CAT28C256HT13I-25TE13 [ONSEMI]

32KX8 EEPROM 5V, 250ns, PDSO28, 8 X 13.40 MM, TSOP-28;
CAT28C256HT13I-25TE13
型号: CAT28C256HT13I-25TE13
厂家: ONSEMI    ONSEMI
描述:

32KX8 EEPROM 5V, 250ns, PDSO28, 8 X 13.40 MM, TSOP-28

可编程只读存储器 电动程控只读存储器 电可擦编程只读存储器 光电二极管 内存集成电路
文件: 总14页 (文件大小:138K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
CAT28C256  
256 kb Parallel EEPROM  
Description  
The CAT28C256 is a fast, low power, 5 Vonly CMOS Parallel  
EEPROM organized as 32K x 8bits. It requires a simple interface for  
insystem programming. Onchip address and data latches,  
selftimed write cycle with autoclear and V power up/down write  
http://onsemi.com  
CC  
protection eliminate additional timing and protection hardware. DATA  
Polling and Toggle status bits signal the start and end of the selftimed  
write cycle. Additionally, the CAT28C256 features hardware and  
software write protection.  
The CAT28C256 is manufactured using ON Semiconductor’s  
advanced CMOS floating gate technology. It is designed to endure  
100,000 program/erase cycles and has a data retention of 100 years.  
The device is available in JEDEC approved 28pin DIP, 28pin TSOP  
or 32pin PLCC packages.  
TSOP28  
T13, H13 SUFFIX  
CASE 318AE  
Features  
Fast Read Access Times: 120/150 ns  
Low Power CMOS Dissipation:  
– Active: 25 mA Max.  
– Standby: 150 mA Max.  
PDIP28  
P, L SUFFIX  
CASE 646AE  
PLCC32  
N, G SUFFIX  
CASE 776AK  
Simple Write Operation:  
– Onchip Address and Data Latches  
– Selftimed Write Cycle with Autoclear  
Fast Write Cycle Time:  
PIN FUNCTION  
5 ms Max.  
Pin Name  
Function  
Address Inputs  
CMOS and TTL Compatible I/O  
Hardware and Software Write Protection  
Automatic Page Write Operation:  
1 to 64 Bytes in 5 ms  
Page Load Timer  
A A  
0
14  
I/O I/O  
Data Inputs/Outputs  
Chip Enable  
Output Enable  
Write Enable  
5 V Supply  
0
7
CE  
OE  
End of Write Detection:  
WE  
Toggle Bit  
V
CC  
DATA Polling  
V
Ground  
SS  
100,000 Program/Erase Cycles  
100 Year Data Retention  
Commercial, Industrial and Automotive Temperature Ranges  
NC  
No Connect  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 14 of this data sheet.  
©
Semiconductor Components Industries, LLC, 2009  
1
Publication Order Number:  
December, 2009 Rev. 6  
CAT28C256/D  
CAT28C256  
PIN CONFIGURATION  
DIP Package (P, L)  
PLCC Package (N, G)  
TSOP Package (8 mm X 13.4 mm) (T13, H13)  
OE  
1
28  
27  
26  
25  
24  
23  
22  
21  
20  
19  
18  
17  
16  
15  
A
10  
CE  
1
2
28  
27  
26  
25  
24  
23  
22  
21  
20  
V
A
A
CC  
14  
12  
A
11  
2
A
WE  
9
3
I/O  
I/O  
I/O  
I/O  
I/O  
4 3 2 1 32 31 30  
29  
7
6
5
4
3
3
4
5
6
7
8
A
A
13  
4
A
8
5
6
7
8
7
6
5
4
3
2
1
0
0
1
2
A
A
A
A
A
A
A
A
A
A
8
9
11  
NC  
6
5
4
3
2
1
0
A
5
13  
A
8
28  
27  
26  
A
A
A
A
A
A
A
6
WE  
A
11  
9
V
7
CC  
14  
12  
A
8
A
GND  
9
25  
24  
23  
22  
21  
OE  
9
A
I/O  
OE  
2
A
10  
10  
11  
12  
13  
10  
11  
12  
13  
14  
I/O  
A
A
10  
1
0
7
6
5
4
3
I/O  
A
A
CE  
9
CE  
I/O  
I/O  
I/O  
I/O  
I/O  
A
A
A
0
I/O  
NC  
10 19  
11  
12 17  
13  
14 15  
7
6
7
A
A
1
2
I/O  
I/O  
0
18  
I/O  
I/O  
I/O  
V
6
5
4
3
14151617181920  
16  
SS  
(Top Views)  
32,768 x 8  
EEPROM  
ARRAY  
ROW  
DECODER  
ADDR. BUFFER  
& LATCHES  
A A  
6
14  
INADVERTENT  
WRITE  
PROTECTION  
HIGH VOLTAGE  
GENERATOR  
V
CC  
64 BYTE PAGE  
REGISTER  
CE  
OE  
WE  
CONTROL  
LOGIC  
I/O BUFFERS  
DATA POLLING  
AND  
TIMER  
TOGGLE BIT  
I/O I/O  
0
7
ADDR. BUFFER  
& LATCHES  
A A  
0
5
COLUMN  
DECODER  
Figure 1. Block Diagram  
http://onsemi.com  
2
CAT28C256  
Table 1. ABSOLUTE MAXIMUM RATINGS  
Parameters  
Ratings  
Units  
°C  
°C  
V
Temperature Under Bias  
–55 to +125  
–65 to +150  
Storage Temperature  
Voltage on Any Pin with Respect to Ground (Note 1)  
–2.0 V to +V + 2.0 V  
CC  
V
with Respect to Ground  
2.0 to +7.0  
1.0  
V
CC  
Package Power Dissipation Capability (T = 25°C)  
W
A
Lead Soldering Temperature (10 secs)  
Output Short Circuit Current (Note 2)  
300  
°C  
mA  
100  
Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the  
Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect  
device reliability.  
1. The minimum DC input voltage is 0.5 V. During transitions, inputs may undershoot to 2.0 V for periods of less than 20 ns. Maximum DC  
voltage on output pins is V + 0.5 V, which may overshoot to V + 2.0 V for periods of less than 20 ns.  
CC  
CC  
2. Output shorted for no more than one second. No more than one output shorted at a time.  
Table 2. RELIABILITY CHARACTERISTICS (Note 3)  
Symbol  
Parameter  
Endurance  
Test Method  
Min  
100,000  
100  
Max  
Units  
Cycles/Byte  
Years  
N
END  
MILSTD883, Test Method 1033  
MILSTD883, Test Method 1008  
MILSTD883, Test Method 3015  
JEDEC Standard 17  
T
Data Retention  
ESD Susceptibility  
LatchUp  
DR  
V
ZAP  
2,000  
100  
V
I
(Note 4)  
mA  
LTH  
3. These parameters are tested initially and after a design or process change that affects the parameters.  
4. Latchup protection is provided for stresses up to 100 mA on address and data pins from 1 V to V + 1 V.  
CC  
Table 3. D.C. OPERATING CHARACTERISTICS (V = 5 V 10%, unless otherwise specified.)  
CC  
Limits  
Min  
Typ  
Max  
Symbol  
Parameter  
Test Conditions  
Units  
I
V
V
Current (Operating, TTL)  
CE = OE = V ,  
30  
mA  
CC  
CC  
IL  
f = 8 MHz, All I/O’s Open  
I
(Note 5)  
Current (Operating, CMOS)  
CE = OE = V  
,
25  
mA  
CCC  
CC  
ILC  
f = 8 MHz, All I/O’s Open  
I
V
V
Current (Standby, TTL)  
CE = V , All I/O’s Open  
1
mA  
mA  
mA  
mA  
SB  
CC  
IH  
I
(Note 6)  
Current (Standby, CMOS)  
CE = V , All I/O’s Open  
150  
10  
SBC  
CC  
IHC  
I
Input Leakage Current  
Output Leakage Current  
V
V
= GND to V  
CC  
10  
10  
LI  
IN  
I
LO  
= GND to V ,  
CC  
10  
OUT  
CE = V  
IH  
V
(Note 6)  
(Note 5)  
High Level Input Voltage  
Low Level Input Voltage  
High Level Output Voltage  
Low Level Output Voltage  
Write Inhibit Voltage  
2
V
CC  
+ 0.3  
V
V
V
V
V
IH  
V
0.3  
2.4  
0.8  
0.4  
IL  
V
OH  
I
I
= 400 mA  
OH  
V
OL  
= 2.1 mA  
OL  
V
WI  
3.5  
5. V  
6. V  
= 0.3 V to +0.3 V.  
ILC  
IHC  
= V 0.3 V to V + 0.3 V.  
CC  
CC  
http://onsemi.com  
3
 
CAT28C256  
Table 4. MODE SELECTION  
Mode  
Read  
CE  
L
WE  
OE  
L
I/O  
Power  
ACTIVE  
ACTIVE  
H
D
OUT  
Byte Write (WE Controlled)  
L
H
D
IN  
Byte Write (CE Controlled)  
L
H
D
IN  
ACTIVE  
Standby and Write Inhibit  
Read and Write Inhibit  
H
X
X
H
X
H
HighZ  
HighZ  
STANDBY  
ACTIVE  
Table 5. CAPACITANCE (T = 25°C, f = 1.0 MHz, V = 5 V)  
A
CC  
Symbol  
(Note 7)  
Test  
Max  
10  
6
Conditions  
Units  
pF  
C
Input/Output Capacitance  
Input Capacitance  
V
I/O  
= 0 V  
= 0 V  
I/O  
C
(Note 7)  
V
IN  
pF  
IN  
7. This parameter is tested initially and after a design or process change that affects the parameter.  
Table 6. A.C. CHARACTERISTICS, READ CYCLE (V = 5 V 10%, unless otherwise specified.)  
CC  
28C25612  
28C25615  
Min  
Max  
Min  
Max  
Symbol  
Parameter  
Units  
t
Read Cycle Time  
CE Access Time  
Address Access Time  
OE Access Time  
120  
150  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
RC  
t
120  
120  
50  
150  
150  
70  
CE  
t
AA  
OE  
t
t
(Note 8)  
(Note 8)  
CE Low to Active Output  
0
0
0
0
LZ  
t
OE Low to Active Output  
OLZ  
t
(Notes 8, 9)  
(Notes 8, 9)  
CE High to HighZ Output  
OE High to HighZ Output  
Output Hold from Address Change  
50  
50  
50  
50  
HZ  
t
OHZ  
t
(Note 8)  
0
0
OH  
8. This parameter is tested initially and after a design or process change that affects the parameter.  
9. Output floating (HighZ) is defined as the state when the external data line is no longer driven by the output buffer.  
http://onsemi.com  
4
 
CAT28C256  
Table 7. A.C. CHARACTERISTICS, WRITE CYCLE (V = 5 V 10%, unless otherwise specified.)  
CC  
28C25612  
28C25615  
Min Max  
Min  
Max  
Symbol  
Parameter  
Units  
ms  
ns  
t
Write Cycle Time  
Address Setup Time  
Address Hold Time  
CE Setup Time  
CE Hold Time  
5
5
WC  
t
0
50  
0
0
50  
0
AS  
AH  
CS  
CH  
t
ns  
t
ns  
t
0
0
ns  
t
(Note 10)  
CE Pulse Time  
OE Setup Time  
OE Hold Time  
100  
0
100  
0
ns  
CW  
t
ns  
OES  
OEH  
t
0
0
ns  
t
(Note 10)  
WE Pulse Width  
Data Setup Time  
Data Hold Time  
100  
50  
10  
5
100  
50  
10  
5
ns  
WP  
t
ns  
DS  
DH  
t
ns  
t
(Note 11)  
Write Inhibit Period After Powerup  
10  
10  
ms  
ms  
INIT  
t
(Notes 11, 12)  
Byte Load Cycle Time  
0.1  
100  
0.1  
100  
BLC  
10.A write pulse of less than 20 ns duration will not initiate a write cycle.  
11. This parameter is tested initially and after a design or process change that affects the parameter.  
12.A timer of duration t max. begins with every LOW to HIGH transition of WE. If allowed to time out, a page or byte write will begin; however  
BLC  
a transition from HIGH to LOW within t  
max. stops the timer.  
BLC  
V
CC  
0.3 V  
2.0 V  
0.8 V  
INPUT PULSE LEVELS  
REFERENCE POINTS  
0.0 V  
Figure 2. A.C. Testing Input/Output Waveform (Note 13)  
13.Input rise and fall times (10% and 90%) < 10 ns.  
1.3 V  
1N914  
3.3 K  
DEVICE  
UNDER  
TEST  
OUT  
C = 100 pF  
L
C INCLUDES JIG CAPACITANCE  
L
Figure 3. A.C. Testing Load Circuit (example)  
http://onsemi.com  
5
 
CAT28C256  
Byte Write  
DEVICE OPERATION  
A write cycle is executed when both CE and WE are low,  
and OE is high. Write cycles can be initiated using either WE  
or CE, with the address input being latched on the falling  
edge of WE or CE, whichever occurs last. Data, conversely,  
is latched on the rising edge of WE or CE, whichever occurs  
first. Once initiated, a byte write cycle automatically erases  
the addressed byte and the new data is written within 5 ms.  
Read  
Data stored in the CAT28C256 is transferred to the data  
bus when WE is held high, and both OE and CE are held low.  
The data bus is set to a high impedance state when either CE  
or OE goes high. This 2line control architecture can be used  
to eliminate bus contention in a system environment.  
t
RC  
ADDRESS  
CE  
t
CE  
t
OE  
OE  
t
OLZ  
V
IH  
WE  
t
LZ  
t
OHZ  
t
AA  
t
HZ  
t
OH  
HIGHZ  
DATA OUT  
DATA VALID  
DATA VALID  
Figure 4. Read Cycle  
t
WC  
ADDRESS  
t
AS  
t
AH  
t
t
CH  
CS  
CE  
OE  
WE  
t
t
t
OEH  
OES  
WP  
t
BLC  
HIGHZ  
DATA OUT  
DATA IN  
DATA VALID  
t
t
DH  
DS  
Figure 5. Byte Write Cycle [WE Controlled]  
http://onsemi.com  
6
CAT28C256  
Page Write  
in any order) during the first and subsequent write cycles.  
Each successive byte load cycle must begin within t  
of the rising edge of the preceding WE pulse. There is no  
page write window limitation as long as WE is pulsed low  
The page write mode of the CAT28C256 (essentially an  
extended BYTE WRITE mode) allows from 1 to 64 bytes of  
data to be programmed within a single EEPROM write  
cycle. This effectively reduces the bytewrite time by a  
factor of 64.  
BLCMAX  
within t  
.
BLC MAX  
Upon completion of the page write sequence, WE must  
stay high a minimum of t for the internal automatic  
Following an initial WRITE operation (WE pulsed low,  
BLC MAX  
for t , and then high) the page write mode can begin by  
program cycle to commence. This programming cycle  
consists of an erase cycle, which erases any data that existed  
in each addressed cell, and a write cycle, which writes new  
data back into the cell. A page write will only write data to  
the locations that were addressed and will not rewrite the  
entire page.  
WP  
issuing sequential WE pulses, which load the address and  
data bytes into a 64 byte temporary buffer. The page address  
where data is to be written, specified by bits A to A , is  
latched on the last falling edge of WE. Each byte within the  
page is defined by address bits A to A (which can be loaded  
6
14  
0
5
t
WC  
ADDRESS  
t
AS  
t
t
BLC  
AH  
t
CW  
CE  
OE  
t
OEH  
t
OES  
t
CH  
t
CS  
WE  
HIGHZ  
DATA OUT  
DATA IN  
DATA VALID  
t
t
DH  
DS  
Figure 6. Byte Write Cycle [CE Controlled]  
OE  
CE  
t
t
BLC  
WP  
WE  
ADDRESS  
I/O  
t
WC  
LAST BYTE  
BYTE n+2  
BYTE n+1  
BYTE 0 BYTE 1  
BYTE 2  
BYTE n  
Figure 7. Page Mode Write Cycle  
http://onsemi.com  
7
CAT28C256  
DATA Polling  
Toggle Bit  
DATA polling is provided to indicate the completion of  
write cycle. Once a byte write or page write cycle is initiated,  
attempting to read the last byte written will output the  
In addition to the DATA Polling feature of the  
CAT28C256, the device offers an additional method for  
determining the completion of a write cycle. While a write  
cycle is in progress, reading data from the device will result  
complement of that data on I/O (I/O –I/O are  
7
0
6
indeterminate) until the programming cycle is complete.  
Upon completion of the selftimed write cycle, all I/O’s will  
output true data during a read cycle.  
in I/O toggling between one and zero. However, once the  
6
write is complete, I/O stops toggling and valid data can be  
6
read from the device.  
ADDRESS  
CE  
WE  
t
OEH  
t
OES  
t
OE  
OE  
t
WC  
I/O  
D
OUT  
= X  
D
OUT  
= X  
D
IN  
= X  
7
Figure 8. DATA Polling  
WE  
CE  
OE  
t
OEH  
t
OES  
t
OE  
I/O  
6
(Note 14)  
(Note 14)  
t
WC  
Figure 9. Toggle Bit  
14.Beginning and ending state of I/O is indeterminate.  
6
http://onsemi.com  
8
 
CAT28C256  
Hardware Data Protection  
The following is a list of hardware data protection features  
that are incorporated into the CAT28C256.  
4. Noise pulses of less than 20 ns on the WE or CE  
inputs will not result in a write cycle.  
Software Data Protection  
1. V sense provides for write protection when V  
CC  
CC  
The CAT28C256 features a software controlled data  
protection scheme which, once enabled, requires a data  
algorithm to be issued to the device before a write can be  
performed. The device is shipped from ON Semiconductor  
with the software protection NOT ENABLED (the  
CAT28C256 is in the standard operating mode).  
falls below 3.5 V min.  
2. A power on delay mechanism, t  
(see AC  
INIT  
characteristics), provides a 5 to 10 ms delay before  
a write sequence, after V has reached 3.5 V  
min.  
CC  
3. Write inhibit is activated by holding any one of  
OE low, CE high or WE high.  
WRITE DATA:  
ADDRESS:  
AA  
WRITE DATA:  
ADDRESS:  
AA  
5555  
5555  
WRITE DATA:  
ADDRESS:  
55  
WRITE DATA:  
ADDRESS:  
55  
2AAA  
2AAA  
WRITE DATA:  
ADDRESS:  
80  
WRITE DATA:  
ADDRESS:  
A0  
5555  
5555  
WRITE DATA:  
ADDRESS:  
AA  
SOFTWARE DATA  
PROTECTION ACTIVATED (Note 15)  
5555  
WRITE DATA:  
ADDRESS:  
55  
WRITE DATA:  
XX  
2AAA  
TO ANY ADDRESS  
20  
WRITE DATA:  
ADDRESS:  
WRITE LAST BYTE  
TO  
LAST ADDRESS  
5555  
Figure 10. Write Sequence for Activating  
Software Data Protection  
Figure 11. Write Sequence for Deactivating  
Software Data Protection  
15.Write protection is activated at this point whether or not any more writes are completed. Writing to addresses must occur within t  
after SDP activation.  
Max.,  
BLC  
http://onsemi.com  
9
 
CAT28C256  
To activate the software data protection, the device must  
To allow the user the ability to program the device with an  
EEPROM programmer (or for testing purposes) there is a  
software command sequence for deactivating the data  
protection. The six step algorithm (Figure 11) will reset the  
internal protection circuitry, and the device will return to  
standard operating mode (Figure 13 provides reset timing).  
After the sixth byte of this reset sequence has been issued,  
standard byte or page writing can commence.  
be sent three write commands to specific addresses with  
specific data (Figure 10). This sequence of commands  
(along with subsequent writes) must adhere to the page write  
timing specifications (Figure 12). Once this is done, all  
subsequent byte or page writes to the device must be  
preceded by this same set of write commands. The data  
protection mechanism is activated until a deactivate  
sequence is issued regardless of power on/off transitions.  
This gives the user added inadvertent write protection on  
powerup in addition to the hardware protection provided.  
t
DATA  
ADDRESS  
AA  
5555  
55  
2AAA  
A0  
5555  
WC  
BYTE OR  
PAGE  
CE  
WRITES  
ENABLED  
t
t
BLC  
WP  
WE  
Figure 12. Software Data Protection Timing  
t
DATA  
ADDRESS  
AA  
5555  
55  
2AAA  
80  
5555  
AA  
5555  
55  
2AAA  
20  
5555  
SDP  
RESET  
WC  
CE  
DEVICE  
UNPROTECTED  
WE  
Figure 13. Resetting Software Data Protection Timing  
http://onsemi.com  
10  
 
CAT28C256  
PACKAGE DIMENSIONS  
PLCC 32  
CASE 776AK01  
ISSUE O  
PIN#1 IDENTIFICATION  
E1  
E
E2  
D1  
D
A2  
A3  
TOP VIEW  
END VIEW  
SYMBOL  
MIN  
NOM  
MAX  
b1  
A2  
A3  
b
0.38  
2.54  
2.80  
0.54  
0.33  
b1  
D
0.66  
0.82  
12.32  
11.36  
9.56  
12.57  
11.50  
11.32  
15.11  
14.04  
13.86  
b
e
D1  
D2  
E
D2  
SIDE VIEW  
14.86  
13.90  
12.10  
E1  
E2  
Notes:  
(1) All dimensions are in millimeters.  
(2) Complies with JEDEC MS-016.  
e
1.27 BSC  
http://onsemi.com  
11  
CAT28C256  
PACKAGE DIMENSIONS  
TSOP 28, 8x13.4  
CASE 318AE01  
ISSUE O  
D1  
A
PIN 1  
b
E1  
e
A1  
A2  
D
TOP VIEW  
END VIEW  
MIN  
q1  
L2  
c
SYMBOL  
NOM  
MAX  
A
A1  
A2  
b
1.00  
0.05  
0.90  
0.17  
0.10  
13.20  
11.70  
7.90  
1.10  
1.20  
0.15  
1.05  
0.27  
0.20  
13.60  
11.90  
8.10  
q
L
L1  
1.00  
0.22  
SIDE VIEW  
c
0.15  
D
13.40  
11.80  
8.00  
D1  
E
e
0.55 BSC  
0.50  
L
0.30  
0.70  
L1  
L2  
θ
0.675  
0.25 BSC  
3°  
Notes:  
0°  
5°  
(1) All dimensions are in millimeters. Angles in degrees.  
(2) Complies with JEDEC MS-183.  
θ1  
ꢀ10°  
12°  
16°  
http://onsemi.com  
12  
CAT28C256  
PACKAGE DIMENSIONS  
PDIP28, 600 mils  
CASE 646AE01  
ISSUE A  
SYMBOL  
MIN  
NOM  
MAX  
A
A1  
A2  
b
6.35  
0.39  
3.18  
0.36  
4.95  
0.55  
1.77  
0.38  
39.70  
E1  
E
b1  
c
0.77  
0.21  
D
35.10  
E
E1  
e
15.24  
12.32  
15.87  
14.73  
D
2.54 BSC  
TOP VIEW  
15.24  
2.93  
17.78  
5.08  
eB  
L
A2  
A1  
A
c
L
e
b1  
b
eB  
SIDE VIEW  
END VIEW  
Notes:  
(1) All dimensions are in millimeters.  
(2) Complies with JEDEC MS-011.  
http://onsemi.com  
13  
CAT28C256  
Example of Ordering Information (Note 16)  
Prefix  
Device #  
Suffix  
CAT  
28C256  
N
I
15  
T
Temperature Range  
Tape & Reel (Note 20)  
Company ID  
(Optional)  
Product Number  
T: Tape & Reel  
28C256  
Blank = Commercial (0°C to +70°C)  
I = Industrial (40°C to +85°C)  
A = Automotive (40°C to +105°C) (Note 18)  
Package  
Speed  
P: PDIP (Note 17)  
N: PLCC (Note 17)  
T13: TSOP (8 mm x 13.4 mm) (Note 17)  
12: 120 ns  
15: 150 ns  
L: PDIP (Lead Free, Halogen Free)  
G: PLCC (Lead Free, Halogen Free)  
H13: TSOP (8 mm x 13.4 mm) (Lead Free, Halogen Free) (Note 19)  
16.The device used in the above example is a CAT28C256NI15T (PLCC, Industrial Temperature, 150 ns Access Time, Tape & Reel).  
17.Solderplate (tinlead) packages, contact Factory for availability.  
18.40°C to +125°C is available upon request.  
19.For the TSOP package (H13), the orderable part number does not contain a hyphen, example: CAT28C256H13I15T.  
20.For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81357733850  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
P.O. Box 5163, Denver, Colorado 80217 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
CAT28C256/D  
 

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY