CS51024EN16

更新时间:2024-09-18 14:21:29
品牌:ONSEMI
描述:1A SWITCHING CONTROLLER, 1000kHz SWITCHING FREQ-MAX, PDIP16, 0.300 INCH, PLASTIC, DIP-16

CS51024EN16 概述

1A SWITCHING CONTROLLER, 1000kHz SWITCHING FREQ-MAX, PDIP16, 0.300 INCH, PLASTIC, DIP-16 开关式稳压器或控制器

CS51024EN16 规格参数

是否Rohs认证: 不符合生命周期:Obsolete
零件包装代码:DIP包装说明:DIP, DIP16,.3
针数:16Reach Compliance Code:not_compliant
ECCN代码:EAR99HTS代码:8542.39.00.01
风险等级:5.82模拟集成电路 - 其他类型:SWITCHING CONTROLLER
控制模式:CURRENT-MODE控制技术:PULSE WIDTH MODULATION
最大输入电压:20 V最小输入电压:8.2 V
标称输入电压:14 VJESD-30 代码:R-PDIP-T16
JESD-609代码:e0长度:19.18 mm
功能数量:1端子数量:16
最高工作温度:85 °C最低工作温度:-40 °C
最大输出电流:1 A封装主体材料:PLASTIC/EPOXY
封装代码:DIP封装等效代码:DIP16,.3
封装形状:RECTANGULAR封装形式:IN-LINE
峰值回流温度(摄氏度):NOT SPECIFIED认证状态:Not Qualified
座面最大高度:4.07 mm子类别:Switching Regulator or Controllers
表面贴装:NO切换器配置:SINGLE
最大切换频率:1000 kHz技术:BIPOLAR
温度等级:INDUSTRIAL端子面层:Tin/Lead (Sn/Pb)
端子形式:THROUGH-HOLE端子节距:2.54 mm
端子位置:DUAL处于峰值回流温度下的最长时间:NOT SPECIFIED
宽度:7.62 mmBase Number Matches:1

CS51024EN16 数据手册

通过下载CS51024EN16数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
CS51021/CS51023  
CS51022/CS51024  
Enhanced Current Mode  
PWM Controller  
Description  
Features  
The CS51021/ 22/ 23/ 24 Fixed  
Frequency PWM Current Mode  
Controller family provides all neces- ing, current slope compensation,  
sary features required for AC-DC or accurate duty cycle control and an  
threshold overcurrent protection,  
current sense leading edge blank-  
75µA Max. Startup Current  
Fixed Frequency Current  
Mode Control  
DC-DC primary side control.  
Several features are included elimi-  
nating the additional components  
externally available 5V reference.  
The CS51021 and CS51023 feature  
bidirectional synchronization capa-  
1MHz Switching Frequency  
Undervoltage Protection  
Monitor  
needed to implement them external- bility, while the CS51022 and  
Overvoltage Protection  
Monitor with  
ly. In addition to low start-up cur-  
rent (75µA) and high frequency  
operation capability, the CS51021/  
22/ 23/ 24 family includes overvolt-  
age and undervoltage monitoring,  
externally programmable dual  
CS51024 offer a sleep mode with  
100µA maximum IC current con-  
sumption. The CS51021/ 22/ 23/ 24  
family is available in a 16 lead nar-  
row body SO package.  
Programmable Hysteresis  
Programmable Dual  
Threshold Overcurrent  
Protection with Delayed  
Restart  
Programmable Soft Start  
Device  
Sleep/Synch  
VCC Start/Stop  
8.25V/ 7.7V  
8.25V/ 7.7V  
13V/ 7.7V  
Accurate Maximum Duty  
Cycle Limit  
CS51021  
CS51022  
CS51023  
CS51024  
Synch  
Sleep  
Synch  
Sleep  
Programmable Slope  
Compensation  
Leading Edge Current  
13V/ 7.7V  
Sense Blanking  
1A Sink/Source Gate Drive  
Bidirectional Synchronization  
(CS51021/23)  
Typical Application Diagram  
100  
V
IN  
(36V to 72V)  
50ns PWM Propagation  
PGND  
BAS21  
1µF  
51k  
Delay  
18V  
SYNC/SLEEP  
22µF  
100µA Max Sleep Current  
11V  
100:1  
10K  
0.1µF  
FZT688  
2:5  
MBRB2060CT  
200K,1%  
4:1  
(CS51022/24)  
10  
24.3K  
1%  
V
OUT  
(5V/5A)  
10  
VC  
VREF  
VCC  
UV  
0.01µF  
4700pF  
51K  
2.49K,1%  
BA521  
22K  
10K  
100µF  
100µF  
680pF  
COMP  
Package Options  
OV  
SGND  
100pF  
VFB  
ISET  
RTCT  
16 Lead SO Narrow & PDIP  
SLOPE  
GATE  
ISENSE  
IRF6345  
10  
SYNC/  
SLEEP  
CSS  
6.98k,  
1%  
1
6.98k,  
1%  
100  
100p  
330pF  
PGnd  
V
C
GATE  
SENSE  
LGnd U1  
10  
62  
0.01µF  
470pF  
I
PGnd  
SLEEP  
or SYNC  
SLOPE  
V
V
CC  
0.1µF  
5.1K  
REF  
TL431  
1K  
2K, 1%  
1000pF  
LGnd  
SS  
UV  
OV  
180  
2K,1%  
10K  
R C  
COMP  
T
T
MOC81025  
I
SET  
V
1K  
FB  
Consult factory for other package options.  
36-72V to 5V, 5A DC-DC Convertor  
ON Semiconductor  
2000 South County Trail, East Greenwich, RI 02818  
Tel: (401)885–3600 Fax: (401)885–5786  
N. American Technical Support: 800-282-9855  
Web Site: www.onsemi.com  
September, 2000 - Rev. 13  
1
Absolute Maximum Ratings  
Power Supply Voltage, VCC ............................................................................................................................................-0.3V, 20V  
Driver Supply Voltage, VC ..............................................................................................................................................-0.3V, 20V  
SYNC, SLEEP, RTCT, SOFT START, VFB, SLOPE, ISENSE, UV, OV, ISET (Logic Pins).......................................-0.25V to VREF  
Peak GATE Output Current.........................................................................................................................................................1A  
Steady State Output Current..................................................................................................................................................± 0.2A  
Operating Junction Temperature, TJ..................................................................................................................................... 150°C  
Storage Temperature Range, TS...................................................................................................................................-65 to 150°C  
ESD (Human Body Model).........................................................................................................................................................2kV  
Lead Temperature Soldering: Reflow (SMD styles only).............................................60 sec. max above 183°C, 230°C peak  
Electrical Characteristics: Unless otherwise stated, specifications apply for -40°C < TA < 85°C, -40°C < TJ < 150°C,  
3V < VC < 20V, 8.2V < VCC < 20V, RT = 12k, CT = 390pF.  
PARAMETER  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
Under Voltage Lockout  
START Threshold (CS51021/ 22)  
START Threshold (CS51023/ 24)  
STOP Threshold  
7.95  
12.4  
7.4  
8.25  
13  
8.8  
13.4  
8.2  
1.00  
6
V
V
7.7  
0.75  
5
V
Hysteresis (CS51021/ 22)  
Hysteresis (CS51023/ 24)  
0.50  
4
V
V
I
I
I
I
CC @ Startup (CS51021/ 22)  
CC @ Startup (CS51023/ 24)  
CC Operating (CS51021/ 23)  
CC Operating (CS51022/ 24)  
VCC < UVSTART Threshold  
VCC < UVSTART Threshold  
40  
75  
µA  
45  
7
75  
9
µA  
mA  
mA  
mA  
6
8
IC Operating  
Includes 1nF Load  
7
12  
Voltage Reference  
Initial Accuracy  
Total Accuracy  
T
A = 25C, IREF = 2mA, VCC = 14V (Note1) 4.95  
5
5
6
6
5.05  
5.15  
20  
V
V
1mA<IREF<10mA  
8.2V < VCC < 18V, IREF = 2mA  
1mA < IREF < 10mA  
4.9  
Line Regulation  
Load Regulation  
mV  
mV  
15  
NOISE Voltage  
OP Life Shift  
(Note 1)  
50  
4
uV  
mV  
V
T=1000 Hours (Note 1)  
Force VREF  
20  
FAULT Voltage  
.92 × VREF .95 × VREF .97 × VREF  
OK Voltage  
Force VREF  
.94 × VREF .96 × VREF .98 × VREF  
V
OK Hysteresis  
Current Limit  
Force VREF  
Force VREF  
50  
105  
160  
mV  
mA  
-20  
Error Amplifier  
Initial Accuracy  
TA=25°C, IREF = 2mA, VCC = 14V,  
2.465  
2.440  
2.515  
2.565  
V
V
FB = COMP (Note 1)  
FB = COMP  
Reference Voltage  
V
2.515  
-0.2  
2.590  
-2  
V
VFB Leakage Current  
VFB = 0V  
µA  
Open Loop Gain  
1.4V < COMP < 4V (Note 1)  
(Note 1)  
60  
1.5  
2
90  
2.5  
6
dB  
MHz  
mA  
Unity Gain Bandwidth  
COMP Sink Current  
COMP = 1.5V, VFB = 2.7V  
COMP Source Current  
COMP = 1.5V, VFB = 2.3V  
2
-0.2  
-0.5  
mA  
Electrical Characteristics: -40°C < TA < 85°C, -40°C < TJ < 150°C, 3V < VC < 20V, 8.2V < VCC < 20V,  
RT = 12k, CT = 390pF, unless otherwise stated  
PARAMETER  
Error Amplifier continued  
COMP High Voltage  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
V
FB = 2.3V  
FB = 2.7V  
4.35  
0.4  
4.8  
0.8  
5
V
V
COMP Low Voltage  
V
1.2  
PS Ripple Rejection  
SS Clamp, VCOMP  
FREQ = 120Hz (Note 1)  
60  
85  
dB  
V
VSS=2.5V, VFB = 0V, ISET = 2V  
2.4  
2.5  
2.6  
I
LIM(SET) Clamp  
(Note 1)  
0.95  
230  
1
1.15  
V
Oscillator  
Accuracy  
RT = 12k, CT = 390pF  
255  
2
280  
3
kHz  
%
Voltage Stability  
Temperature Stability  
Delta Frequency 8.2V < VCC < 20V  
T
MIN < TA < TMAX (Note1)  
8
%
Min Charge & Discharge Time  
Duty Cycle Accuracy  
(Note1)  
0.333  
70  
µs  
%
RT = 12k, CT = 390pF  
77  
83  
Peak Voltage  
(Note 1)  
3
V
V
V
Valley Voltage  
(Note 1)  
1.5  
1.4  
Valley Clamp Voltage  
10k Resistor to ground on RTCT  
1.2  
1.6  
Discharge Current  
Discharge Current  
0.8  
1
1
1.2  
mA  
mA  
TA=25°C (Note 1)  
0.925  
1.075  
Synchronization (CS51021/23)  
Input Threshold  
1.0  
160  
3.5  
1.5  
260  
4.3  
2.7  
360  
4.8  
V
ns  
V
Output Pulsewidth  
Output High Voltage  
I
SYNC = 100µA  
Input Resistance  
Drive Delay  
(Note 1)  
35  
80  
70  
120  
2
140  
150  
3.5  
kΩ  
ns  
SYNC to GATE RESET  
1k Load  
Output Drive Current  
1.25  
mA  
SLEEP (CS51022/24)  
SLEEP Input Threshold  
SLEEP Input Current  
Active High  
1.0  
11  
1.5  
25  
2.7  
46  
V
V
SLEEP = 4V  
µA  
I
CC @ SLEEP  
VCC 15V  
50  
100  
µA  
GATE Driver  
HIGH Voltage  
Measure VC-GATE, VC = 10V, 150mA Load  
1.5  
2.2  
V
LOW Voltage  
Measure GATE-PGnd, 150mA SINK  
VC = 20V, 1nF  
1.2  
1.5  
16  
V
V
HIGH Voltage Clamp  
11  
13.5  
LOW Voltage Clamp  
Peak Current  
Measured at 10mA Output Current  
VC = 20V, 1nF (Note 1)  
0.6  
1
0.8  
V
A
UVL Leakage  
RISE Time  
VC = 20V, measured at 0V  
-1  
-50  
µA  
ns  
Load = 1nF, 1V < GATE < 9V,  
VC = 20V, TA = 25°C  
60  
100  
FALL Time  
Load = 1nF, 9V > GATE > 1V, VC = 20V  
15  
40  
ns  
3
Electrical Characteristics: Unless otherwise stated, specifications apply for -40°C < TA < 85°C, -40°C < TJ < 150°C,  
3V < VC < 20V, 8.2V < VCC < 20V, RT = 12k, CT = 390pF.  
PARAMETER  
SLOPE Compensation  
Charge Current  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNIT  
SLOPE = 2V  
-63  
-53  
-43  
µA  
COMP Gain  
Fraction of slope voltage added  
to ISENSE (Note 1)  
0.095  
0.100  
0.105  
V/ V  
Discharge Voltage  
SYNC = 0V  
0.1  
0.2  
V
Current Sense  
OFFSET Voltage  
(Note 1)  
0.09  
0.10  
55  
0.11  
160  
2.2  
V
ns  
Blanking Time  
Blanking Disable Voltage  
Second Current Threshold Gain  
Adjust VFB  
1.8  
2
V
1.21  
1.33  
5
1.45  
V/ V  
kΩ  
ns  
I
SENSE Input Resistance  
Minimum On Time  
Gain  
GATE High to Low  
(Note 1)  
30  
70  
110  
0.78  
0.80  
0.82  
V/ V  
OV & UV Voltage Monitors  
OV Monitor Threshold  
OV Hysteresis Current  
UV Monitor Threshold  
UV Monitor Hysteresis  
2.4  
-10  
1.38  
25  
2.5  
-12.5  
1.45  
75  
2.6  
-15  
V
µA  
V
1.52  
100  
mV  
SOFT START (SS)  
Charge Current  
SS = 2V  
SS = 2V  
-70  
250  
4.4  
-55  
1000  
4.7  
-40  
µA  
µA  
V
Discharge Current  
Charge Voltage, VSS  
Discharge Voltage, VSS  
5
0.25  
0.27  
0.30  
V
Note 1: Guaranteed by Design, not 100% tested in production.  
Package Pin Description  
PACKAGE PIN #  
PIN SYMBOL  
FUNCTION  
16L PDIP & SO Narrow  
1
2
GATE  
ISENSE  
External power switch driver with 1.0A peak capability.  
Current sense amplifier input.  
3
SYNC  
Bi-directional synchronization. Locks to the highest frequency.  
(CS51021/ 23)  
3
SLEEP  
Active high chip disable. In sleep mode, VREF and GATE are  
turned off.  
(CS51022/ 24)  
4
SLOPE  
Additional slope to the current sense signal. Internal current  
source charges the external capacitor.  
5
6
UV  
OV  
Undervoltage protection monitor.  
Overvoltage protection monitor.  
4
Package Pin Description: continued  
PIN SYMBOL  
PACKAGE PIN #  
FUNCTION  
16L PDIP & SO Narrow  
7
RTCT  
Timing resistor RT and capacitor CT determine oscillator frequen-  
cy and maximum duty cycle, DMAX  
.
8
ISET  
Voltage at this pin sets pulse-by-pulse overcurrent threshold, and  
second threshold (1.33 times higher) with Soft Start retrigger (hic-  
cup mode).  
9
VFB  
Feedback voltage input. Connected to the error amplifier invert-  
ing input.  
10  
11  
COMP  
SS  
Error amplifier output. Frequency compensation network is usu-  
ally connected between COMP and VFB pins.  
Charging external capacitor restricts error amplifier output volt-  
age during the start or fault conditions (hiccup).  
12  
13  
LGnd  
VREF  
Logic ground.  
5.0V reference voltage output.  
14  
VCC  
Logic supply voltage.  
15  
16  
PGnd  
VC  
Output power stage ground connection.  
Output power stage supply voltage.  
Block Diagram  
VCC  
VREF  
Vcc_OK  
START  
STOP  
V
= 5V  
REF  
-
+
LGnd  
VREF_OK  
VC  
+
SLEEP  
4.75V  
200ns  
4.3V  
SYNC  
RTCT  
OSC  
G
2
GATE  
Q
S
R
D
F
4
ZD  
1
1
SS  
Clamp  
G
13.5V  
1
D
2
ISET  
Clamp  
COMP  
VFB  
PGnd  
D
3
+
20k  
2.5V  
E/A  
-
VREF  
PWM  
Comp  
D
1
10k  
VREF  
55µA  
VFB  
Monitor  
SS  
53µA  
+
SS  
Monitor  
G
4
2V  
DISABLE  
+
×
×
0.1V  
SLOPE  
4.7V  
55ns  
Blank  
0.1  
+
I
SENSE  
VISense  
0.8  
Q
2
2nd  
Threshold  
G
3
1.33  
Discharge  
Latch  
FAULT  
×
ISET  
OV  
VREF  
12.5µA  
UV  
UV  
Monitor  
OV  
Monitor  
+
+
1.45V  
2.5V  
Figure 1: CS51021/22/23/24 Block Diagram  
5
Circuit Description  
Blanking is disabled when VFB is less than 2V so that the  
200ns  
4.3V  
minimum on-time of the controller does not have an addi-  
tional 55ns of delay time during fault conditions. For the  
remaining portion of the switching period, the current  
sense signal, combined with a fraction of the slope com-  
pensation voltage, is applied to the positive input of the  
PWM comparator where it is compared with the divided  
by three error amplifier output voltage. The pulse-by-  
pulse overcurrent protection threshold is set by the volt-  
age at the ISET pin. This voltage is passed through the ISET  
Clamp and appears at the non-inverting input of the PWM  
comparator, limiting its dynamic range according to the  
following formula:  
SYNC  
R C  
T
T
T
T
CH  
DIS  
0V  
V
SLOPE  
SLOPE  
IS  
0V  
0V  
Overcurrent Threshold= 0.8 × VI(SENSE) +0.1V + 0.1 VSLOPE  
where  
IS + 0.1 SLOPE  
IS  
V
COMP  
VI(SENSE) is voltage at the ISENSE pin  
and  
PWM COMP  
55ns Blanking  
0V  
0V  
V
SLOPE is voltage at the SLOPE pin.  
GATE  
During extreme overcurrent or short circuit conditions,  
the slope of the current sense signal will become much  
steeper than during normal operation. Due to loop propa-  
gation delay, the sensed signal will overshoot the pulse-  
by-pulse threshold eventually reaching the second over-  
current protection threshold which is 1.33 times higher  
than the first threshold and is described by the following  
equation:  
V
DS  
V
IN  
0V  
Figure 2: Typical Waveforms  
2nd Threshold = 1.33 × VI(SET)  
Exceeding the second threshold will reset the Soft Start  
capacitor CSS and reinitiate the Soft Start sequence, repeat-  
ing for as long as the fault condition persists.  
Theory of Operation  
Powering the IC  
The IC has two supply and two ground pins. VC and  
Soft Start  
PGnd pins provide high speed power drive for the exter-  
nal power switch. VCC and LGnd pins power the control  
portion of the IC. The internal logic monitors the supply  
voltage, VCC. During abnormal operating conditions, the  
output is held low. The CS51021/ 22/ 23/ 24 requires only  
75µA of startup current.  
During power up, when the output filter capacitor is dis-  
charged and the output voltage is low, the voltage across  
the Soft Start capacitor (VSS) controls the duty cycle. An  
internal current source of 55µA charges CSS. The maxi-  
mum error amplifier output voltage is clamped by the SS  
Clamp. When the Soft Start capacitor voltage exceeds the  
error amplifier output voltage, the feedback loop takes  
over the duty cycle control. The Soft Start time can be esti-  
mated with the following formula:  
Voltage Feedback  
The output voltage is monitored via the VFB pin and is  
compared with the internal 2.5V reference. The error  
amplifier output minus one diode drop is divided by 3  
and connected to the negative input of the PWM compara-  
tor. The positive input of the PWM comparator is connect-  
ed to the modified current sense signal. The oscillator  
turns the external power switch on at the beginning of  
each cycle. When current sense ramp voltage exceeds the  
reference side of PWM comparator, the output stage latch-  
es off. It is turned on again at the beginning of the next  
oscillator cycle.  
tSS = 9 × 104 × CSS  
The Soft Start voltage, VSS, charges and discharges  
between 0.25V and 4.7V.  
Slope Compensation  
DC-DC converters with current mode control require a  
current sense signal with slope compensation to avoid  
instability at duty cycles greater than 50%. Slope capacitor  
CS is charged by an internal 53µA current source and is  
Current Sense and Protection  
discharged during the oscillator discharge time. The slope  
compensation voltage is divided by 10 and is added to the  
current sense voltage, VI(SENSE). The signal applied to the  
The current is monitored at the ISENSE pin. The  
CS51021/ 22/ 23/ 24 has leading edge blanking circuitry  
that ignores the first 55ns of each switching period.  
6
Circuit Description: continued  
input of the PWM comparator is a combination of these  
R1  
R2  
R3  
VIN  
dVSLOPE  
dt  
two voltages. The slope compensation,  
lated using the following formula:  
, is calcu-  
VUV  
Figure 4: UV/OV Monitor Divider  
VOV  
dVSLOPE  
dt  
53µA  
CS  
= 0.1 ×  
To calculate the OV/ UV resistor divider:  
It should be noted that internal capacitance of the IC will  
cause an error when determining slope compensation  
capacitance CS. This error is typically small for large val-  
ues of CS, but increases as CS becomes small and compara-  
ble to the internal capacitance. The effect is apparent as a  
reduction in charging current due to the need to charge  
the internal capacitance in parallel with CS. Figure 3 shows  
a typical curve indicating this decrease in available charg-  
ing current.  
1. Solve for R3, based on OV hysteresis requirements.  
V
OV(HYST) × 2.5V  
R3 =  
VMAX × 12.5µA  
where VOV(HYST) is the desired amount of overvoltage hys-  
teresis, and VMAX is the input voltage at which the supply  
will shut down.  
2. Find the total impedance of the divider.  
60  
55  
50  
45  
40  
35  
30  
25  
20  
VMAX × R3  
RTOT = R1 + R2 + R3 =  
2.5  
3. Determine the value of R2 from the UV threshold condi-  
tions.  
1.45 × RTOT  
R2 =  
R3,  
VMIN  
where VMIN is the UV voltage at which the supply will  
shut down.  
4. Calculate R1.  
10  
100  
1000  
Compensation Cap (pF)  
R1 = RTOT R2 R3  
5. The undervoltage hysteresis is given by:  
Figure 3: The slope compensation pin charge current reduces when a  
small capacitor is used.  
VMIN × 0.075  
VUV(HYST)  
=
1.45  
Undervoltage (UV) and Overvoltage (OV) Monitor  
Synchronization  
Two independent comparators monitor OV and UV con-  
ditions. A string of three resistors is connected in series  
between the monitored voltage (usually the input voltage)  
and ground (see Figure 4). When voltage at the OV pin  
exceeds 2.5V, an overvoltage condition is detected and  
GATE shuts down. An internal 12.5µA current source  
turns on and feeds current into the external resistor, R3,  
creating a hysteresis determined by the value of this resis-  
tor (the higher the value, the greater the hysteresis). The  
hysteresis voltage of the OV monitor is determined by the  
following formula:  
A bi-directional synchronization is provided to synchro-  
nize several controllers. When SYNC pins are connected  
together, the converters will lock to the highest switching  
frequency. The fastest controller becomes the master, pro-  
ducing a 4.3V, 200ns pulse train. Only one, the highest fre-  
quency SYNC signal, will appear on the SYNC line. For  
reliable operation, the master frequency should be approx-  
imately 20% higher than the free running slave frequency.  
Sleep  
The sleep input is an active high input. The CS51022/ 51024  
is placed in sleep mode when SLEEP is driven high. In  
sleep mode, the controller and MOSFET are turned off.  
Connect to Gnd for normal operation. The sleep mode  
operates at VCC 15V.  
V
OV(HYST) = 12.5µA × R3  
where R3 is a resistor connected from the OV pin to ground.  
When the monitored voltage is low and the UV pin is less  
than 1.45V, GATE shuts down. The UV pin has fixed 75mV  
hysteresis.  
Oscillator and Duty Cycle Limit  
Both OV and UV conditions are latched until the Soft Start  
capacitor is discharged. This way, every time a fault con-  
dition is detected the controller goes through the power  
up sequence.  
The switching frequency is set by RT and CT connected to  
the RTCT pin. CT charges and discharges between 3V and  
1.5V.  
7
Circuit Description: continued  
100  
The maximum duty cycle is set by the ratio of the on time,  
ON, and the whole period, T = tON + tOFF. Because the  
8
7
t
6
timing capacitors discharge current is trimmed, the maxi-  
mum duty cycle is well defined. It is determined by the  
ratio between the timing resistor RT and the timing capaci-  
tor CT. Refer to figures 5 and 6 to select appropriate values  
for RT and CT.  
5
90  
80  
70  
60  
4
3
2
1. C = 47pF  
2. C = 100pF  
T
3. C = 150pF  
T
T
1
fSW  
=
; TSW = tCH + tDIS  
TSW  
4. C = 220pF  
T
1
5. C = 390pF  
T
6. C = 470pF  
T
7. C = 560pF  
T
8. C = 680pF  
T
2500  
2000  
1500  
1000  
50  
1
40  
1. C = 47pF  
T
5
10  
15  
20  
25  
30  
35  
(k)  
40  
45  
50  
55  
2. C = 100pF  
T
R
T
3. C = 150pF  
T
4. C = 220pF  
T
5. C = 390pF  
T
Figure 6: Duty Cycle vs. RT for Discrete Capacitor Values.  
6. C = 470pF  
T
7. C = 560pF  
T
2
8. C = 680pF  
T
3
4
500  
5
6
7
8
0
5
10  
15  
20  
25  
30  
35  
40  
45  
50  
R
T
(k)  
Figure 5: Frequency vs. RT for Discrete Capacitor Values.  
8
Package Specification  
PACKAGE THERMAL DATA  
PACKAGE DIMENSIONS IN mm (INCHES)  
D
Thermal Data  
16L SO Narrow  
PDIP  
Lead Count  
Metric  
English  
Max Min  
.394 .386  
RΘJC  
typ  
28  
42  
°C/ W  
°C/ W  
Max  
Min  
9.80  
RΘJA  
typ  
115  
80  
16L SO Narrow  
16L PDIP  
10.00  
19.69  
18.67 .775 .735  
Plastic DIP (N); 300 mil wide  
Surface Mount Narrow Body (D); 150 mil wide  
7.11 (.280)  
6.10 (.240)  
6.20 (.244)  
5.80 (.228)  
4.00 (.157)  
3.80 (.150)  
1.77 (.070)  
1.14 (.045)  
8.26 (.325)  
7.62 (.300)  
2.54 (.100) BSC  
3.68 (.145)  
2.92 (.115)  
0.51 (.020)  
1.27 (.050) BSC  
1.75 (.069) MAX  
0.33 (.013)  
0.39 (.015)  
MIN.  
.356 (.014)  
.203 (.008)  
1.57 (.062)  
1.37 (.054)  
.558 (.022)  
.356 (.014)  
Some 8 and 16 lead  
packages may have  
1/2 lead at the end  
of the package.  
0.25 (.010)  
0.19 (.008)  
1.27 (.050)  
0.40 (.016)  
REF: JEDEC MS-001  
D
0.25 (0.10)  
0.10 (.004)  
All specs are the same.  
D
REF: JEDEC MS-012  
Ordering Information  
Part Number  
CS51021ED16  
CS51021EDR16  
CS51022ED16  
CS51022EDR16  
CS51023ED16  
CS51023EDR16  
CS51024ED16  
CS51024EDR16  
CS51021EN16  
CS51022EN16  
CS51023EN16  
CS51024EN16  
Description  
16L SO Narrow  
16L SO Narrow (tape & reel)  
16L SO Narrow  
16L SO Narrow (tape & reel)  
16L SO Narrow  
16L SO Narrow (tape & reel)  
16L SO Narrow  
16L SO Narrow (tape & reel)  
16L PDIP  
ON Semiconductor and the ON Logo are trademarks of  
Semiconductor Components Industries, LLC (SCILLC). ON  
Semiconductor reserves the right to make changes without  
further notice to any products herein. For additional infor-  
mation and the latest available information, please contact  
your local ON Semiconductor representative.  
16L PDIP  
16L PDIP  
16L PDIP  
© Semiconductor Components Industries, LLC, 2000  
9
Notes  
Notes  
Notes  

CS51024EN16 相关器件

型号 制造商 描述 价格 文档
CS5102A CIRRUS 16-Bit, 100kHz/ 20kHz A/D Converters 获取价格
CS5102A-AL CIRRUS 16-Bit, 100kHz/ 20kHz A/D Converters 获取价格
CS5102A-ALR CIRRUS ADC, Successive Approximation, 16-Bit, 1 Func, 2 Channel, Serial Access, CMOS, PQCC28, PLASTIC, MS-047, LCC-28 获取价格
CS5102A-AP CIRRUS 16-Bit, 100kHz/ 20kHz A/D Converters 获取价格
CS5102A-BL CIRRUS 16-Bit, 100kHz/ 20kHz A/D Converters 获取价格
CS5102A-BLR CIRRUS ADC, Successive Approximation, 16-Bit, 1 Func, 2 Channel, Serial Access, CMOS, PQCC28, MS-047, LCC-28 获取价格
CS5102A-BLZ CIRRUS 16-bit, 100 kSps / 20 kSps A/D Converters 获取价格
CS5102A-BLZR CIRRUS ADC, Successive Approximation, 16-Bit, 1 Func, 2 Channel, Serial Access, CMOS, PQCC28, MS-047, LCC-28 获取价格
CS5102A-BP CIRRUS 16-Bit, 100kHz/ 20kHz A/D Converters 获取价格
CS5102A-JL CIRRUS 16-Bit, 100kHz/ 20kHz A/D Converters 获取价格

CS51024EN16 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6