BUX48 [ONSEMI]

SITCHMODE II Series NPN Silicon Power Transistors; SITCHMODE II系列NPN硅功率晶体管
BUX48
型号: BUX48
厂家: ONSEMI    ONSEMI
描述:

SITCHMODE II Series NPN Silicon Power Transistors
SITCHMODE II系列NPN硅功率晶体管

晶体 晶体管
文件: 总8页 (文件大小:328K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Order this document  
by BUX48/D  
SEMICONDUCTOR TECHNICAL DATA  
15 AMPERES  
NPN SILICON  
POWER TRANSISTORS  
400 AND 450 VOLTS  
The BUX 48/BUX 48A transistors are designed for high–voltage, high–speed,  
power switching in inductive circuits where fall time is critical. They are particularly  
suited for line–operated SWITCHMODE applications such as:  
Switching Regulators  
Inverters  
Solenoid and Relay Drivers  
Motor Controls  
V
(BR)CEO  
8501000 VOLTS  
V
(BR)CEX  
175 WATTS  
Deflection Circuits  
Fast Turn–Off Times  
60 ns Inductive Fall Time — 25 C (Typ)  
120 ns Inductive Crossover Time — 25 C (Typ)  
Operating Temperature Range 65 to +200 C  
100 C Performance Specified for:  
Reverse–Biased SOA with Inductive Loads  
Switching Times with Inductive Loads  
Saturation Voltage  
CASE 1–07  
TO–204AA  
(TO–3)  
Leakage Currents (125 C)  
MAXIMUM RATINGS  
Rating  
Symbol  
BUX48  
400  
BUX48A  
450  
Unit  
Vdc  
Vdc  
Vdc  
Adc  
Collector–Emitter Voltage  
V
CEO(sus)  
Collector–Emitter Voltage (V  
Emitter Base Voltage  
= – 1.5 V)  
VCEX  
850  
1000  
BE  
V
EB  
7
Collector Current — Continuous  
— Peak (1)  
I
C
15  
30  
60  
I
CM  
— Overload  
I
OI  
Base Current — Continuous  
— Peak (1)  
I
5
20  
Adc  
B
I
BM  
Total Power Dissipation — T = 25 C  
P
175  
100  
1
Watts  
C
D
— T = 100 C  
C
W/ C  
C
Derate above 25 C  
Operating and Storage Junction Temperature Range  
T , T  
J
65 to +200  
stg  
THERMAL CHARACTERISTICS  
Characteristic  
Symbol  
Max  
1
Unit  
C/W  
C
Thermal Resistance, Junction to Case  
R
θJC  
Maximum Lead Temperature for Soldering Purposes:  
1/8from Case for 5 Seconds  
T
L
275  
(1) Pulse Test: Pulse Width = 5 ms, Duty Cycle  
10%.  
SWITCHMODE is a trademark of Motorola, Inc.  
REV 7  
Motorola, Inc. 1995
ELECTRICAL CHARACTERISTICS (T = 25 C unless otherwise noted)  
C
Characteristic  
Symbol  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS (1)  
Collector–Emitter Sustaining Voltage (Table 1)  
V
Vdc  
CEO(sus)  
(I = 200 mA, I = 0) L = 25 mH  
BUX48  
BUX48A  
400  
450  
C
B
Collector Cutoff Current  
I
mAdc  
mAdc  
CEX  
CER  
EBO  
(V  
CEX  
(V  
CEX  
= Rated Value, V  
= Rated Value, V  
= 1.5 Vdc)  
= 1.5 Vdc, T = 125 C)  
0.2  
2
BE(off)  
BE(off)  
C
Collector Cutoff Current  
(V = Rated V , R  
I
I
= 10 )  
T
C
T
C
= 25 C  
= 125 C  
0.5  
3
CE CEX BE  
Emitter Cutoff Current  
(V = 5 Vdc, I = 0)  
0.1  
mAdc  
Vdc  
EB  
Emitter–Base Breakdown Voltage  
(I = 50 mA – I = 0)  
C
V
(BR)EBO  
7
E
C
SECOND BREAKDOWN  
Second Breakdown Collector Current with Base Forward Biased  
Clamped Inductive SOA with Base Reverse Biased  
I
See Figure 12  
See Figure 13  
S/b  
RBSOA  
ON CHARACTERISTICS (1)  
DC Current Gain  
h
FE  
(I = 10 Adc, V  
= 5 Vdc)  
= 5 Vdc)  
BUX48  
BUX48A  
8
8
C
CE  
(I = 8 Adc, V  
CE  
C
Collector–Emitter Saturation Voltage  
(I = 10 Adc, I = 2 Adc)  
V
Vdc  
Vdc  
CE(sat)  
1.5  
5
2
1.5  
5
2
C
B
(I = 15 Adc, I = 3 Adc)  
BUX48  
C
B
(I = 10 Adc, I = 2 Adc, T = 100 C)  
C
C
B
B
B
B
C
(I = 8 Adc, I = 1.6 Adc)  
(I = 12 Adc, I = 2.4 Adc)  
BUX48A  
C
(I = 8 Adc, I = 1.6 Adc, T = 100 C)  
C
C
Base–Emitter Saturation Voltage  
(I = 10 Adc, I = 2 Adc)  
V
BE(sat)  
BUX48  
1.6  
1.6  
1.6  
1.6  
C
B
(I = 10 Adc, I = 2 Adc, T = 100 C)  
C
C
B
B
B
C
(I = 8 Adc, I = 1.6 Adc)  
(I = 8 Adc, I = 1.6 Adc, T = 100 C)  
C
BUX48A  
C
DYNAMIC CHARACTERISTICS  
Output Capacitance  
C
350  
pF  
ob  
(V  
CB  
= 10 Vdc, I = 0, f = 1 MHz)  
test  
E
SWITCHING CHARACTERISTICS Resistive Load (Table 1)  
Delay Time  
t
t
0.1  
0.4  
1.3  
0.2  
0.2  
0.7  
2
µs  
d
I
I
= 10 A, I = 2 A  
BUX48  
BUX48A  
C
C
B
Rise Time  
Storage Time  
Fall Time  
t
r
= 8 A, I = 1.6 A  
B
Duty Cycle = 2%, V  
T
= 5 V  
BE(off)  
= 300 V  
s
= 30 µs, V  
CC  
p
t
0.4  
f
Inductive Load, Clamped (Table 1)  
Storage Time  
t
1.3  
0.06  
1.5  
µs  
sv  
I
I
= 10 A  
C
(T = 25 C)  
C
= 2 A  
BUX48  
B1  
Fall Time  
t
fi  
Storage Time  
t
sv  
2.5  
0.6  
0.35  
I
I
= 8 A  
= 1.6 A  
C
B1  
Crossover Time  
Fall Time  
(T = 100 C)  
C
t
0.3  
c
fi  
BUX48A  
2%.  
t
0.17  
(1) Pulse Test: Pulse Width = 300 µs, Duty Cycle  
Vcl = 300 V, V  
= 5 V, Lc = 180µH  
BE(off)  
3–402  
Motorola Bipolar Power Transistor Device Data  
DC CHARACTERISTICS  
50  
10  
90%  
30  
20  
5
3
I
= 5 A  
7.5 A  
10 A  
15 A  
C
10%  
10  
7
1
5
0.5  
0.3  
3
2
V
= 5 V  
2
CE  
T = 25°C  
C
0.1  
0.1  
1
5
1
3
5
8
10  
20  
30  
50  
0.3  
0.5  
, BASE CURRENT (AMPS)  
B
1
2
3
4
I
, COLLECTOR CURRENT (AMPS)  
I
C
Figure 1. DC Current Gain  
Figure 2. Collector Saturation Region  
β
= 5  
f
3
2
90%  
2
10%  
T
= 25°C  
1
1
J
0.7  
0.7  
T
= 100°C  
J
0.5  
0.5  
0.3  
0.2  
0.3  
0.1  
1
2
3
5
7
10  
20  
30  
50  
0.1  
0.3  
1
3
10  
I
, COLLECTOR CURRENT (AMPS)  
I , COLLECTOR CURRENT (AMPS)  
C
C
Figure 3. Collector–Emitter Saturation Voltage  
Figure 4. Base–Emitter Voltage  
4
3
10  
10 k  
1 k  
V
T
= 250 V  
CE  
C
ib  
10  
= 150°C  
J
2
1
0
10  
10  
10  
125  
°
C
C
100°  
C
ob  
100  
10  
75  
°
C
C
REVERSE  
0.2  
FORWARD  
0.2  
T
= 25°C  
J
25  
°
–1  
10  
0.4  
0
0.4  
0.6  
1
10  
V , REVERSE VOLTAGE (VOLTS)  
R
100  
1000  
V
, BASE–EMITTER VOLTAGE (VOLTS)  
BE  
Figure 6. Capacitance  
Figure 5. Collector Cutoff Region  
3–403  
Motorola Bipolar Power Transistor Device Data  
Table 1. Test Conditions for Dynamic Performance  
V
RBSOA AND INDUCTIVE SWITCHING  
RESISTIVE SWITCHING  
CEO(sus)  
+10 V  
22 µF  
TURN–ON TIME  
33  
D1  
2N6438  
2 W  
160  
1
D3  
+10 V  
0
1
2
MR854  
20  
220  
100  
100  
2
MM3735  
I
22  
B1  
680 pF  
I
ADJUST  
b1  
D1 D2 D3 D4 1N4934  
680 pF  
0.1  
µ
F
I
ADJUST  
dT ADJUST  
b
b2  
I
adjusted to  
B1  
obtain the forced  
PULSES  
= 3%  
22  
D4  
δ
2N3763  
h
desired  
FE  
680 pF  
PW Varied to Attain  
MR854  
TURN–OFF TIME  
160  
I
= 200 mA  
C
33  
2 W  
Use inductive switching  
driver as the input to  
the resistive test circuit.  
2N6339  
D3  
0.22 µF  
V
CC  
L
R
V
= 180 µH  
= 0.05 Ω  
= 20 V  
V
= 300 V  
coil  
coil  
CC  
CC  
R = 83 Ω  
L
L
R
= 25 mH, V  
= 0.7 Ω  
= 10 V  
V
R
= 300 V  
clamp  
B B1  
coil  
coil  
CC  
ADJUSTED TO ATTAIN DESIRED I  
Pulse Width = 10 µs  
INDUCTIVE TEST CIRCUIT  
OUTPUT WAVEFORMS  
RESISTIVE TEST CIRCUIT  
t
Adjusted to  
1
Obtain I  
L
I
C
C
TUT  
(I  
)
)
R
L
TUT  
coil  
V
C
coil  
1
pk  
I
t
Clamped  
t
C(pk)  
1N4937  
OR  
EQUIVALENT  
t
f
1
R
L
CC  
1
INPUT  
coil  
L
(I  
t
t
f
2
coil  
V
C
1
SEE ABOVE FOR  
pk  
V
CC  
t
2
V
DETAILED CONDITIONS  
clamp  
V
V
CC  
Clamp  
CE  
V
RS =  
CE or  
2
Test Equipment  
Scope — Tektronix  
475 or Equivalent  
V
0.1  
clamp  
t
TIME  
t
2
10  
I
pk  
C
V
CE(pk)  
β
= 5  
= 10 A  
f
I
C
8
6
4
2
0
90% V  
90% I  
CE(pk)  
C(pk)  
I
t
t
t
t
ti  
C
sv  
rv  
fi  
t
c
V
I
10% V  
CE(pk)  
CE  
10%  
pk  
2% I  
C
I
90% I  
B1  
C
B
0
1
2
3
4
5
6
TIME  
V
, BASE–EMITTER VOLTAGE (VOLTS)  
BE(off)  
Figure 7. Inductive Switching Measurements  
Figure 8. Peak–Reverse Current  
3–404  
Motorola Bipolar Power Transistor Device Data  
SWITCHING TIMES NOTE  
In resistive switching circuits, rise, fall, and storage times  
is shown in Figure 7 to aid in the visual identity of these  
terms.  
For the designer, there is minimal switching loss during  
storage time and the predominant switching power losses  
occur during the crossover interval and can be obtained  
using the standard equation from AN–222:  
have been defined and apply to both current and voltage  
waveforms since they are in phase. However, for inductive  
loads which are common to SWITCHMODE power supplies  
and hammer drivers, current and voltage waveforms are not  
in phase. Therefore, separate measurements must be made  
on each waveform to determine the total switching time. For  
this reason, the following new terms have been defined.  
P
= 1/2 V I (t )f  
CC C c  
SWT  
t . However, at lower test currents this  
In general, t + t  
rv fi  
c
relationship may not be valid.  
t
t
= Voltage Storage Time, 90% I to 10% V  
B1 clamp  
sv  
rv  
As is common with most switching transistors, resistive  
switching is specified at 25 C and has become a benchmark  
for designers. However, for designers of high frequency con-  
verter circuits, the user oriented specifications which make  
this a “SWITCHMODE” transistor are the inductive switching  
= Voltage Rise Time, 1090% V  
clamp  
t = Current Fall Time, 9010% I  
fi  
t = Current Tail, 102% I  
C
ti  
c
C
t = Crossover Time, 10% V  
to 10% I  
C
clamp  
An enlarged portion of the inductive switching waveforms  
speeds (t and t ) which are guaranteed at 100 C.  
sv  
c
INDUCTIVE SWITCHING  
1
5
3
2
0.5  
0.3  
T
= 100°C  
C
T
= 100°C  
C
T
= 100°C  
C
0.2  
T
= 25°C  
C
T
= 25°C  
1
C
0.7  
0.1  
0.5  
T
= 25°C  
C
0.05  
0.3  
0.2  
t
t
0.03  
0.02  
c
fi  
β
= 5  
2
f
β
= 5  
2
f
0.01  
0.1  
1
3
5
7
10  
20  
30  
50  
1
3
5
7
10  
I , COLLECTOR CURRENT (AMPS)  
C
20  
30  
50  
I
, COLLECTOR CURRENT (AMPS)  
C
Figure 9. Storage Time, t  
Figure 10. Crossover and Fall Times  
sv  
3
2
3
2
t
sv  
T
= 25°C  
= 10 A  
= 5  
C
I
C
1
1
β
f
t
sv  
0.5  
0.5  
0.3  
0.2  
0.3  
0.2  
t
c
t
c
t
0.1  
0.1  
fi  
t
fi  
0.05  
0.05  
T
= 25  
= 10 A  
°
C
C
0.03  
0.02  
0.03  
0.02  
I
V
C
= 5 V  
9
BE(off)  
0.01  
0.01  
0
1
2
3
4
5
6
7
8
10  
0
1
2
3
4
5
6
7
8
9
10  
β
, FORCED GAIN  
Ib /Ib  
2 1  
f
Figure 11a. Turn–Off Times versus Forced Gain  
Figure 11b. Turn–Off Times versus Ib /Ib  
2 1  
3–405  
Motorola Bipolar Power Transistor Device Data  
The Safe Operating Area figures shown in Figures 12 and 13 are  
specified for these devices under the test conditions shown.  
SAFE OPERATING AREA INFORMATION  
30  
FORWARD BIAS  
10  
5
There are two limitations on the power handling ability of a  
transistor: average junction temperature and second break-  
1 ms  
DC  
down. Safe operating area curves indicate I – V  
limits of  
C
CE  
2
1
the transistor that must be observed for reliable operation;  
i.e., the transistor must not be subjected to greater dissipa-  
tion than the curves indicate.  
0.5  
LIMIT ONLY  
FOR TURN ON  
The data of Figure 12 is based on T = 25 C; T  
is  
J(pk)  
C
0.2  
0.1  
T
= 25°C  
C
variable depending on power level. Second breakdown pulse  
limits are valid for duty cycles to 10% but must be derated  
t
0.7  
µs  
r
0.05  
when T  
25 C. Second breakdown limitations do not der-  
C
ate the same as thermal limitations. Allowable current at the  
voltages shown on Figure 12 may be found at any case tem-  
perature by using the appropriate curve on Figure 14.  
0.02  
0.01  
1
2
5
10  
20  
50  
100 200  
500 1000  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
T
may be calculated from the data in Figure 11. At high  
CE  
J(pk)  
case temperatures, thermal limitations will reduce the power  
that can be handled to values less than the limitations im-  
posed by second breakdown.  
Figure 12. Forward Bias Safe Operating Area  
REVERSE BIAS  
50  
40  
30  
For inductive loads, high voltage and high current must be  
sustained simultaneously during turn–off, in most cases, with  
the base to emitter junction reverse biased. Under these  
conditions the collector voltage must be held to a safe level  
at or below a specific value of collector current. This can be  
accomplished by several means such as active clamping,  
RC snubbing, load line shaping, etc. The safe level for these  
devices is specified as Reverse Bias Safe Operating Area  
and represents the voltage–current conditions during re-  
verse biased turn–off. This rating is verified under clamped  
conditions so that the device is never subjected to an ava-  
lanche mode. Figure 13 gives RBSOA characteristics.  
BUX48A  
BUX48  
20  
10  
V
= 5 V  
BE(off)  
T
I
= 100°C  
/I 5  
C
C B1  
0
0
200  
400  
600  
800  
1000  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
FIgure 13. Reverse Bias Safe Operating Area  
100  
80  
SECOND BREAKDOWN  
DERATING  
60  
40  
20  
0
THERMAL  
DERATING  
0
40  
80  
120  
160  
200  
T
, CASE TEMPERATURE (°C)  
C
Figure 14. Power Derating  
3–406  
Motorola Bipolar Power Transistor Device Data  
1
D = 0.5  
0.5  
0.2  
0.1  
0.2  
P
(pk)  
R
(t) = r(t) R  
JC  
θ
θ
JC  
0.1  
0.05  
0.02  
θ
= 1°C/W MAX  
JC  
D CURVES APPLY FOR POWER  
PULSE TRAIN SHOWN  
0.05  
t
SINGLE  
PULSE  
1
0.01  
READ TIME AT t  
1
t
2
SINGLE PULSE  
T
– T = P  
R (t)  
θJC  
J(pk)  
C
(pk)  
DUTY CYCLE, D = t /t  
1 2  
0.02  
0.01  
0.02  
0.05  
0.1  
0.2  
0.5  
1
2
5
10  
20  
50  
100  
200  
500  
1000  
2000  
t, TIME (ms)  
Figure 15. Thermal Response  
OVERLOAD CHARACTERISTICS  
100  
80  
60  
40  
20  
OLSOA  
T
= 25°C  
C
OLSOA applies when maximum collector current is limited  
and known. A good example is a circuit where an inductor is  
inserted between the transistor and the bus, which limits the  
rate of rise of collector current to a known value. If the tran-  
sistor is then turned off within a specified amount of time, the  
magnitude of collector current is also known.  
Maximum allowable collector–emitter voltage versus col-  
lector current is plotted for several pulse widths. (Pulse width  
is defined as the time lag between the fault condition and the  
removal of base drive.) Storage time of the transistor has  
been factored into the curve. Therefore, with bus voltage and  
maximum collector current known, Figure 16 defines the  
maximum time which can be allowed for fault detection and  
shutdown of base drive.  
BUX48A  
t
= 10 µs  
BUX48  
p
0
100  
200  
300  
400  
450  
500  
V
, COLLECTOR–EMITTER VOLTAGE (VOLTS)  
CE  
OLSOA is measured in a common–base circuit (Figure 18)  
which allows precise definition of collector–emitter voltage  
and collector current. This is the same circuit that is used to  
measure forward–bias safe operating area.  
Figure 16. Rated Overload Safe Operating Area  
(OLSOA)  
5
4
3
2
1
R
= 100 Ω  
BE  
500  
500 V  
µ
F
R
= 10 Ω  
BE  
R
= 2.2  
V
BE  
CC  
Notes:  
V
= V  
CC  
+ V  
BE  
CE  
R
= 0  
8
BE  
Adjust pulsed current source  
for desired I , t  
C
p
V
EE  
0
2
4
6
10  
dV/dt (KV/µs)  
Figure 18. Overload SOA Test Circuit  
Figure 17. I = f(dV/dt)  
C
3–407  
Motorola Bipolar Power Transistor Device Data  
PACKAGE DIMENSIONS  
A
N
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
C
Y14.5M, 1982.  
2. CONTROLLING DIMENSION: INCH.  
3. ALL RULES AND NOTES ASSOCIATED WITH  
REFERENCED TO–204AA OUTLINE SHALL APPLY.  
SEATING  
PLANE  
–T–  
E
K
D 2 PL  
0.13 (0.005)  
INCHES  
MIN MAX  
1.550 REF  
MILLIMETERS  
M
M
M
T
Q
Y
DIM  
A
B
C
D
E
MIN  
MAX  
39.37 REF  
U
–––  
0.250  
0.038  
0.055  
1.050  
–––  
6.35  
0.97  
1.40  
26.67  
8.51  
1.09  
1.77  
–Y–  
L
V
H
0.335  
0.043  
0.070  
2
1
G
H
K
L
0.430 BSC  
0.215 BSC  
0.440 0.480  
0.665 BSC  
10.92 BSC  
5.46 BSC  
B
G
11.18  
12.19  
16.89 BSC  
N
Q
U
V
–––  
0.151  
1.187 BSC  
0.131  
0.830  
–––  
3.84  
30.15 BSC  
3.33  
21.08  
4.19  
–Q–  
0.165  
0.188  
M
M
0.13 (0.005)  
T Y  
4.77  
STYLE 1:  
PIN 1. BASE  
2. EMITTER  
CASE: COLLECTOR  
CASE 1–07  
TO–204AA (TO–3)  
ISSUE Z  
Motorolareserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representationorguaranteeregarding  
the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit,  
andspecifically disclaims any and all liability, includingwithoutlimitationconsequentialorincidentaldamages. “Typical” parameters can and do vary in different  
applications. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. Motorola does  
not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in  
systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of  
the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such  
unintendedor unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless  
against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part.  
Motorola and  
are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.  
How to reach us:  
USA / EUROPE: Motorola Literature Distribution;  
JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki,  
P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447  
6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315  
MFAX: RMFAX0@email.sps.mot.com – TOUCHTONE (602) 244–6609  
INTERNET: http://Design–NET.com  
HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park,  
51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298  
BUX48/D  

相关型号:

BUX48/D

SWITCHMODE II Series NPN Silicon Power Transistors
ETC

BUX48A

HIGH POWER NPN SILICON TRANSISTORS
STMICROELECTR

BUX48A

SWITCHMODE II Series NPN Silicon Power Transistors
MOTOROLA

BUX48A

SITCHMODE II Series NPN Silicon Power Transistors
ONSEMI

BUX48A

POWER TRANSISTORS(15A,400-450V,175W)
MOSPEC

BUX48A

Silicon NPN Power Transistors
SAVANTIC

BUX48A

isc Silicon NPN Power Transistor
ISC

BUX48A

Bipolar NPN Device in a Hermetically sealed TO3
SEME-LAB

BUX48A

HIGH VOLTAGE FAST-SWITCHING POWER TRANSISTOR
COMSET

BUX48B

isc Silicon NPN Power Transistor
ISC

BUX48B

Silicon NPN Power Transistors
SAVANTIC

BUX48C

HIGH VOLTAGE FAST-SWITCHING NPN POWER TRANSISTORS
STMICROELECTR