BUL146F [ONSEMI]

功率 8A 400V NPN;
BUL146F
型号: BUL146F
厂家: ONSEMI    ONSEMI
描述:

功率 8A 400V NPN

局域网 开关 晶体管 功率双极晶体管
文件: 总11页 (文件大小:229K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
BUL146G, BUL146FG  
SWITCHMODEt NPN  
Bipolar Power Transistor  
For Switching Power Supply Applications  
The BUL146G / BUL146FG have an applications specific  
stateoftheart die designed for use in fluorescent electric lamp  
ballasts to 130 W and in Switchmode Power supplies for all types of  
electronic equipment.  
http://onsemi.com  
POWER TRANSISTOR  
8.0 AMPERES  
Features  
Improved Efficiency Due to Low Base Drive Requirements:  
High and Flat DC Current Gain  
Fast Switching  
1000 VOLTS  
45 and 125 WATTS  
No Coil Required in Base Circuit for TurnOff (No Current Tail)  
MARKING  
DIAGRAMS  
Full Characterization at 125°C  
Two Packages Choices: Standard TO220 or Isolated TO220  
Parametric Distributions are Tight and Consistent LottoLot  
BUL146F, Case 221D, is UL Recognized to 3500 V  
: File # E69369  
These Devices are PbFree and are RoHS Compliant*  
RMS  
BUL146G  
AYWW  
MAXIMUM RATINGS  
TO220AB  
CASE 221A09  
STYLE 1  
Rating  
Symbol  
Value  
Unit  
Vdc  
Vdc  
Vdc  
Adc  
1
CollectorEmitter Sustaining Voltage  
CollectorBase Breakdown Voltage  
EmitterBase Voltage  
V
CEO  
400  
700  
9.0  
2
3
V
CES  
V
EBO  
Collector Current Continuous  
Peak (Note 1)  
I
6.0  
15  
C
I
I
CM  
Base Current  
Continuous  
Peak (Note 1)  
I
4.0  
8.0  
Adc  
V
B
BM  
BUL146FG  
AYWW  
RMS Isolation Voltage (Note 2)  
BUL146F  
4500  
3500  
1500  
(for 1 sec, R.H. < 30%, T = 25_C)  
V
ISOL1  
V
ISOL2  
V
ISOL3  
C
TO220 FULLPACK  
CASE 221D  
STYLE 2  
UL RECOGNIZED  
1
2
3
Total Device Dissipation @ T = 25_C  
P
D
W
W/_C  
C
BUL146  
100  
40  
BUL146F  
Derate above 25°C  
BUL146  
0.8  
BUL146F  
0.32  
G
A
Y
WW  
= PbFree Package  
= Assembly Location  
Operating and Storage Temperature  
T , T  
65 to 150  
_C  
J
stg  
= Year  
= Work Week  
THERMAL CHARACTERISTICS  
Characteristics  
Symbol  
Max  
Unit  
Thermal Resistance, JunctiontoCase  
R
_C/W  
q
JC  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 8 of this data sheet.  
BUL146  
1.25  
BUL146F  
3.125  
Thermal Resistance, JunctiontoAmbient  
R
62.5  
260  
_C/W  
_C  
q
JA  
Maximum Lead Temperature for Soldering  
Purposes 1/8from Case for 5 Seconds  
T
L
Stresses exceeding Maximum Ratings may damage the device. Maximum  
Ratings are stress ratings only. Functional operation above the Recommended  
Operating Conditions is not implied. Extended exposure to stresses above the  
Recommended Operating Conditions may affect device reliability.  
1. Pulse Test: Pulse Width = 5 ms, Duty Cycle 10%.  
*For additional information on our PbFree strategy  
and soldering details, please download the  
ON Semiconductor Soldering and Mounting  
Techniques Reference Manual, SOLDERRM/D.  
2. Proper strike and creepage distance must be provided.  
©
Semiconductor Components Industries, LLC, 2010  
1
Publication Order Number:  
April, 2010 Rev. 9  
BUL146/D  
 
BUL146G, BUL146FG  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
CollectorEmitter Sustaining Voltage (I = 100 mA, L = 25 mH)  
V
400  
Vdc  
mAdc  
mAdc  
C
CEO(sus)  
Collector Cutoff Current (V = Rated V  
, I = 0)  
I
CEO  
100  
CE  
CEO  
B
Collector Cutoff Current (V = Rated V  
, V = 0)  
I
100  
500  
100  
CE  
CES EB  
CES  
(T = 125°C)  
(T = 125°C)  
C
C
Collector Cutoff Current (V = 500 V, V = 0)  
CE  
EB  
Emitter Cutoff Current (V = 9.0 Vdc, I = 0)  
I
100  
mAdc  
EB  
C
EBO  
ON CHARACTERISTICS  
BaseEmitter Saturation Voltage (I = 1.3 Adc, I = 0.13 Adc)  
V
0.82  
0.93  
1.1  
Vdc  
Vdc  
C
B
BE(sat)  
BaseEmitter Saturation Voltage (I = 3.0 Adc, I = 0.6 Adc)  
1.25  
C
B
CollectorEmitter Saturation Voltage (I = 1.3 Adc, I = 0.13 Adc)  
V
0.22  
0.20  
0.30  
0.30  
0.5  
0.5  
0.7  
0.7  
C
B
CE(sat)  
(T = 125°C)  
C
CollectorEmitter Saturation Voltage (I = 3.0 Adc, I = 0.6 Adc)  
C
B
(T = 125°C)  
C
DC Current Gain (I = 0.5 Adc, V = 5.0 Vdc)  
h
FE  
14  
34  
C
CE  
(T = 125°C)  
30  
20  
20  
13  
12  
20  
C
DC Current Gain (I = 1.3 Adc, V = 1.0 Vdc)  
12  
12  
8.0  
7.0  
10  
C
CE  
(T = 125°C)  
C
DC Current Gain (I = 3.0 Adc, V = 1.0 Vdc)  
C
CE  
(T = 125°C)  
C
DC Current Gain (I = 10 mAdc, V = 5.0 Vdc)  
C
CE  
DYNAMIC CHARACTERISTICS  
Current Gain Bandwidth (I = 0.5 Adc, V = 10 Vdc, f = 1.0 MHz)  
f
14  
95  
MHz  
pF  
C
CE  
T
Output Capacitance (V = 10 Vdc, I = 0, f = 1.0 MHz)  
C
OB  
150  
1500  
CB  
E
Input Capacitance (V = 8.0 V)  
C
1000  
pF  
EB  
IB  
2.5  
6.5  
1.0 ms  
3.0 ms  
1.0 ms  
3.0 ms  
(I = 1.3 Adc  
C
(T = 125°C)  
C
I
B1  
= 300 mAdc  
Dynamic Saturation Voltage:  
Determined 1.0 ms and  
0.6  
2.5  
V
CC  
= 300 V)  
(T = 125°C)  
C
3.0 ms respectively after  
V
V
CE(dsat)  
rising I reaches 90% of  
B1  
3.0  
7.0  
final I  
(I = 3.0 Adc  
C
B1  
(T = 125°C)  
C
(see Figure 18)  
I
B1  
= 0.6 Adc  
0.75  
1.4  
V
CC  
= 300 V)  
(T = 125°C)  
C
http://onsemi.com  
2
BUL146G, BUL146FG  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (continued)  
C
Characteristic  
SWITCHING CHARACTERISTICS: Resistive Load (D.C. 10%, Pulse Width = 20 ms)  
Symbol  
Min  
Typ  
Max  
Unit  
TurnOn Time  
TurnOff Time  
TurnOn Time  
TurnOff Time  
(I = 1.3 Adc, I = 0.13 Adc  
t
on  
t
off  
t
on  
t
off  
100  
90  
200  
ns  
ms  
ns  
ms  
C
B1  
I
= 0.65 Adc, V = 300 V)  
(T = 125°C)  
B2  
CC  
C
1.35  
1.90  
2.5  
(T = 125°C)  
C
(I = 3.0 Adc, I = 0.6 Adc  
90  
100  
150  
C
B1  
B1  
CC  
I
= 1.5 Adc, V = 300 V)  
(T = 125°C)  
C
1.7  
2.1  
2.5  
(T = 125°C)  
C
SWITCHING CHARACTERISTICS: Inductive Load (V  
= 300 V, V = 15 V, L = 200 mH)  
CC  
clamp  
Fall Time  
(I = 1.3 Adc, I = 0.13 Adc  
B2  
t
fi  
115  
120  
200  
ns  
ms  
ns  
ns  
ms  
ns  
ns  
ms  
ns  
C
B1  
I
= 0.65 Adc)  
(T = 125°C)  
C
Storage Time  
Crossover Time  
Fall Time  
t
si  
1.35  
1.75  
2.5  
(T = 125°C)  
C
t
c
200  
210  
350  
(T = 125°C)  
C
(I = 3.0 Adc, I = 0.6 Adc  
t
fi  
85  
100  
150  
C
B2  
B1  
I
= 1.5 Adc)  
(T = 125°C)  
C
Storage Time  
Crossover Time  
Fall Time  
t
si  
1.75  
2.25  
2.5  
(T = 125°C)  
C
t
175  
200  
300  
c
fi  
(T = 125°C)  
C
(I = 3.0 Adc, I = 0.6 Adc  
t
80  
210  
180  
C
B2  
B1  
I
= 0.6 Adc)  
(T = 125°C)  
C
Storage Time  
Crossover Time  
t
si  
2.6  
4.5  
3.8  
(T = 125°C)  
C
t
c
230  
400  
350  
(T = 125°C)  
C
http://onsemi.com  
3
BUL146G, BUL146FG  
TYPICAL STATIC CHARACTERISTICS  
100  
100  
V
CE  
= 5 V  
T = 125°C  
J
T = 125°C  
J
V
CE  
= 1 V  
T = 25°C  
J
T = 25°C  
J
T = -ꢀ20°C  
J
T = -ꢀ20°C  
J
10  
10  
1
0.01  
1
0.01  
0.1  
1
10  
0.1  
1
10  
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 1. DC Current Gain @ 1 Volt  
Figure 2. DC Current Gain @ 5 Volts  
2
10  
1
T = 25°C  
J
I = 1 A  
C
2 A  
3 A  
5 A  
6 A  
1
I /I = 10  
C B  
0.1  
T = 25°C  
T = 125°C  
J
J
I /I = 5  
C B  
0
0.01  
0.01  
0.01  
0.1  
1
10  
0.1  
1
10  
I , BASE CURRENT (mA)  
B
I COLLECTOR CURRENT (AMPS)  
C
Figure 3. Collector Saturation Region  
Figure 4. CollectorEmitter Saturation Voltage  
1.2  
10000  
1000  
T = 25°C  
J
f = 1 MHz  
1.1  
1
C
ib  
0.9  
0.8  
0.7  
0.6  
100  
10  
1
C
ob  
T = 25°C  
J
T = 125°C  
J
I /I = 5  
C B  
I /I = 10  
0.5  
0.4  
C B  
0.01  
0.1  
1
10  
1
10  
100  
1000  
I , COLLECTOR CURRENT (AMPS)  
C
V
CE  
, COLLECTOR-EMITTER VOLTAGE (VOLTS)  
Figure 5. BaseEmitter Saturation Region  
Figure 6. Capacitance  
http://onsemi.com  
4
BUL146G, BUL146FG  
TYPICAL SWITCHING CHARACTERISTICS  
(I = I /2 for all switching)  
B2  
C
1000  
800  
600  
400  
4000  
3500  
3000  
2500  
2000  
1500  
I
= I /2  
B(off) C  
= 300 V  
I
= I /2  
B(off) C  
= 300 V  
I /I = 5  
C B  
I /I = 10  
T = 25°C  
T = 125°C  
J
J
V
CC  
V
CC  
C B  
PW = 20 ms  
PW = 20 ms  
I /I = 5  
C B  
T = 125°C  
J
I /I = 10  
C B  
1000  
200  
0
T = 25°C  
J
500  
0
0
2
4
6
8
0
2
4
6
8
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 7. Resistive Switching, ton  
Figure 8. Resistive Switching, toff  
2500  
2000  
4000  
3500  
3000  
2500  
2000  
1500  
1000  
500  
T = 25°C  
T = 125°C  
J
I
= I /2  
B(off) C  
= 15 V  
I
= I /2  
B(off) C  
= 15 V  
J
V
CC  
V = 300 V  
V
CC  
V = 300 V  
I /I = 5  
C B  
Z
Z
I = 3 A  
C
L = 200 mH  
C
L = 200 mH  
C
1500  
1000  
500  
0
I = 1.3 A  
C
T = 25°C  
T = 125°C  
J
J
I /I = 10  
C B  
0
0
1
2
3
4
5
6
7
8
3
4
5
6
7
I COLLECTOR CURRENT (AMPS)  
C
h , FORCED GAIN  
FE  
Figure 9. Inductive Storage Time, tsi  
Figure 10. Inductive Storage Time, tsi(hFE)  
250  
200  
150  
100  
250  
200  
150  
100  
50  
I
= I /2  
B(off) C  
= 15 V  
t
c
V
CC  
V = 300 V  
Z
t
L = 200 mH  
C
c
t
fi  
t
fi  
I
= I /2  
B(off) C  
= 15 V  
50  
0
V
CC  
V = 300 V  
T = 25°C  
T = 125°C  
J
T = 25°C  
T = 125°C  
J
Z
J
L = 200 mH  
C
J
0
1
2
3
4
5
6
7
8
0
1
2
3
4
5
6
7
8
I , COLLECTOR CURRENT (AMPS)  
C
I , COLLECTOR CURRENT (AMPS)  
C
Figure 11. Inductive Switching, tc and tfi  
IC/IB = 5  
Figure 12. Inductive Switching, tc and tfi  
IC/IB = 10  
http://onsemi.com  
5
BUL146G, BUL146FG  
TYPICAL SWITCHING CHARACTERISTICS  
(I = I /2 for all switching)  
B2  
C
250  
200  
150  
130  
120  
110  
100  
90  
I = 1.3 A  
C
I = 1.3 A  
C
I = 3 A  
C
I
= I /2  
B(off) C  
= 15 V  
V
CC  
V = 300 V  
I = 3 A  
C
Z
80  
I
= I /2  
B(off) C  
= 15 V  
L = 200 mH  
C
100  
50  
V
CC  
V = 300 V  
T = 25°C  
T = 125°C  
70  
60  
T = 25°C  
T = 125°C  
J
J
Z
J
L = 200 mH  
C
J
3
4
5
6
7
8
9
10 11 12 13 14 15  
3
4
5
6
7
8
9
10 11 12 13 14 15  
h
FE  
, FORCED GAIN  
h
FE  
, FORCED GAIN  
Figure 14. Inductive CrossOver Time  
Figure 13. Inductive Fall Time  
GUARANTEED SAFE OPERATING AREA INFORMATION  
7
100  
10  
T
125°C  
DC (BUL146)  
5 ms  
C
6
I /I 4  
C B  
1 ms  
10 ms  
1 ms  
L = 500 mH  
C
5
4
EXTENDED  
SOA  
1
3
2
V
BE(off)  
0.1  
-ꢀ5 V  
1
0
0 V  
-1, 5 V  
600  
, COLLECTOR-EMITTER VOLTAGE (VOLTS)  
0.01  
0
200  
400  
800  
10  
100  
, COLLECTOR-EMITTER VOLTAGE (VOLTS)  
1000  
V
CE  
V
CE  
Figure 16. Reverse Bias Switching Safe Operating Area  
Figure 15. Forward Bias Safe Operating Area  
There are two limitations on the power handling ability of a tran-  
sistor: average junction temperature and second breakdown. Safe  
operating area curves indicate IC VCE limits of the transistor that  
must be observed for reliable operation; i.e., the transistor must not  
be subjected to greater dissipation than the curves indicate. The data  
of Figure 15 is based on TC = 25°C; TJ(pk) is variable depending on  
power level. Second breakdown pulse limits are valid for duty  
cycles to 10% but must be derated when TC > 25°C. Second break-  
down limitations do not derate the same as thermal limitations. Al-  
lowable current at the voltages shown in Figure 15 may be found at  
any case temperature by using the appropriate curve on Figure 17.  
1,0  
SECOND BREAKDOWN  
DERATING  
0,8  
0,6  
0,4  
T
J(pk) may be calculated from the data in Figure 20. At any case tem-  
peratures, thermal limitations will reduce the power that can be  
handled to values less than the limitations imposed by second break-  
down. For inductive loads, high voltage and current must be sus-  
tained simultaneously during turnoff with the basetoemitter  
junction reversebiased. The safe level is specified as a reverse−  
biased safe operating area (Figure 16). This rating is verified under  
clamped conditions so that the device is never subjected to an ava-  
lanche mode.  
THERMAL DERATING  
0,2  
0,0  
20  
40  
60  
80  
100  
120  
140  
160  
T , CASE TEMPERATURE (°C)  
C
Figure 17. Forward Bias Power Derating  
http://onsemi.com  
6
 
BUL146G, BUL146FG  
10  
5
4
V
CE  
90% I  
I
C
C
9
8
7
6
5
t
fi  
3
dyn 1 ms  
t
si  
2
dyn 3 ms  
1
t
c
10% I  
C
V
10% V  
CLAMP  
0
CLAMP  
-1  
-2  
-3  
-4  
-5  
4
3
2
1
0
90% I  
B
I
B
90% I 1  
B
1 ms  
3 ms  
I
B
0
1
2
3
4
5
6
7
8
TIME  
TIME  
Figure 18. Dynamic Saturation Voltage Measurements  
Figure 19. Inductive Switching Measurements  
+15 V  
I PEAK  
C
100 mF  
1 mF  
MTP8P10  
MUR105  
MJE210  
100 W  
3 W  
150 W  
3 W  
V
CE  
PEAK  
V
CE  
MTP8P10  
MPF930  
R
R
B1  
I 1  
B
I
MPF930  
+10 V  
out  
I
B
A
I 2  
B
50 W  
B2  
V(BR)CEO(sus)  
L = 10 mH  
INDUCTIVE SWITCHING  
L = 200 mH  
RB2 = 0  
RBSOA  
COMMON  
MTP12N10  
150 W  
3 W  
L = 500 mH  
RB2 = 0  
RB2 = ∞  
500 mF  
V
= 20 VOLTS  
I (pk) = 100 mA  
V
CC  
= 15 VOLTS  
V
CC  
= 15 VOLTS  
CC  
RB1 SELECTED FOR  
DESIRED I 1  
RB1 SELECTED  
FOR DESIRED I 1  
C
1 mF  
B
B
-V  
off  
Table 1. Inductive Load Switching Drive Circuit  
http://onsemi.com  
7
BUL146G, BUL146FG  
TYPICAL THERMAL RESPONSE  
1
D = 0.5  
0.2  
0.1  
P
(pk)  
0.1  
R (t) = r(t) R  
q q  
JC JC  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
READ TIME AT t  
0.05  
0.02  
t
1
1
t
2
T
- T = P  
C
R (t)  
q
JC  
J(pk)  
(pk)  
SINGLE PULSE  
DUTY CYCLE, D = t /t  
1 2  
0.01  
0.01  
0.1  
1
10  
100  
1000  
t, TIME (ms)  
Figure 20. Typical Thermal Response (ZqJC(t)) for BUL146  
1.00  
D = 0.5  
0.2  
P
(pk)  
R
R
(t) = r(t) R  
q
JC  
q
JC  
0.10  
0.1  
= 3.125°C/W MAX  
q
JC  
D CURVES APPLY FOR  
POWER PULSE TRAIN  
SHOWN READ TIME AT t  
0.05  
0.02  
t
1
1
t
2
T
- T = P  
C
R (t)  
q
JC  
J(pk)  
(pk)  
DUTY CYCLE, D = t /t  
SINGLE PULSE  
1 2  
0.01  
0.01  
0.10  
1.00  
10.00  
100.00  
1000  
t, TIME (ms)  
Figure 21. Typical Thermal Response for BUL146F  
ORDERING INFORMATION  
Device  
Package  
Shipping  
BUL146G  
TO220AB  
(PbFree)  
50 Units / Rail  
BUL146FG  
TO220 (Fullpack)  
(PbFree)  
50 Units / Rail  
http://onsemi.com  
8
BUL146G, BUL146FG  
TEST CONDITIONS FOR ISOLATION TESTS*  
MOUNTED  
FULLY ISOLATED  
PACKAGE  
MOUNTED  
FULLY ISOLATED  
PACKAGE  
MOUNTED  
FULLY ISOLATED  
PACKAGE  
CLIP  
CLIP  
0.099MIN  
0.099MIN  
LEADS  
LEADS  
LEADS  
HEATSINK  
HEATSINK  
HEATSINK  
0.110MIN  
Figure 22a. Screw or Clip Mounting  
Position for Isolation Test Number 1  
Figure 22b. Clip Mounting Position  
for Isolation Test Number 2  
Figure 22c. Screw Mounting Position  
for Isolation Test Number 3  
*Measurement made between leads and heatsink with all leads shorted together  
MOUNTING INFORMATION**  
4-40 SCREW  
CLIP  
PLAIN WASHER  
HEATSINK  
COMPRESSION WASHER  
HEATSINK  
NUT  
Figure 23a. ScrewMounted  
Figure 23b. ClipMounted  
Figure 23. Typical Mounting Techniques  
for Isolated Package  
Laboratory tests on a limited number of samples indicate, when using the screw and compression washer mounting technique, a  
.
screw torque of 6 to 8 in lbs is sufficient to provide maximum power dissipation capability. The compression washer helps to maintain  
a constant pressure on the package over time and during large temperature excursions.  
Destructive laboratory tests show that using a hex head 440 screw, without washers, and applying a torque in excess of 20 in lbs will  
.
cause the plastic to crack around the mounting hole, resulting in a loss of isolation capability.  
.
Additional tests on slotted 440 screws indicate that the screw slot fails between 15 to 20 in lbs without adversely affecting the  
package. However, in order to positively ensure the package integrity of the fully isolated device, ON Semiconductor does not recom-  
.
mend exceeding 10 in lbs of mounting torque under any mounting conditions.  
**For more information about mounting power semiconductors see Application Note AN1040.  
http://onsemi.com  
9
BUL146G, BUL146FG  
PACKAGE DIMENSIONS  
TO220AB  
CASE 221A09  
ISSUE AF  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. DIMENSION Z DEFINES A ZONE WHERE ALL  
BODY AND LEAD IRREGULARITIES ARE  
ALLOWED.  
SEATING  
PLANE  
T−  
C
S
B
F
T
INCHES  
DIM MIN MAX  
MILLIMETERS  
4
MIN  
14.48  
9.66  
4.07  
0.64  
3.61  
2.42  
2.80  
0.36  
12.70  
1.15  
4.83  
2.54  
2.04  
1.15  
5.97  
0.00  
1.15  
---  
MAX  
15.75  
10.28  
4.82  
0.88  
4.09  
2.66  
3.93  
0.64  
14.27  
1.52  
5.33  
3.04  
2.79  
1.39  
6.47  
1.27  
---  
A
B
C
D
F
0.570  
0.380  
0.160  
0.025  
0.142  
0.095  
0.110  
0.014  
0.500  
0.045  
0.190  
0.100  
0.080  
0.045  
0.235  
0.000  
0.045  
---  
0.620  
0.405  
0.190  
0.035  
0.161  
0.105  
0.155  
0.025  
0.562  
0.060  
0.210  
0.120  
0.110  
0.055  
0.255  
0.050  
---  
A
K
Q
Z
1
2
3
U
H
G
H
J
K
L
N
Q
R
S
T
L
R
J
V
G
U
V
Z
D
0.080  
2.04  
N
STYLE 1:  
PIN 1. BASE  
2. COLLECTOR  
3. EMITTER  
4. COLLECTOR  
TO220 FULLPAK  
CASE 221D03  
ISSUE G  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH  
3. 221D-01 THRU 221D-02 OBSOLETE, NEW  
STANDARD 221D-03.  
SEATING  
T−  
PLANE  
B−  
C
F
S
Q
INCHES  
DIM MIN MAX  
MILLIMETERS  
U
MIN  
MAX  
16.12  
10.63  
4.83  
A
A
B
C
D
F
0.625  
0.408  
0.180  
0.026  
0.116  
0.635 15.88  
0.418 10.37  
0.190  
0.031  
0.119  
4.57  
0.65  
2.95  
1
2 3  
0.78  
3.02  
H
Y−  
G
H
J
0.100 BSC  
2.54 BSC  
K
0.125  
0.018  
0.530  
0.048  
0.135  
0.025  
3.18  
0.45  
3.43  
0.63  
K
L
0.540 13.47  
1.23  
13.73  
1.36  
5.08 BSC  
0.053  
G
N
L
J
N
Q
R
S
U
0.200 BSC  
R
0.124  
0.099  
0.101  
0.238  
0.128  
0.103  
0.113  
0.258  
3.15  
2.51  
2.57  
6.06  
3.25  
2.62  
2.87  
6.56  
D 3 PL  
M
M
STYLE 2:  
PIN 1. BASE  
0.25 (0.010)  
B
Y
2. COLLECTOR  
3. EMITTER  
http://onsemi.com  
10  
BUL146G, BUL146FG  
SWITCHMODE is a trademark of Semiconductor Components Industries, LLC.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
BUL146/D  

相关型号:

BUL146FG

SWITCHMODE NPN Bipolar Power Transistor
ONSEMI

BUL146G

SWITCHMODE NPN Bipolar Power Transistor
ONSEMI

BUL146L

Power Bipolar Transistor, 8A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUL146N

8 A, 400 V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL146S

8A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL146T

8 A, 400 V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL146U

Power Bipolar Transistor, 8A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUL146U2

Power Bipolar Transistor, 8A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUL146UA

8A, 400V, NPN, Si, POWER TRANSISTOR, TO-220AB
MOTOROLA

BUL146W

Power Bipolar Transistor, 8A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUL146WD

Power Bipolar Transistor, 8A I(C), 400V V(BR)CEO, 1-Element, NPN, Silicon, TO-220AB, Plastic/Epoxy, 3 Pin
MOTOROLA

BUL147

POWER TRANSISTOR 8.0 AMPERES 700 VOLTS 45 and 125 WATTS
MOTOROLA