FAN5361UMP15X [ONSEMI]

6MHz,600mA/750mA 同步降压稳压器;
FAN5361UMP15X
型号: FAN5361UMP15X
厂家: ONSEMI    ONSEMI
描述:

6MHz,600mA/750mA 同步降压稳压器

开关 光电二极管 稳压器
文件: 总18页 (文件大小:1151K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FAN5361  
6 MHz, 600 mA / 750 mA Synchronous Buck Regulator  
Description  
Features  
The FAN5361 is a 600 mA or 750 mA, step-dow n, sw itching  
voltage regulator that delivers a fixed output from a 2.3 V to  
5.5 V input voltage supply. Using a proprietary architecture  
w ith synchronous rectification, the FAN5361 is capable of  
6 MHz Fixed-Frequency Operation  
35 µA Typical Quiescent Current  
Best-in-Class Load Transient Response  
Best-in-Class Efficiency  
delivering  
a peak efficiency of 92%, w hile maintaining  
600 mA or 750 mA Output Current Capability  
2.3 V to 5.5 V Input Voltage Range  
1.0 to 1.90 V Fixed Output Voltage  
Low Ripple Light-Load PFM Mode  
Forced PWM and External Clock Synchronization  
Internal Soft-Start  
efficiency over 80% at load currents as low as 1 mA.  
The regulator operates at a nominal fixed frequency of  
6 MHz, w hich reduces the value of the external components  
to 470 nH for the output inductor and 4.7 µF for the output  
capacitor. The PWM modulator can be synchronized to an  
external frequency source.  
Input Under-Voltage Lockout (UVLO)  
Thermal Shutdow n and Overload Protection  
6-bump WLCSP, 0.4 mm Pitch  
At moderate and light loads, pulse frequency modulation is  
used to operate the device in pow er-save mode w ith a  
typical quiescent current of 35 µA. Even w ith such a low  
quiescent current, the part exhibits excellent transient  
response during large load sw ings. At higher loads, the  
system automatically sw itches to fixed-frequency control,  
operating at 6 MHz. In shutdow n mode, the supply current  
drops below 1 µA, reducing pow er consumption. For  
applications that require minimum ripple or fixed frequency,  
PFM mode can be disabled using the MODE pin.  
6-pin 2 x 2 mm UMLP  
Applications  
Cell Phones, Smart Phones  
Tablets, Netbooks®, Ultra-Mobile PCs  
3G, LTE, WiMAX™, WiBro®, and WiFi® Data Cards  
Gaming Devices, Digital CamerasDC/DC Micro Modules  
The FAN5361 is available in 6-bump, 0.4 mm pitch, Wafer-  
Level Chip-Scale Package (WLCSP) and a 6-lead 2 x 2 mm  
ultra-thin MLP package (UMLP).  
Typical Applications  
GND  
EN  
FB  
MODE  
SW  
VIN  
EN  
1
2
3
6
5
4
A1 A2  
B1 B2  
C1 C2  
COUT  
L1  
L1  
4.7F  
CIN  
2.2F  
SW  
CIN  
2.2F  
(AGND)  
470nH  
470nH  
FB  
GND  
VIN  
MODE  
COUT  
4.7F  
Figure 1. Typical Applications  
All trademarks are the property of their respective owners.  
© 2008 Semiconductor Components Industries, LLC.  
October-2017, Rev. 2  
Publication Order Number:  
FAN5361/D  
 
OrderingInformation  
Output  
Part Number  
Package  
Temperature Range  
Packing  
Voltage(1)  
FAN5361UC123X  
1.233 V  
WLCSP-6, 0.4 mm Pitch  
FAN5361UC182X  
FAN5361UC19X  
1.820 V  
1.900 V  
1.233 V  
1.500 V  
1.820 V  
40 to +85°C  
Tape and Reel  
FAN5361UMP123X  
FAN5361UMP15X  
FAN5361UMP182X  
6-Lead, 2 x 2 mm UMLP  
Note:  
1. Other voltage options available on request. Contact a ON Semiconductor representative.  
Pin Configurations  
A1  
B1  
C1  
A2  
B2  
C2  
A2  
B2  
C2  
A1  
B1  
C1  
MODE  
SW  
VIN  
EN  
VIN  
EN  
MODE  
SW  
FB  
GND  
GND  
FB  
Figure 2. WLCSP, Bumps Facing Down  
Figure 3. WLCSP, Bumps Facing Up  
1
2
3
6
FB  
GND  
P1  
(GND)  
5
SW  
EN  
4
VIN  
MODE  
Figure 4. UMLP, Leads Facing Down  
Pin Definitions  
Pin #  
Name  
Description  
WLCSP UMLP  
MODE. Logic 1 on this pin forces the IC to stay in PWM mode. A logic 0 allow s the IC to  
automatically sw itch to PFM during light loads. The regulator also synchronizes its sw itching  
frequency to four times the frequency provided on this pin. Do not leave this pin floating. When  
tying HIGH, use at least 1kΩ series resistor if VIN is expected to exceed 4.5 V.  
A1  
3
MODE  
B1  
C1  
C2  
2
1
6
SW Switching Node. Connect to output inductor.  
FB Feedback / VOUT. Connect to output voltage.  
GND Ground. Pow er and IC ground. All signals are referenced to this pin.  
Enable. The device is in shutdow n mode w hen voltage to this pin is <0.4 V and enabled w hen  
>1.2 V. Do not leave this pin floating. When tying HIGH, use at least 1 kΩ series resistor if VIN is  
expected to exceed 4.5 V.  
B2  
A2  
5
4
EN  
VIN Input Voltage. Connect to input pow er source.  
www.onsemi.com  
2
 
Absolute MaximumRatings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above  
the recommended operating conditions and stressing the parts to these levels is not recommended. In addition, extended  
exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings  
are stress ratings only.  
Symbol  
VIN  
Parameter  
Min.  
0.3  
0.3  
0.3  
0.3  
Max.  
7.0  
VIN + 0.3(2)  
VIN + 0.3(2)  
VIN + 0.3(2)  
Unit  
Input Voltage  
V
V
V
V
VSW  
Voltage on SW Pin  
EN and MODE Pin Voltage  
Other Pins  
VCTRL  
Human Body Model per JESD22-A114  
Charged Device Model per JESD22-C101  
4.0  
1.5  
Electrostatic Discharge  
Protection Level  
ESD  
kV  
TJ  
TSTG  
TL  
Junction Temperature  
Storage Temperature  
40  
65  
+150  
+150  
+260  
°C  
°C  
°C  
Lead Soldering Temperature, 10 Seconds  
Note:  
2. Lesser of 7 V or VIN+0.3 V.  
RecommendedOperatingConditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended operating  
conditions are specified to ensure optimal performance to the datasheet specifications. ON Semiconductor does not recommend  
exceeding them or designing to Absolute Maximum Ratings.  
Symbol  
Parameter  
Min.  
2.3  
0
Typ.  
Max.  
5.5  
Unit  
V
VCC  
IOUT  
L
Supply Voltage Range  
Output Current  
Inductor  
600  
mA  
µH  
µF  
µF  
°C  
0.47  
2.2  
C
IN  
Input Capacitor  
Output Capacitor  
COUT  
TA  
1.6  
40  
40  
4.7  
12.0  
+85  
Operating Ambient Temperature  
Operating Junction Temperature  
TJ  
+125  
°C  
ThermalProperties  
Junction-to-ambient thermal resistance is a function of application and board layout. This data is measured w ith four-layer 1s2p  
boards in accordance to JEDEC standard JESD51. Special attention must be paid not to exceed junction temperature TJ(max) at a  
given ambient temperate TA.  
Symbol  
Parameter  
Typical  
150  
Unit  
°C/W  
°C/W  
WLCSP  
UMLP  
Junction-to-Ambient Thermal Resistance  
JA  
49  
www.onsemi.com  
3
 
ElectricalCharacteristics  
Minimum and maximum values are at VIN = VEN = 2.3V to 5.5V, VMODE = 0V (AUTO Mode), TA = -40°C to +85°C; circuit of  
Figure 1, unless otherw ise noted. Typical values are at TA = 25°C, VIN = VEN = 3.6 V.  
Symbol  
Parameter  
Conditions  
Min.  
Typ.  
Max.  
Unit  
Power Supplies  
No Load, Not Sw itching  
PWM Mode  
35  
6
55  
µA  
mA  
µA  
V  
IQ  
Quiescent Current  
I
Shutdow n Supply Current  
VIN = 3.6 V, EN = GND  
Rising VIN  
0.05  
2.15  
150  
1.00  
2.25  
(SD)  
VUVLO  
Under-Voltage Lockout Threshold  
VUVHYST Under-Voltage Lockout Hysteresis  
mV  
Logic Inputs: EN and MODE Pins  
VIH  
VIL  
Enable HIGH-Level Input Voltage  
Enable LOW-Level Input Voltage  
Logic Input Hysteresis Voltage  
Enable Input Leakage Current  
1.2  
V
V
0.4  
VLHYST  
100  
mV  
µA  
I
IN  
Pin to VIN or GND  
0.01  
1.00  
Switching and Synchronization  
fSW  
Sw itching Frequency(3)  
MODE Synchronization Range(3)  
VIN = 3.6 V, TA = 25°C  
5.4  
1.3  
6.0  
1.5  
6.6  
1.7  
MHz  
MHz  
fSYNC  
Square Wave at MODE Input  
Regulation  
ILOAD = 0 to 750 mA (4)  
PWM Mode(4)  
1.832  
1.832  
1.784  
1.784  
1.470  
1.470  
1.207  
1.207  
1.900  
1.900  
1.820  
1.820  
1.500  
1.500  
1.233  
1.233  
180  
1.957  
1.938  
1.875  
1.856  
1.545  
1.530  
1.272  
1.259  
300  
1.900 V  
ILOAD = 0 to 600 mA  
PWM Mode  
1.820 V  
Output Voltage  
VO  
V
Accuracy  
1.500 V  
ILOAD = 0 to 600 mA  
PWM Mode  
ILOAD = 0 to 600 mA  
PWM Mode  
1.233 V  
tSS  
Soft-Start  
From EN Rising Edge  
µs  
Output Driver  
PMOS On Resistance  
VIN = VGS = 3.6 V  
VIN = VGS = 3.6 V  
VOUT = 1.233 V, 1.5 V, 1.82 V  
VOUT = 1.9 V  
350  
225  
1100  
1375  
150  
15  
RDS(on)  
m  
NMOS On Resistance  
900  
1250  
1550  
PMOS Open-Loop Peak Current  
Limit(5)  
ILIM(OL)  
mA  
1180  
TTSD  
THYS  
Thermal Shutdow n  
CCM Only  
°C  
°C  
Thermal Shutdow n Hysteresis  
Notes:  
3. Limited by the effect of tOFF minimum (see Figure 14 and Figure 15 in Typical Performance Characteristics).  
4. Output voltage accuracy minimum: 1.862 V for VIN 2.7 to 5.5 V on 1.9 V option.  
5. Refer to Operation Description and Typical Characteristics for closed-loop data.  
www.onsemi.com  
4
 
 
 
Typical Performance Characteristics  
Unless otherw ise noted, VIN = VEN = 3.6 V, VMODE = 0 V (AUTO Mode), VOUT = 1.82 V, TA = 25°C.  
100%  
95%  
90%  
85%  
80%  
75%  
100%  
95%  
90%  
85%  
80%  
75%  
Auto 2.3VIN  
25C  
85C  
-30C  
Auto 2.7VIN  
Auto 3.6VIN  
Auto 4.2VIN  
70%  
65%  
60%  
55%  
50%  
70%  
65%  
60%  
55%  
50%  
1
10  
100  
1000  
1
10  
100  
1000  
I LOAD Output Current (mA)  
I LOAD Output Current (mA)  
Figure 5. Efficiency vs. Load Current and Input Supply Figure 6. Efficiency vs. Load Current and Temperature  
100%  
95%  
90%  
85%  
100%  
95%  
90%  
85%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
80%  
75%  
70%  
65%  
60%  
55%  
50%  
VIN=2.3V  
VIN=2.7V  
VIN=3.6V  
VIN=4.2V  
Auto PFM/PWM  
Forced PWM  
1
10  
100  
1000  
1
10  
100  
1000  
I LOAD Output Current (mA)  
I LOAD Output Current (mA)  
Figure 7. 1.233 VOUT Efficiency vs. Load Current  
and Supply  
Figure 8. Efficiency, Auto PWM/PFM vs. Forced PWM  
1.248  
1.84  
1.83  
VIN=2.3V  
1.243  
VIN=2.7V  
VIN=3.6V  
1.238  
VIN=4.2V  
1.82  
1.233  
1.228  
1.223  
VIN=2.3V  
VIN=2.7V  
1.81  
VIN=3.6V  
VIN=4.2V  
1.80  
0.0  
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
0
100  
200  
300  
400  
500  
600  
Load Current (mA)  
I LOAD Output Current (A)  
Figure 9. Load Regulation  
Figure 10. 1.233 VOUT Load Regulation vs. Input Supply  
www.onsemi.com  
5
Typical Performance Characteristics (Continued)  
Unless otherw ise noted, VIN = VEN = 3.6 V, VMODE = 0 V (AUTO Mode), VOUT = 1.82 V, TA = 25°C.  
1.830  
45  
40  
3.6VIN  
5.5VIN  
2.5VIN  
1.825  
35  
30  
1.820  
25  
20  
1.815  
15  
10  
5
1.810  
1.805  
Auto PWM/PFM  
Forced PWM  
0
1
10  
100  
1,000  
0
100  
200  
300  
400  
500  
600  
I LOAD Output Current (mA)  
Load Current (mA)  
Figure 11. Load Regulation, Auto PFM / PWM and  
Forced PWM  
Figure 12. 1.82 VOUT Peak-to-Peak Output Voltage  
Ripple  
7
30  
FPWM Mode  
6
5
4
3.6VIN  
25  
5.5VIN  
2.5VIN  
20  
15  
10  
5
3
VIN>2.9V  
VIN=2.7V  
2
1
VIN=2.5V  
VIN=2.3V  
0
0
100  
200  
300  
400  
500  
600  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Load Current (mA)  
Load Current (A)  
Figure 13. 1.233 VOUT Peak-to-Peak Output Voltage  
Ripple  
Figure 14. Effect of tOFF(MIN) on Reducing Switching  
Frequency  
7
350  
FPWM Mode  
6
5
4
3
300  
Always PWM  
250  
200  
The switching mode changes  
at these borders  
150  
VIN>2.4V  
100  
2
Always PFM  
50  
1
PFM border  
VIN=2.3V  
PWMborder  
0
0
2.5  
3.0  
3.5  
4.0  
4.5  
5.0 5.5  
0
0.1  
0.2  
0.3  
0.4  
0.5  
0.6  
Input Voltage (V)  
Load Current (A)  
Figure 16. PFM / PWM Boundaries  
Figure 15. 1.233 VOUT Effect of tOFF(MIN) on Reducing  
Switching Frequency  
www.onsemi.com  
6
 
Typical Performance Characteristics (Continued)  
Unless otherw ise noted, VIN = VEN = 3.6 V, VMODE = 0 V (AUTO Mode), VOUT = 1.82 V, TA = 25°C.  
42  
250  
Always PWM  
40  
200  
The switching mode changes  
at these borders  
38  
150  
36  
100  
Always PFM  
34  
50  
PFM border  
32  
PWM border  
VEN=VIN  
VEN=1.8V  
0
30  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0 5.5  
2.0  
2.5  
3.0  
3.5  
4.0  
4.5  
5.0  
5.5  
Input Voltage(V)  
VIN Input Voltage (V)  
Figure 17. 1.233 VOUT PFM / PWM Boundaries  
Figure 18. Quiescent Current vs. Input Voltage  
0.20  
0.18  
VIN=5.5V  
VEN=0V  
0.16  
0.14  
0.12  
0.10  
0.08  
0.06  
0.04  
0.02  
0.00  
-40  
-20  
0
20  
40  
60  
80  
Ambient Temperature (°C)  
Figure 19. Shutdown Current vs. Temperature  
www.onsemi.com  
7
Typical Performance Characteristics (Continued)  
Unless otherw ise noted, VIN = VEN = 3.6 V, VMODE = 0 V (AUTO Mode), VOUT = 1.82 V, TA = 25°C, 5µs/div. horizontal sw eep.  
Figure 20. Line Transient 3.3 VIN to 3.9 VIN,  
50 mA Load, 10 µs/div.  
Figure 21. Line Transient 3.3 VIN to 3.9 VIN,  
250 mA Load, 10 µs/div.  
Figure 22.  
Combined Line/Load Transient 3.9 to  
Figure 23. Combined Line/Load Transient 3.3 to 3.9 VIN  
Combined with 400 mA to 40 mA Load Transient  
3.3 VIN Combined with 40 mA to 400 mA Load Transient  
Figure 24. Load Transient 0 to 150 mA, 2.5 VIN  
Figure 25. Load Transient 50 to 250 mA, 2.5 VIN  
www.onsemi.com  
8
Typical Performance Characteristics (Continued)  
Unless otherw ise noted, VIN = VEN = 3.6 V, VMODE = 0 V (AUTO Mode), VOUT = 1.82 V, TA = 25°C, 5 µs/div. horizontal sw eep.  
Figure 26. Load Transient 150 to 400 mA, 2.5 VIN  
Figure 27. Load Transient 0 to 150 mA, 3.6 VIN  
Figure 28. Load Transient 50 to 250 mA, 3.6 VIN  
Figure 29. Load Transient 150 to 400 mA, 3.6 VIN  
Figure 30. Load Transient 0 to 150 mA, 4.5 VIN  
Figure 31. Load Transient 50 to 250 mA, 4.5 VIN  
Figure 32. Load Transient 150 to 400 mA, 4.5 VIN  
www.onsemi.com  
9
Typical Performance Characteristics (Continued)  
Unless otherw ise noted, VIN = VEN = 3.6 V, VMODE = 0 V (AUTO Mode), VOUT = 1.82 V, TA = 25°C, 5 µs/div. horizontal sw eep.  
Figure 33. Metallic Short Applied at VOUT, 50 μs/div.  
Figure 34. Metallic Short Applied at VOUT  
Figure 35. Over-Current Fault Response,  
Figure 36. Over-Current Fault Response, RLOAD = 1 Ω  
RLOAD = 1 Ω, 50 μs/div.  
Figure 37. Overload Recovery to Light Load, 50 μs/div.  
Figure 38. Soft-Start, RLOAD = 50 Ω, 20 μs/div.  
www.onsemi.com  
10  
Typical Performance Characteristics (Continued)  
Unless otherw ise noted, VIN = VEN = 3.6 V, VMODE = 0 V (AUTO Mode), VOUT = 1.82 V, TA = 25°C.  
SW  
Figure 39. SW-Node Jitter (Infinite Persistence), ILOAD = 200 mA, 50 ns/div.  
Figure 40. Power Supply Rejection Ratio at 300 mA Load  
www.onsemi.com  
11  
OperationDescription  
The FAN5361 is a 600 mA or 750 mA , step-dow n, sw itching  
voltage regulator that delivers a fixed output from an input  
voltage supply of 2.3 V to 5.5 V. Using a proprietary  
architecture w ith synchronous rectification, the FAN5361 is  
capable of delivering a peak efficiency of 92%, w hile  
maintaining efficiency over 80% at load currents as low as  
1 mA. The regulator operates at a nominal frequency of  
6 MHz at full load, w hich reduces the value of the external  
components to 470 nH for the inductor and 4.7 µF for the  
output capacitor.  
To prevent shut-dow n during soft-start, the follow ing condition  
must be met:  
(2)  
I
I  
I  
DISP  
LOAD MAX(DC)  
w here IMAX(DC) is the maximum load current the IC is  
guaranteed to support (600 mA or 750 mA).  
Table 1 show s combinations of COUT that allow the IC to start  
successfully w ith the minimum RLOAD that can be supported.  
Table 1. Minimum RLOAD Values for Soft-Start with  
Various COUT Values  
Control Scheme  
The FAN5361 uses a proprietary, non-linear, fixed-frequency  
PWM modulator to deliver a fast load transient response,  
w hile maintaining a constant sw itching frequency over a w ide  
range of operating conditions. The regulator performance is  
independent of the output capacitor ESR, allow ing for the use  
of ceramic output capacitors. Although this type of operation  
normally results in a sw itching frequency that varies w ith input  
voltage and load current, an internal frequency loop holds the  
sw itching frequency constant over a large range of input  
voltages and load currents.  
COUT  
Minimum RLOAD  
VOUT / 0.60  
4.7 F, 0402  
2 X 4.7 F, 0402  
10 F, 0603  
10 F, 0805  
VOUT / 0.60  
VOUT / 0.60  
VOUT / 0.50  
Startup into Large COUT  
Multiple soft-start cycles are required for no-load startup if  
COUT is greater than 15 F. Large COUT requires light initial  
load to ensure the FAN5361 starts appropriately. The IC  
shuts dow n for 85 s w hen IDISP exceeds ILIMIT for more than  
21 s of current limit. The IC then begins a new soft-start  
cycle. Since COUT retains its charge w hen the IC is off, the IC  
reaches regulation after multiple soft-start attempts.  
For very light loads, the FAN5361 operates in Discontinuous  
Current Mode (DCM) single-pulse PFM mode, w hich  
produces low output ripple compared w ith other PFM  
architectures. Transition betw een PWM and PFM is  
seamless, w ith a glitch of less than 18 mV at VOUT during the  
transition betw een DCM and CCM modes.  
Combined  
w ith  
exceptional  
transient  
response  
characteristics, the very low quiescent current of the  
controller (35 µA) maintains high efficiency; even at very light  
loads, w hile preserving fast transient response for  
applications requiring tight output regulation.  
MODE Pin  
Logic 1 on this pin forces the IC to stay in PWM mode. A  
logic 0 allow s the IC to automatically sw itch to PFM during  
light loads. If the MODE pin is toggled, the converter  
synchronizes its sw itching frequency to four times the  
frequency on the mode pin (fMODE).  
Enable and Soft-Start  
When EN is LOW, all circuits in FAN5361 are off and the IC  
draw s ~50 nA of current. When EN is HIGH and VIN is above  
its UVLO threshold, the regulator begins a soft-start cycle. The  
output ramp during soft-start is a fixed slew rate of 50 mV/s  
from 0 to 1 VOUT, then 12.5 mV/s until the output reaches its  
setpoint. Regardless of the state of the MODE pin, PFM mode  
is enabled to prevent current from being discharged from COUT  
if soft-start begins w hen COUT is charged.  
The MODE pin is internally buffered w ith a Schmitt trigger,  
w hich allow s the MODE pin to be driven w ith slow rise and  
fall times. An asymmetric duty cycle for frequency  
synchronization is also permitted as long as the minimum  
time below VIL(MAX) or above VIH(MAX) is 100 ns.  
Current Limit, Fault Shutdown, and Restart  
A heavy load or short circuit on the output causes the current  
in the inductor to increase until a maximum current threshold  
is reached in the high-side sw itch. Upon reaching this point,  
the high-side sw itch turns off, preventing high currents from  
causing damage. The regulator continues to limit the current  
cycle-by-cycle. After 21 µs of current limit, the regulator  
triggers an over-current fault, causing the regulator to shut  
The IC may fail to start if heavy load is applied during startup  
and/or if excessive COUT is used. This is due to the current-  
limit fault response, w hich protects the IC in the event of an  
over-current condition present during soft-start.  
The current required to charge COUT during soft-start is  
commonly referred to as “displacement current” is given as:  
dow n for about 85s before attempting a restart.  
dV  
If the fault w as caused by short circuit, the soft-start circuit  
attempts to restart and produces an over-current fault after  
about 32 s, w hich results in a duty cycle of less than 30%,  
limiting pow er dissipation.  
IDISP COUT  
(1)  
dt  
dV  
w here the  
term refers to the soft-start slew rate above.  
dt  
The closed-loop peak-current limit, ILIM(PK), is not the same as  
the open-loop tested current limit, ILIM(OL), in the Electrical  
Characteristics table. This is primarily due to the effect of  
propagation delays of the IC current limit comparator.  
www.onsemi.com  
12  
 
When VIN is LOW, fixed sw itching is maintained as long as  
Under-Voltage Lockout (UVLO)  
VOUT  
When EN is HIGH, the under-voltage lockout keeps the part  
from operating until the input supply voltage rises high  
enough to properly operate. This ensures no misbehavior of  
the regulator during startup or shutdow n.  
.
1tOFF (MIN) fSW 0.7  
V
IN  
The sw itching frequency drops w hen the regulator cannot  
provide sufficient duty cycle at 6MHz to maintain regulation.  
This occurs w hen VOUT is greater than or equal to 1.82 V and  
VIN is below 2.9 V at high load currents (see Figure 15).  
Thermal Shutdown (TSD)  
When the die temperature increases, due to a high load  
condition and/or a high ambient temperature, the output  
sw itching is disabled until the temperature on the die has  
fallen sufficiently. The junction temperature at w hich the  
thermal shutdow n activates is nominally 150°C w ith a 15°C  
hysteresis.  
The calculation for sw itching frequency is given by:  
1
(3)  
(4)  
fSW min  
,6MHz  
tSW(MAX)  
w here:  
Minimum Off-Time Effect on Switching  
Frequency  
VOUT IOUT ROFF  
IOUT RON VOUT  
tSW(MAX) 50ns 1  
tOFF(MIN) is 50 ns. This imposes constraints on the maximum  
V
IN  
VOUT  
that the FAN5361 can provide, or the maximum  
w here:  
VIN  
output voltage it can provide at low VIN w hile maintaining a  
fixed sw itching frequency in PWM mode.  
ROFF  
RON  
=
RDSON _N DCRL  
=
RDSON _P DCRL  
www.onsemi.com  
13  
ApplicationsInformation  
I2  
12  
2
Selecting the Inductor  
(8)  
IRMS  
IOUT(DC)   
The output inductor must meet both the required inductance  
and the energy handling capability of the application. The  
inductor value affects average current limit, the PWM-to-  
PFM transition point, output voltage ripple, and efficiency.  
The increased RMS current produces higher losses through  
the RDS(ON) of the IC MOSFETs, as w ell as the inductor DCR.  
Increasing the inductor value produces low er RMS currents,  
but degrades transient response. For a given physical  
inductor size, increased inductance usually results in an  
inductor w ith low er saturation current and higher DCR.  
The ripple current (∆I) of the regulator is:  
VOUT  
VIN  
VIN VOUT  
L fSW  
I   
(5)  
Table 2 show s the effects of inductance higher or low er than  
the recommended 470 nH on regulator performance.  
The maximum average load current, IMAX(LOAD), is related to  
the peak current limit, ILIM(PK) by the ripple current, given by:  
Output Capacitor  
I  
2
Table 3 suggests 0402 capacitors. 0603 capacitors may  
further improve performance in that the effective capacitance  
is higher. This improves transient response and output ripple.  
(6)  
IMAX(LOAD) ILIM(PK)  
The transition betw een PFM and PWM operation is  
determined by the point at w hich the inductor valley current  
crosses zero. The regulator DC current w hen the inductor  
current crosses zero, IDCM, is:  
Increasing COUT has no effect on loop stability and can  
therefore be increased to reduce output voltage ripple or to  
improve transient response. Output voltage ripple, ∆VOUT, is:  
1
I  
2
VOUT  I   
ESR  
(7)  
IDCM  
(9)  
8COUT fSW  
The FAN5361 is optimized for operation w ith L = 470 nH, but  
is stable w ith inductances up to 1.2 H (nominal). Up to  
2.2 H(nominal) may be used; how ever, in that case, VIN must  
be greater than or equal to 2.7 V. The inductor should be rated  
Input Capacitor  
The 2.2 F ceramic input capacitor should be placed as  
close as possible betw een the VIN pin and GND to minimize  
the parasitic inductance. If a long w ire is used to bring pow er  
to the IC, additional “bulk” capacitance (electrolytic or  
tantalum) should be placed betw een CIN and the pow er  
source lead to reduce ringing that can occur betw een the  
inductance of the pow er source leads and CIN.  
to maintain at least 80% of its value at ILIM(PK)  
.
Efficiency is affected by the inductor DCR and inductance  
value. Decreasing the inductor value for a given physical size  
typically decreases the DCR; but since ∆I increases, the RMS  
current increases, as do the core and skin effect losses.  
The effective capacitance value decreases as VIN increases  
due to DC bias effects.  
Table 2. Effects of Changes in Inductor Value (from 470 nH Recommended Value) on Regulator Performance  
Inductor Value  
Increase  
IMAX(LOAD)  
Increase  
Decrease  
VOUT  
Decrease  
Increase  
Transient Response  
Degraded  
Decrease  
Improved  
Table 3. Recommended Passive Components and their Variation Due to DC Bias  
Component Description  
Vendor  
Min. Typ. Max.(6)  
Comment  
Murata LQM21PNR47MC0  
Murata LQM21PNR54MG0  
Hitachi Metals HSLI-201210AG-R47  
470 nH, 2012,  
L1  
Minimum value occurs  
at maximum current  
300 nH 470 nH 520 nH  
90 m,1.1 A  
Murata or Equivalent  
GRM155R60J225ME15  
GRM188R60J225KE19D  
Decrease primarily due  
to DC bias (VIN) and  
elevated temperature  
2.2 F, 6.3 V,  
C
1.0 F 2.2 F 2.4 F  
1.6 F 4.7 F 5.2 F  
IN  
X5R, 0402  
4.7 F, X5R,  
Murata or Equivalent GRM155R60G475M  
GRM155R60E475ME760  
Decrease primarily due  
COUT  
0402  
to DC bias (VOUT)  
Note:  
6. Higher inductance values are also acceptable. See Selecting the Inductorinstructions in Applications Information.  
www.onsemi.com  
14  
 
 
 
PCB LayoutGuidelines  
There are only three external components: the inductor and  
the input and output capacitors. For any buck sw itcher IC,  
including the FAN5361, it is important to place a low -ESR  
input capacitor very close to the IC, as show n in Figure 41.  
The input capacitor ensures good input decoupling, w hich  
helps reduce noise appearing at the output terminals and  
ensures that the control sections of the IC do not behave  
erratically due to excessive noise. This reduces sw itching  
cycle jitter and ensures good overall performance. It is  
important to place the common GND of CIN and COUT as close  
as possible to the FAN5361 C2 terminal. There is some  
flexibility in moving the inductor further aw ay from the IC; in  
that case, VOUT should be considered at the COUT terminal.  
VIN  
A1  
B1  
A2  
B2  
CIN  
C1 C2  
470nH  
GND  
COUT  
VOUT  
Figure 41. PCB Layout Guidance  
The table below pertains to the Marketing Outline Draw ing on the follow ing page.  
Product-SpecificDimensions  
Product  
D
E
X
Y
FAN5361UCX  
1.370 ±0.040  
0.970 ±0.040  
0.285  
0.285  
www.onsemi.com  
15  
 
PhysicalDimensions  
F
0.03 C  
E
A
2X  
0.40  
B
D
A1  
BALL A1  
INDEX AREA  
(Ø0.20)  
Bottom of Cu Pad  
0.40  
F
(Ø0.30)  
Solder Mask  
Opening  
0.03 C  
2X  
TOP VIEW  
RECOMMENDED LAND PATTERN  
(NSMD PAD TYPE)  
0.06 C  
0.378±0.018  
0.208±0.021  
0.05 C  
0.586±0.039  
E
SEATING PLANE  
D
C
NOTES:  
SIDE VIEWS  
A. NO JEDEC REGISTRATION APPLIES.  
B. DIMENSIONS ARE IN MILLIMETERS.  
Ø0.260±0.010  
6X  
C. DIMENSIONS AND TOLERANCES PER  
ASMEY14.5M, 2009.  
0.40  
0.005  
C A B  
D. DATUM C, THE SEATING PLANE IS DEFINED  
BY THE SPHERICAL CROWNS OF THE BALLS.  
C
B
A
(Y) +/-0.018  
F
E. PACKAGE TYPICAL HEIGHT IS 586 MICRONS  
±39 MICRONS (547-625 MICRONS).  
0.40  
F. FOR DIMENSIONS D, E, X, AND Y SEE  
PRODUCT DATASHEET.  
1
2
(X) +/-0.018  
G. DRAWING FILENAME: UC006ACrev5.  
BOTTOM VIEW  
Figure 42. 6-Bump WLCSP, 0.4mm Pitch  
www.onsemi.com  
16  
Physical Dimensions  
0.10 C  
2.0  
A
2X  
B
1.60  
1.50  
2.0  
6
4
0.50  
0.10 C  
2X  
1.10  
1.40 2.40  
PIN1  
IDENT  
TOP VIEW  
1
3
0.30  
0.55 MAX  
0.10 C  
0.65  
(0.15)  
C
RECOMMENDED LAND PATTERN  
0.08 C  
0.05  
0.00  
SEATING  
PLANE  
SIDE VIEW  
NOTES:  
1.50  
MAX  
A. OUTLINE BASED ON JEDEC REGISTRATION  
MO-229, VARIATION VCCC.  
PIN1  
IDENT  
1
3
B. DIMENSIONS ARE IN MILLIMETERS.  
1.10  
MAX  
C. DIMENSIONS AND TOLERANCES PER  
ASME Y14.5M, 1994.  
0.35  
0.25  
6x  
D. DRAWING FILENAME: MKT-UMLP06Crev1  
6
4
0.35  
0.25  
6x  
0.65  
1.30  
0.10 C A B  
0.05 C  
BOTTOM VIEW  
Figure 43. 6-Lead, 2 x 2 mm, Ultra-Thin Molded Leadless Package (UMLP)  
www.onsemi.com  
17  
ON Semiconductor and the ONSemiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or  
other countries. ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s  
product/patent coverage maybe accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right to make changes without further notice to anyproducts  
herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitabilityof its products for anyparticular purpose, nor does ON Semiconductor assume any  
liabilityarising out ofthe application or use of anyproduct or circuit, and specificallydisclaimsanyand all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for itsproductsand applicationsusing ON Semiconductor products, including compliance with all laws, regulationsand safetyrequirements or standards, regardless of  
any  
support  
or  
applications  
information  
provided  
by  
ON Semiconductor. “Typical” parameterswhich maybe provided in ONSemiconductor data sheets and/or specifications can and do varyin different applications and actual performance  
may varyover time. All operating parameters, including “Typicals” must be validated for each customer application bycustomer’s technical experts. ON Semiconductor does not conveyany  
license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any  
FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or anydevices intended for implantation in the human body. Should Buyer  
purchase or use ON Semiconductor products for any such unintended or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees,  
subsidiaries, affiliates, and distributorsharmless against allclaims, costs, damages, and expenses, and reasonable attorney fees arising out of, directlyor indirectly, anyclaim of personal  
injuryor death associated with such unintended orunauthorized use, even if such claim alleges that ONSemiconductor was negligent regarding the design or manufacture of the part. ON  
Semiconductor is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in anymanner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 303-675-2175 or 800-344-3860 Toll Free USA/Canada Europe, Middle East and Africa Technical Support:  
N. American Technical Support: 800-282-9855 Toll Free  
USA/Canada.  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Fax : 303-675-2176 or 800-344-3867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81-3-5817-1050  
For additional information, please contact your local  
Sales Representative  
www.onsemi.com  
18  

相关型号:

FAN5361UMP182X

6 MHz, 600 mA / 750 mA Synchronous Buck Regulator
ONSEMI

FAN5361UMP18X

6MHz, 600mA TinyBuck⑩ Synchronous Buck Regulator
FAIRCHILD

FAN5361_10

6MHz, 600mA / 750mA Synchronous Buck Regulator
FAIRCHILD

FAN5362

3MHz, 500mA / 750mA Synchronous Buck Regulator
FAIRCHILD

FAN5362UC21X

3MHz, 500mA / 750mA Synchronous Buck Regulator
FAIRCHILD

FAN5362UC25X

3MHz, 500mA / 750mA Synchronous Buck Regulator
FAIRCHILD

FAN5362UC27X

3MHz, 500mA / 750mA Synchronous Buck Regulator
FAIRCHILD

FAN5362UC29X

3MHz, 500mA / 750mA Synchronous Buck Regulator
FAIRCHILD

FAN5362UC29X

3MHz, 500mA / 750mA 同步降压稳压器
ONSEMI

FAN5362UC33X

3MHz, 500mA / 750mA Synchronous Buck Regulator
FAIRCHILD

FAN5362UC33X

3MHz, 500mA / 750mA 同步降压稳压器
ONSEMI

FAN5362UMP29X

3MHz, 500mA / 750mA Synchronous Buck Regulator
FAIRCHILD