CS51221EDR16G

更新时间:2024-09-18 06:43:02
品牌:ONSEMI
描述:Enhanced Voltage Mode PWM Controller

CS51221EDR16G 概述

Enhanced Voltage Mode PWM Controller 增强型电压模式PWM控制器 稳压芯片 开关式稳压器或控制器

CS51221EDR16G 规格参数

是否无铅: 不含铅是否Rohs认证: 符合
生命周期:Active零件包装代码:SOIC
包装说明:SOP, SOP16,.25针数:16
Reach Compliance Code:compliantECCN代码:EAR99
HTS代码:8542.39.00.01Factory Lead Time:1 week
风险等级:5.22模拟集成电路 - 其他类型:SWITCHING CONTROLLER
控制模式:VOLTAGE-MODE控制技术:PULSE WIDTH MODULATION
最大输入电压:15 V最小输入电压:4.7 V
JESD-30 代码:R-PDSO-G16JESD-609代码:e3
长度:9.9 mm湿度敏感等级:1
功能数量:1端子数量:16
最高工作温度:85 °C最低工作温度:-40 °C
最大输出电流:1 A封装主体材料:PLASTIC/EPOXY
封装代码:SOP封装等效代码:SOP16,.25
封装形状:RECTANGULAR封装形式:SMALL OUTLINE
峰值回流温度(摄氏度):260认证状态:Not Qualified
座面最大高度:1.75 mm子类别:Switching Regulator or Controllers
表面贴装:YES切换器配置:SINGLE
最大切换频率:1000 kHz温度等级:INDUSTRIAL
端子面层:Tin (Sn)端子形式:GULL WING
端子节距:1.27 mm端子位置:DUAL
处于峰值回流温度下的最长时间:40宽度:3.9 mm

CS51221EDR16G 数据手册

通过下载CS51221EDR16G数据手册来全面了解它。这个PDF文档包含了所有必要的细节,如产品概述、功能特性、引脚定义、引脚排列图等信息。

PDF下载
CS51221  
Enhanced Voltage Mode  
PWM Controller  
The CS51221 fixed frequency feed forward voltage mode PWM  
controller contains all of the features necessary for basic voltage mode  
operation. This PWM controller has been optimized for high  
frequency primary side control operation. In addition, this device  
includes such features as: Soft−Start, accurate duty cycle limit control,  
less than 50mA startup current, over and undervoltage protection, and  
bidirectional synchronization. The CS51221 is available in a 16 lead  
SOIC narrow surface mount package.  
http://onsemi.com  
SOIC−16  
D SUFFIX  
CASE 751B  
16  
1
TSSOP−16  
DTB SUFFIX  
CASE 948F  
Features  
16  
1.0 MHz Frequency Capability  
Fixed Frequency Voltage Mode Operation, with Feed Forward  
Thermal Shutdown  
Undervoltage Lock−Out  
Accurate Programmable Max Duty Cycle Limit  
1.0 A Sink/Source Gate Drive  
1
PIN CONNECTIONS AND  
MARKING DIAGRAM  
1
16  
GATE  
V
C
I
PGND  
SENSE  
Programmable Pulse−By−Pulse Overcurrent Protection  
Leading Edge Current Sense Blanking  
75 ns Shutdown Propagation Delay  
Programmable Soft−Start  
SYNC  
V
V
CC  
FF  
UV  
OV  
REF  
LGND  
SS  
COMP  
R C  
T
T
I
V
FB  
SET  
Undervoltage Protection  
Overvoltage Protection with Programmable Hysteresis  
Bidirectional Synchronization  
1
16  
25 ns GATE Rise and Fall Time (1.0 nF Load)  
3.3 V 3% Reference Voltage Output  
Pb−Free Packages are Available*  
CS51221= Specific Device Code  
= Assembly Location  
WL, L = Wafer Lot  
YY, Y = Year  
WW, W = Work Week  
A
G
= Pb−Free Package  
ORDERING INFORMATION  
Device  
Package  
Shipping  
CS51221ED16  
SOIC−16 48 Units / Rail  
CS51221ED16G  
SOIC−16 48 Units / Rail  
(Pb−Free)  
CS51221EDR16  
SOIC−16 2500 Tape & Reel  
CS51221EDR16G  
SOIC−16 2500 Tape & Reel  
(Pb−Free)  
CS51221EDTB16G TSSOP−16 96 Units / Rail  
(Pb−Free)  
CS51221EDTB16R2G TSSOP−16 2500 Tape & Reel  
(Pb−Free)  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
*For additional information on our Pb−Free strategy and soldering details, please  
download the ON Semiconductor Soldering and Mounting Techniques  
Reference Manual, SOLDERRM/D.  
© Semiconductor Components Industries, LLC, 2005  
1
Publication Order Number:  
September, 2005 − Rev. 8  
CS51221/D  
CS51221  
C S 5 1 2 2 1  
Figure 1. Application Diagram, 36 V−72 V to 5.0 V/5.0 A Converter  
http://onsemi.com  
2
CS51221  
MAXIMUM RATINGS  
Rating  
Value  
Unit  
Internally  
Limited  
Operating Junction Temperature, T  
Lead Temperature Soldering:  
J
Reflow: (SMD styles only) (Note 1)  
230 peak  
−65 to +150  
2.0  
°C  
°C  
kV  
Storage Temperature Range, T  
S
ESD (Human Body Model)  
Maximum ratings are those values beyond which device damage can occur. Maximum ratings applied to the device are individual stress limit  
values (not normal operating conditions) and are not valid simultaneously. If these limits are exceeded, device functional operation is not implied,  
damage may occur and reliability may be affected.  
1. 60 second maximum above 183°C.  
MAXIMUM RATINGS  
Pin Name  
Gate Drive Output  
Current Sense Input  
Timing Resistor/Capacitor  
Feed Forward  
Pin Symbol  
V
V
I
I
SINK  
MAX  
MIN  
SOURCE  
GATE  
15 V  
6.0 V  
6.0 V  
6.0 V  
6.0 V  
6.0 V  
6.0 V  
6.0 V  
6.0 V  
6.0 V  
6.0 V  
15 V  
15 V  
6.0 V  
N/A  
−0.3 V  
−0.3 V  
−0.3 V  
−0.3 V  
−0.3 V  
−0.3 V  
−0.3 V  
−0.3 V  
−0.3 V  
−0.3 V  
−0.3 V  
−0.3 V  
−0.3 V  
−0.3 V  
N/A  
1.0 A Peak, 200 mA DC  
1.0 mA  
1.0 A Peak, 200 mA DC  
I
1.0 mA  
10 mA  
SENSE  
R C  
T
1.0 mA  
T
FF  
1.0 mA  
25 mA  
Error Amp Output  
Feedback Voltage  
Sync Input  
COMP  
10 mA  
20 mA  
V
FB  
1.0 mA  
1.0 mA  
SYNC  
UV  
10 mA  
10 mA  
Undervoltage  
1.0 mA  
1.0 mA  
Overvoltage  
OV  
1.0 mA  
1.0 mA  
Current Set  
I
1.0 mA  
1.0 mA  
SET  
Soft−Start  
SS  
1.0 mA  
10 mA  
Logic Section Supply  
Power Section Supply  
Reference Voltage  
Power Ground  
V
CC  
10 mA  
50 mA  
V
C
10 mA  
1.0 A Peak, 200 mA DC  
10 mA  
V
REF  
lnternally Limited  
1.0 A Peak, 200 mA DC  
N/A  
PGND  
LGND  
N/A  
Logic Ground  
N/A  
N/A  
N/A  
ELECTRICAL CHARACTERISTICS (−40°C < T < 85°C; −40°C < T < 125°C; 3.0 V < V < 15 V; 4.7 V < V < 15 V;  
A
J
C
CC  
R = 12 k; C = 390 pF; unless otherwise specified.)  
T
T
Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
Start/Stop Voltages  
Start Threshold  
Stop Threshold  
Hysteresis  
4.4  
3.2  
400  
4.6  
3.8  
850  
38  
4.7  
4.1  
V
V
Start−Stop  
1400  
75  
mV  
mA  
I
@ Startup  
V
CC  
< UVL Start Threshold  
CC  
Supply Current  
I
I
I
Operating  
9.5  
12  
14  
18  
mA  
mA  
mA  
CC  
Operating  
Operating  
1.0 nF Load on GATE  
No Switching  
C
C
2.0  
4.0  
http://onsemi.com  
3
 
CS51221  
ELECTRICAL CHARACTERISTICS (−40°C < T < 85°C; −40°C < T < 125°C; 3.0 V < V < 15 V; 4.7 V < V < 15 V;  
A
J
C
CC  
R = 12 k; C = 390 pF; unless otherwise specified.)  
T
T
Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
Reference Voltage  
Total Accuracy  
Line Regulation  
Load Regulation  
Noise Voltage  
Op Life Shift  
0 mA < I  
0 mA < I  
< 2.0 mA  
3.2  
3.3  
6.0  
6.0  
50  
3.4  
20  
V
REF  
mV  
mV  
mV  
mV  
V
< 2.0 mA  
15  
REF  
10 Hz < F < 10 kHz. Note 2  
T = 1000 Hrs. Note 2  
4.0  
2.95  
3.05  
100  
40  
20  
Fault Voltage  
2.8  
2.9  
30  
2.0  
3.1  
3.2  
150  
100  
V
V
Voltage  
V
REF(OK)  
REF(OK)  
Hysteresis  
mV  
mA  
Current Limit  
Error Amp  
Reference Voltage  
V
V
= COMP  
= 1.2 V  
1.234  
1.263  
1.3  
1.285  
2.0  
V
mA  
dB  
MHz  
mA  
mA  
V
FB  
V
FB  
Input Current  
FB  
Open Loop Gain  
Unity Gain Bandwidth  
COMP Sink Current  
COMP Source Current  
COMP High Voltage  
COMP Low Voltage  
PSRR  
Note 2  
Note 2  
60  
1.5  
3.0  
1.0  
2.8  
75  
COMP = 1.4 V, V = 1.45 V  
12  
32  
FB  
COMP = 1.4 V, V = 1.15 V  
1.6  
3.1  
125  
85  
2.0  
3.4  
300  
FB  
V
FB  
V
FB  
= 1.15 V  
= 1.45 V  
mV  
dB  
V
Freq = 120 Hz. Note 2  
60  
SS Clamp, V  
SS = 1.4 V, V = 0 V, I = 2.0 V  
SET  
1.3  
1.7  
1.4  
1.8  
1.5  
1.9  
COMP  
FB  
COMP Max Clamp  
Oscillator  
Note 2  
V
Frequency Accuracy  
Voltage Stability  
Temperature Stability  
Max Frequency  
260  
273  
1.0  
8.0  
320  
2.0  
kHz  
%
−40°C < T < 125°C. (Note 2)  
%
J
Note 2  
1.0  
80  
MHz  
%
Duty Cycle  
85  
90  
Peak Voltage  
Note 2  
1.94  
0.9  
0.85  
0.85  
2.0  
0.95  
1.0  
1.0  
2.06  
1.0  
1.15  
1.15  
V
Valley Clamp Voltage  
Valley Voltage  
V
Note 2  
V
Discharge Current  
Synchronization  
Input Threshold  
mA  
0.9  
200  
2.1  
35  
1.4  
320  
2.5  
70  
1.8  
450  
2.8  
V
ns  
V
Output Pulse Width  
Output High Voltage  
Input Resistance  
SYNC to Drive Delay  
Output Drive Current  
100 mA Load  
140  
180  
2.25  
kW  
ns  
mA  
Time from SYNC to GATE Shutdown  
100  
1.0  
140  
1.5  
R
= 1.0 W  
SYNC  
2. Guaranteed by design, not 100% tested in production.  
http://onsemi.com  
4
 
CS51221  
ELECTRICAL CHARACTERISTICS (−40°C < T < 85°C; −40°C < T < 125°C; 3.0 V < V < 15 V; 4.7 V < V < 15 V;  
A
J
C
CC  
R = 12 k; C = 390 pF; unless otherwise specified.)  
T
T
Characteristic  
Test Conditions  
Min  
Typ  
Max  
Unit  
Gate Driver  
High Saturation Voltage  
Low Saturation Voltage  
High Voltage Clamp  
Output Current  
V
− GATE, V = 10 V, I  
= 200 mA  
1.5  
1.2  
13.5  
1.0  
1.0  
60  
2.0  
1.5  
16  
V
V
C
C
SOURCE  
GATE − PGND, I  
= 200 mA  
SINK  
11  
V
1.0 nF Load. Note 3  
GATE = 0 V  
1.25  
50  
A
Output UVL Leakage  
Rise Time  
mA  
ns  
ns  
V
1.0 nF Load, V = 20 V, 1.0 V < GATE < 9.0 V  
100  
50  
C
Fall Time  
1.0 nF Load, V = 20 V, 9.0 V < GATE < 1.0 V  
25  
C
Max Gate Voltage During UVL/Sleep  
Feed Forward (FF)  
Discharge Voltage  
Discharge Current  
FF to GATE Delay  
I
= 500 mA  
0.4  
0.7  
1.0  
GATE  
I
FF  
= 2.0 mA  
0.3  
16  
75  
0.7  
30  
V
FF = 1.0 V  
2.0  
50  
mA  
ns  
125  
Overcurrent Protection  
Overcurrent Threshold  
I
= 0.5 V, Ramp I  
0.475  
50  
0.5  
90  
0.525  
125  
V
SET  
SENSE  
I
to GATE Delay  
ns  
SENSE  
External Voltage Monitors  
Overvoltage Threshold  
Overvoltage Hysteresis Current  
Undervoltage Threshold  
Undervoltage Hysteresis  
Soft−Start (SS)  
OV Increasing  
OV = 2.15 V  
1.9  
10  
2.0  
12.5  
1.0  
75  
2.1  
15  
V
mA  
V
UV Increasing  
0.95  
25  
1.05  
125  
mV  
Charge Current  
SS = 2.0 V  
SS = 2.0 V  
40  
4.0  
2.8  
0.25  
1.15  
50  
5.0  
3.0  
0.3  
1.25  
0.1  
70  
7.0  
mA  
mA  
V
Discharge Current  
Charge Voltage  
3.4  
Discharge Voltage  
0.35  
1.35  
0.2  
V
Soft−Start Clamp Offset  
Soft−Start Fault Voltage  
Blanking  
FF = 1.25 V  
V
OV = 2.15 V or LV = 0.85 V  
V
Blanking Time  
50  
2.8  
2.8  
150  
3.0  
3.0  
250  
3.3  
3.3  
ns  
V
SS Blanking Disable Threshold  
COMP Blanking Disable Threshold  
Thermal Shutdown  
Thermal Shutdown  
V
V
< 1.0  
FB  
< 1.0, SS > 3.0 V  
V
FB  
Note 3  
Note 3  
125  
5.0  
150  
10  
180  
15  
°C  
°C  
Thermal Hysteresis  
3. Guaranteed by design, not 100% tested in production.  
http://onsemi.com  
5
 
CS51221  
PACKAGE PIN DESCRIPTION  
Package  
Pin #  
Pin  
Symbol  
Function  
1
GATE  
External power switch driver with 1.0 A peak capability. Rail to rail output occurs when the capacitive load is  
between 470 pF and 10 nF.  
2
3
I
Current sense comparator input.  
Bidirectional synchronization. Locks to highest frequency.  
PWM ramp.  
SENSE  
SYNC  
FF  
4
5
UV  
Undervoltage protection monitor.  
Overvoltage protection monitor.  
6
OV  
7
R C  
T
Timing resistor R and capacitor C determine oscillator frequency and maximum duty cycle, D  
.
MAX  
T
T
T
8
I
Voltage at this pin sets pulse−by−pulse overcurrent threshold.  
Feedback voltage input. Connected to the error amplifier inverting input.  
Error amplifier output.  
SET  
9
V
FB  
10  
11  
12  
13  
14  
15  
16  
COMP  
SS  
Charging external capacitor restricts error amplifier output voltage during the power up or fault conditions.  
LGND  
Logic ground.  
V
3.3 V reference voltage output. Decoupling capacitor can be selected from 0.01 mF to 10 mF.  
Logic supply voltage.  
REF  
V
CC  
PGND  
Output power stage ground.  
V
C
Output power stage supply voltage.  
http://onsemi.com  
6
CS51221  
V
CC  
2.0 mA (maximum load current)  
V
V
REF  
3.3 V  
+
UVL  
ENABLE  
Thermal  
Shutdown  
V
REF  
= 3.3 V  
V
REF  
OK  
+
+
3.1 V  
C
UV Lockout  
Start/Stop  
Low Sat  
Gate Driver  
S
R
Q
GATE  
PGND  
G1  
SYNC  
R C  
OSC  
13.5 V  
G2  
Q
T
T
2.0 V to 1.0 V Trip Points  
V
BG  
(1.263 V)  
3.0 V  
+
Max Duty Cycle  
(Sat Sense)  
V
REF  
+
EAMP  
50 mA  
V
FB  
SS to 1.8 V Max  
+
LGND  
PWM  
Comp  
+
COMP  
FF  
ON  
Soft−Start Clamp  
FF Discharge  
V
O
Off  
Latching  
Discharge  
G4  
SS  
OV  
5.0 mA  
G3  
+
OV Monitor  
+
Max SS  
Det  
3.0 V  
2.0 V  
+
I
SET  
I
LIM  
DISABLE  
150 ns  
Blank  
(Sat Sense)  
UV Monitor  
UV  
I
SENSE  
+
1.0 V  
Figure 2. Block Diagram  
http://onsemi.com  
7
CS51221  
APPLICATION INFORMATION  
V
OUT  
THEORY OF OPERATION  
Feed Forward Voltage Mode Control  
In conventional voltage mode control, the ramp signal has  
fixed rising and falling slope. The feedback signal is derived  
solely from the output voltage. Consequently, voltage mode  
control has inferior line regulation and audio susceptibility.  
Feed forward voltage mode control derives the ramp  
signal from the input line, as shown in Figure 3. Therefore,  
the ramp of the slope varies with the input voltage. At the  
start of each switch cycle, the capacitor connected to the FF  
pin is charged through a resistor connected to the input  
voltage. Meanwhile, the Gate output is turned on to drive an  
external power switching device. When the FF pin voltage  
V
COMP  
FF  
V
IN  
R C  
T
T
GATE  
reaches the error amplifier output V  
, the PWM  
COMP  
Figure 4. Pulse Width Modulated by Output  
Current with Constant Input Voltage  
comparator turns off the Gate, which in turn opens the  
external switch. Simultaneously, the FF capacitor is quickly  
discharged to 0.3 V.  
Overall, the dynamics of the duty cycle are controlled by  
both input and output voltages. As illustrated in Figure 4,  
with a fixed input voltage the output voltage is regulated  
solely by the error amplifier. For example, an elevated  
V
IN  
V
COMP  
output voltage reduces V  
which in turn causes duty  
COMP  
cycle to decrease. However, if the input voltage varies, the  
slope of the ramp signal will react immediately which  
provides a much improved line transient response. As an  
example shown in Figure 5, when the input voltage goes up,  
the rising edge of the ramp signal increases which reduces  
duty cycle to counteract the change.  
FF  
I
OUT  
R C  
T
T
V
IN  
V
OUT  
Power Stage  
GATE  
GATE  
R
Figure 5. Pulse Width Modulated by Input Voltage  
with Constant Output Current  
Latch & Driver  
Feedback  
Network  
Powering the IC & UVL  
PWM  
The Undervoltage Lockout (UVL) comparator has two  
voltage references; the start and stop thresholds. During  
FF  
FB  
COMP  
+
power−up, the UVL comparator disables V  
(which  
REF  
in−turn disables the entire IC) until the controller reaches its  
start threshold. During power−down, the UVL  
Error Amplifier  
V
CC  
+
C
comparator allows the controller to operate until the V  
CC  
stop threshold is reached. The CS51221 requires only 50 mA  
during startup. The output stage is held at a low impedance  
state in lock out mode.  
Figure 3. Feed Forward Voltage Mode Control  
During power up and fault conditions, the Soft−Start  
clamps the Comp pin voltage and limits the duty cycle. The  
power up transition tends to generate temporary duty cycles  
much greater than the steady state value due to the low  
output voltage. Consequently, excessive current stresses  
often take place in the system. Soft−Start technique  
alleviates this problem by gradually releasing the clamp on  
the duty cycle to eliminate the in−rush current. The duration  
The feed forward feature can also be employed to provide  
a volt−second clamp, which limits the maximum product of  
input voltage and turn on time. This clamp is used in circuits,  
such as Forward and Flyback converter, to prevent the  
transformer from saturating. Calculations used in the design  
of the volt−second clamp are presented in the Design  
Guidelines section.  
http://onsemi.com  
8
 
CS51221  
of the Soft−Start can be programmed through a capacitance  
connected to the SS pin. The constant charging current to the  
SS pin is 50 mA (typ).  
The V  
(ok) comparator monitors the 3.3 V V  
REF  
REF  
output and latches a fault condition if V  
falls below 3.1 V.  
REF  
The fault condition may also be triggered when the OV pin  
voltage rises above 2.0 V or the UV pin voltage falls below  
1.0 V. The undervoltage comparator has a built−in hysteresis  
of 75 mV (typ). The hysteresis for the OV comparator is  
programmable through a resistor connected to the OV pin.  
When an OV condition is detected, the overvoltage  
hysteresis current of 12.5 mA (typ) is sourced from the pin.  
In Figure 6, the fault condition is triggered by pulling the  
UV pin to the ground. Immediately, the SS capacitor is  
discharged with 5.0 mA of current (typ) and the GATE output  
is disabled until the SS voltage reaches the discharge voltage  
of 0.3 V (typ). The IC starts the Soft−Start transition again  
if the fault condition has recovered as shown in Figure 6.  
However, if the fault condition persists, the SS voltage will  
stay at 0.1 V until the removal of the fault condition.  
Figure 7. The GATE Output Is Terminated When  
the ISENSE Pin Voltage Reaches the Threshold Set  
By the ISET Pin. CH2: ISENSE Pin, CH4: ISET Pin,  
CH3: GATE Pin  
The current sense signal is prone to leading edge spikes  
caused by the switching transition. A RC low−pass filter is  
usually applied to the current signals to avoid premature  
triggering. However, the low pass filter will inevitably  
change the shape of the current pulse and also add cost. The  
CS51221 uses leading edge blanking circuitry that blocks  
out the first 150 ns (typ) of each current pulse. This removes  
the leading edge spikes without altering the current  
waveform. The blanking is disabled during Soft−Start and  
when the V  
is saturated high so that the minimum  
COMP  
on−time of the controller does not have the additional  
blanking period. The max SS detect comparator keeps the  
blanking function disabled until SS charges fully. The output  
of the max Duty Cycle detector goes high when the error  
amplifier output gets saturated high, indicating that the  
output voltage has fallen well below its regulation point and  
the power supply may be underload stress.  
Figure 6. The Fault Condition Is Triggered when  
the UV Pin Voltage Falls Below 1.0 V. The  
Soft−Start Capacitor Is Discharged and the GATE  
Output Is Disabled. CH2: Envelop of GATE Output,  
CH3: SS Pin with 0.01 mF Capacitor, CH4: UV Pin  
Oscillator and Synchronization  
The switching frequency is programmable through a RC  
network connected to the R C Pin. As shown in Figure 8,  
T
T
when the R C pin reaches 2.0 V, the capacitor is discharged  
T
T
by a 1.0 mA current source and the Gate signal is disabled.  
When the R C pin decreases to 1.0 V, the Gate output is  
Current Sense and Overcurrent Protection  
T
T
turned on and the discharge current is removed to let the  
R C pin ramp up. This begins a new switching cycle. The  
C charging time over the switch period sets the maximum  
T
The current can be monitored by the I  
pulse by pulse current limit. Various techniques, such as a  
using current sense resistor or current transformer, can be  
pin to achieve  
SENSE  
T
T
duty cycle clamp which is programmable through the R  
adopted to derive current signals. The voltage of the I  
pin  
T
SET  
value as shown in the Design Guidelines. At the beginning  
of each switching cycle, the SYNC pin generates a 2.5 V,  
320 nS (typ) pulse. This pulse can be utilized to synchronize  
other power supplies.  
sets the threshold for maximum current. As shown in  
Figure 7, when the I pin voltage exceeds the I  
voltage, the current limit comparator will reset the GATE  
latch flip−flop to terminate the GATE pulse.  
SENSE  
SET  
http://onsemi.com  
9
 
CS51221  
DESIGN GUIDELINES  
Switch Frequency and Maximum Duty Cycle  
Calculations  
Oscillator timing capacitor, C , is charged by V  
T
REF  
through R and discharged by an internal current source.  
T
During the discharge time, the internal clock signal sets the  
Gate output to the low state, thus providing a user selectable  
maximum duty cycle clamp. Charge and discharge times are  
determined by following general formulas;  
(V  
(V  
* V  
)
VALLEY  
REF  
+ R C lnǒ  
Ǔ
t
C
T T  
* V  
)
REF  
PEAK  
(V  
* V  
* I R )  
* I R )  
REF  
PEAK  
d T  
+ R C lnǒ  
Ǔ
t
d
T T  
(V  
* V  
REF  
VALLEY d T  
where:  
t = charging time;  
C
Figure 8. The SYNC Pin Generates a Sync Pulse at  
the Beginning of Each Switching Cycle.  
t = discharging time;  
d
V
V
= valley voltage of the oscillator;  
= peak voltage of the oscillator.  
VALLEY  
CH2: GATE Pin, CH3: RTCT, CH4: SYNC Pin  
PEAK  
Substituting in typical values for the parameters in the  
above formulas, V = 3.3 V, V = 1.0 V, V  
=
PEAK  
REF  
VALLEY  
2.0 V, I = 1.0 mA:  
d
t
C
+ 0.57R C  
T T  
1.3 * 0.001R  
2.3 * 0.001R  
T
T
+ R C lnǒ  
Ǔ
t
d
T T  
0.57  
0.57 ) Inǒ  
D
+
max  
1.3*0.001R  
2.3*0.001R  
T
T
Ǔ
It is noticed from the equation that for the oscillator to  
function properly, R has to be greater than 2.3 k.  
T
Select RC for Feed Forward Ramp  
If the line voltage is much greater than the FF pin Peak  
Voltage, the charge current can be treated as a constant and  
is equal to V /R. Therefore, the volt−second value is  
IN  
determined by:  
V
  T  
+ (V  
* V  
)   R   C  
FF(d)  
IN  
ON  
COMP  
Figure 9. Operation with External Sync.  
CH2: SYNC Pin, CH3: GATE Pin, CH4: RTCT Pin  
where:  
V
V
= COMP pin voltage;  
COMP  
= FF pin discharge voltage.  
FF(d)  
An external pulse signal can feed to the bidirectional  
SYNC pin to synchronize the switch frequency. For reliable  
operation, the sync frequency should be approximately 20%  
higher than free running IC frequency. As show in Figure 9,  
when the SYNC pin is triggered by an incoming signal, the  
As shown in the equation, the volt−second clamp is set by  
the V clamp voltage which is equal to 1.8 V. In  
COMP  
Forward or Flyback circuits, the volt−second clamp value is  
designed to prevent transformers from saturation.  
In a buck or forward converter, volt−second is equal to  
IC immediately discharges C . The GATE signal is turned  
T
V
  T  
S
OUT  
+ ǒ  
Ǔ
V
  T  
ON  
on once the R C pin reaches the valley voltage. Because of  
IN  
T
T
n
the steep falling edge, this valley voltage falls below the  
regular 1.0 V threshold. However, the R C pin voltage is  
n = transformer turns ratio, which is a constant determined  
by the regulated output voltage, switching period and  
transformer turns ration (use 1.0 for buck converter). It is  
interesting to notice from the aforementioned two equations  
T
T
then quickly raised by a clamp. When the R C pin reaches  
T
T
the 0.95 V (typ) Valley Clamp Voltage, the clamp is  
disconnected after a brief delay and C is charged through  
T
R .  
T
http://onsemi.com  
10  
 
CS51221  
800  
700  
600  
1.00  
0.95  
0.90  
0.85  
0.80  
0.75  
0.70  
0.65  
0.60  
R = 5.0 K  
T
500  
400  
300  
200  
R = 10 K  
T
100  
0
0.55  
0.50  
1000  
R = 50 K  
T
0.0001  
0.001  
C (mF)  
0.01  
10000  
100000  
1000000  
R (W)  
T
T
Figure 10. Typical Performance Characteristics,  
Oscillator Frequency vs. CT  
Figure 11. Typical Performance Characteristics,  
Oscillator Duty Cycle vs. RT  
that during steady state, V  
doesn’t change for input  
12.5 mA   (R1 ) R2) + V  
(C)  
COMP  
HYST  
voltage variations. This intuitively explains why FF voltage  
mode control has superior line regulation and line transient  
response. Knowing the nominal value of V and T , one  
where:  
V
, V  
= input voltage OV and UV  
IN(LOW)  
IN(HIGH)  
IN  
ON  
threshold;  
can also select the value of RC to place V  
of its dynamic range.  
at the center  
COMP  
V
HYST  
= OV hysteresis seen at V  
IN  
It is self−evident from equation A and B that to use this  
design, V has to be two times greater than  
Select Feedback Voltage Divider  
IN(HIGH)  
As shown in Figure 12, the voltage divider output feeds to  
the FB pin, which connects to the inverting input of the error  
amplifier. The non−inverting input of the error amplifier is  
connected to a 1.27 V (typ) reference voltage. The FB pin  
has an input current which has to be considered for accurate  
DC outputs. The following equation can be used to calculate  
the R1 and R2 value  
V
. Otherwise, two voltage dividers have to be used  
IN(LOW)  
to program OV and UV separately.  
V
OUT  
Ier  
R1  
R2  
R1 ) R2  
ǒ
ǓV  
+ 1.27 * ʼn  
OUT  
FB  
+
Ri  
where is the correction factor due to the existence of the  
FB pin input current Ier.  
COMP  
ʼn + (Ri ) R1ńńR2)Ier  
+
R2  
1.27  
Ri = DC resistance between the FB pin and the voltage  
divider output.  
Ier = V input current, 1.3 mA typical.  
FB  
Figure 12. The Design of Feedback Voltage Divider  
Has to Consider the Error Amplifier Input Current  
Design Voltage Dividers for OV and UV Detection  
In Figure 13, the voltage divider uses three resistors in  
series to set OV and UV threshold seen from the input  
voltage. The values of the resistors can be calculated from  
the following three equations, where the third equation is  
derived from OV hysteresis requirement.  
R1  
R2  
R3  
V
IN  
R2 ) R3  
ǒ
Ǔ+ 1.0 V  
V
 
 
(A)  
IN(LOW)  
R2 ) R3 ) R1  
V
UV  
V
OV  
R3  
ǒ
Ǔ+ 2.0 V  
V
(B)  
IN(HIGH)  
Figure 13. OV/UV Monitor Divider  
R2 ) R3 ) R1  
http://onsemi.com  
11  
 
CS51221  
PACKAGE DIMENSIONS  
SOIC−16  
D SUFFIX  
CASE 751B−05  
ISSUE J  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER ANSI  
Y14.5M, 1982.  
−A−  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSIONS A AND B DO NOT INCLUDE  
MOLD PROTRUSION.  
4. MAXIMUM MOLD PROTRUSION 0.15 (0.006)  
PER SIDE.  
5. DIMENSION D DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.127 (0.005) TOTAL  
IN EXCESS OF THE D DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
16  
9
8
−B−  
P 8 PL  
M
S
B
0.25 (0.010)  
1
MILLIMETERS  
INCHES  
MIN  
G
DIM MIN  
MAX  
10.00  
4.00  
1.75  
0.49  
1.25  
MAX  
0.393  
0.157  
0.068  
0.019  
0.049  
A
B
C
D
F
9.80  
3.80  
1.35  
0.35  
0.40  
0.386  
0.150  
0.054  
0.014  
0.016  
F
R X 45  
K
_
G
J
1.27 BSC  
0.050 BSC  
C
0.19  
0.10  
0
0.25  
0.25  
7
0.008  
0.004  
0
0.009  
0.009  
7
−T−  
SEATING  
PLANE  
K
M
P
R
J
_
_
_
_
M
5.80  
0.25  
6.20  
0.50  
0.229  
0.010  
0.244  
0.019  
D
16 PL  
M
S
S
0.25 (0.010)  
T B  
A
PACKAGE THERMAL DATA  
Parameter  
SOIC−16  
28  
Unit  
R
Typical  
Typical  
°C/W  
°C/W  
q
q
JC  
JA  
R
115  
http://onsemi.com  
12  
CS51221  
PACKAGE DIMENSIONS  
TSSOP−16  
CASE 948F−01  
ISSUE A  
NOTES:  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH. PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
16X KREF  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL  
NOT EXCEED 0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE  
DAMBAR PROTRUSION. ALLOWABLE  
DAMBAR PROTRUSION SHALL BE 0.08  
(0.003) TOTAL IN EXCESS OF THE K  
DIMENSION AT MAXIMUM MATERIAL  
CONDITION.  
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE −W−.  
M
S
S
V
0.10 (0.004)  
T U  
S
0.15 (0.006) T U  
16  
9
2X L/2  
K
K1  
B
L
−U−  
J1  
PIN 1  
IDENT.  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
SECTION N−N  
8
1
A
B
C
D
F
4.90  
4.30  
−−−  
0.05  
0.50  
5.10 0.193 0.200  
4.50 0.169 0.177  
J
N
1.20  
−−− 0.047  
0.25 (0.010)  
S
0.15 (0.006) T U  
0.15 0.002 0.006  
0.75 0.020 0.030  
A
M
G
H
J
J1  
K
K1  
L
0.65 BSC  
0.026 BSC  
−V−  
0.18  
0.09  
0.09  
0.19  
0.19  
0.28 0.007 0.011  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
N
F
6.40 BSC  
0.252 BSC  
M
0
8
0
8
_
_
_
_
DETAIL E  
−W−  
C
0.10 (0.004)  
DETAIL E  
H
SEATING  
PLANE  
−T−  
D
G
http://onsemi.com  
13  
CS51221  
ON Semiconductor and  
are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC reserves the right to make changes without further notice  
to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
“Typical” parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All  
operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. SCILLC does not convey any license under its patent rights  
nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications  
intended to support or sustain life, or for any other application in which the failure of the SCILLC product could create a situation where personal injury or death may occur. Should  
Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 800−282−9855 Toll Free  
USA/Canada  
ON Semiconductor Website: http://onsemi.com  
Order Literature: http://www.onsemi.com/litorder  
Literature Distribution Center for ON Semiconductor  
P.O. Box 61312, Phoenix, Arizona 85082−1312 USA  
Phone: 480−829−7710 or 800−344−3860 Toll Free USA/Canada  
Fax: 480−829−7709 or 800−344−3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Japan: ON Semiconductor, Japan Customer Focus Center  
2−9−1 Kamimeguro, Meguro−ku, Tokyo, Japan 153−0051  
Phone: 81−3−5773−3850  
For additional information, please contact your  
local Sales Representative.  
CS51221D  

CS51221EDR16G CAD模型

  • 引脚图

  • 封装焊盘图

  • CS51221EDR16G 替代型号

    型号 制造商 描述 替代类型 文档
    CS51221ED16G ONSEMI Enhanced Voltage Mode PWM Controller 类似代替
    CS51221EDR16 ONSEMI Enhanced Voltage Mode PWM Controller 类似代替

    CS51221EDR16G 相关器件

    型号 制造商 描述 价格 文档
    CS51221EDTB16G ONSEMI Enhanced Voltage Mode PWM Controller 获取价格
    CS51221EDTB16R2G ONSEMI Enhanced Voltage Mode PWM Controller 获取价格
    CS51221EN16 CHERRY Enhanced Voltage Mode PWM Controller 获取价格
    CS51221_09 ONSEMI Enhanced Voltage Mode PWM Controller 获取价格
    CS51227/D ETC Enhanced Voltage Mode PWM Controller 获取价格
    CS51227ED8 CHERRY Switching Controller, Voltage-mode, 1000kHz Switching Freq-Max, PDSO8, SO-8 获取价格
    CS51227EDR8 ONSEMI 1A SWITCHING CONTROLLER, 1000kHz SWITCHING FREQ-MAX, PDSO8, SOIC-8 获取价格
    CS51227EDR8 CHERRY Switching Controller, Voltage-mode, 1000kHz Switching Freq-Max, PDSO8, SO-8 获取价格
    CS5124 CHERRY High Performance, Integrated Current Mode PWM Controllers 获取价格
    CS5124 ONSEMI High Performance, Integrated Current Mode PWM Controllers 获取价格

    CS51221EDR16G 相关文章

  • Bourns 密封通孔金属陶瓷微调电位计产品选型手册(英文版)
    2024-09-20
    6
  • Bourns 精密环境传感器产品选型手册(英文版)
    2024-09-20
    9
  • Bourns POWrTher 负温度系数(NTC)热敏电阻手册 (英文版)
    2024-09-20
    8
  • Bourns GMOV 混合过压保护组件产品选型手册(英文版)
    2024-09-20
    6