  
3
 
AX−SFUS, AX−SFUS−API  
Table 1. PIN FUNCTION DESCRIPTIONS  
Symbol  
CLKP  
Pin(s)  
40  
Type  
A
Description  
TCXO interface  
GND  
Center pad  
P
Ground on center pad of QFN, must be connected  
A = analog input  
Table 2.  
Pin  
I = digital input signal  
O = digital output signal  
PU = pull−up  
I/O = digital input/output signal  
N = not to be connected  
P = power or ground  
PD = pull−down  
Possible GPIO Modes  
0, 1, Z, U, A, T  
0, 1, Z, U, A  
0, 1, Z, U, T  
0, 1, Z, U  
GPIO0  
GPIO1  
GPIO4  
GPIO5  
GPIO6  
0, 1, Z, U  
All digital inputs are Schmitt trigger inputs, digital input  
and output levels are LVCMOS/LVTTL compatible. Pins  
GPIO[3:0] must not be driven above VDD_IO, all other  
digital inputs are 5 V tolerant. All GPIO pins and UARTRX  
start up as input with pull−up. For explanations on how to  
use the GPIO pins, see chapter “AT Commands”.  
GPIO7  
GPIO8  
GPIO9  
0, 1, Z, U  
0, 1, Z, U  
0, 1, Z, U  
0 = pin drives  
1 = not to be connected  
Z = pin is high impedance input  
U = pin is input with pull−up  
A = pin is analog input  
T = pin is driven by clock or DAC  
Pinout Drawing  
40  
39  
38  
37  
36  
35  
34  
33  
32  
31  
30  
29  
1
2
3
4
5
6
7
8
28  
27  
26  
25  
24  
23  
22  
21  
VDD_ANA  
GND  
GND  
RESET_N  
NC  
ANTP  
TXLED  
RXLED  
ANTN  
AX−SFEU / AX−SFEU−API  
QFN40  
ANTP1  
GND  
UARTRX  
UARTTX  
GPIO9  
VDD_ANA  
GND  
9
10  
11  
12  
13  
14  
15  
16  
17  
18  
19  
20  
Figure 2. Pinout Drawing (Top View)  
www.onsemi.com  
4
AX−SFUS, AX−SFUS−API  
SPECIFICATIONS  
Table 3. ABSOLUTE MAXIMUM RATINGS  
Symbol  
VDD_IO  
IDD  
Description  
Condition  
Min  
Max  
5.5  
Units  
V
Supply voltage  
Supply current  
−0.5  
200  
800  
10  
mA  
P
tot  
P
i
Total power consumption  
mW  
dBm  
Absolute maximum input power at receiver input  
ANTP and ANTN  
pins in RX mode  
I
I
I
DC current into any pin except ANTP, ANTN, ANTP1  
DC current into pins ANTP, ANTN, ANTP1  
Output Current  
−10  
10  
100  
40  
mA  
mA  
mA  
V
I1  
−100  
I2  
O
V
Input voltage ANTP, ANTN, ANTP1 pins  
Input voltage digital pins  
−0.5  
−0.5  
−2000  
−40  
5.5  
ia  
5.5  
V
V
Electrostatic handling  
HBM  
2000  
85  
V
es  
T
Operating temperature  
°C  
°C  
°C  
amb  
T
Storage temperature  
−65  
150  
150  
stg  
T
Junction Temperature  
j
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.  
www.onsemi.com  
5
AX−SFUS, AX−SFUS−API  
DC Characteristics  
Table 4. SUPPLIES  
Conditions for all current and charge values unless otherwise specified are for the hardware configuration described in the AX−SFUS  
Application Note: Sigfox Compliant Reference Design.  
Symbol  
Description  
Condition  
Min  
−40  
1.8*  
Typ  
27  
Max  
85  
Units  
°C  
T
Operational ambient temperature  
AMB  
VDD  
I/O and voltage regulator supply  
voltage AX−SFUS chip only  
3.0  
3.6  
V
IO  
VDD  
I/O and voltage regulator supply  
voltage AX−SFUS with RF frontend  
module as in Figure 5  
2.7  
3.3  
3.6  
V
IO_mod  
VDD  
VDD  
I/O voltage ramp for reset activation;  
Note 1  
Ramp starts at VDD_IO 0.1 V  
0.1  
3.3  
V/ms  
V/ms  
IO_R1  
IO_R2  
I/O voltage ramp for reset activation;  
Note 1  
Ramp starts at 0.1 V < VDD_IO < 0.7 V  
I
I
I
Deep sleep mode current; Note 3  
Sleep mode current; Note 3  
AT$P=2  
AT$P=1  
350  
1.6  
0.5  
nA  
mA  
DS  
SLP  
Standby mode current  
Notes 2, 3  
mA  
STDBY  
I
Current consumption continuous  
RX; Note 3  
AT$TM=3,255  
34  
mA  
C
RX_CONT  
Q
Q
Q
Q
Charge to send a Sigfox out of band  
message, 24 dBm; Note 3  
AT$S0  
0.25  
0.22  
0.28  
0.73  
SFX_OOB_24  
SFX_BIT_24  
SFX_BITDL_24  
SFX_LFR_24  
Charge to send a bit, 24 dBm;  
Note 3  
AT$SB=0  
C
Charge to send a bit with downlink  
receive, 24 dBm; Note 3  
AT$SB=0,1  
C
Charge to send the longest possible  
Sigfox frame (12 byte) , 24 dBm;  
Note 3  
AT$SF=00112233445566778899aabb  
C
Q
Charge to send the longest possible  
Sigfox frame (12 byte) with downlink  
receive, 24 dBm; Note 3  
AT$SF=00112233445566778899aabb,1  
Pout=24 dBm; average  
0.84  
230  
C
SFX_LFRDL_24  
I
Modulated Transmitter Current;  
Note 3  
mA  
TXMOD24AVG  
*The device is operational from 1.8 V to 3.6 V. However, a supply voltage below 2.0 V is considered an extreme condition and operation can  
lead to reduced output power and increased spurious emission.  
1. If VDD_IO ramps cannot be guaranteed, an external reset circuit is recommended, see the AX8052 Application Note: Power On Reset  
2. Internal 20 MHz oscillator, voltage conditioning and supervisory circuit running.  
3. Includes Front End Module, TCXO.  
www.onsemi.com  
6
 
AX−SFUS, AX−SFUS−API  
Typical Current Waveform  
Typical Current Waveform − Maximum Length Frame with Downlink Receive, Pout = 24 dBm  
250  
200  
150  
100  
50  
0
0
10  
20  
30  
40  
Time [s]  
Figure 3. Typical Current Waveform for a Maximum Length Frame with Downlink Receive at 24 dBm Output Power  
Battery Life Examples  
Scenario:  
Four maximum length frames with downlink receive  
2 AAA Alkaline batteries in series  
One OOB frame transmitter per day at Pout=24 dBm  
per day at Pout=24 dBm  
Device in Sleep  
Neglecting battery self discharge  
2 AAA alkaline capacity  
Sleep charge per day  
OOB frame transmission  
Frame transmission with downlink  
Total Charge consumption  
Battery life  
1500 mAh * 3600 s/h  
5400 C  
1.6 mA * 86400 s  
0.14 C/day  
0.25 C/day  
3.36 C/day  
3.75 C/day  
3.9 Years  
4 * 0.84 C/day  
www.onsemi.com  
7
AX−SFUS, AX−SFUS−API  
Table 5. LOGIC  
Symbol  
Description  
Condition  
Min  
Typ  
Max  
Units  
Digital Inputs  
V
V
V
V
V
V
Schmitt trigger low to high threshold point  
Schmitt trigger high to low threshold point  
Input voltage, low  
VDD_IO = 3.3 V  
1.55  
1.25  
V
V
T+  
T−  
0.8  
V
IL  
Input voltage, high  
2.0  
−0.5  
−0.5  
−10  
V
IH  
Input voltage range, GPIO[3:0]  
Input voltage range, GPIO[9:4], UARTRX  
Input leakage current  
VDD_IO  
5.5  
V
IPA  
IPBC  
V
I
L
10  
mA  
kW  
R
Programmable Pull−Up Resistance  
65  
PU  
Digital Outputs  
I
I
I
Output Current, high  
Ports GPIO[9:0], UARTTX, TXLED, RXLED,  
TXLED, CPULED  
V
= 2.4 V  
= 0.4 V  
8
8
mA  
mA  
mA  
OH  
OL  
OZ  
OH  
Output Current, low  
GPIO[9:0], UARTTX, TXLED, RXLED, TXLED,  
CPULED  
V
OL  
Tri−state output leakage current  
−10  
10  
AC Characteristics  
Table 6. TCXO REFERENCE INPUT  
Symbol  
Description  
Condition  
Min  
Typ  
48  
Max  
Units  
f
TCXO frequency  
A passive network between the TCXO output  
and the pins CLKP and CLKN is required.  
MHz  
TCXO  
For detailed TCXO network recommendations  
depending on the TCXO output swing refer to  
the AX5043 Application Note: Use with a  
TCXO Reference Clock.  
For TCXO recommendations see the  
AX−SFUS Application Note: Sigfox Compliant  
Reference Design  
Table 7. TRANSMITTER  
Conditions for transmitter specifications unless otherwise specified with the antenna network from AX−SFUS Application Note: Sigfox  
Compliant Reference Design and at 902.2 MHz.  
Symbol  
SBR  
Description  
Condition  
Min  
Typ  
100  
24  
Max  
Units  
bps  
Signal bit rate  
PTX  
dTX  
Highest Transmitter output power  
AT$CW=902200000,1,24  
dBm  
dB  
Transmitter power variation vs.  
temperature  
−40°C to +85°C  
0.5  
temp  
dTX  
Transmitter power variation vs. VDD_IO  
1.8 to 3.6 V  
0.5  
−51  
−63  
−84  
dB  
Vdd  
nd  
PTX  
PTX  
PTX  
Emission @ 2 harmonic  
dBc  
harm2  
harm3  
harm4  
rd  
Emission @ 3 harmonic  
th  
Emission @ 4 harmonic  
www.onsemi.com  
8
AX−SFUS, AX−SFUS−API  
* RBW 1 MHz  
* VBW 3 MHz  
Marker 1 [T1 ]  
−34.50 dBm  
1.801282051 GHz  
Ref −20 dBm  
Att 5 dB  
FCCP15H1  
* SWT 10 s  
Marker 2 [T1 ]  
−20  
FCCP15H0  
−78.31 dBm  
2.706730769 GHz  
Marker 3 [T1 ]  
A
−30  
−40  
−50  
−60  
−70  
−80  
−90  
−100  
1
1 AV *  
CLRWR  
−59.62 dBm  
3.612179487 GHz  
Marker 4 [T1 ]  
−67.47 dBm  
4.509615385 GHz  
3
4
2
3DB  
−110  
−120  
Center 3.5 GHz  
500 MHz/  
Span 5 GHz  
Figure 4. Typical Spectrum with Harmonics at 24 dBm Output Power  
Table 8. RECEIVER  
Conditions for transmitter specifications unless otherwise specified with the antenna network from AX−SFUS Application Note: Sigfox  
Compliant Reference Design and at 869.525 MHz.  
Symbol  
SBR  
IS  
Description  
Signal bit rate  
Condition  
Min  
Typ  
600  
Max  
Units  
bps  
AT$SB=x,1, AT$SF=x,1,  
AT$TM=3,x PER < 0.1  
−128  
dBm  
BER868  
BLK  
Blocking at 10 MHz  
offset  
Channel/Blocker @ PER = 0.1, wanted signal  
level is +3 dB above the typical sensitivity, the  
blocker signal is CW  
78  
dB  
905  
www.onsemi.com  
9
AX−SFUS, AX−SFUS−API  
Table 9. ADC / TEMPERATURE SENSOR  
Symbol  
Description  
Condition  
Min  
Typ  
10  
1
Max  
Units  
Bits  
V
ADCRES  
ADC resolution  
V
ADC reference voltage  
Input capacitance  
Differential nonlinearity  
Integral nonlinearity  
Offset  
0.95  
1.05  
2.5  
ADCREF  
Z
pF  
ADC00  
DNL  
1
1
LSB  
LSB  
LSB  
%
INL  
OFF  
3
GAIN_ERR  
Gain error  
0.8  
ADC in Differential Mode  
Absolute voltages & common mode voltage in  
V
0
VDD_IO  
V
ABS_DIFF  
differential mode at each input  
V
V
Gain x1  
−500  
−50  
500  
50  
mV  
mV  
Full swing input for differential signals  
FS_DIFF01  
Gain x10  
FS_DIFF10  
ADC in Single Ended Mode  
V
V
V
Mid code input voltage in single ended mode  
Input voltage in single ended mode  
0.5  
V
V
V
MID_SE  
IN_SE00  
FS_SE01  
0
0
VDD_IO  
1
Full swing input for single ended signals  
Gain x1  
Temperature Sensor  
T
Temperature range  
Temperature error  
AT$T?  
AT$T?  
−40  
−2  
85  
2
°C  
°C  
RNG  
T
ERR_CAL  
www.onsemi.com  
10  
AX−SFUS, AX−SFUS−API  
COMMAND INTERFACE  
General Information  
mode can be activated with AT$P=2. To wake−up from  
Deep Sleep mode, GPIO9 is pulled to GND.  
The chapter “Command Interface” is a documentation of  
the AT−Command set for devices which do not have an  
API−interface. To see whether the device is capable of  
receiving AT−Commands, please refer to chapter “Part  
Numbers”. If the device has been shipped with the  
API−Interface, please refer to the SW manual and  
“apiexample” code delivered with AX−SF−LIB−1−GEVK  
for an introduction on how to setup a project and how to use  
the API−Interface.  
When using Deep Sleep mode, keep two things in mind:  
Everything is turned off, timers are not running at all and all  
settings will be lost (use AT$WR to save settings to flash  
before entering Deep Sleep mode). Out−of−band messages  
will therefore not be sent. The pins states are frozen in Deep  
Sleep mode. The user must ensure that this will not result in  
condition which would draw a lot of current.  
AT Commands  
Serial Parameters: 9600, 8, N, 1  
Numerical Syntax  
The AX−SFUS uses the UART (pins UARTTX,  
UARTRX) to communicate with a host and uses a bitrate of  
9600 baud, no parity, 8 data bits and one stop bit.  
hexdigit ::= [0−9A−Fa−f]  
hexnum ::= “0x” hexdigit+  
decnum ::= “0” | [1−9] [0−9]*  
octnum ::= “0” [0−7]+  
binnum ::= “0b” [01]+  
Power Modes  
bit  
::= [01]  
optnum ::= “−1”  
frame  
uint  
::= (hexdigit hexdigit)+  
::= hexnum | decnum | octnum | binnum  
uint_opt ::= uint | optnum  
Command Syntax  
A command starts with ‘AT’ (everything is case  
sensitive!), continues with the actual command followed by  
parameters (if any) and ends with any kind of whitespace  
(space, tab, newline etc.)  
If incorrect syntax is detected (“parsing error”) all input  
is ignored up until the next whitespace character.  
Also note that any number can be entered in any format  
(Hexadecimal, Decimal, Octal and binary) by adding the  
corresponding prefix (‘0x’, ‘0’, ‘0b’). The only exception is  
the ‘Send Frame’ command (AT$SF) which expects a list of  
hexadecimal digits without any prefix.  
Standby  
After Power−Up and after finishing a SIGFOX  
transmission, AX−SFUS enters Standby mode. In Standby  
mode, AX−SFUS listens on the UART for commands from  
the host. Also, OOB frames are transmitted whenever the  
OOB timer fires. To conserve power, the AX−SFUS can be  
put into Sleep or turned off (Deep Sleep) completely.  
Return Codes  
A successful command execution is indicated by sending  
‘OK’. If a command returns a value (e.g. by querying a  
register) only the value is returned.  
Sleep  
Examples  
The command AT$P=1 is used to put the AX−SFUS into  
Sleep mode. In this mode, only the wakeup timer for  
out−of−band messages is still running. To wake the  
AX−SFUS up from Sleep mode toggle the serial UARTRX  
pin, e.g. by sending a break (break is an RS232 framing  
violation, i.e. at least 10 bit durations low). When an Out of  
Band (OOB) message is due, AX−SFUS automatically  
wakes up to transmit the message, and then returns to Sleep  
mode.  
Bold text is sent to AX−SFUS.  
AT$I=0  
AXSEM AT Command Interface  
Here, we execute command ‘I’ to query some general  
information.  
AT$SF=aabb1234  
OK  
This sends a Sigfox frame containing { 0x00 : 0x11 : 0x22  
: 0x33 : 0x44 }, then waits for a downlink response telegram,  
which in this example contains { 0xAA : 0xBB : 0xCC :  
0xDD }.  
Deep Sleep  
In Deep Sleep mode, the AX−Sigfox is completely turned  
off and only draws negligible leakage current. Deep Sleep  
www.onsemi.com  
11  
AX−SFUS, AX−SFUS−API  
AT$CB=0011223344,1  
OK  
RX=AA BB CC DD  
The ‘CB’ command sends out a continuous pattern of bits,  
in this case 0xAA = 0b10101010.  
AT$P=1  
OK  
This sends a Sigfox frame containing { 0xAA : 0xBB : 0x12  
This transitions the device into sleep mode. Out−of−band  
transmissions will still be triggered. The UART is powered  
down. The device can be woken up by a low level on the  
UART signal, i.e. by sending break.  
: 0x34 } without waiting for a response telegram.  
AT$CB=0xAA,1  
OK  
Table 10. COMMANDS  
Command  
Name  
Description  
AT  
Dummy Command  
Just returns ‘OK’ and does nothing else. Can be used to check  
communication.  
AT$SB=bit[,bit]  
AT$SF=frame[,bit]  
AT$SO  
Send Bit  
Send a bit status (0 or 1). Optional bit flag indicates if AX−SFUS  
should receive a downlink frame.  
Send Frame  
Send payload data, 1 to 12 bytes. Optional bit flag indicates if  
AX−SFUS should receive a downlink frame.  
Manually send out of band  
message  
Send the out−of−band message.  
AT$TR?  
Get the transmit repeat  
Get transmit range  
Get transmit repeat  
Get Register  
Returns the number of transmit repeats. Default: 2  
Returns the allowed range of transmit repeats.  
Sets the transmit repeat.  
AT$TR=?  
AT$TR=uint  
ATSuint?  
Query a specific configuration register’s value. See chapter  
“Registers” for a list of registers.  
ATSuint=uint  
ATSuint=?  
Set Register  
Change a configuration register.  
Get Register Range  
Set TX Frequency  
Get TX Frequency  
Set RX Frequency  
Get RX Frequency  
Continuous Wave  
Returns the allowed range of transmit repeats.  
Set the output carrier macro channel for Sigfox frames.  
Get the currently chosen TX frequency.  
AT$IF=uint  
AT$IF?  
AT$DR=uint  
AT$DR?  
Set the reception carrier macro channel for Sigfox frames.  
Get the currently chosen RX frequency.  
AT$CW=uint,bit[,uint_opt]  
To run emission tests for Sigfox certification it is necessary to send a  
continuous wave, i.e. just the base frequency without any modula-  
tion. Parameters:  
Name  
Range  
Description  
Frequency  
800000000− Continuous wave frequency in Hz.  
999999999, 0 Use 902200000 for Sigfox or 0 to  
keep previous frequency.  
Mode  
0, 1  
24  
Enable or disable carrier wave.  
dBm of signal | Default: 24  
Power  
AT$CB=uint_opt,bit  
Test Mode: TX constant byte  
For emission testing it is useful to send a specific bit pattern. The  
first parameter specifies the byte to send. Use ‘−1’ for a  
(pseudo−)random pattern. Parameters:  
Name  
Range  
Decsription  
Pattern  
0−255, −1  
Byte to send. Use ‘−1’ for a  
(pseudo−)random pattern.  
Mode  
0, 1  
Enable or disable pattern test mode.  
AT$RC  
AT$T?  
Reset FCC Macrochannel  
Get Temperature  
This command resets the FCC Macrochannel. Subsequent transmit  
operations (AT$SO, AT$SB, AT$SF) may pause up to 20 s to ensure  
FCC compliance  
th  
Measure internal temperature and return it in 1/10 of a degree  
Celsius.  
www.onsemi.com  
12  
 
AX−SFUS, AX−SFUS−API  
Table 10. COMMANDS  
Command  
Name  
Description  
AT$V?  
Get Voltages  
Return current voltage and voltage measured during the last  
transmission in mV.  
AT$I=uint  
Information  
Display various product information:  
0: Software Name & Version  
Example Response: AX−Sigfox 1.1.1−FCC  
1: Contact Details  
Example Response: support@axsem.com  
2: Silicon revision lower byte  
Example Response: 8F  
3: Silicon revision upper byte  
Example Response: 51  
4: Major Firmware Version  
Example Response: 1  
5: Minor Firmware Version  
Example Response: 1  
7: Firmware Variant (Frequency Band etc. (EU/US))  
Example Response: FCC  
9: SIGFOX Library Version  
Example Response: UDL1−1.8.7  
10: Device ID  
Example Response: 00012345  
11: PAC  
Example Response: 0123456789ABCDEF  
AT$P=uint  
Set Power Mode  
To conserve power, the AX−SFUS can be put to sleep manually.  
Depending on power mode, you will be responsible for waking up the  
AX−SFUS again!  
0: software reset (settings will be reset to values in flash)  
1: sleep (send a break to wake up)  
2: deep sleep (toggle GPIO9 or RESET_N pin to wake up;  
the AX−SFUS is not running and all settings will be reset!)  
AT$WR  
AT:Pn?  
Save Config  
Write all settings to flash (RX/TX frequencies, registers) so they  
survive reset/deep sleep or loss of power.  
Use AT$P=0 to reset the AX−SFUS and load settings from flash.  
Get GPIO Pin  
Return the setting of the GPIO Pin n; n can range from 0 to 9.  
A character string is returned describing the mode of the pin,  
followed by the actual value. If the pin is configured as analog pin,  
then the voltage (range 01 V) is returned. The mode characters  
have the following meaning:  
Mode  
Description  
0
1
Pin drives low  
Pin drives high  
Z
U
A
T
Pin is high impedance input  
Pin is input with pull−up  
Pin is analog input (GPIO pin 03 only)  
Pin is driven by clock or DAC (GPIO pin 0 and 4 only)  
The default mode after exiting reset is U on all GPIO pins.  
AT:Pn=?  
Get GPIO Pin Range  
Print a list of possible modes for a pin. The table below lists the  
response.  
Pin  
P0  
P1  
P4  
P5  
P6  
P7  
P8  
P9  
Modes  
0, 1, Z, U, A, T  
0, 1, Z, U, A  
0, 1, Z, U, T  
0, 1, Z, U  
0, 1, Z, U  
0, 1, Z, U  
0, 1, Z, U  
0, 1, Z, U  
AT:Pn=mode  
Set GPIO Pin  
Set the GPIO pin mode.  
For a list of the modes see the command AT:Pn?  
www.onsemi.com  
13  
AX−SFUS, AX−SFUS−API  
Table 10. COMMANDS  
Command  
Name  
Get GPIO Pin Analog Voltage  
Description  
AT:ADC Pn[−Pn[ (1V|10V)]]?  
Measure the voltage applied to a GPIO pin. The command also  
allows measurement of the voltage difference across two GPIO pins.  
In differential mode, the full scale range may also be specified as 1 V  
or 10 V. Note however that the pin input voltages must not exceed  
the range 0..VDD_IO. The command returns the result as fraction of  
the full scale range (1 V if none is specified). The GPIO pins  
referenced should be initialized to analog mode before issuing this  
command.  
AT:SPI[(A|B|C|D)]=bytes  
SPI Transaction  
This command clocks out bytes on the SPI port. The clock frequency is  
312.5 kHz. The command returns the bytes read on MISO during out-  
put. Optionally the clocking mode may be specified (default is A):  
Mode  
Clock Inversion  
Clock Phase  
A
B
C
D
normal  
normal  
inverted  
inverted  
normal  
alternate  
normal  
alternate  
Note that SEL, if needed, is not generated by this command,  
and must instead be driven using standard GPIO commands  
(AT:Pn=0|1).  
AT:CLK=freq,reffreq  
Set Clock Generator  
Output a square wave on the pin(s) set to T mode. The frequency of  
the square wave is (freq / 2 ) × reffreq. Possible values for reffreq  
are 20000000, 10000000, 5000000, 2500000, 1250000, 625000,  
16  
312500, 156250. Possible values if freq are 065535.  
AT:CLK=OFF  
AT:CLK?  
Turn off Clock Generator  
Get Clock Generator  
Switch off the clock generator  
Return the settings of the clock generator. Two numbers are  
returned, freq and reffreq.  
AT:DAC=value  
Set SD DAC  
Output a SD DAC value on the pin(s) set to T mode. Parameter  
value may be in the range −3276832767. The average output  
17  
voltage is (1/2 + value / 2 ) × VDD.  
An external low pass filter is needed to get smooth output voltages.  
The modulation frequency is 20 MHz. A possible low pass filter  
choice is a simple RC low pass filter with R = 10 kW and C = 1 mF.  
AT:DAC=OFF  
AT:DAC?  
Turn off SD DAC  
Get SD DAC  
Switch off the DAC  
Return the DAC value  
www.onsemi.com  
14  
AX−SFUS, AX−SFUS−API  
Table 10. COMMANDS  
Command  
Name  
Activates the Sigfox Testmode  
Description  
AT$TM=mode,config  
Available test modes:  
0. TX BPSK  
Send only BPSK with Synchro Bit + Synchro frame +  
PN sequence: No hopping centered on the TX_frequency.  
Config bits 0 to 6 define the number of repetitions. Bit 7 of config  
defines if a delay is applied of not in the loop  
1. TX Protocol:  
Tx mode with full protocol with Sigfox key: Send Sigfox protocol  
frames with initiate downlink flag = True. Config defines the  
number of repetitions.  
2. RX Protocol:  
This mode tests the complete downlink protocol in Downlink only.  
Config defines the number of repetitions.  
3. RX GFSK:  
RX mode with known pattern with SB + SF + Pattern on  
RX_frequency (internal comparison with received frame known  
pattern = AA AA B2 27 1F 20 41 84 32 68 C5 BA AE 79 E7 F6 DD  
9B. Config defines the number of repetitions. Config defines the  
number of repetitions.  
4. RX Sensitivity:  
Does uplink + downlink frame with Sigfox key and specific timings.  
This test is specific to SIGFOX’s test equipments & softwares.  
5. TX Synthesis:  
Does one uplink frame on each Sigfox channel to measure  
frequency synthesis step  
AT$SE  
Starts AT$TM−3,255 indefinitely Convenience command for sensitivity tests  
AT$SL[=frame]  
Send local loop  
Sends a local loop frame with optional payload of 1 to 12 bytes.  
Default payload: 0x84, 0x32, 0x68, 0xC5, 0xBA, 0x53, 0xAE, 0x79,  
0xE7, 0xF6, 0xDD, 0x9B.  
AT$RL  
Receive local loop  
Starts listening for a local loop.  
Table 11. REGISTERS  
Number  
Name  
Description  
Default  
Range  
Units  
300  
Out Of Band  
Period  
AX−SFUS sends periodic static  
messages to indicate that they are  
alive. Set to 0 to disable.  
24  
0−24  
hours  
400  
410  
Macrochannel  
Mask  
The mask of Macrochannels to use.  
<000001FF>  
<00000000>  
<00000000>,1  
Encryption Key  
Configuration  
Set to zero for normal operation. Set  
to one for use with the SIGFOX  
Network Emulator Kit (SNEK)  
0
0−1  
0: private key  
1: public key  
www.onsemi.com  
15  
AX−SFUS, AX−SFUS−API  
APPLICATION INFORMATION  
Typical Application Diagrams  
Typical AX−SFUS / AX−SFUS−API Application Diagram  
Figure 5. Typical Application Diagram  
For detailed application configuration and BOM see the  
AX−SFUS Application Note: Sigfox Compliant Reference  
Design.  
www.onsemi.com  
16  
AX−SFUS, AX−SFUS−API  
QFN40 Soldering Profile  
Preheat  
Reflow  
Cooling  
t
P
T
P
L
T
t
L
T
sMAX  
T
sMIN  
t
s
25°C  
T
°
25 C to Peak  
Time  
Figure 6. QFN40 Soldering Profile  
Table 12.  
Profile Feature  
Pb−Free Process  
Average Ramp−Up Rate  
Preheat Preheat  
3°C/s max.  
Temperature Min  
T
150°C  
200°C  
sMIN  
Temperature Max  
T
sMAX  
Time (T  
to T  
)
t
s
60 – 180 sec  
8 min max.  
sMIN  
sMAX  
Time 25°C to Peak Temperature  
Reflow Phase  
T
°
25 C to Peak  
Liquidus Temperature  
Time over Liquidus Temperature  
Peak Temperature  
T
217°C  
L
t
t
60 – 150 s  
260°C  
L
p
Time within 5°C of actual Peak Temperature  
Cooling Phase  
T
p
20 – 40 s  
Ramp−down rate  
6°C/s max.  
1. All temperatures refer to the top side of the package, measured on the the package body surface.  
www.onsemi.com  
17  
AX−SFUS, AX−SFUS−API  
QFN40 Recommended Pad Layout  
1. PCB land and solder masking recommendations  
are shown in Figure 7.  
A = Clearance from PCB thermal pad to solder mask opening, 0.0635 mm minimum  
B = Clearance from edge of PCB thermal pad to PCB land, 0.2 mm minimum  
C = Clearance from PCB land edge to solder mask opening to be as tight as possible  
to ensure that some solder mask remains between PCB pads.  
D = PCB land length = QFN solder pad length + 0.1 mm  
E = PCB land width = QFN solder pad width + 0.1 mm  
Figure 7. PCB Land and Solder Mask Recommendations  
2. Thermal vias should be used on the PCB thermal  
3. For the PCB thermal pad, solder paste should be  
printed on the PCB by designing a stencil with an  
array of smaller openings that sum to 50% of the  
QFN exposed pad area. Solder paste should be  
applied through an array of squares (or circles) as  
shown in Figure 8.  
4. The aperture opening for the signal pads should be  
between 50−80% of the QFN pad area as shown in  
Figure 9.  
pad (middle ground pad) to improve thermal  
conductivity from the device to a copper ground  
plane area on the reverse side of the printed circuit  
board. The number of vias depends on the package  
thermal requirements, as determined by thermal  
simulation or actual testing.  
3. Increasing the number of vias through the printed  
circuit board will improve the thermal  
conductivity to the reverse side ground plane and  
external heat sink. In general, adding more metal  
through the PC board under the IC will improve  
operational heat transfer, but will require careful  
attention to uniform heating of the board during  
assembly.  
5. Optionally, for better solder paste release, the  
aperture walls should be trapezoidal and the  
corners rounded.  
6. The fine pitch of the IC leads requires accurate  
alignment of the stencil and the printed circuit  
board. The stencil and printed circuit assembly  
should be aligned to within + 1 mil prior to  
application of the solder paste.  
Assembly Process  
Stencil Design & Solder Paste Application  
1. Stainless steel stencils are recommended for solder  
paste application.  
7. No−clean flux is recommended since flux from  
underneath the thermal pad will be difficult to  
clean if water−soluble flux is used.  
2. A stencil thickness of 0.125 – 0.150 mm  
(5 – 6 mils) is recommended for screening.  
Figure 8. Solder Paste Application on Exposed Pad  
www.onsemi.com  
18  
 
AX−SFUS, AX−SFUS−API  
Minimum 50% coverage  
62% coverage  
Maximum 80% coverage  
Figure 9. Solder Paste Application on Pins  
Life Support Applications  
and agree to fully indemnify ON Semiconductor for any  
damages resulting from such improper use or sale.  
This product is not designed for use in life support  
appliances, devices, or in systems where malfunction of this  
product can reasonably be expected to result in personal  
injury. ON Semiconductor customers using or selling this  
product for use in such applications do so at their own risk  
Device Information  
The following device information can be queried using  
the AT−Commands AT$I=4, AT$I=5 for the APP version  
and AT$I=2, AT$I=3 for the chip version.  
Table 13. DEVICE VERSIONS  
APP Version  
Chip Version  
[0]  
[1]  
[0]  
[1]  
Product  
AX−SFUS  
Part Number  
1
AX−SFUS−1−01−XXXX  
0x01  
0x01  
0x01  
0x01  
0x8F  
0x8F  
0x51  
0x51  
1
AX−SFUS−API  
AX−SFUS−API−1−01−XXXX  
1. TB05 for Reel 500, TX30 for Reel 3000 reel  
Sigfox and Sigfox Ready are registered trademarks of Sigfox SARL.  
www.onsemi.com  
19  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
QFN40 7x5, 0.5P  
CASE 485EG  
ISSUE B  
DATE 26 APR 2017  
1
40  
SCALE 2:1  
NOTES:  
L
L
1. DIMENSIONING AND TOLERANCING PER  
ASME Y14.5M, 1994.  
D
A B  
2. CONTROLLING DIMENSIONS: MILLIMETERS.  
3. DIMENSION b APPLIES TO PLATED  
TERMINAL AND IS MEASURED BETWEEN  
0.25 AND 0.30mm FROM TERMINAL  
4. COPLANARITY APPLIES TO THE EXPOSED  
PAD AS WELL AS THE TERMINALS.  
PIN ONE  
REFERENCE  
L1  
DETAIL A  
ALTERNATE TERMINAL  
CONSTRUCTIONS  
E
MILLIMETERS  
DIM MIN  
MAX  
1.00  
0.05  
2X  
0.15 C  
A
A1  
A3  
b
0.80  
0.00  
0.20 REF  
0.18  
7.00 BSC  
EXPOSED Cu  
MOLD CMPD  
2X  
0.30  
5.50  
0.15  
C
TOP VIEW  
D
D2  
5.30  
E
E2  
e
L
L1  
(A3)  
DETAIL B  
0.10  
0.08  
C
C
DETAIL B  
A
ALTERNATE  
CONSTRUCTION  
A1  
SEATING  
PLANE  
NOTE 4  
C
L
SIDE VIEW  
D2  
GENERIC  
MARKING DIAGRAM*  
40X  
DETAIL A  
9
XXXXXXXXXXXX  
XXXXXXXXXXXX  
AWLYYWW  
21  
40X b  
E2  
0.10  
C
C
A B  
XXX = Specific Device Code  
0.05  
NOTE 3  
1
A
= Assembly Location  
29  
40  
WL = Wafer Lot  
YY = Year  
WW = Work Week  
e
e/2  
BOTTOM VIEW  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”,  
may or may not be present. Some products  
may not follow the Generic Marking.  
RECOMMENDED  
SOLDERING FOOTPRINT*  
7.30  
5.60  
40X  
0.60  
PACKAGE  
OUTLINE  
1
3.60  
5.30  
40X  
0.32  
0.50  
PITCH  
DIMENSIONS: MILLIMETERS  
*For additional information on our PbFree strategy and soldering  
details, please download the ON Semiconductor Soldering and  
Mounting Techniques Reference Manual, SOLDERRM/D.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON04197G  
QFN40 7X5, 0.5P  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

AX-SIGFOX

Ultra-Low Power Microcontroller
ONSEMI

AX-SIGFOX-1

Ultra-Low Power Microcontroller
ONSEMI

AX-SIGFOX-MODS

Compliant Modules
ONSEMI

AX-SIGFOX-MODS_16

Compliant Modules
ONSEMI

AX00-20100

General Purpose Inductor, 10uH, 1 Element, SMD, 5339, CHIP, 5339
TRIAD

AX00-301R5

General Purpose Inductor, 1.5uH, 1 Element, SMD, 7752, CHIP, 7752
TRIAD

AX00-306R8

General Purpose Inductor, 6.8uH, 1 Element, SMD, 7752, CHIP, 7752
TRIAD

AX00-404R7

General Purpose Inductor, 4.7uH, 1 Element, SMD, 8660, CHIP, 8660
TRIAD

AX00-501R5

General Purpose Inductor, 1.5uH, 1 Element, SMD, 5339, CHIP, 5339
TRIAD

AX01-101R0

General Purpose Inductor, 1uH, 20%, 1 Element, SMD, 1816, CHIP, 1816
TRIAD

AX01-102R2

General Purpose Inductor, 2.2uH, 20%, 1 Element, SMD, 1816, CHIP, 1816
TRIAD

AX01-102R7

General Purpose Inductor, 2.7uH, 20%, 1 Element, SMD, 1816, CHIP, 1816
TRIAD