FAM65CR51DZ2 [ONSEMI]

功率集成模块 (PIM) 升压转换器级,用于多相和半无桥 PFC;
FAM65CR51DZ2
型号: FAM65CR51DZ2
厂家: ONSEMI    ONSEMI
描述:

功率集成模块 (PIM) 升压转换器级,用于多相和半无桥 PFC

升压转换器 功率因数校正
文件: 总16页 (文件大小:740K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Boost Converter Stage in  
APM16 Series for Multiphase  
and Semi-Bridgeless PFC  
FAM65CR51DZ1,  
FAM65CR51DZ2  
www.onsemi.com  
Features  
Integrated SIP or DIP Boost Converter Stage Power Module for  
Onboard Charger (OBC) in EV or PHEV  
5 kV/1 sec Electrically Isolated Substrate for Easy Assembly  
Creepage and Clearance per IEC606641, IEC 609501  
Compact Design for Low Total Module Resistance  
Module Serialization for Full Traceability  
Lead Free, RoHS and UL94V0 Compliant  
Automotive Qualified per AEC Q101 and AQG324 Guidelines  
APMCDA16  
12 LEAD  
CASE MODGG  
Applications  
PFC Stage of an Onboard Charger in PHEV or EV  
Benefits  
Enable Design of Small, Efficient and Reliable System for Reduced  
Vehicle Fuel Consumption and CO Emission  
2
Simplified Assembly, Optimized Layout, High Level of Integration,  
and Improved Thermal Performance  
APMCDB16  
12 LEAD  
CASE MODGK  
MARKING DIAGRAM  
XXXXXXXXXXX  
ZZZ ATYWW  
NNNNNNN  
XXXX = Specific Device Code  
ZZZ = Lot ID  
AT  
Y
= Assembly & Test Location  
= Year  
W
= Work Week  
NNN = Serial Number  
ORDERING INFORMATION  
See detailed ordering, marking and shipping information on  
page 2 of this data sheet.  
© Semiconductor Components Industries, LLC, 2018  
1
Publication Order Number:  
June, 2021 Rev. 3  
FAM65CR51DZ1/D  
FAM65CR51DZ1, FAM65CR51DZ2  
ORDERING INFORMATION  
PbFree and  
RoHS Compliant Temperature (T )  
Operating  
Packing  
Method  
Part Number  
FAM65CR51DZ1  
FAM65CR51DZ2  
Package  
Lead Forming  
YShape  
DBC Material  
A
APM16CDA  
APM16CDB  
Al O  
Yes  
Yes  
40°C ~ 125°C  
40°C ~ 125°C  
Tube  
Tube  
2
3
3
LShape  
Al O  
2
Pin Configuration and Description  
Figure 1. Pin Configuration  
Table 1. PIN DESCRIPTION  
Pin Number  
Pin Name  
AC1  
Pin Description  
1, 2  
3
Phase 1 Leg of the PFC Bridge  
Not Connected  
NC  
4
NC  
Not Connected  
5, 6  
7, 8  
9
B+  
Positive Battery Terminal  
Source Terminal of Q1  
Gate Terminal of Q1  
Gate Terminal of Q2  
Source Terminal of Q2  
Not Connected  
Q1 Source  
Q1 Gate  
Q2 Gate  
Q2 Source  
NC  
10  
11, 12  
13  
14  
NC  
Not Connected  
15, 16  
AC2  
Phase 2 Leg of the PFC Bridge  
www.onsemi.com  
2
FAM65CR51DZ1, FAM65CR51DZ2  
INTERNAL EQUIVALENT CIRCUIT  
Figure 2. Internal Block Diagram  
Table 2. ABSOLUTE MAXIMUM RATINGS OF MOSFET (T = 25°C, Unless Otherwise Specified)  
J
Symbol  
Parameter  
Max  
650  
Unit  
V
V
V
(Q1~Q2)  
(Q1~Q2)  
DraintoSource Voltage  
GatetoSource Voltage  
DS  
GS  
20  
V
I
D
(Q1~Q2)  
Drain Current Continuous (T = 25°C, V = 10 V) (Note 1)  
33  
A
C
GS  
Drain Current Continuous (T = 100°C, V = 10 V) (Note 1)  
23  
A
C
GS  
E
AS  
(Q1~Q2)  
Single Pulse Avalanche Energy (Note 2)  
623  
mJ  
W
°C  
°C  
°C  
P
D
Power Dissipation (Note 1)  
Maximum Junction Temperature  
Maximum Case Temperature  
Storage Temperature  
160  
T
J
55 to +150  
40 to +125  
40 to +125  
T
C
T
STG  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. Maximum continuous current and power, without switching losses, to reach T = 150°C respectively at T = 25°C and T = 100°C; defined  
J
C
C
by design based on MOSFET R  
and R  
and not subject to production test  
q
DS(ON)  
JC  
2. Starting T = 25°C, I = 6.5 A, R = 25 W  
J
AS  
G
DBC Substrate  
Compliance to RoHS Directives  
0.63 mm Al O alumina with 0.3 mm copper on both sides.  
DBC substrate is NOT nickel plated.  
The power module is 100% lead free and RoHS compliant  
2000/53/C directive.  
2
3
Lead Frame  
Solder  
OFC copper alloy, 0.50 mm thick. Plated with 8 um to  
25.4 um thick Matte Tin  
Solder used is a lead free SnAgCu alloy.  
Solder presents high risk to melt at temperature beyond  
210°C. Base of the leads, at the interface with the package  
body, should not be exposed to more than 200°C during  
mounting on the PCB or during welding to prevent the  
remelting of the solder joints.  
Flammability Information  
All materials present in the power module meet UL  
flammability rating class 94V0.  
www.onsemi.com  
3
 
FAM65CR51DZ1, FAM65CR51DZ2  
Table 3. ELECTRICAL SPECIFICATIONS OF MOSFET (T = 25°C, Unless Otherwise Specified)  
J
Symbol  
Parameter  
Conditions  
I = 1 mA, V = 0 V  
D
Min  
650  
3.0  
Typ  
Max  
Unit  
V
BV  
DraintoSource Breakdown Voltage  
GatetoSource Threshold Voltage  
Q1 Low Side MOSFET  
DSS  
GS  
V
GS(th)  
V
GS  
= V , I = 3.3 mA  
5.0  
51  
51  
V
DS  
D
R
R
R
R
Q1  
V
GS  
= 10 V, I = 20 A  
44  
44  
79  
79  
30  
mW  
mW  
mW  
mW  
S
DS(ON)  
DS(ON)  
DS(ON)  
DS(ON)  
D
Q2  
Q1  
Q2  
Q2 Low Side MOSFET  
Q1 Low Side MOSFET  
V
GS  
= 10 V, I = 20 A, T = 125°C (Note 3)  
D
J
Q2 Low Side MOSFET  
g
FS  
Forward Transconductance  
GatetoSource Leakage Current  
DraintoSource Leakage Current  
V
DS  
= 20 V, I = 20 A (Note 3)  
D
I
V
=
20 V, V = 0 V  
100  
+100  
10  
nA  
mA  
GSS  
GS  
DS  
DS  
I
V
= 650 V, V = 0 V  
DSS  
GS  
DYNAMIC CHARACTERISTICS (Note 3)  
C
Input Capacitance  
V
V
= 400 V  
4864  
109  
16  
pF  
pF  
pF  
pF  
iss  
DS  
= 0 V  
GS  
C
Output Capacitance  
oss  
f = 1 MHz  
= 0 to 520 V  
DS  
C
Reverse Transfer Capacitance  
Effective Output Capacitance  
rss  
C
V
652  
oss(eff)  
V
GS  
= 0 V  
R
Gate Resistance  
f = 1 MHz  
2
W
g
Q
Total Gate Charge  
V
= 380 V  
= 20 A  
123  
37.5  
49  
nC  
nC  
nC  
g(tot)  
DS  
I
D
Q
GatetoSource Gate Charge  
GatetoDrain “Miller” Charge  
gs  
gd  
V
= 0 to 10 V  
GS  
Q
SWITCHING CHARACTERISTICS (Note 3)  
t
Turnon Time  
V
= 400 V  
= 20 A  
87  
47  
ns  
ns  
ns  
ns  
ns  
ns  
on  
DS  
I
D
t
Turnon Delay Time  
Turnon Rise Time  
Turnoff Time  
d(on)  
V
= 10 V  
GS  
t
r
43  
R
= 4.7 Ohm  
G
t
148  
118  
29  
off  
d(off)  
t
Turnoff Delay Time  
Turnoff Fall Time  
t
f
BODY DIODE CHARACTERISTICS  
V
SourcetoDrain Diode Voltage  
Reverse Recovery Time  
I
= 20 A, V = 0 V  
0.95  
133  
669  
V
SD  
SD  
GS  
T
V
= 520 V, I = 20 A,  
ns  
nC  
rr  
DS  
t
D
d /d = 100 A/ms (Note 3)  
I
Q
Reverse Recovery Charge  
rr  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
3. Defined by design, not subject to production test  
www.onsemi.com  
4
 
FAM65CR51DZ1, FAM65CR51DZ2  
Table 4. ABSOLUTE MAXIMUM RATINGS OF THE BOOST DIODE (T = 25°C, Unless Otherwise Specified)  
J
Symbol  
Parameter  
Peak Repetitive Reverse Voltage (Note 4)  
Rating  
Unit  
V
V
600  
RRM  
RWM  
V
Working Peak Reverse Voltage (Note 4)  
DC Blocking Voltage  
600  
V
V
R
600  
15  
V
I
Average Rectified Forward Current T = 25°C  
A
F(AV)  
C
I
NonRepetitive Peak Surge Current (Half Wave 1 Phase 60 Hz)  
Maximum Junction Temperature  
45  
A
FSM  
T
55 to +175  
40 to +125  
40 to +125  
4
°C  
°C  
°C  
mJ  
J
C
T
Maximum Case Temperature  
T
Storage Temperature  
STG  
E
Avalanche Energy (2.85 A, 1 mH)  
AVL  
4. V  
and I  
value referenced to TO2202L Auto Qualified Package Device ISL9R1560P_F085  
RRM  
F(AV)  
Table 5. ELECTRICAL SPECIFICATIONS OF THE BOOST DIODE (T = 25°C, Unless Otherwise Specified)  
J
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
100  
1
Unit  
mA  
mA  
V
I
R
Instantaneous Reverse Current  
V
= 600 V  
T
C
= 25°C  
= 125°C  
= 25°C  
= 125°C  
= 25°C  
= 25°C  
= 25°C  
R
T
C
V
FM  
Instantaneous Forward Voltage (Note 5)  
I =15 A  
T
C
1.65  
1.24  
29  
2.2  
1.7  
F
T
C
V
t
rr  
Reverse Recovery Time  
I = 15 A  
d /dt = 200 A/ms  
T
C
T
C
T
C
ns  
ns  
n
F
IF  
t
a
Time to reach peak reverse current  
16  
V =390 V  
(Note 3)  
R
t
b
Time from peak I  
to projected zero cross-  
13  
RRM  
ing of I  
based on a straight line from peak  
RRM  
I
through 25% of I  
RRM  
RRM  
Q
Reverse Recovered Charge  
T
C
= 25°C  
43  
nC  
rr  
5. Test pulse width = 300 ms, Duty Cycle = 2%  
Table 6. THERMAL RESISTANCE  
Parameters  
Min  
Typ  
Max  
Unit  
°C/W  
°C/W  
°C/W  
°C/W  
R
R
(per MOSFET chip)  
(per MOSFET chip)  
(per DIODE chip)  
Q1,Q2 Thermal Resistance JunctiontoCase (Note 6)  
Q1,Q2 Thermal Resistance JunctiontoSink (Note 7)  
D1,D2 Thermal Resistance JunctiontoCase (Note 6)  
D1,D2 Thermal Resistance JunctiontoSink (Note 7)  
0.66  
1.20  
1.98  
2.97  
0.92  
θ
JC  
JS  
θ
R
R
2.72  
θ
JC  
(per DIODE chip)  
θ
JS  
6. Test method compliant with MIL STD 8831012.1, from case temperature under the chip to case temperature measured below the package  
at the chip center, Cosmetic oxidation and discoloration on the DBC surface allowed  
7. Defined by thermal simulation assuming the module is mounted on a 5 mm Al360 die casting material with 30 um of 1.8 W/mK thermal  
interface material  
Table 7. ISOLATION (Isolation resistance at tested voltage between the base plate and to control pins or power terminals.)  
Test  
Test Conditions  
Isolation Resistance  
Unit  
Leakage @ Isolation Voltage (HiPot)  
V
AC  
= 5 kV, 60 Hz  
100M <  
W
www.onsemi.com  
5
 
FAM65CR51DZ1, FAM65CR51DZ2  
PARAMETER DEFINITIONS  
Reference to Table 3: Parameter of MOSFET Electrical  
Specifications  
BV  
DSS  
Q1, Q2 MOSFET DraintoSource Breakdown Voltage  
The maximum draintosource voltage the MOSFET can endure without the avalanche breakdown of the bodydrain  
PN junction in off state.  
The measurement conditions are to be found in Table 3.  
The typ. Temperature behavior is described in Figure 14  
V
GS(th)  
Q1, Q2 MOSFET Gate to Source Threshold Voltage  
The gatetosource voltage measurement is triggered by a threshold ID current given in conditions at Table 4.  
The typ. Temperature behavior can be found in Figure 11  
R
DS(ON)  
Q1, Q2 MOSFET On Resistance  
RDS(on) is the total resistance between the source and the drain during the on state.  
The measurement conditions are to be found in Table 3.  
The typ behavior can be found in Figure 12 and Figure 13 as well as Figure 18  
g
FS  
Q1, Q2 MOSFET Forward Transconductance  
Transconductance is the gain in the MOSFET, expressed in the Equation below.  
It describes the change in drain current by the change in the gatesource bias voltage: g = [ DI / DV ]  
fs  
DS  
GS VDS  
I
GSS  
Q1, Q2 MOSFET GatetoSource Leakage Current  
The current flowing from Gate to Source at the maximum allowed VGS  
The measurement conditions are described in the Table 3.  
I
DSS  
Q1, Q2 MOSFET DraintoSource Leakage Current  
Drain – Source current is measured in off state while providing the maximum allowed drainto-source voltage and the  
gate is shorted to the source.  
IDSS has a positive temperature coefficient.  
www.onsemi.com  
6
FAM65CR51DZ1, FAM65CR51DZ2  
Figure 3. Timing Measurement Variable Definition  
Table 8. PARAMETER OF SWITCHING CHARACTERISTICS  
TurnOn Delay (t  
)
d(on)  
This is the time needed to charge the input capacitance, Ciss, before the load current ID starts flowing.  
The measurement conditions are described in the Table 3.  
For signal definition please check Figure 3 above.  
Rise Time (t )  
The rise time is the time to discharge output capacitance, Coss.  
After that time the MOSFET conducts the given load current ID.  
The measurement conditions are described in the Table 3.  
For signal definition please check Figure 3 above.  
r
TurnOn Time (t  
)
Is the sum of turnondelay and rise time  
on  
TurnOff Delay (t  
)
td(off) is the time to discharge Ciss after the MOSFET is turned off.  
During this time the load current ID is still flowing  
d(off)  
The measurement conditions are described in the Table 3.  
For signal definition please check Figure 3 above.  
Fall Time (t )  
f
The fall time, tf, is the time to charge the output capacitance, Coss.  
During this time the load current drops down and the voltage VDS rises accordingly.  
The measurement conditions are described in the Table 3.  
For signal definition please check Figure 3 above.  
TurnOff Time (t  
)
Is the sum of turnoffdelay and fall time  
off  
www.onsemi.com  
7
 
FAM65CR51DZ1, FAM65CR51DZ2  
Figure 4. Dynamic Parameters of Silicon Diode (not in scale)  
Reference to Table 5: Parameter of Diode Electrical  
Specifications  
Instantaneous Reverse Current  
Current flowing in reverse after the reverse recovery time t ..  
rr  
(I )  
R
I is shown in Figure 4 above  
R
The behaviour over voltage can be seen in Figure 23.  
Instantaneous Forward Voltage  
Voltage drop over the diode in a dynamic condition given in Note 5.  
The voltage is measured after the given test pulse width.  
V
FM  
To avoid self heating effects a small duty cycle is used  
The behaviour over voltage can be seen in Figure 22.  
During this transition time,from conduction to blocking, the current is flowing in reverse direction  
and diode generates switching losses. The time is characterized on the scope by using the ta and  
tb approximation method  
Reverse Recovery Time  
t
rr  
ta + tb = trr parameter result in Table 3  
The parameter is dependent on temperature and initial dI/dt  
Figure 25 shows the dependency on dI/dt  
Time to reach peak reverse current  
ta is the transition time from the moment the current starts to flow in reverse direction until the  
diode voltage drops (also the reverse current peak)  
t
a
Time from peak IRRM to zero crossing  
b
tb is defined by using a linear approximation from the peak IRM to a projected zero crossing of IR  
by crossing IR at 25% of IRRM  
t
trr  
Reverse Recovered Charge  
rr  
The reverse recovery charge is defined as Q = I (t) dt  
rr  
r
Q
This parameter is highly depend on temperature and dI/dt  
See Figure 27.  
www.onsemi.com  
8
 
FAM65CR51DZ1, FAM65CR51DZ2  
TYPICAL CHARACTERISTICS MOSFETs  
1.2  
1.0  
0.8  
0.6  
0.4  
40  
35  
30  
25  
20  
15  
V
GS  
= 10 V  
10  
R
= 0.92°C/W  
q
JC  
R
= 0.92°C/W  
0.2  
0
q
JC  
5
0
0
3
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
175  
T , CASE TEMPERATURE (°C)  
T , CASE TEMPERATURE (°C)  
C
C
Figure 5. Normalized Power Dissipation vs.  
Case  
Figure 6. Maximum Continuous ID vs. Case  
Temperature  
V = 0 V  
GS  
60  
50  
40  
30  
20  
V
= 20 V  
DS  
100  
10  
1
T = 25°C  
J
T = 150°C  
T = 25°C  
J
J
0.1  
T = 150°C  
J
10  
0
T = 55°C  
J
0.01  
4
5
6
7
8
0
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
1.4  
V
, GATETOSOURCE VOLTAGE (V)  
V
, BODY DIODE FORWARD VOLTAGE (V)  
GS  
SD  
Figure 7. Transfer Characteristics  
Figure 8. Forward Diode  
100  
90  
80  
70  
60  
50  
40  
30  
20  
80  
70  
60  
50  
40  
30  
20  
V
= 15 V  
10 V  
GS  
8.0 V  
V
= 15 V  
GS  
10 V  
7.0 V  
6.0 V  
8.0 V  
7.0 V  
6.0 V  
5.5 V  
5.0 V  
5.5 V  
5.0 V  
10  
0
10  
0
1
2
3
4
5
6
7
8
9
10  
0
10 20 30  
40 50 60 70  
80 90 100  
V
DS  
, DRAINTOSOURCE VOLTAGE (V)  
V
DS  
, DRAINTOSOURCE VOLTAGE (V)  
Figure 9. On Region Characteristics (255C)  
Figure 10. On Region Characteristics (1505C)  
www.onsemi.com  
9
FAM65CR51DZ1, FAM65CR51DZ2  
TYPICAL CHARACTERISTICS MOSFETs  
200  
150  
100  
2.5  
I
V
= 20 A  
I
D
= 20 A  
D
= 10 V  
GS  
2.0  
1.5  
1.0  
T = 150°C  
J
T = 25°C  
J
50  
0
0.5  
0
5.5  
6.5  
7.5  
8.5  
9.5  
75 50 25  
0
25  
50 75 100 125 150 175  
V
GS  
, GATETOSOURCE VOLTAGE (V)  
T , JUNCTION TEMPERATURE (°C)  
J
Figure 11. OnResistance vs. GatetoSource  
Figure 12. RDS(norm) vs. Junction Temperature  
Voltage  
1.2  
1.0  
1.2  
1.1  
1.0  
I
D
= 3.3 mA  
I = 10 A  
D
0.8  
0.6  
0.9  
0.8  
75 50 25  
0
25 50 75 100 125 150 175  
75 50 25  
0
25 50 75 100 125 150 175  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 13. Normalized Gate Threshold Voltage  
vs. Temperature  
Figure 14. Normalized Breakdown Voltage vs.  
Temperature  
30  
25  
20  
15  
10  
100K  
10K  
1K  
C
ISS  
C
C
OSS  
100  
RSS  
V
= 0 V  
GS  
10  
1
5
0
f = 1 MHz  
0
100  
200  
300  
400  
500  
600  
700  
0.1  
1
10  
100  
1000  
V
DS  
, DRAINTOSOURCE VOLTAGE (V)  
V
DS  
, DRAINTOSOURCE VOLTAGE (V)  
Figure 15. Eoss vs. DraintoSource Voltage  
Figure 16. Capacitance Variation  
www.onsemi.com  
10  
FAM65CR51DZ1, FAM65CR51DZ2  
TYPICAL CHARACTERISTICS MOSFETs  
10  
8
0.060  
T
C
= 25°C  
V
DD  
= 130 V  
0.055  
0.050  
V
DD  
= 400 V  
V
GS  
= 10 V  
6
4
V
GS  
= 20 V  
0.045  
0.040  
2
0
0
40  
80  
120  
160  
0
20  
40  
60  
80  
Q , GATE CHARGE (nC)  
G
I , DRAIN CURRENT (A)  
D
Figure 17. Gate Charge Characteristics  
Figure 18. ONResistance Variation with Drain  
Current and Gage Voltage  
10,000  
1000  
For temperatures above 25°C  
V
= 10 V  
GS  
derate peak current as follows:  
100  
10  
150 * T  
C
Ǹ
I + I  
 
25  
125  
100 ms  
T
C
= 25°C  
T
= 25°C  
1 ms  
C
Limited I  
206 A  
DM  
Single Pulse  
R
10 ms  
100  
10  
= 0.92°C/W  
q
JC  
1
NOTES:  
= 0.92°C/W  
R
Limit  
DS(on)  
R
q
JC  
Thermal Limit  
Package Limit  
100 ms  
100  
Duty Cycle, D = t /t  
1
2
1 s  
Single Pulse  
Peak T = P  
x Z (t) + T  
q
JC C  
J
DM  
0.1  
1
10  
1000  
0.000001 0.00001 0.0001  
0.001  
0.01  
0.1  
1
V
DS  
, DRAINTOSOURCE VOLTAGE (V)  
t, PULSE WIDTH (sec)  
Figure 19. Safe Operating Area  
Figure 20. Peak Current Capability  
10  
1
Duty Cycle = 0.5  
0.2  
0.1  
0.05  
0.02  
0.1  
0.01 0.01  
Single Pulse  
0.00001  
0.001  
0.0001  
0.001  
0.01  
0.1  
1
10  
100  
t, RECTANGULAR PULSE DURATION (sec)  
Figure 21. Transient Thermal Impedance  
www.onsemi.com  
11  
FAM65CR51DZ1, FAM65CR51DZ2  
TYPICAL CHARACTERISTICS DIODES  
100  
1000  
100  
T = 100°C  
A
125°C  
10  
1
T = 125°C  
A
T = 25°C  
A
10  
0.1  
25°C  
0.01  
0.001  
1
0.0001  
0.2  
0.7  
1.2  
1.7  
2.2  
2.7  
3.2  
100  
500  
100  
200  
300  
400  
500  
600  
500  
500  
V , FORWARD VOLTAGE (V)  
V , REVERSE VOLTAGE (V)  
F
R
Figure 22. Typical Forward Voltage Drop vs.  
Forward Current  
Figure 23. Typical Reverse Current vs.  
Reverse Voltage  
500  
400  
300  
200  
150  
100  
125°C  
25°C  
50  
0
100  
0
0.1  
1
10  
100  
200  
300  
400  
V , REVERSE VOLTAGE (V)  
di/dt (A/ms)  
R
Figure 24. Capacitance  
Figure 25. Reverse Recovery Time vs. di/dt  
15  
10  
500  
400  
300  
200  
125°C  
125°C  
25°C  
5
0
25°C  
100  
0
100  
200  
300  
400  
100  
200  
300  
400  
di/dt (A/ms)  
di/dt (A/ms)  
Figure 26. Reverse Recovery Current vs. di/dt  
Figure 27. Reverse Recovery Charge vs. di/dt  
www.onsemi.com  
12  
FAM65CR51DZ1, FAM65CR51DZ2  
TYPICAL CHARACTERISTICS DIODES  
1
Duty Cycle = 0.5  
0.2  
0.1  
0.05  
0.1  
0.02  
0.01  
0.01  
Single Pulse  
0.001  
0.00001  
0.001  
0.1  
10  
1000  
t, RECTANGULAR PULSE DURATION (sec)  
Figure 28. Transient Thermal Impedance  
www.onsemi.com  
13  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
APMCDA16 / 12LD, AUTOMOTIVE MODULE  
CASE MODGG  
ISSUE C  
DATE 03 NOV 2021  
GENERIC  
MARKING DIAGRAM*  
XXXX = Specific Device Code  
ZZZ = Lot ID  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
AT  
Y
= Assembly & Test Location  
= Year  
XXXXXXXXXXXXXXXX  
ZZZ ATYWW  
NNNNNNN  
WW = Work Week  
NNN = Serial Number  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON94738G  
APMCDA16 / 12LD, AUTOMOTIVE MODULE  
PAGE 1 OF 1  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
APMCDB16 / 12LD, AUTOMOTIVE MODULE  
CASE MODGK  
ISSUE D  
DATE 04 NOV 2021  
GENERIC  
MARKING DIAGRAM*  
XXXX = Specific Device Code  
ZZZ = Lot ID  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
AT  
Y
W
= Assembly & Test Location  
= Year  
= Work Week  
XXXXXXXXXXXXXXXX  
ZZZ ATYWW  
NNNNNNN  
NNN = Serial Number  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON97134G  
APMCDB16 / 12LD, AUTOMOTIVE MODULE  
PAGE 1 OF 1  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2018  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FAM65CR51XZ1

Power Integrated Module (PIM) Boost Converter Stage for Multiphase and Semi-Bridgeless PFC
ONSEMI

FAM65CR51XZ2

Power Integrated Module (PIM) Boost Converter Stage for Multiphase and Semi-Bridgeless PFC
ONSEMI

FAM65HR51DS1

H-Bridge in APM16 Series for LLC and Phase-shifted DC-DC Converter
ONSEMI

FAM65HR51DS2

H-Bridge in APM16 Series for LLC and Phase-shifted DC-DC Converter
ONSEMI

FAM65HR51XS1

H-Bridge in APM16 Series for LLC and Phase-shifted DC-DC Converter
ONSEMI

FAM65HR51XS2

H-Bridge in APM16 Series for LLC and Phase-shifted DC-DC Converter
ONSEMI

FAM65V05DF1

智能功率模块 (IPM),AEC-Q,汽车,逆变器,650V,50A
ONSEMI

FAMAV3600ZC010

PCB Mount Filters
KEMET

FAMAV3600ZI010

PCB Mount Filters
KEMET

FAMAV3940ZA

PCB Mount Filters
KEMET

FAMAV3940ZB001

PCB Mount Filters
KEMET

FAMDL-10

Logic Buffered Single - Dual - Triple Independent Delay Modules
RHOMBUS-IND