FAN73912AMX [ONSEMI]

1200V High-Current, High & Low-Side, Gate-Driver IC (HVIC);
FAN73912AMX
型号: FAN73912AMX
厂家: ONSEMI    ONSEMI
描述:

1200V High-Current, High & Low-Side, Gate-Driver IC (HVIC)

文件: 总18页 (文件大小:454K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
High-Current, High & Low-Side,  
Gate-Driver IC  
FAN73912A  
Description  
The FAN73912A is a monolithic high and lowside gatedrive IC  
designed for highvoltage and highspeed driving for MOSFETs  
and IGBTs that operate up to +1200 V.  
www.onsemi.com  
The advanced input filter of HIN provides protection against  
shortpulsed input signals caused by noise.  
An advanced levelshift circuit offers highside gate driver  
operation up to VS = 9.8 V (typical) for VBS = 15 V. The UVLO  
circuit prevents malfunction when VCC and VBS are lower than  
the specified threshold voltage.  
SOIC16  
CASE 751BH  
Output drivers typically source and sink 2 A and 3 A, respectively.  
Features  
Floating Channel for Bootstrap Operation to +1200 V  
MARKING DIAGRAM  
Typically 2 A/ 3 A Sourcing/Sinking Current Driving Capability for  
Both Channels  
Gate Driver Supply (VCC) Range from 12 V to 20 V  
FAN73912A  
Separate Logic Supply (VDD) Range from 3 V to 20 V  
Extended Allowable Negative VS Swing to 9.8 V for Signal  
Propagation at VCC = VBS = 15 V  
ON LOT No.  
Builtin CyclebyCycle EdgeTriggered Shutdown Logic  
CommonMode dv/dt Noise Canceling Circuit  
UVLO Functions for Both Channels  
Builtin Advanced Input Filter  
ORDERING INFORMATION  
Matched Propagation Delay Below 60 ns  
Outputs inPhase with Input Signal  
Device  
FAN73912AMX  
Package  
Shipping  
1,000/  
Tape & Reel  
Wide16  
Logic and Power Ground 10 V Offset  
(Note 1)  
SOIC  
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specification  
Brochure, BRD8011/D.  
1. This device passed wavesoldering test by  
JESD22A111  
Typical Application  
Electrical Contactor  
Industrial Motor Driver  
UPS  
Solar Inverter  
Ballast  
GeneralPurpose HalfBridge Topology  
© Semiconductor Components Industries, LLC, 2020  
1
Publication Order Number:  
February, 2021 Rev. 1  
FAN73912A/D  
 
FAN73912A  
Up to 1200 V  
Q1  
R1  
Typically  
3.3~15 V  
9
8
7
6
5
4
3
2
1
NC  
NC  
HO  
V
B
10  
11  
12  
13  
14  
15  
16  
C
BOOT  
V
S
V
DD  
Load  
HIN  
SD  
NC  
NC  
HIN  
SD  
D
R
BOOT  
BOOT  
Controller  
V
LIN  
LIN  
15 V  
R2  
CC  
COM  
LO  
C1  
V
SS  
Q2  
NC  
Figure 1. Application Schematic Adjustable Option  
V
7
8
B
UVLO  
HS(ON/OFF)  
HO  
11  
12  
R
V
DD  
R
S
NOISE  
CANCELLER  
Q
HIN  
LIN  
SD  
6
3
V
S
CYCLEBy−  
CYCLE EDGE  
TRIGGERED  
SHUTDOWN  
SCHMITT  
VSS/COM  
LEVEL  
SHIFT  
UVLO  
TRIGGER  
INPUT  
14  
13  
15  
V
CC  
DELAY  
LO  
1
2
LS(ON/OFF)  
Pin 4,5,9,10 and 16 are no connection  
V
SS  
COM  
Figure 2. Simplified Block Diagram  
www.onsemi.com  
2
FAN73912A  
1
2
3
4
5
6
7
16  
15  
14  
13  
12  
11  
10  
9
LO  
NC  
COM  
V
SS  
FAN73912A  
LIN  
SD  
V
CC  
NC  
NC  
HIN  
V
V
S
V
DD  
NC  
NC  
B
HO  
8
Figure 3. Pin Connections Wide 16SOIC  
(Top View)  
Table 1. PIN FUNCTION DESCRIPTION (Note 2)  
Pin No.  
Symbol  
LO  
Description  
1
2
LowSide Driver Output  
LowSide Driver Return  
LowSide Supply Voltage  
No Connection  
COM  
VCC  
NC  
3
4
5
NC  
No Connection  
6
V
V
HighVoltage Floating Supply Return  
HighSide Floating Supply  
HighSide Driver Output  
No Connection  
S
B
7
8
HO  
NC  
NC  
9
10  
11  
12  
13  
14  
15  
16  
No Connection  
V
DD  
Logic Supply Voltage  
HIN  
Logic Input for HighSide Gate Driver Output  
Logic Input for Shutdown  
SD  
LIN  
Logic Input for LowSide Gate Driver Output  
Logic Ground  
V
SS  
NC  
No Connection  
2. Do not connect NC pins to ground or any other nodes in the circuitry to ensure floating status.  
www.onsemi.com  
3
 
FAN73912A  
Table 2. MAXIMUM RATINGS (T = 25°C, unless otherwise specified. All voltage parameters are referenced to COM unless  
J
otherwise stated in the table.)  
Symbol  
Parameter  
HighSide Floating Supply Voltage  
HighSide Floating Offset Voltage  
Min  
Max  
Unit  
V
V
B
S
0.3  
1225.0  
V
V
T = 150°C  
V
V
V
25  
25  
23  
V
V
V
+ 0.3  
+ 0.3  
+ 0.3  
J
B
B
B
B
B
B
T = 25°C  
J
T =40°C  
J
V
V
HighSide Floating Output Voltage  
LowSide Supply Voltage  
V
0.3  
V
+ 0.3  
25  
V
V
V
V
HO  
S
B
0.3  
CC  
V
LO  
DD  
LowSide Floating Output Voltage  
Logic Supply Voltage  
0.3  
0.3  
V
CC  
+ 0.3  
V
25  
+ 25  
V
SS  
0.3  
V
SS  
V
Logic GND  
V
25  
V
+ 0.3  
V
V
SS  
DD  
DD  
V
Logic Input Voltage (HIN, LIN and SD)  
0.3  
DD  
25  
+ 0.3  
IN  
V
SS  
+ V 25.3  
V
DD  
dV /dt  
Allowable Offset Voltage Slew Rate  
Power Dissipation  
50  
V/ns  
W
S
P
D
1.3  
(Note 3, 4, 5)  
q
Thermal Resistance  
Junction Temperature  
Storage Temperature  
95  
°C/W  
°C  
JA  
T
150  
150  
J
T
STG  
55  
°C  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
3. Mounted on 76.2 x 114.3 x 1.6 mm PCB (FR4 glass epoxy material).  
4. Refer to the following standards:  
JESD512: Integral circuit’s thermal test method environmental conditions, natural convection;  
JESD513: Low effective thermal conductivity test board for leaded surfacemount packages.  
5. Do not exceed maximum power dissipation (P ) under any circumstances.  
D
Table 3. RECOMMENDED OPERATING CONDITIONS (All voltage parameters are referenced to COM unless otherwise stated in  
the table.)  
Symbol  
Parameter  
HighSide Floating Supply Voltage  
Min  
V + 12  
Max  
+ 20  
Unit  
V
V
B
V
S
V
S
S
HighSide Floating Supply Offset Voltage (Note 6)  
HighSide (HO) Output Voltage  
LowSide Supply Voltage  
8 V  
1200  
V
CC  
V
HO  
V
CC  
V
S
V
B
V
12  
0
20  
V
V
LowSide (LO) Output Voltage  
Logic Supply Voltage  
V
CC  
V
LO  
DD  
V
V
SS  
+ 3  
V
+ 20  
V
SS  
V
SS  
Logic Ground (Note 7)  
10  
10  
V
V
IN  
Logic Input Voltage (HIN, LIN, SD)  
0
DD  
20  
V
DD  
V
V
SS  
+ V 20  
T
J
Junction Temperature  
40  
+125  
°C  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
6. Referenced to T = 25°C.  
J
7. When V < 10 V, the minimum V offset is limited to V .  
DD  
DD  
SS  
www.onsemi.com  
4
 
FAN73912A  
Table 4. STATIC ELECTRICAL CHARACTERISTICS (V  
(V , V , V ) = 15.0 V, T = 40°C to 125°C, unless otherwise  
CC BS DD J  
BIAS  
specified. The V , V and I parameters are referenced to V and are applicable to respective input leads: HIN, LIN and SD. The V  
IH  
IL  
IN  
SS  
O
and I parameters are referenced to V and COM and are applicable to the respective output leads: HO and LO. The V  
parameters  
O
S
DDUV  
are referenced to COM. The V  
parameters are referenced to V  
)
BSUV  
S1, 2, 3  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
mA  
LOWSIDE POWER SUPPLY SECTION  
I
I
Quiescent V Supply Current  
V
V
= 0 V or V  
= 0 V or V  
T = 25°C  
J
170  
170  
300  
350  
10  
QCC  
CC  
IN  
DD  
T = 40°C to 125°C  
J
Quiescent V Supply Current  
T = 25°C  
J
mA  
QDD  
DD  
IN  
DD  
T = 40°C to 125°C  
J
20  
I
Operating V Supply Current  
f
f
= 20 kHz, rms V = 15 V  
650  
2
950  
mA  
PCC  
CC  
IN  
IN  
PP  
Operating V Supply Current  
= 20 kHz, rms V = 15 V  
IPDD  
DD  
IN  
IN  
PP  
I
Shutdown Supply Current  
S
V
= V  
DD  
30  
50  
mA  
SD  
D
V
V
V
Supply UnderVoltage  
= Sweep  
= Sweep  
= Sweep  
9.7  
11.0  
12  
V
CCUV+  
CCUV  
CCUVH  
CC  
CC  
PositiveGoing Threshold Voltage  
V
Supply UnderVoltage  
V
V
9.2  
10.5  
0.5  
11.4  
V
V
CC  
CC  
NegativeGoing Threshold Voltage  
V
V
CC  
Supply UnderVoltage Lockout  
CC  
Hysteresis Voltage  
BOOTSTRAPPED SUPPLY SECTION  
Quiescent V Supply Current  
I
V
= 0 V or V  
DD  
50  
100  
850  
12.0  
mA  
mA  
V
QBS  
BS  
IN  
I
Operating V Supply Current  
f = 20 kHz, rms value  
IN  
550  
11.0  
PBS  
BS  
V
V
V
Supply UnderVoltage  
V
BS  
V
BS  
V
BS  
= Sweep  
= Sweep  
= Sweep  
9.7  
BSUV+  
BSUV−  
BSUVH  
BS  
PositiveGoing Threshold Voltage  
V
BS  
Supply UnderVoltage  
9.2  
10.5  
0.5  
11.4  
V
V
NegativeGoing Threshold Voltage  
V
V
BS  
Supply UnderVoltage Lockout  
Hysteresis Voltage  
I
LK  
Offset Supply Leakage Current  
V = V = 1200 V (T = 25°C)  
100  
100  
100  
mA  
B
S
J
V = V = 1200 V (T = 125°C) (Note 8)  
B
S
J
V = V = 1000 V (T = 40°C) (Note 8)  
B
S
J
INPUT LOGIC SECTION (HIN.LIN AND AD)  
V
Logic “1” Input Voltage  
V
V
= 3 V  
2.4  
9.5  
10.5  
V
V
IH  
DD  
= 15 V  
T = 25°C  
J
DD  
T = 40°C to 125°C  
J
V
Logic “0” Input Voltage  
V
V
= 3 V  
0.8  
6.0  
9.5  
50  
1
IL  
DD  
= 15 V  
T = 25°C  
J
DD  
T = 40°C to 125°C  
J
I
I
Logic “1” Input bias Current  
Logic “0” Input bias Current  
Logic Input Pulldown Resistance  
V
V
= 15 V  
= 0 V  
30  
mA  
mA  
kW  
IN+  
IN  
IN−  
IN  
R
500  
IN  
GATE DRIVER OUTPUT SECTION  
HighLevel Output Voltage,  
V
OH  
I
I
= 0 A  
= 0 A  
T = 25°C  
1.2  
1.4  
0.1  
V
O
J
V
V  
BIAS  
O
T = 40°C to 125°C  
J
V
OL  
LowLevel Output Voltage, V  
O
V
O
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
8. These parameters are guaranteed by design.  
www.onsemi.com  
5
 
FAN73912A  
Table 4. STATIC ELECTRICAL CHARACTERISTICS (V  
(V , V , V ) = 15.0 V, T = 40°C to 125°C, unless otherwise  
CC BS DD J  
BIAS  
specified. The V , V and I parameters are referenced to V and are applicable to respective input leads: HIN, LIN and SD. The V  
IH  
IL  
IN  
SS  
O
and I parameters are referenced to V and COM and are applicable to the respective output leads: HO and LO. The V  
parameters  
O
S
DDUV  
are referenced to COM. The V  
parameters are referenced to V  
) (continued)  
BSUV  
S1, 2, 3  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
GATE DRIVER OUTPUT SECTION  
I
I
Output HIGH ShortCircuit Pulse  
V
V
= 0 V, V = 5 V with PW 10 ms  
2.0  
3.0  
A
A
V
O+  
O
IN  
Current  
Output LOW ShortCircuit Pulsed  
Current  
= 15 V, V = 0 V with PW 10 ms  
IN  
O−  
O
V
Allowable Negative V Pin Voltage  
9.8  
7.0  
S
S
for HIN Signal Propagation to HO  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
8. These parameters are guaranteed by design.  
Table 5. DYNAMIC ELECTRICAL CHARACTERISTICS (V  
J
(V , V  
V
) = 15.0 V, V = V = COM, C = 1000 pF and  
BIAS CC  
BS, DD S SS L  
T = 40°C to 125°C, unless otherwise specified.)  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Units  
LOWSIDE POWER SUPPLY SECTION  
t
TurnOn Propagation Delay  
TurnOff Propagation Delay  
V
V
= 0 V  
= 0 V  
500  
550  
150  
150  
30  
ns  
ns  
ns  
ON  
S
t
OFF  
S
t
Input Filtering Time (HIN, LIN)  
(Note 9)  
T = 25°C  
J
80  
80  
220  
300  
FLTIN  
T = 40°C to 125°C  
J
t
Input Filtering Time (SD)  
ns  
ns  
FLTSD  
t
Shutdown Propagation Delay Time  
T = 25°C  
J
260  
200  
330  
330  
25  
400  
550  
SD  
T = 40°C to 125°C  
J
t
R
TurnOn Rise Time  
TurnOff Fall Time  
ns  
ns  
ns  
t
F
15  
MT  
PM  
Delay Matching ,  
HO & LO TurnOn/OFF (Note 10)  
T = 25°C  
J
50  
60  
100  
140  
T = 40°C to 125°C  
J
Output PulseWidth Matching  
(Note 11)  
PW > 1 ms  
T = 25°C  
50  
IN  
J
T = 40°C to 125°C  
J
50  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
9. The minimum width of the input pulse should exceed 500 ns to ensure the filtering time of the input filter is exceeded.  
10.MT is defined as an absolute value of matching delay time between Highside and LowSide.  
11. PM is defined as an absolute value of matching pulsewidth between Input and Output.  
www.onsemi.com  
6
 
FAN73912A  
TYPICAL CHARACTERISTICS  
580  
560  
660  
640  
620  
600  
580  
560  
540  
520  
500  
480  
540  
520  
500  
480  
460  
440  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature [°C]  
Temperature [°C]  
Figure 5. TurnOff Propagation Delay  
Figure 4. TurnOn Propagation Delay  
vs. Temperature  
vs. Temperature  
30  
25  
20  
15  
10  
5
30  
25  
20  
15  
10  
5
0
0
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature [°C]  
Temperature [°C]  
Figure 6. TurnOn Rise Time vs Temperature  
Figure 7. TurnOff Fall Time vs. Temperature  
50  
50  
40  
30  
20  
10  
0
40  
30  
20  
10  
0
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature [°C]  
Temperature [°C]  
Figure 9. TurnOff Delay Matching  
Figure 8. TurnOn Delay Matching  
vs. Temperature  
vs. Temperature  
www.onsemi.com  
7
FAN73912A  
TYPICAL CHARACTERISTICS (continued)  
40  
440  
420  
400  
380  
360  
340  
320  
300  
280  
260  
30  
20  
10  
0
40 20  
0
20  
40  
60  
80 100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature [°C]  
Temperature [°C]  
Figure 11. Logic Input High Bias Current  
vs. Temperature  
Figure 10. Shutdown Propagation Delay  
vs. Temperature  
220  
210  
200  
190  
180  
170  
160  
150  
140  
130  
120  
110  
100  
90  
2.0  
1.8  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
V
V
= V  
= V , V  
= 0 V, V  
= 0 V  
LIN  
HIN  
LIN  
V
V
= V  
= V , V  
= 0 V, V  
= 0 V  
LIN  
HIN  
LIN  
= 0 V  
HIN  
DD  
= 0 V  
HIN  
DD  
(or V  
= V  
)
HIN  
LIN  
DD  
(or V  
= V  
)
HIN  
LIN  
DD  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature [°C]  
Temperature [°C]  
Figure 13. Quiescent VDD Supply Current  
vs. Temperature  
Figure 12. Quiescent VCC Supply Current  
80  
70  
60  
50  
40  
30  
20  
10  
0
800  
700  
600  
500  
400  
300  
200  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature [°C]  
Temperature [°C]  
Figure 15. Operating VCC Supply Current  
Figure 14. Quiescent VBS Supply Current  
www.onsemi.com  
8
FAN73912A  
TYPICAL CHARACTERISTICS (continued)  
5.0  
4.5  
1000  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
800  
600  
400  
200  
0
40 20  
0
20  
40  
60  
80 100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature [°C]  
Temperature [°C]  
Figure 17. Operating VBS Supply Current  
vs. Temperature  
Figure 16. Operating VDD Supply Current  
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
9.8  
11.4  
11.2  
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
9.6  
40 20  
0
20  
40  
60  
80 100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature [°C]  
Temperature [°C]  
Figure 19. VCC UVLOvs. Temperature  
Figure 18. VCC UVLO+ vs Temperature  
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
9.8  
11.4  
11.2  
11.0  
10.8  
10.6  
10.4  
10.2  
10.0  
9.6  
40 20  
0
20  
40  
60  
80 100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature [°C]  
Temperature [°C]  
Figure 21. VBS UVLOvs. Temperature  
Figure 20. VBS UVLO+ vs. Temperature  
www.onsemi.com  
9
FAN73912A  
TYPICAL CHARACTERISTICS (continued)  
0.010  
0.008  
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0.0  
0.006  
0.004  
0.002  
0.000  
0.002  
0.004  
0.006  
0.008  
0.010  
40 20  
0
20  
40  
60  
80  
100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature [°C]  
Temperature [°C]  
Figure 23. LowLevel Output Voltage  
Figure 22. HighLevel Output Voltage  
vs. Temperature  
10  
9
8
7
6
5
4
3
2
1
10  
9
8
7
6
5
4
3
2
1
VDD=15 V  
VDD =3 V  
V
= 15 V  
= 3 V  
DD  
DD  
V
40 20  
0
20  
40  
60  
80 100 120  
40 20  
0
20  
40  
60  
80  
100 120  
Temperature [°C]  
Temperature [°C]  
Figure 25. Logic Low Input Voltage  
vs. Temperature  
Figure 24. Logic High Input Voltage  
7  
8  
12  
10  
8
9  
6
10  
11  
12  
4
V
V
IH  
IL  
2
0
40 20  
0
20  
40  
60  
80 100 120  
0
2
4
6
8
10 12 14 16 18 20  
V
DD  
Logic Supply Voltage [V]  
Temperature [°C]  
Figure 27. Input Logic (HIN&LIN) Threshold  
vs. VDD Supply Voltage  
Figure 26. Allowable Negative VS  
vs. Temperature  
www.onsemi.com  
10  
FAN73912A  
TYPICAL CHARACTERISTICS (continued)  
600  
580  
4  
6  
High Side  
Low Side  
V
V
A
= V  
SS  
COM  
T = 25°C  
CC  
560  
540  
520  
500  
480  
460  
440  
420  
400  
= 0 V  
8  
10  
12  
14  
16  
10 11 12 13 14 15 16 17 18 19 20  
3
4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  
V
DD  
Supply Voltage [V]  
V
CC  
Supply Voltage [V]  
Figure 29. TurnOn Propagation Delay  
Figure 28. Allowable Negative VS Voltage  
for HIN Signal Propagation to High Side  
vs. VCC Supply Voltage  
vs. VDD Supply Voltage  
350  
300  
250  
200  
150  
100  
50  
600  
580  
560  
540  
520  
500  
480  
460  
440  
420  
400  
Positive  
High Side  
Low Side  
Negative  
0
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  
Supply Voltage [V]  
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  
V
DD  
V
DD  
Supply Voltage [V]  
Figure 31. Logic Input Filtering Time  
vs. VDD Supply Voltage  
Figure 30. TurnOff Propagation Delay  
vs. VDD Supply Voltage  
160  
140  
120  
100  
80  
440  
420  
400  
380  
360  
340  
320  
300  
280  
260  
Positive  
High Side  
Low Side  
Negative  
60  
40  
20  
0
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  
V
DD  
Supply Voltage [V]  
V
DD  
Supply Voltage [V]  
Figure 33. Shutdown Propagation Delay  
vs. VDD Supply Voltage  
Figure 32. Shutdown Input Filtering  
Time vs. VDD Supply Voltage  
www.onsemi.com  
11  
FAN73912A  
TYPICAL CHARACTERISTICS (continued)  
100  
HighSide  
LowSide  
80  
60  
40  
20  
0
3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20  
V
DD  
Supply Voltage [V]  
Figure 34. Output PulseWidth Matching vs. VDD Supply Voltage  
SWITCHING TIME DEFINITIONS  
9 NC  
NC  
HO 8  
HO  
15 V  
7
V
B
10  
100 nF  
1 nF  
15 V  
(0 to 1200 V)  
6
5
4
V
V
S
11  
12  
DD  
HIN  
SD  
NC  
NC  
HIN  
SD  
13  
14  
15 V  
3
2
1
V
LIN  
LIN  
CC  
100 nF  
COM  
15 V  
SS  
NC  
LO  
LO  
16  
1 nF  
Figure 35. Switching Time Test Circuit  
HIN  
LIN  
SD  
HO  
LO  
Skip  
Shutdown  
Shutdown  
Figure 36. Input/Output Timing Diagram  
www.onsemi.com  
12  
FAN73912A  
HIN  
LIN  
50%  
50%  
t
R
t
t
F
t
OFF  
ON  
90%  
90%  
HO  
10%  
10%  
Figure 37. Switching Time Definition  
50%  
SD  
t
SD  
90%  
HO  
(LO)  
Figure 38. Shutdown Waveform Definition  
50%  
LO  
50%  
HIN  
LIN  
MT  
HO  
10%  
10%  
90%  
90%  
LO  
HO  
MT  
Figure 39. Delay Matching Waveform Definitions  
www.onsemi.com  
13  
FAN73912A  
APPLICATIONS INFORMATION  
Shutdown Input  
ShortPulsed Input Noise Rejection Method  
The input filter circuitry provides protection against  
shortpulsed input signals (HIN, LIN, and SD) on the input  
signal lines by applied noise signal.  
When the SD pin is in LOW state, the gate driver operates  
normally. When a condition occurs that should shut down  
the gate driver, the SD pin should be HIGH. The Shutdown  
circuitry has an input filter; the minimum input duration is  
If the input signal duration is less than input filter time  
specified by t  
(typically 250 ns).  
(t  
), the output does not change states.  
FLTIN  
FLTIN  
Example A and B of the Figure 42 show the input  
and output waveforms with shortpulsed noise spikes  
with a duration less than input filter time; the output does not  
change states.  
50%  
SD  
t
SD  
IN  
90%  
t
t
t
FLTIN  
FLTIN  
FLTIN  
HO  
(LO)  
OUT  
(LOW)  
Figure 40. Output Shutdown Timing Waveform  
t
t
t
FLTIN  
FLTIN  
FLTIN  
Noise Filter  
OUT  
(HIGH)  
Input Noise Filter  
Figure 41 shows the input noise filter method, which has  
Figure 42. Noise Rejecting Input Filter Definition  
symmetry duration between the input signal (t  
)
INPUT  
and the output signal (t ) and helps to reject noise  
OUTPUT  
spikes and short pulses. This input filter is applied to  
the HIN, LIN, and EN inputs. The upper pair of waveforms  
Negative VS Transient  
The bootstrap circuit has the advantage of being simple  
and low cost, but has some limitations. The biggest difficulty  
with this circuit is the negative voltage present at the emitter  
of the highside switching device when highside switch is  
turnedoff in halfbridge application. If the highside  
switch, Q1, turnsoff while the load current is flowing to  
an inductive load, a current commutation occurs from  
highside switch, Q1, to the diode, D2, in parallel with  
the lowside switch of the same inverter leg. Then  
the negative voltage present at the emitter of the highside  
switching device, just before the freewheeling diode, D2,  
starts clamping, causes load current to suddenly flow to  
the lowside freewheeling diode, D2, as shown in Figure 43.  
(Example A) shows an input signal duration (t ) much  
INPUT  
longer than input filter time (t  
); it is approximately  
FLTIN  
the same duration between the input signal time (t  
)
INPUT  
and the output signal time (t ). The lower pair  
OUTPUT  
of waveforms (Example B) shows an input signal time  
(t ) slightly longer than input filter time (t ); it is  
INPUT  
FLTIN  
approximately the same duration between input signal time  
(t  
) and the output signal time (tO  
).  
INPUT  
UTPUT  
t
IN  
FLTIN  
t
INPUT  
t
DC+ Bus  
Q1  
OUTPUT  
OUT  
IN  
D1  
i
LOAD  
i
freewheeling  
t
FLTIN  
Load  
t
INPUT  
Q2  
t
OUTPUT  
Output duration is  
same as input duration  
D2  
OUT  
Figure 43. HalfBridge Application Circuits  
Figure 41. Input Noise Filter Definition  
www.onsemi.com  
14  
 
FAN73912A  
DC+ Bus  
L
This negative voltage can be trouble for the gate driver’s  
output stage, there is the possibility to develop  
an overvoltage condition of the bootstrap capacitor, input  
signal missing and latchup problems because it directly  
affects the source VS pin of the gate driver, shown  
in Figure 44. This undershoot voltage is called “negative VS  
transient”.  
L
C1  
C2  
Q2  
Q1  
D1  
D2  
i
LOAD  
i
freewheeling  
L
E2  
L
E1  
S1  
C3  
V
L
Load  
V
S2  
V
+
+
V
LC3  
D3  
L
C4  
Q4  
LC4  
Q3  
Q1  
D4  
+
L
E3  
V
V
L
E4  
LE3  
LE4  
+
Figure 46. Q1 TurnOff and D3 Conducting  
V
S
GND  
The FAN73912A has a typical negative V transient  
S
Freewheeling  
characteristics, as shown in Figure 47.  
0
20  
40  
60  
80  
100  
120  
140  
160  
180  
200  
220  
Figure 44. VS Waveforms During Q1 TurnOff  
Figure 45 and Figure 46 show the commutation of the load  
current between highside switch, Q1, and lowside  
freewheeling diode, D3, in same inverter leg. The parasitic  
inductances in the inverter circuit from the die wire bonding  
to the PCB tracks are jumped together in LC and LE for each  
IGBT. When the highside switch, Q1, and lowside switch,  
Q4, are turned on, the VS1 node is below DC+ voltage by  
the voltage drops associated with the power switch  
and the parasitic inductances of the circuit due to load  
current is flows from Q1 and Q4, as shown in Figure 45.  
When thehighside switch, Q1, is turned off and Q4,  
remained turned on, the load current to flows the lowside  
freewheeling diode, D3, due to the inductive load connected  
to VS1 as shown in Figure 46. Q1 TurnOff and D3  
Conducting. The current flows from ground (which is  
connected to the COM pin of the gate driver) to the load  
and the negative voltage present at the emitter  
of the highside switching device. In this case, the COM pin  
50  
100  
150  
200  
250  
300  
Pulse Width [ns]  
Figure 47. Negative VS Transient Characteristic  
Even though the FAN73912A has been shown able to  
handle these negative V transient conditions, it is strongly  
recommended that the circuit designer limit the negative V  
transient as much as possible by careful PCB layout to  
minimize the value of parasitic elements and component  
use. The amplitude of negative V voltage is proportional to  
the parasitic inductances and the turnoff speed, di/dt, of the  
switching device.  
S
S
of the gate driver is at a higher potential than the V pin due  
S
S
to the voltage drops associated with freewheeling diode, D3,  
and parasitic elements, L and L  
.
C3  
E3  
General Guidelines  
DC+ Bus  
+
Printed Circuit Board Layout  
The layout recommended for minimized parasitic  
elements is as follows:  
Direct tracks between switches with no loops or  
deviation.  
Avoid interconnect links. These can add significant  
inductance.  
Reduce the effect of leadinductance by lowering  
package height above the PCB.  
Consider colocating both power switches to reduce  
track length.  
L
Q2  
C2  
L
C1  
V
LC1  
Q1  
D1  
D2  
i
LOAD  
+
i
freewheeling  
L
L
V
E1  
E2  
LE1  
V
L
Load  
V
L
S1  
S2  
+
V
C4  
C3  
LC4  
Q3  
Q4  
D4  
D3  
+
V
L
E3  
L
LE4  
E4  
Figure 45. Q1 and Q4 TurnOn  
www.onsemi.com  
15  
 
FAN73912A  
use is typically 5 ~ 10 W that increase the V time  
constant. If the voltage drop of bootstrap resistor  
and diode is too high or the circuit topology does not  
allow a sufficient charging time, a fast recovery or  
ultrafast recovery diode can be used.  
To minimize noise coupling, the ground plane should  
not be placed under or near the highvoltage floating  
side.  
To reduce the EM coupling and improve the power  
switch turnon/off performance, the gate drive loops  
must be reduced as much as possible.  
BS  
The bootstrap capacitor, C  
, uses a lowESR  
BOOT  
capacitor, such as ceramic capacitor. It is strongly  
recommended that the placement of components is as  
follows:  
Placement of Components  
The recommended placement and selection of component  
as follows:  
Place components tied to the floating voltage pins (V  
B
Place a bypass capacitor between the V and V  
CC  
SS  
and V ) near the respective highvoltage portions of  
S
pins. A ceramic 1 mF capacitor is suitable for most  
applications. This component should be placed as close  
as possible to the pins to reduce parasitic elements.  
the device and the FAN73912A. Not Connected (NC)  
pins in this package maximize the distance between  
the highvoltage and lowvoltage pins (see Figure 3).  
Place and route for bypass capacitors and gate resistors  
as close as possible to gate drive IC.  
The bypass capacitor from V to V supports both  
CC  
SS  
the lowside driver and bootstrap capacitor recharge.  
A value at least ten times higher than the bootstrap  
capacitor is recommended.  
Locate the bootstrap diode, D  
, as close as possible  
BOOT  
to bootstrap capacitor, C  
.
BOOT  
The bootstrap resistor, R  
, must be considered in  
sizing the bootstrap resistance and the current  
BOOT  
The bootstrap diode must use a lower forward voltage  
drop and minimal switching time as soon as possible  
for fast recovery or ultrafast diode.  
developed during initial bootstrap charge. If the resistor  
is needed in series with the bootstrap diode, verify that  
V does not fall below COM (ground). Recommended  
B
www.onsemi.com  
16  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC16, 300 mils  
CASE 751BH01  
ISSUE A  
DATE 18 MAR 2009  
D
SYMBOL  
MIN  
NOM  
MAX  
2.36  
2.49  
2.64  
A
A1  
b
0.10  
0.33  
0.30  
0.51  
0.41  
0.23  
c
0.18  
0.28  
D
E
E1  
e
10.08  
10.01  
7.39  
10.31  
10.31  
7.49  
10.49  
10.64  
7.59  
E1 E  
1.27 BSC  
h
0.25  
0.38  
0º  
0.75  
1.27  
8º  
0.81  
L
θ
PIN #1 IDENTIFICATION  
TOP VIEW  
h
c
q
A
b
e
L
A1  
SIDE VIEW  
END VIEW  
Notes:  
(1) All dimensions are in millimeters. Angles in degrees.  
(2) Complies with JEDEC MS-013.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON34279E  
SOIC16, 300 MILS  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FAN73912MX

High-Current, Half-Bridge, Gate-Driver IC
ONSEMI

FAN7391MX

High-Current, High & Low-Side, Gate-Drive IC
FAIRCHILD

FAN7391MX

High-Current, High & Low-Side, Gate-Drive IC
ONSEMI

FAN7392

High-Current, High- and Low-Side, Gate-Drive IC
FAIRCHILD

FAN7392M

High-Current, High- and Low-Side, Gate-Drive IC
FAIRCHILD

FAN7392MX

High-Current, High- and Low-Side, Gate-Drive IC
FAIRCHILD

FAN7392MX

625V,可兼容 3.3/5V 输入逻辑,3/3A 接收/源电流,高压和低压侧门极驱动,带 SD 保护
ONSEMI

FAN7392N

High-Current, High- and Low-Side, Gate-Drive IC
FAIRCHILD

FAN7392N

625V,可兼容 3.3/5V 输入逻辑,3/3A 接收/源电流,高压和低压侧门极驱动,带 SD 保护
ONSEMI

FAN7392_10

High-Current, High- and Low-Side, Gate-Drive IC
FAIRCHILD

FAN7393

Half-Bridge Gate Drive IC
FAIRCHILD

FAN73932

Half-Bridge Gate Drive IC
FAIRCHILD