FAN9673QX [ONSEMI]

Three-Channel Interleaved CCM PFC Controller;
FAN9673QX
型号: FAN9673QX
厂家: ONSEMI    ONSEMI
描述:

Three-Channel Interleaved CCM PFC Controller

功率因数校正
文件: 总26页 (文件大小:2044K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FAN9673  
Three-Channel Interleaved  
CCM PFC Controller  
Description  
The FAN9673 is an interleaved threechannel Continuous  
Conduction Mode (CCM) Power Factor Correction (PFC) controller  
IC intended for PFC preregulators. Incorporating circuits for the  
implementation of leading edge, average current, and “boost”type  
power factor correction, the FAN9673 enables the design of a power  
supply that fully complies with the IEC100032 specification.  
Interleaved operation provides substantial reduction in the input and  
output ripple currents and the conducted EMI filtering becomes easier  
and cost effective.  
www.onsemi.com  
An innovative channel management function allows slave channels  
to be loaded and unloaded smoothly in lower powerlevel conditions  
according to setting voltage on the CM pin, improving the PFC  
converter’s load transient response.  
LQFP32  
CASE 561AB  
The FAN9673 also incorporates a variety of protection functions,  
including: peak current limiting, input voltage brownout protection,  
and TriFault Detect function.  
MARKING DIAGRAM  
Features  
24 23 22 21 20 19 18 17  
Continuous Conduction Mode Control  
ThreeChannel PFC Control (Maximum)  
Average CurrentMode Control  
PFC Slave Channel Management Function  
Programmable Operation Frequency Range: 18 kHz 40 kHz  
or 55 kHz 75 kHz  
VIR  
OPFC3  
OPFC2  
CM3  
CM2  
CM1  
IEA3  
IEA2  
IEA1  
RDY  
OPFC1  
VDD  
FBPFC  
VEA  
ON  
ZXYTT  
F A N 9 6 7 3  
TM  
Programmable PFC Output Voltage  
Dual Current Limit Functions  
TriFault Detect Protects Against Feedback Loop Failure  
Sag Protection  
SS  
IAC  
1
2
3
4
5
6
7
8
Programmable SoftStart  
UnderVoltage Lockout (UVLO)  
Differential Current Sensing  
Z
X
Y
TT  
T
= Assembly Plant Code  
= Year Code  
= Work Code  
= Die Run Code  
= Package Type (Q:LQFP)  
= Manufacture Flow Code  
Available in 32Pin LQFP Package  
Typical Applications  
M
High Power ACDC Power Supply  
DC Motor Power Supply  
White Goods; e.g. Air Conditioner Power Supply  
Server and Telecom Power Supply  
Industrial Welding and Power Supply  
ORDERING INFORMATION  
See detailed ordering and shipping information in the package  
dimensions section on page 2 of this data sheet.  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
June, 2019 Rev. 7  
FAN9673/D  
FAN9673  
ORDERING INFORMATION  
Operating  
Temperature Range  
Part Number  
FAN9673Q  
Package  
Packing Method  
Tray  
40°C to 105°C  
32LD, LQFP, JEDEC MS026, Variation BBA, 7 mm  
Square  
FAN9673QX  
Tape & Reel  
TYPICAL APPLICATION  
* DBP  
RB1  
VIN  
LPFC1  
LPFC2  
LPFC3  
DPFC1  
DPFC2  
DPFC3  
VPFC  
CB+  
RFB1  
COUT  
AC Line  
In  
EMI  
Filter  
RFB2  
SPFC1  
SPFC2  
SPFC3  
RB1  
RA1  
RSEN1  
RSEN2  
RSEN3  
CFB3  
RFB3  
RB2  
RA2  
RF  
CF1  
CF2  
RB3  
OPFC1 CS1+ CS1OPFC2 CS2+  
CS2OPFC3  
CS3+  
CS3−  
IAC  
FBPFC  
CVC2  
RVC1  
BIBO  
SS  
VEA  
IEA1  
IEA2  
CSS  
CVC1  
CB1  
CB2  
RB4  
CIC12  
CVI22  
CIC32  
CILIMIT2  
RILIMIT2  
ILIMIT2  
RIC1  
RIC2  
RIC3  
CIC11  
CIC21  
CIC31  
FAN9673  
RDY  
PVO  
MCU  
MCU signal(DC)  
IEA3  
LS  
RLS  
CGC  
RGC  
VDD  
VIR  
GC  
CVDD  
LPK  
CM1  
CM2  
CM3  
GND  
RLPK  
RRLPK  
RI  
ILIMIT  
Standby Power  
RRI  
RILIMIT  
MCU  
RVIR  
CVIR  
RLPK  
Channel Enable  
CILIMIT  
CLPK  
CRLPK  
* About D please reference System Design Precautions  
BP  
Figure 1. Typical Application Diagram for ThreeChannel PFC Converter  
www.onsemi.com  
2
FAN9673  
BLOCK DIAGRAM  
ILIMIT  
3
ILIMIT2  
7
VDD  
28  
VIR  
16  
SS  
31  
FBPFC  
29  
SS  
PVO  
VEA  
2
10uA  
20uA  
Brown Out,  
Protection  
GMV  
V
VIR  
V
VIR  
< 1.5V, FR  
> 3.5V, HV  
VDD  
1.2V / RRI  
30  
VDD OVP  
24V/23V  
60uA  
2.5V  
1/4X  
0.3V  
VVEA  
B
VEA  
VEA LPD  
PFC UVP  
0.5V  
C
A
VVEA > VSS  
Peak Detector  
VFBPFC  
LPK  
RLPK  
IAC  
8
6
RM  
2.75V/2.5V  
PFC OVP  
AC UVP  
Imo  
Ratio  
V
V
B
I
B
O
U
V
P
B
I
B
O
U
V
P
VBIBO  
32  
10  
ILIMIT2  
CS1  
S SET  
RCLR  
Q
IEA1  
Q
27  
OPFC1  
OPFC2  
GMI1  
GMI2  
GMI3  
CM1  
S SET  
RCLR  
Q
Q
CS1+ 23  
LPT1  
LPT2  
LPT3  
CS122  
IEA_SAW1  
Dead1  
ILIMIT2  
CS2  
S SET  
RCLR  
S SET  
RCLR  
Q
Q
11  
IEA2  
26  
CM2  
Q
Q
CS2+ 21  
CS220  
IEA_SAW2  
Dead2  
S SET  
RCLR  
S SET  
RCLR  
Q
Q
ILIMIT2  
CS3  
IEA3  
12  
25  
OPFC3  
RDY  
CM3  
Q
Q
CS3+ 19  
5V  
CS318  
IEA_SAW3  
Dead3  
LS  
17  
4
VDD  
UVLO  
VGMV−  
9
Brown In /Out  
FR: 1.05V/1.9V  
HV: 1.05V/1.75V  
Oscillator  
GC  
Brown out  
FR: 2.4V/1.25V  
HV: 2.4/1.55V  
55uA  
55uA 55uA  
1
5
13  
14  
15  
24  
GND  
BIBO  
RI  
CM1 CM2 CM3  
* FR: Full Range AC Input, AC85 V~264 V  
HV: High Voltage Range AC Input, AC180 ~ 264 V  
Figure 2. Functional Block Diagram  
PIN CONFIGURATION  
24  
23  
22  
21  
20  
19  
18  
17  
VIR  
OPFC3  
OPFC2  
CM3  
CM2  
OPFC1  
VDD  
FBPFC  
VEA  
ON  
ZXYTT  
CM1  
IEA3  
IEA2  
IEA1  
RDY  
F A N 9 6 7 3  
TM  
SS  
IAC  
1
2
3
4
5
6
7
8
Figure 3. Pin Layout (Top View)  
www.onsemi.com  
3
FAN9673  
Table 1. PIN DEFINITIONS  
Pin #  
Name  
BIBO  
PVO  
Description  
1
2
Brown In/Out Level Setting: This pin is used for brown in/out setting.  
Programmable Output Voltage: DC voltage from a microcontroller (MCU) can be applied to this pin to  
program the output voltage level. The operation range is 3.5 V 0.5 V. If V < 0.5 V, the PVO function  
PO  
is disabled.  
3
4
5
6
7
ILIMIT  
GC  
Current Command Clamp Setting: Average current mode is to control average value of inductor current  
by a current command. Connecting a resistor and a capacitor to this pin can determine a limit value of  
the current command.  
Input Voltage Gain Control: Connecting a resistor on this pin to set a gain on the inputvoltage signal to  
match FBPFC. The signal here is used for the LPT function. A small capacitor connecting from GC to  
GND is recommended for noise filtering.  
RI  
Oscillator Setting: There are two oscillator frequency ranges: 18 40 kHz and 50 75 kHz. A resistor  
connected from RI to ground determines the switching frequency. A resistor value between  
10.6 k 44.4 kis recommended.  
RLPK  
ILIMIT2  
Ratio of V  
LPK  
mined by the tolerance of R  
and V : Connect a resistor and a capacitor to this pin to adjust the ratio of V peak to  
LPK  
IN  
IN  
V
. Typical value is 12.4 k(1:100 of V  
and V peak). The accuracy of V  
is primarily deter-  
LPK  
IN  
LPK  
at this pin.  
RLPK  
Peak Current Limit Setting: Connect a resistor and a capacitor to this pin to set the overcurrent limit  
threshold and to protect power devices from damage due to inductor saturation. This pin sets the over−  
current threshold for cyclebycycle current limit.  
8
9
LPK  
Peak of Line Voltage: This pin can be used to provide information about the peak amplitude od the line  
voltage to an MCU.  
RDY  
Output Ready Signal: When the feedback voltage on FBPFC exceeds 2.4 V, the RDY pin outputs a  
highstate V  
signal to inform the MCU the downstream power stage can start normal operation.  
RDY  
If AC brownout is detected, the V  
signal is LOW to signal the MCU the PFC is not ready.  
RDY  
10  
11  
12  
13  
IEA1  
IEA2  
IEA3  
CM1  
Output 1 of PFC Current Amplifier: The signal from this pin is compared with an internal sawtooth sig-  
nal to determine the pulse width for PFC gate drive 1.  
Output 2 of PFC Current Amplifier: The signal from this pin is compared with an internal sawtooth sig-  
nal to determine the pulse width for PFC gate drive 2.  
Output 3 of PFC Current Amplifier: The signal from this pin is compared with an internal sawtooth sig-  
nal to determine the pulse width for PFC gate drive 3.  
Channel 1 Management Setting: This pin is used to configure the characteristics of PFC enable/  
disable. Pull voltage on this pin LOW (= 0 V) to enable and HIGH (> 4 V) to disable the whole PFC  
system.  
14  
CM2  
Channel 2 Management Setting: There are two control methods for channel 2. The first uses an exter-  
nal signal to enable/disable channel 2 (V  
= 0 V/V  
4 V). The second is linear increase/de-  
CM2  
CM2 >  
crease loading of channel 2 when V  
, proportional to power level, meets the setting level on V  
.
CM2  
VEA  
15  
16  
CM3  
VIR  
Channel 3 Management Setting: Same as the CM2 pin, but for Channel 3.  
Input Voltage Range Setting: A capacitor and a resistor are connected in parallel from this pin to GND.  
When V  
> 3.5 V, the PFC controller only works for the highvoltage input range (180 V 264 V  
)
VIR  
IAC  
AC  
AC  
and R  
must be 12 M. When V  
< 1.5 V, the PFC controller works for the Universal Input voltage  
VIR  
range (90 V 264 V ) and R must be 6 M. Voltage between 1.5 V and 3.5 V is not allowed.  
AC  
AC  
IAC  
17  
LS  
Setting for Current Predict Function: A resistor, connected from this pin to ground, is used to adjust the  
compensation of linear predict function (LPT). A small capacitor connected from this pin to GND is  
recommended for noise filtering.  
18  
19  
20  
21  
22  
23  
24  
25  
CS3−  
CS3+  
CS2−  
CS2+  
CS1−  
CS1+  
GND  
Channel 3 Negative PFC Current Sense Input  
Channel 3 Positive PFC Current Sense Input  
Channel 2 Negative PFC Current Sense Input  
Channel 2 Positive PFC Current Sense Input  
Channel 1 Negative PFC Current Sense Input  
Channel 1 Positive PFC Current Sense Input  
Ground Reference and Return  
OPFC3  
Channel 3 PFC Gate Drive: The totempole output drive for the MOSFET or IGBT. This pin has an  
internal 15 V clamp to protect the external power switch.  
www.onsemi.com  
4
 
FAN9673  
Table 1. PIN DEFINITIONS (continued)  
Pin #  
Name  
Description  
26  
OPFC2  
Channel 2 PFC Gate Drive: The totempole output drive for the MOSFET or IGBT. This pin has an  
internal 15 V clamp to protect the external power switch.  
27  
28  
29  
30  
31  
32  
OPFC1  
VDD  
FBPFC  
VEA  
Channel 1 PFC Gate Drive: The totempole output drive for the MOSFET or IGBT. This pin has an  
internal 15 V clamp to protect the external power switch.  
External Bias Supply for the IC: The typical turnon and turnoff threshold voltages are 12.8 V and  
10.8 V respectively.  
Voltage Feedback Input for PFC: Inverting input of the PFC error amplifier. This pin is connected to the  
PFC output through a resistordivider network.  
Output of PFC VoltageLoop Amplifier: An erroramplifier output for the PFC voltage feedback loop.  
A compensation network is connected between this pin and ground.  
SS  
SoftStart: Connect a capacitor to this pin to set the softstart time. Pulling this pin to ground can dis-  
able the gate drive outputs OPFC1, OPFC2 and OPFC3.  
IAC  
Input AC Current: During normal operation, this input provides a current reference for an internal gain  
modulator. The recommended maximum current on IAC is 65 A.  
ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
J
Symbol  
Parameter  
Min  
Max  
Unit  
V
V
DD  
DC Supply Voltage  
30  
V
Voltage on OPFC1, OPFC2, OPFC3 Pins  
0.3  
0.3  
V
DD  
+ 0.3 V  
V
OPFC  
V
L
Voltage on IAC, BIBO, LPK RLPK, FBPFC, VEA, CS1+, CS2+, CS3+,  
CS1, CS2, CS3, CM1, CM2, CM3, ILIMIT, ILIMIT2, RI, PVO, GC, LS,  
VIR Pins  
7.0  
V
V
Voltage on IEA1, IEA2, IEA3, SS Pins  
Input AC Current  
0
8
1
V
mA  
A
IEA  
I
IAC  
I
Peak PFC OPFC Current, Source or Sink  
0.5  
1640  
77  
PFCOPFC  
P
Power Dissipation, T < 50 °C  
mW  
°C/W  
°C  
D
A
R
Thermal Resistance (JunctiontoAir)  
Operating Junction Temperature  
Storage Temperature Range  
JA  
T
40  
55  
150  
150  
260  
4
J
T
STG  
°C  
T
Lead temperature (Soldering)  
Electrostatic Discharge Capability  
°C  
L
ESD  
Human Body Model,  
kV  
ANSI/ESDA/JEDEC JS0012012  
Charged Device Model,  
JESD22C101  
2
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Min  
Typ  
Max  
Unit  
V
V
Operating Voltage  
15  
DDOP  
L
Boost Inductor Mismatch  
5  
+5  
%
MISMATCH  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
1. All voltage values, except differential voltage, are given with respect to GND pin.  
2. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
www.onsemi.com  
5
FAN9673  
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, V = 15 V and T = 40~105°C)  
DD  
J
Symbol  
Parameter  
Condition  
Min  
Typ  
Max Unit  
VDD SECTION  
I
Startup Current  
V
V
= V  
- 0.1 V  
30  
6
80  
7
A  
DD ST  
DD  
THON  
I
Operating Current  
= 14 V, Output Not Switching, R  
25 kꢁ  
=
4
mA  
DDOP  
DD  
RI  
V
TurnOn Threshold Voltage  
V
Rising  
11.7  
2
12.8  
13.9  
3
V
V
THON  
DD  
ΔV  
UVLO Hysteresis  
TH  
DDOVP  
V
V
DD  
V
DD  
V
DD  
OVP Threshold  
OPFC1~3 Disabled, IEA1~3 and SS Pull Low  
23  
24  
1
25  
V
ΔV  
OVP Hysteresis  
OVP Debounce Time  
V
DDOVP  
DOVP  
t
80  
μs  
OSCILLATOR (Note 3)  
V
Sourcing Voltage on RI  
PFC Frequency Test Case 1  
PFC Frequency Test Case 2  
Voltage Stability  
R
R
R
= 25 kꢁ  
= 25 kꢁ  
= 12.5 kꢁ  
1.15  
30  
1.20  
32  
1.25  
34  
66  
2
V
kHz  
kHz  
%
RI  
RI  
RI  
RI  
f
f
OSC1  
OSC2  
58  
62  
f
13 V V 22 V  
DD  
DV  
f
DT  
Temperature Stability  
2
%
ΔV  
ΔV  
D
V
V
of PFC Frequency 32 kHz  
of PFC Frequency 64 kHz  
R
R
= 25 kꢁ  
5
V
IEASAW32  
IEASAW64  
PFCMAX  
IEASAW  
IEASAW  
RI  
= 12.5 kꢁ  
5.15  
97  
V
RI  
Maximum Duty Cycle  
V
> 7 V  
< 1 V  
94  
%
IEA  
IEA  
D
Minimum Duty Cycle  
V
0
%
PFCMIN  
RANGE1  
RANGE2  
f
f
Frequency Range 1 (Notes 3, 4)  
Frequency Range 2 (Notes 3, 4)  
Minimum Dead Time  
18  
55  
40  
75  
kHz  
kHz  
ns  
t
R
R
= 10.7 kꢁ  
600  
DEADMIN  
RI  
INPUTRANGE SETTING (VIR)  
V
VIRH  
HIGH Setting Level for High Voltage In-  
put Range  
= 500 k(V = 5 V)  
VIR  
3.5  
V
V
VIR  
V
VIRL  
LOW Setting Level for Low Voltage In-  
put Range or Full Voltage Input Range  
V
VIR  
= 0 V  
1.5  
13  
I
Sourcing Current of VIR Pin  
7
10  
22  
60  
A
VIR  
PFC SOFTSTART  
I
SS  
Constant Current Output for SoftStart  
Maximum Voltage on SS  
System Brownin  
A  
V
V
6.8  
SS  
SSDischarge  
I
Discharge Current of SS Pin  
Brownout, SAG, V  
Short, OTP  
> 4 V, R Open /  
A
CM1  
RI  
VOLTAGE ERROR AMPLIFIER  
V
Reference Voltage  
PVO = GND, T = 25°C  
2.45  
42  
2.50  
65  
2.55  
V
REF  
J
A
Open-Loop Gain (Note 3)  
Transconductance  
dB  
S  
A  
A  
A  
nA  
V
V
G
V
V
V
V  
= 0.5 V, T = 25°C  
100  
50  
mv  
NONINV  
INV  
J
I
Maximum Source Current  
Maximum Sink Current  
Input Bias Current Range  
Pull High Current for FBPFC  
= 2 V, V  
= 3 V  
= 3 V  
40  
1  
FBPFCL  
FBPFCH  
FBPFC  
FBPFC  
VEA  
VEA  
I
= 3 V, V  
50  
40  
I
1
BS  
FBPFCFL  
I
FBPFC Floating  
500  
6.0  
0
V
VEA H  
Output High Voltage on V  
V
= 2 V  
= 3 V  
5.7  
-
VEA  
VEA  
FBPFC  
FBPFC  
V
VEA L  
Output Low Voltage on V  
V
0.15  
V
-
www.onsemi.com  
6
FAN9673  
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, V = 15 V and T = 40~105°C)  
DD  
J
Symbol  
Parameter  
Condition  
Min  
Typ  
Max Unit  
VOLTAGE ERROR AMPLIFIER  
I
Discharge Current  
Brownout, R Open /Short, OTP, SAG  
10  
A  
VEADIS  
RI  
V
Threshold Voltage for LowPower De-  
tection  
When V  
IEA1~3  
< V , V are Off &  
VEAOFF OPFC1~3  
0.3  
V
-
VEA  
VEA OFF  
V
are Pulled Low  
CURRENT ERROR AMPLIFIERS  
G
Transconductance  
V
V
= V , V = 4 V,  
INV IEA  
88  
0
S  
mi  
NONINV  
ILIMIT  
> 0.6 V, T = 25°C  
J
V
Input Offset Voltage  
V
VEA  
V
IAC  
V
VIR  
= 0.45 V, R  
= 12 M,  
mV  
OFFSET  
IAC  
= 311 V, V  
= 2 V,  
FBPFC  
> 5 V, T = 25°C  
J
V
Output High Voltage  
Output Low Voltage  
Sourcing Current  
6.8  
35  
7.0  
0
V
IEAH  
V
0.4  
V
IEAL  
I
L
V
V
V , = +0.6 V,  
50  
A  
NONINV  
IEA  
INV  
= 1 V, V  
>0.6 V  
ILIMIT  
I
H
Sinking Current  
V
V
V , = 0.6 V,  
50  
35  
A
NONINV  
IEA  
INV  
= 6.5 V, V  
>0.6 V  
ILIMIT  
A
OpenLoop Gain (Note 3)  
IEA Pin PullLow Capability  
40  
50  
dB  
I
I
V
IEA  
5 V  
500  
μA  
IEALOW  
GAIN MODULATOR (Current Command Generator)  
I
Input for AC Current (Notes 3, 5)  
Bandwidth (Notes 3, 5)  
Multiplier Linear Range  
0
65  
A  
kHz  
V
AC  
BW  
I
= 40 A  
2
AC  
V
Gain Modulator Output (I * R ) Test  
0.490  
V
= 106.07 V, R  
= 6 M, V  
CM2, CM3  
=
RM  
MO  
M
IAC  
IAC  
FBPFC  
Cases  
2.25 V, V  
= 2 V, V  
V
> 4.5 V,  
BIBO  
T = 25°C  
J
V
= 120.21 V, R  
= 6 M, V  
CM2, CM3  
=
0.430  
0.327  
0.320  
0.260  
7.5  
IAC  
IAC  
FBPFC  
2.25 V, V  
= 2 V, V  
V
> 4.5 V,  
BIBO  
T = 25°C  
J
V
IAC  
= 155.56 V, R  
= 6 M, V  
CM2, CM3  
=
IAC  
FBPFC  
2.25 V, V  
= 2 V, V  
V
> 4.5 V,  
BIBO  
T = 25°C  
J
V
IAC  
= 311.13 V, R  
= 12 M, V  
FBPFC  
=
=
IAC  
2.25 V, V  
= 2 V, V  
V
> 4.5 V,  
BIBO  
CM2, CM3  
V
VIR  
> 3.5 V, T = 25°C  
J
V
IAC  
= 373.35 V, R  
= 12 M, V  
FBPFC  
IAC  
2.25 V, V  
= 2 V, V  
V > 4.5 V,  
BIBO  
CM2, CM3  
V
VIR  
> 3.5 V, T = 25°C  
J
R
Resistor of Gain Modulator Output  
ILIMIT (Current Command Limit)  
Range of Peak Value in Current Com-  
R
= V /I  
RM MO  
kꢁ  
M
M
V
0.2  
0.8  
V
V
RMR  
mand (V /4)  
ILIMIT  
V
Current Command Limit Test Case  
R
= 42 k, R = 25 k,  
0.504  
49  
RMILIMIT  
ILIMIT  
RI  
V
R
= R  
* I  
/4  
RMLIMIT  
ILIMIT ILIMIT  
I
Sourcing Current of ILIMIT Pin  
= 25 kꢁ  
A  
ILIMIT  
RI  
ILIMIT2 (CS1 /CS2 /CS3, PulsebyPulse Current Limit)  
V
V
V
Peak Current Limit Voltage Test Case  
R
= 30 k, R = 25 k,  
1.48  
1.48  
1.48  
49.5  
V
V
ILIMIT2CS1  
ILIMIT2CS2  
ILIMIT2CS3  
ILIMIT2  
RI  
CS1~3 > V  
ILIMIT2  
OPFC1 Disables, V  
Pull Low  
IEA1~3  
V
I
Sourcing Current for ILIMIT2 Pin  
R
= 25 k, T = 25°C  
A  
ILIMIT2  
RI  
J
www.onsemi.com  
7
FAN9673  
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, V = 15 V and T = 40~105°C)  
DD  
J
Symbol  
Parameter  
Condition  
Min  
Typ  
Max Unit  
ILIMIT2 (CS1 /CS2 /CS3, PulsebyPulse Current Limit)  
t
t
t
LeadingEdge Blanking Time of ILIMIT  
V
= 15 V, OPFC Drops to 9 V  
250  
250  
250  
200  
200  
200  
4.0  
ns  
ns  
ns  
PFCBNK1  
PFCBNK2  
PFCBNK3  
DD  
of Each Channel  
t
t
t
Propagation Delay to Output of Each  
Channel  
400  
400  
400  
4.2  
ns  
ns  
ns  
V
PD1  
PD2  
PD3  
V
Threshold of ILIMIT2 OpenCircuit Pro- OPFC1~3 Disabled and V  
tection  
Pull Low  
3.8  
ILIMIT2OPEN  
IEA1~3  
TriFault Detect™  
V
FBPFC UnderVoltage Protection  
FBPFC OverVoltage Protection (OVP)  
FBPFC OVP  
0.4  
2.70  
200  
0.5  
2.75  
250  
2
0.6  
2.80  
300  
V
V
PFCUVP  
PFCOVP  
V
ΔV  
mV  
ms  
PFCOVP  
t
FBPFC Open Delay (Note 3)  
V
= V  
to FBPFC Open, 470 pF  
-
FBPFC  
PFCUVP  
FBPFC OPEN  
from FBPFC to GND  
t
UnderVoltage Protection Debounce  
Time  
50  
s  
FBPFCUVP  
PVO  
V
PVO  
Programmable Output Setting Range on  
PVO Pin  
0.3  
3.5  
V
V
PVO Disable Voltage  
PVO< V  
0.2  
1.6  
V
V
PVO_DIS  
PVO_DIS  
V
Lowclamp of FBPFC based on PVO  
FBPFC Voltage Test Cases  
FBPFC Connected to VEA, V  
FBPFC Connected to VEA, V  
FBPFC Connected to VEA, V  
PVO Open  
= 4 V  
PVOCLAMPH  
PVO  
PVO  
PVO  
V
V
= 0.3 V  
= 3.5 V  
2.425  
1.625  
1
V
FBPFC1  
FBPFC2  
V
I
PVO Discharge Current  
A  
PVODischarge  
GAIN COMPENSATION (GC) SECTION (Note 6)  
I
Test Cases of Mirror Current of I on  
V
V
V
= 0 V, V  
= 0 V, V  
= 5 V, V  
= 127.28 V, R  
= 6 M,  
= 6 M,  
= 12 M.  
20.71  
51.86  
51.86  
100  
A  
A  
A  
nA  
V
GCL1  
GCL2  
AC  
VIR  
VIR  
VIR  
IAC  
IAC  
IAC  
IAC  
IAC  
IAC  
GC Pin  
I
= 311.13 V, R  
= 311.13 V, R  
I
GCHV  
I
Pull High Current for GCPin Open  
GCPin Open Voltage  
GCOPEN  
V
V
GC  
> V V  
GCOPEN IEA  
, OPFC1, 2, 3 Blanking 2.85  
12  
3.00  
3.15  
87  
GCOPEN  
INDUCTANCE SETTING (LS) SECTION (Note 6)  
Acceptable Range of Inductance Setting  
Voltage Difference between V and  
R
kꢁ  
LS  
V
V
– V 0 V  
50  
mV  
LSMIN  
FBPFC  
FBPFC  
VIR  
GC  
V
GC  
on LS Pin  
BROWN IN /OUT  
V
Threshold of Brownout at VIR=LOW  
Setting (Full ACInput Range)  
V
V
< 1.5 V, R  
= 6 Mꢁ  
1.00  
1.05  
850  
1.05  
700  
450  
1.10  
1.10  
V
BIBOFL  
IAC  
ΔV  
Hysteresis  
> V  
+V ,  
BIBOF  
mV  
V
BIBOF  
BIBO  
BIBOFL  
Brownin, Start SS  
V
Threshold of BO at VIR=HIGH Setting  
(High ACInput Range)  
V
VIR  
> 3.5 V, R  
= 12 Mꢁ  
1.00  
BIBOHL  
IAC  
ΔV  
Hysteresis  
V
BIBO  
> V  
+V ,  
BIBOH  
mV  
ms  
BIBOH  
BIBOHL  
Brownin, Start SS  
t
UnderVoltage Protection Delay Time  
UVP  
www.onsemi.com  
8
FAN9673  
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, V = 15 V and T = 40~105°C)  
DD  
J
Symbol  
Parameter  
Condition  
Min  
Typ  
Max Unit  
SAG PROTECTION SECTION  
V
SAG Voltage of BIBO  
SAG Debounce Time  
1. V  
2. V  
< V  
& V  
& V  
High for 33 ms, or  
0.85  
33  
V
SAG  
BIBO  
BIBO  
SAG  
SAG  
RDY  
RDY  
< V  
Low, Brownout,  
t
V
BIBO  
< V  
& V High  
RDY  
ms  
SAGDT  
SAG  
RLPK, VOLTAGESETTING RESISTANCE FOR PEAK DETECTOR  
I
Pull High Current for RLPK Open  
100  
nA  
RLPKOPEN  
V
Threshold of RLPKpin OpenCircuit  
Protection  
RLPK Open  
2.28  
2.40  
2.52  
V
RLPKOPEN  
LPK, PEAKDETECTOR OUTPUT (Note 7)  
V
V
Output Test Cases  
V
V
J
= 311 V, R  
= 1 2M,  
3.168  
3.80  
1.29  
3.80  
32  
V
V
V
V
LPKH1  
LPK  
IAC  
VIR  
IAC  
> 3.5 V, R  
= 12.4 k,  
LPK  
T = 25°C  
V
V
IAC  
V
VIR  
= 373 V, R  
= 12 M,  
= 12.4 k,  
LPKH2  
IAC  
> 3.5 V, R  
LPK  
T = 25°C  
J
V
V
V
IAC  
V
VIR  
= 127 V, R  
= 6 M,  
= 12.4 k,  
LPKL1  
IAC  
< 1.5 V, R  
LPK  
T = 25°C  
J
V
IAC  
V
VIR  
= 373 V, R  
= 6 M,  
= 12.4 k,  
LPKL2  
IAC  
< 1.5 V, R  
LPK  
T = 25°C  
J
V
AC OFF Threshold Voltage Test Case  
AC ON Threshold Voltage Test Case  
V
= 373 V, R  
= 12 M, V  
Pull Low  
> 3.5V  
> 3.5 V  
V
V
ACOFF  
IAC  
IAC  
VIR  
After t  
V
ACOFF IEA  
V
V
IAC  
= 373 V, R  
= 12 M, V  
V
ACOF  
ACON  
IAC  
VIR  
+26  
F
CM1 SECTION  
I
CM1 Sourcing Current  
PFC Disable Voltage  
55  
4
A  
CM1  
V
I R > 4 V  
CM1 * CM1  
V
CM1disable  
OPFC1~3 Disabled and IEA1~3 Pull Low  
and SS Pull Low  
When I  
R
< 4 V or Short  
0
°
°
°
1  
2  
3  
Phase of OPFC1  
CM1 * CM1  
Phase of OPFC2 (Note 8)  
Phase of OPFC3 (Note 8)  
110  
230  
120  
240  
130  
250  
CM2 SECTION  
I
CM2 Sourcing Current  
55  
4
A
CM2  
CM2disable  
V
Channel2 Disable Voltage  
I
* R  
> 4 V or CM2 Floating  
V
CM2  
CM2  
OPFC2 Disables and IEA2 PulIs Low  
V
Set VEA Unload Voltage  
Phase of OPFC1 (Note 8)  
Phase of OPFC3 (Note 8)  
0
3.8  
V
°
CM2range  
I
* R  
> 4 V or CM2 Floating  
0
1
CM2  
CM2  
3
170  
180  
190  
°
CM3 SECTION  
I
CM3 Output Current  
55  
4
A  
CM3  
CM3disable  
V
Channel3 Disable Voltage  
I
* R  
> 4 V or CM3 Floating  
V
CM3  
CM3  
OPFC3 Disables and IEA3 PulIs Low  
V
Set VEA Unload Voltage  
Phase of OPFC1 (Note 8)  
Phase of OPFC2 (Note 8)  
0
3.8  
V
°
CM3range  
When I  
* R  
> 4 V or CM3 Floating  
0
1
CM3  
CM3  
2  
170  
180  
190  
°
www.onsemi.com  
9
FAN9673  
ELECTRICAL CHARACTERISTICS (Unless otherwise noted, V = 15 V and T = 40~105°C)  
DD  
J
Symbol  
Parameter  
Condition  
Min  
Typ  
Max Unit  
RDY SECTION  
V
Level of V  
to Pull RDY High  
V
V
V
= 0 V, Brownin, V  
> V  
FBRD  
2.3  
2.4  
1.15  
0.85  
100  
5.0  
2.5  
V
V
FBRD  
FBPFC  
PVO  
PVO  
PVO  
FBPFC  
ΔV  
Hysteresis  
Hysteresis  
= 0 V, V < 1.5 V  
IR  
FBRDL  
FBRDH  
ΔV  
= 0 V, V > 3.5 V  
V
IR  
Z
Pull High Input Impedance  
HIGH Voltage of RDY  
LOW Voltage of RDY  
T = 25°C  
J
kꢁ  
V
RDY  
RDYHigh  
V
4.8  
V
Pull High Current = 1 mA  
0.5  
V
RDYLow  
PFC OUTPUT DRIVER 1~3  
Gate Output Clamping Voltage  
V
V
V
V
= 22 V  
13  
8
15  
17  
V
V
GATECLAMP  
DD  
DD  
DD  
V
Gate Low Voltage  
Gate High Voltage  
Gate Rising Time  
= 15 V, I = 100 mA  
1.5  
GATEL  
GATEH  
O
V
= 13 V, I = 100 mA  
V
O
t
r
V
V
= 15 V, C = 4.7 nF,  
from 2 V to 9 V  
70  
60  
ns  
DD  
OPFC  
L
t
f
Gate Falling Time  
V
V
= 15 V, C = 4.7 nF,  
from 9 V to 2 V  
ns  
DD  
OPFC  
L
OTP  
T
OverTemperature Protection (Note 3)  
140  
30  
°C  
°C  
OTPON  
ΔT  
Hysteresis (Note 3)  
OTP  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
3. This parameter, although guaranteed by design, is not 100% production tested.  
4. The setting range of resistance at the RI pin is between 53.3 kand 10.7 k.  
5. Frequency of AC input should be <75 Hz.  
6. The RLS and RGC setting suggestion follows the calculation result from application notes AN4164 and AN4165.  
7. LPK specification is guaranteed at state of PFC working.  
8. Pull the CM pin low to ground, ensuring VCM < 0.2 V, to enable an individual channel.  
THEORY OF OPERATION  
Continuous Conduction Mode (CCM)  
L
The boost converter, shown in Figure 4, is the most  
popular topology for power factor correction in ACDC  
power supplies. This popularity can be attributed to the  
continuous input current waveform provided by the boost  
inductor and the boost converter’s input voltage range low  
down to 0 V. These fundamental properties make  
closetounity power factor easier to achieve.  
Figure 4. Basic PFC Boost Converter  
www.onsemi.com  
10  
 
FAN9673  
The boost converter can operate in Continuous  
These are the three inputs to the gain modulator:  
Conduction Mode (CCM) or in Boundary Conduction Mode  
(BCM). These two descriptive names refer to the current  
flowing in the energy storage inductor of the boost power  
stage.  
I : A current representing the instantaneous input  
IAC  
voltage (amplitude and wave shape) to the PFC. The  
rectified AC input sine wave is converted to a  
proportional current via a resistor and fed into the gain  
modulator. A sampling mechanism on I  
ground noise, important in highpower, switchingpower  
minimizes  
IAC  
I
conversion environment. The gain modulator responds  
linearly to I  
.
AC  
V : Voltage proportional to the peak-voltage output of  
LPK  
t
the bridge rectifier when the PFC is working. The signal  
Typical Inductor Current Waveform In Continuous Conduction Mode  
is the output of peakdetect circuit detecting from the I  
.
AC  
This factor of the gain modulator is inputvoltage  
feedforward control. This voltage information is not  
valid when the PFC is not working.  
I
V  
: The output of the voltage error amplifier. The gain  
modulator responds linearly to variations of this voltage.  
VEA  
The output of the gain modulator is a current signal, I  
,
0A  
t
MO  
as eq. 1:  
Typical Inductor Current Waveform In Boundary Conduction Mode  
IAC   VVEA  
Figure 5. Basic PFC Boost Converter  
(eq. 1)  
IMO + K   
2
VLPK  
As the names indicate, the inductor current in CCM is  
continuous and always above zero. In BCM, the new  
switching period is initiated when the inductor current  
returns to zero. There are many fundamental differences in  
CCM and BCM operations and the respective designs of the  
boost converter. The FAN9673 is design for CCM control,  
as Figure 5 shows. This method reduces inductor current  
ripple because the start current of each cycle is not 0 A  
typically. The ripple is controlled by the operation frequency  
and inductance design. This characteristic makes the peak  
current in the power semiconductor devices lower.  
where the K term is about 0.8 for V < 1.5 V and 3.2 for  
IR  
V
IR  
> 3.5V respectively.  
The current signal, I , is in the form of a fullwave  
MO  
rectified sinusoid at twice of the line frequency. The gain  
modulator forms the reference for the currentloop and  
ultimately controls the instantaneous current drawn from the  
power line.  
VPFC  
VIN  
IL  
RFB1  
VFBPFC  
RFB2  
CO  
RIAC  
Gain Modulator (IA, LPK, VEA)  
I
IAC  
RCS  
The FAN9673 employs two control loops for power factor  
correction: a current control loop and a voltage control loop.  
The current control loop shapes inductor current, as shown  
in Figure 6, through a current command, IMO, from the gain  
modulator.  
A (IAC)  
IAC  
Current Command  
(C. Comd.)  
A
C (VLPK)  
VLPK  
Peak  
Detector  
C
B
IMO  
B (VEA)  
Gain Modulator  
Current Command  
IL  
A x B  
C2  
=
VEA  
(C. Comd.)  
2.5V  
VFBPFC  
R
IL  
M
Average of I + I  
 
MO  
L
PO  
VO  
V
R
CS  
VGS  
VEA  
Figure 6. CCM PFC Operation Waveforms  
C. Comd.  
IL  
The gain modulator is the block that provides the  
reference to control PFC input current. The output signal of  
the gain modulator, IMO, is a function of VVEA, IIAC, and  
VLPK; as shown in the Figure 7.  
Figure 7. Input of Gain Modulation  
www.onsemi.com  
11  
 
FAN9673  
Current Balance  
Interleaving  
Current matching of different channel is an important  
topic of multichannel control. In FAN9673, control of  
The FAN9673 controller is used to control threechannel  
boost converters connected in parallel. The controller  
operates in averagecurrent mode and supports Continuous  
Conduction Mode (CCM). Each channel affords onethird  
the power when the system operates close to full load or  
when channel management is disabled.  
current in each channel is based on sensed signal V to  
CS  
track the current command from the gain modulator, as  
shown in Figure 8.  
Parallel power processing increases the number of power  
components, but the current rating of independent channels  
is reduced, allowing power semiconductors with lower  
current ratings to be applied.  
AVG  
The switches of the three boost converters can operate at  
threechannel with 120° outofphase or twochannel with  
180° outofphase (one channel disable at light load). The  
interleaving controller can reduce the total ripple current of  
input. Simultaneously, the output current ripple of each  
channel is evenly distributed and sequentially rippled on the  
output capacitor, which can extend the life of the capacitor.  
I , High Inductance Frequency  
L
I , Low Inductance Frequency  
L
Figure 8. Average Current Mode Control  
The main factors to balance current in each channel are  
layout and device tolerance. The tolerance of the shunt  
resistor for the current sense is especially important. If the  
Channel Management 2/3: CM Control  
The CM pin is used for controlling channel management.  
The channel management is realized by changing a gain,  
acting as changing relative weighting, for the current  
command. The relationship of CM and the gain of the slave  
channel is shown in Figure 10. The level of CM set the  
feedback signal, V , has large deviation due to the  
CS  
tolerance of the sense resistor, the current of the channels  
tends to be unbalanced. High precision resistors are  
recommended.  
Highpower applications implies current values are high,  
so the distance of layout trace between the current sense  
resistors and the controller or power ground (negative of  
output capacitor) to IC ground is important, as shown in  
Figure 9. The longer trace and large current make the offset  
voltage and ground bounce differ significantly for different  
channels. Decreasing the deviation help balancing different  
channels. Please check the layout guidance in application  
notes AN4164 or AN4165.  
threshold of power level, representing by V  
reducing the current command for the slave PFC. The  
, for  
VEA  
FAN9673 starts to reduce the current command (I × R )  
MO  
M
for channel 2/3 by G  
from one to zero when the V  
ain2/3  
VEA  
level is lower than its CM level, as Figure 11 and Figure 12  
show. The output power of the slave channel is reduced in  
response to reduction in current command. For example,  
when CM2 is set at 3 V and V  
is less than the CM2  
VEA  
voltage, the channel management block reduces the  
command for channel 2 as:  
VIN  
VO  
Vgmi2) + IMO   RM   Gain2  
(eq. 2)  
Gate2  
RCS2  
Gate1  
RCS1  
VIN  
VO  
VCS1  
V
Gate2  
ISENSE2  
Gate1  
ISENSE1  
Differential  
Differential  
Sense Filter  
Sense Filter  
Current  
Current  
Close  
Gate1  
Gate2  
Command  
Command  
Loop 1  
Generator  
Gain1  
100%  
CS2−  
CS2+  
GND  
CS1−  
CS1+  
Current  
Loop 2  
CM  
Block  
Voltage  
Loop  
VO  
VVEA  
FAN9673  
Gain2  
0~100%  
V
Figure 10. Current Balance Factors  
Filter Ground  
IC GND to Power ground  
Figure 9. Current Balance Factors  
www.onsemi.com  
12  
 
FAN9673  
Vgmi+  
Channel  
Management  
Table 2 explains the phase and gain change of each  
channel when the PFC operates at various loads. The loading  
decreases the gain to the slave until it is disabled. The phase  
of Channel Management (CM) mode doesn’t change when  
channel 3 is disabled. The behavior shown in Figure 13.  
Without Channel  
Management  
Full load, all channel operation  
IL3  
VEA  
0
VCM  
V AC  
IL2  
IL1  
IL1  
time  
Mid. load ~ light load, linear decrease gain of  
channel 2 & 3, final only left Channel 1 at light load  
VAC  
Po  
IL3  
IL2  
IL1  
IL2  
Gain2 = 0  
0< Gain2 <1  
Gain2 = 1  
Figure 11. VVEA and CM Relationship  
0°  
120° 240°  
Figure 13. Phase and Gain Change of CM Control  
V
AC  
I
I
L1  
L2  
P
O
V
V
VEA  
CM  
Gain2=1  
L2  
Gain to I  
Channel Management  
Area, Gain2 < 1  
Figure 12. VVEA and VCM Relationship in  
Channel Management Operation  
Table 2. PHASE AND GAIN CHANGE OF CM CONTROL  
CM (Channel Management)  
Channel 1  
Phase and Gain  
Channel 2  
Channel 3  
Heavy Load (All Channel 100% Works)  
Mid. Load (Channel 3 is Disabled)  
Light Load (Only Channel1 Left)  
0° (Gain1 = 1)  
0° (Gain1 = 1)  
0° (Gain1 = 1)  
120° (Gain2 = 1)  
120° (0 < Gain2 < 1)  
Disable (Gain2 = 0)  
240° (0 < Gain3 < 1)  
Disable (Gain3 = 0)  
Disable (Gain3 = 0)  
Channel Management 2: External Control  
Channel Management (CM) function can also be accessed  
by an MCU through the connection shown in Figure 14. CM  
pins have internal pullup current source. If V > 4 V, the  
channel is disabled. To enable the channel, make V = 0 V,  
determine when to turn on/off the slave channel. For  
example, as shown in Figure 16, two thresholds, V  
P2OFFL  
and  
V
V
are set in MCU program. When  
P2OFFH,  
< V  
P2OFFL  
> V  
P2OFFH  
,
the slave PFC turns off. If  
CM  
VEA  
V
VEA  
, the slave PFC turns on.  
CM  
as shown in Figure 15.  
The CM pin of the slave should be connected with a switch  
S to ground. One pin of MCU must read the V  
signal to  
2
VEA  
www.onsemi.com  
13  
 
FAN9673  
CS+ CS−  
When CM is accessed this way, relative phase of OPFC of  
each channel changes when the loading changes, as  
illustrated in Table 3 and Figure 17. When the MCU disables  
channel 3 at midload, the relative phase angle of channel 2  
gmi  
Sample  
& Hold  
CM  
S
CM  
Channel  
enable  
signal  
to channel 1 shifts from 120°C to 180°C. G  
of each  
ain2/3  
channel under this control method switches between 100%  
and 0%.  
from MCU  
55uA  
OSC  
Gain  
Modulator  
Full load, all channel operation  
IL3  
IL2  
IL1  
Figure 14. Channel Management by MCU  
VCM(V)  
Mid. load, disable channel 3 by external signal  
IL3  
6
VCMLIMIT (4V)  
120˚à 180˚  
IL2  
V VEA  
IL1  
0°  
180°  
time  
time  
0
Figure 17. Phase Change under  
External Signal Control  
VAC  
IL  
Figure 15. Channel Management by MCU  
VAC  
IL1  
IL2  
P O  
V VEA  
V P2OFFH  
V P2OFFL  
à
MCU S2  
MCU TurnOff Slaver  
Figure 16. Channel Management by  
External Signal from MCU  
Table 3. PHASE CHANGE OF EXTERNAL SIGNAL CONTROL  
Phase  
(Disable Channel: V  
> 4 V, Enable Channel: V  
= 0 V)  
External Signal Control  
CM  
CM  
Channel 1  
Channel 2  
120°  
Channel 3  
240°  
Heavy Load (All Channels Enabled)  
Mid. Load (Channel3 Disabled)  
Light Load (Channel 2/3 Disabled)  
Disable All System  
0°  
0°  
0°  
180°  
Disable (V  
> 4 V)  
> 4 V)  
CM3  
CM3  
Disable (V  
> 4 V)  
Disable (V  
CM2  
V
CM1  
> 4 V, All Channels Disabled  
www.onsemi.com  
14  
 
FAN9673  
FUNCTIONAL DESCRIPTION  
Internal Oscillator (RI)  
TriFault Detect Technology  
Frequency of an internal oscillator is determined by an  
To improve power supply reliability, reduce system  
component count, and simplify compliance to UL 1950  
safety standards, the FAN9673 brings TriFault Detect  
technology. This feature monitors FBPFC for certain PFC  
fault conditions.  
In the case of a feedback path failure, the output of the PFC  
can exceed operating limits. Should FBPFC go too low, too  
high, or open, the TriFault Detect senses the fault and  
terminates the PFC output drive.  
external resistor, R , on the RI pin. The frequency of the  
RI  
oscillator is given by eq. 3. The frequency can be freely set  
in two ranges, 18 kHz ~ 40 kHz and 55 kHz~75 kHz. Setting  
frequency between 40 kHz and 55 kHz is not allowed in  
FAN9673.  
8   108  
RRI  
(eq. 3)  
fosc  
+
CurrentControl Loop of Boost Stage  
TriFault Detect is an entirely internal circuit. It requires no  
external components to perform its function.  
As shown in Figure 18, the two control loops for power  
factor correction are a currentcontrol loop and a  
voltagecontrol loop. Based on the reference signal  
obtained at the IAC pin, the error amplifier in  
currentcontrol loop regulates current signal as:  
PFC OverVoltage Protection (OVP)  
FAN9673 has an autorestart OVP function. When the  
feedback level, V  
, reaches 2.75 V (reference level is  
FBPFC  
2.5 V), the PFC gate signal stops. The PFC gate signal  
resumes when V returns to 2.5 V.  
I
  V  
AC  
EA  
2
I
  R  
+ I  
  R   G  
+ K   
  R   G  
M
ain2ń3  
FBPFC  
L
CS  
MO  
M
ain2ń3  
V
LPK  
(eq. 4)  
PFC Brown In/Out (BIBO)  
An internal AC UnderVoltage Protection (UVP)  
Average value of sensed current, I × R , is regulated to  
L
CS  
comparator monitors the AC input information from V , as  
the current command, I × R . G  
is a gain between  
IN  
MO  
M
ain2/3  
shown in Figure 19. The OPFC is disabled when the V  
0 ~ 1 when the channel management block is engaged for  
the slave channels. G term is equal to one for channel 1.  
BIBO  
is less than 1.05 V for 410 ms. If V  
is larger than 1.9 V  
BIBO  
ain2/3  
(V  
< 1.5 V) or 1.75 V (V  
> 3.5 V), the PFC stage is  
VIR  
VIR  
VoltageControl Loop of Boost Stage  
The voltagecontrol loop regulates PFC output voltage by  
enabled. The VIR pin is used to set the AC input range  
according to Table 4.  
using the internal error amplifier, G , making voltage on  
mv  
FBPFC same as the internal reference voltage, 2.5 V. It  
stabilizes PFC output voltage and decreases 120Hz ripple  
on PFC output voltage.  
Table 4. BIBO SETTING OF VARIOUS AC INPUT  
R
VIR  
R
IAC  
Input  
Setting Setting  
Range  
(kW)  
(MW)  
AC (V)  
BIBO Level (V)  
85/75  
V
IN  
VPFC  
FullRange 85 264  
HVSingle 180 264  
10  
6
IL  
470  
12  
170/160  
RCS  
1.9V/1.7V (PFC brownin threshold)  
VIN  
CS−  
CS+  
VBIBO  
LS  
gmi  
LPT  
CM  
IEA  
GC  
CM  
RI1  
CI1  
RM  
RIAC  
CI2  
1.05V (brownout protection trip point)  
IMO  
IAC  
PFC runs  
Drive  
Peak  
Detecter  
LPK  
VEA  
Figure 19. VBIBO According to the PFC Operation  
Logic  
OPFC  
RI  
OSC  
RFB1+FB2  
RV1  
CV1  
gmv  
PFC Gate Driver  
CV2  
PVO  
2.5V  
For highpower applications, the switch device of the  
system requires high driving current. The totempole circuit  
shown in Figure 20 is recommended.  
FBPFC  
RFB3  
Figure 18. Gain Modulation Block  
www.onsemi.com  
15  
 
FAN9673  
VDD  
V
ILIMIT2  
, are configurable through ILIMIT and ILIMIT2  
pins.  
S
PFC  
Power (Normal State)  
In the normal case, average input power is controlled by  
the command V  
. When V  
rises to 5.6 V, it is  
VEA  
VEA  
internally clamped. Input power can’t increase further.  
R
CS  
Current Limit 1 (Abnormal State)  
The current command from the gain modulator is  
2
K × I ×V  
/V  
. In abnormal state, such as AC cycle  
AC  
VEA LPK  
Figure 20. Gate Drive Circuit  
miss and recover in a short period, the V  
has a delay  
LPK  
before returning to the original level. This delay makes the  
current command increased. If the command is greater than  
Differential Current Sensing (CS+, CS)  
the limit clamp level, V , current command will be  
ILIMIT  
Switching noise problems in interleaved PFC control is  
more critical than on a single channel, especially for current  
sensing. The FAN9673 uses a differential amplifier to  
eliminate switching noise from other channels. The  
FAN9673 has three groups of differential currentsensing  
pins. The CSn+ and CSnare the inputs of the internal  
differential amplifiers. This makes the PFC more stable in  
higherpower applications and eliminates switching noise  
from other channels. As Figure 21 shows, ground bounce  
can be decreased by a differential sense function.  
clamped, as shown in Figure 22 and Figure 23. The peak  
current of this state can be used as the maximum current for  
inductor design, assuring inductor is not saturated.  
1.2V  
I
RI  
5
A
ILIMIT  
3
C
I × R  
ILIMIT  
RILIMIT  
Differential  
Current Sense  
4
VRM  
B
Gain Modulator  
Figure 22. Current Command Limit by ILIMIT  
Period  
Period  
Current Limit 2 (Saturation State)  
Use 80% ~ 90% of the maximum current of the switch  
Figure 21. Gate Drive Circuit  
device to serve as the saturation protection. V  
is a  
LIMIT2  
cyclebycycle limit.  
Linear Predict Function (GC & LS)  
Current sense signal reflects inductor current only when  
OPFC is on. The linear predict function is used to emulate  
the behavior of inductor current when the OPFC is off.  
Resistor on the LS pin is used to set equivalent inductance  
value for the internal emulator. Resistor on the GC pin is  
used to align sensed input voltage (IAC) and output voltage  
(FBPFC) signals. Values of those resistors can be  
determined by:  
VILIMIT2 = Saturation Protection  
V
NonSaturation  
VCS.PK  
VCS  
PFC  
Command  
Gmi+  
VILIMIT/4  
Case1:  
Max. Power (Normal),  
“B” = 6 V  
Case2:  
Case3:  
LPFC  
> Max. Power (Abnormal),  
V “B” = 6 V  
> Max. Power (Abnormal),  
AC cycle drop, as left case,  
but user uses wrong choke  
can not afford current at Max.  
mommand.  
RLS  
+
V
VEAMAX  
VEAMAX  
AC cycle drop  
= 6V, but “C” abnormal  
(RFB1)RFB2)RFB3  
)
1.5   10*9   RCS  
 
V
RFB3  
VEA  
short time, clamp by V  
ILIMIT  
(eq. 5)  
(eq. 6)  
Right design,  
max power  
limited by  
VVEA  
Right design at  
abnormal test,  
command from  
Multiplier clamp  
by VILIMIT  
Wrong design at  
abnormal test, but  
6   106  
RFB1)RFB2)RFB3  
protect by V  
ILIMIT2  
RGC  
+
(
)
RFB3  
Figure 23. ILIMIT and ILIMIT2 Setting  
Care must be taken that RLS value need to be within  
12~87 k.  
Programmable PFC Output Voltage (PVO)  
CurrentLimit Protection  
The FAN9673 includes three factors that limits current to  
manage OCP and inductor saturation: V  
In some cases, decreasing the PFC output voltage can  
improve efficiency of the PFC stage. The PVO pin is used  
to program output voltage, as shown in Figure 24. An  
limit, V  
,
VEA  
ILIMIT  
and V  
. The current-limit thresholds, V  
and  
ILIMIT2  
ILIMIT1  
www.onsemi.com  
16  
 
FAN9673  
VPFC  
external voltage signal, from MCU or other source, is  
provided to PVO pin.  
IL  
This function is enabled when V  
> 0.5 V. Upon  
PVO  
enabled, V  
regulation target becomes:  
FBPFC  
VPVO  
4
+ 2.5 V * ƪ ƫ  
(eq. 7)  
VFBPFC  
RFB1 + FB2  
VREF  
For instance, if PVO input is 1 V, R +R  
= 3.7 M,  
FB1  
FB2  
RDY  
MCU  
FBPFC  
and R  
= 23.7 k, V  
will be regulated to 2.25 V,  
FB3  
FBPFB  
RFB3  
making PFC V = 354 V.  
O
FR: 2.4V/1.25V  
HV: 2.4V/1.55V  
VPFC  
Brown out  
VO  
IL  
Figure 25. RDY Function to MCU  
393V  
354V  
RCS  
V
AC  
External  
Signal  
(MCU)  
IL  
AC OFF  
RFB1  
(AC Long Time Drop)  
V
INOK = 2.4V  
INOFF = 1.25V (FR) /  
1.55V (HV)  
VFBPFC  
V
2.5V  
PVO  
RFB2  
2.25V  
Brownout & PFC Soft  
RDY PullLow Start  
VFBPFC  
PFC Soft Start  
gmv  
VFBPFC  
PVO  
FBPFC  
2.5V  
1V  
0V  
RFB3  
VSS  
Voltage Protection  
VVEA  
VRDY à MCU  
Second Power Stage working  
Figure 24. Programmable PFC Output Voltage  
Figure 26. When AC Drops for a Long Time  
RDY Function and AC Line Off/AC “SAG”  
The ready (RDY) function is used to signal the MCU that  
the PFC stage is ready and the downstream power stage can  
start to operate. When the feedback voltage on FBPFC rises  
V
AC  
IL  
V
INOK = 2.4V  
above 2.4 V, V  
signal pulls HIGH as shown in Figure 25.  
RDY  
VINOFF = 1.25V (FR) /  
If the AC line is OFF (or AC signal drops for a long time),  
the FAN9673 enters brownout and V pulls LOW to  
1.55V (HV)  
VFBPFC  
AC Short Time Drop  
RDY  
PFC Soft Start  
indicate to the MCU that the power stage should stop, as  
shown in Figure 26.  
When the AC signal drops for only a short time (i.e. 1~1.5  
VSS  
VVEA  
AC cycles), brownout is not triggered and V  
drop too much. In this case, RDY will not go LOW as shown  
in Figure 27.  
may not  
FBPFC  
VRDY MCU  
à
Second Power Stage working  
Figure 27. AC Drops Briefly  
AC “sag” means the AC drops to a low level, such as  
110 V / 220 V 40 V. AC “missing” means the AC drops  
to 0 V. If AC drops, the PFC attempts to transfer energy to  
V before V drops to the 50% level. If AC is 0 V, the PFC  
O
O
can’t transfer energy. If the level reaches 50%, the PFC  
stops, and FAN9673 resets and waits for AC to return.  
www.onsemi.com  
17  
 
FAN9673  
SoftStart  
One of the important benefits of this approach is that the  
peak indicates the correct RMS value even at no load. At no  
load, the HF filter capacitor at the input side of the boost  
converter is not discharged around the zerocrossing of the  
line waveform. Another notable benefit is that, during line  
transients, when the peak exceeds the previously measured  
value, the inputvoltage feedforward circuit can react  
immediately without waiting for a valid integral value at the  
end of the halfline period.  
Softstart is combined with RDY pin operation, as  
Figure 26 and Figure 27 show. During startup, the RDY pin  
remains LOW until the PFC output voltage reaches 96% of  
its nominal value. When the supply voltage of the  
downstream converter is controlled by the RDY pin, the  
PFC stage always starts with no load because the  
downstream converter does not operate until the PFC output  
voltage reaches the required level for the design.  
Usually, the error amplifier output, V  
, is saturated to  
The relationship of V  
to V  
is shown in Figure 29.  
VEA  
IN.PK  
LPK  
HIGH during startup because the actual output voltage is  
less than the target value. V remains saturated to HIGH  
The peak detection circuits recognizes the V information  
IN  
from I . When recommended design values in Table 4 are  
VEA  
AC  
until the PFC output voltage reaches its target value. Once  
the PFC output reaches its target value, the error amplifier  
comes out of saturation. However, it takes several line cycles  
followed, RLPK pin sets the ratio of V to V  
via a  
IN  
LPK  
resistor R  
as described in eq. 8. The target value of  
RLPK  
V
LPK  
is usually set as one percent (1%) of V  
. The  
IN_pk  
for V  
to drop to its proper value for output regulation,  
maximum V  
should not exceed 3.8 V when system  
VEA  
LPK  
which delivers more power to the load than required and  
causes output voltage overshoot. To prevent output voltage  
overshoot during startup caused by the saturation of error  
amplifier, the FAN9673 clamps the error amplifier output  
operation is at maximum AC input.  
As in the below design example, assume the maximum  
V
IN.PK  
V
IN.PK  
at 373 V (264 V ), the relationship of  
AC  
/ V  
is 100, and V  
= 3.73 V < 3.8 V.  
LPK  
LPK  
voltage (V ) by the V value until PFC output reaches  
EA  
SS  
VIN.PK  
100  
RRLPK  
12.4k  
VLPK  
+
 
(eq. 8)  
96% of its nominal value.  
Input Voltage Peak Detection  
VIN  
The input AC peak voltage is sensed at the IAC pin.  
Ideally, RMS value of the input voltage should be used for  
feedforward control in the gain modulator circuit. Since the  
RMS value of the AC input voltage is directly proportional  
to its peak, it is sufficient to find the peak instead of the  
morecomplicated and slower method of integrating the  
input voltage over a half line cycle. The internal circuit of the  
IAC pin works with peak detection on the input AC  
waveform and output to the LPK pin for MCU use, as shown  
in Figure 28.  
RIAC  
IAC  
RLPK  
Ratio  
R
LPK  
tBLANK =5ms  
No update after ACOFF  
LPK  
VIN/100 >VLPK +0.2V  
Stepup tracking  
Peak  
Detector  
VLPK  
tBLANK = 5ms  
VLPK  
Figure 29. Relationship of VIN.PK to VLPK  
VIN/100  
95%  
t
ACOFF =2.5ms  
IEA pull low  
tUPDATE = 3.5ms  
tACOFF = 2.5ms  
IEA pull low  
VACOFF =10%*VLPK  
VACON = 20%* VLPK  
Figure 28. Waveform of LPK Function  
www.onsemi.com  
18  
 
FAN9673  
Typical Performance Characteristics  
Typical characteristics are provided at T = 25°C and V = 15 V unless otherwise noted.  
A
DD  
Figure 31. VDDOVP vs. Temperature  
Figure 30. IDDOP vs. Temperature  
Figure 33. VRI vs. Temperature  
Figure 32. fosc vs. Temperature  
Figure 35. VBIBOFH vs. Temperature  
Figure 34. VBIBOFL vs. Temperature  
Figure 36. VBIBOHL vs. Temperature  
Figure 37. VBIBOHH vs. Temperature  
www.onsemi.com  
19  
FAN9673  
Typical Performance Characteristics (continued)  
Typical characteristics are provided at V = 15 V unless otherwise noted.  
DD  
Figure 39. GmVMAX vs. Temperature  
Figure 38. VFBPFCRD vs. Temperature  
Figure 40. VOFFSET vs. Temperature  
Figure 42. VPFCOVP vs. Temperature  
Figure 44. ILIMIT vs. Temperature  
Figure 41. GMI vs. Temperature  
Figure 43. VREF vs. Temperature  
Figure 45. VLIMIT vs. Temperature  
www.onsemi.com  
20  
FAN9673  
Typical Performance Characteristics (continued)  
Typical characteristics are provided at V = 15 V unless otherwise noted.  
DD  
Figure 47. VILIMIT2CS1 vs. Temperature  
Figure 46. ILIMIT2 vs. Temperature  
Figure 49. VRLPKOPEN vs. Temperature  
Figure 48. tPFCBNK vs. Temperature  
Figure 51. VLPKH2 vs. Temperature  
Figure 50. VLPKH1 vs. Temperature  
www.onsemi.com  
21  
FAN9673  
Table 5. TYPICAL APPLICATION CIRCUIT  
Application  
Output Power  
5000 W  
Input Voltage  
180 264 V  
Output Voltage/Output Current  
SingleStage, ThreeChannel PFC  
393 V/12.72 A  
AC  
Features  
180 V ~264 V, ThreeChannel PFC Using FAN9673  
AC  
SwitchCharge Technique of Gain Modulator for Better  
PF and Lower THD  
40 kHz Low Switching Frequency Operation with IGBT  
Protections:  
OverVoltage  
Protection  
(OVP),  
UnderVoltage Protection (UVP), and OverCurrent  
Protection (I ), Inductor Saturation Protection  
LIMIT  
(I  
)
LIMIT2  
* DBP1, 2  
1N5406  
LPFC1  
RB1  
DPFC1  
FFH30S60STU  
VPFC  
100 H  
LPFC2  
DPFC2  
FFH30S60STU  
100 H  
CB  
1 F  
RFB1  
2.2 Mꢁ  
COUT  
2040 F  
LPFC3  
DPFC3  
FFH30S60STU  
100 H  
SPFC1~3  
FGH40N60SMDF  
RFB2  
1.5 Mꢁ  
RB1  
RA1  
1 Mꢁ  
6 Mꢁ  
VDD  
VDD  
VDD  
CFB  
RFB3  
RB2  
1 Mꢁ  
RA2  
6 Mꢁ  
Rsen3  
15 mꢁ  
Rsen1  
15 mꢁ  
Rsen2  
15 mꢁ  
470 pF 23.7 kꢁ  
RF1~2  
470 ꢁ  
CF1  
2.2 nF  
CF2  
2.2 nF  
RB3  
OPFC1 CS1CS1+ OPFC2 CS2CS2+ OPFC3 CS3CS3+  
200 kꢁ  
IAC  
FBPFC  
BIBO  
SS  
CVC2  
RVC1  
100 nF  
CB1  
CB2  
RB4  
16.2 kꢁ  
VEA  
IEA1  
CVC1  
CIC11  
CIC21  
1 F  
47 nF 0.47 F  
75 kꢁ  
CSS  
0.47 F  
RLPK  
CIC12  
RIC11  
100 pF  
CRLPK  
10 nF  
1 nF  
17.4 kꢁ  
RLPK 12.1 kꢁ  
CIC122  
100 pF  
LS  
FAN9673  
IEA2  
IEA3  
VDD  
CLS  
470 pF  
43 kꢁ  
1 nF  
1 nF  
RIC21  
17.4 kꢁ  
RLS  
CIC32  
RIC31  
100 pF  
GC  
CIC31  
CGC  
470 pF  
17.4 kꢁ  
RGC 38.2 kꢁ  
ILIMIT2  
CVDD  
C
22 F  
ILIMIT210 nF  
Standby  
Power  
RILIMIT2  
10 kꢁ  
VIR  
LPK  
CVIR  
1 nF  
MCU  
RLPK  
RVIR 470 kꢁ  
CLPK  
0.1 F  
4.7 kꢁ  
RI  
ILIMIT  
CM1  
CM2  
CM3  
PVO  
GND  
RDY  
RRI  
CILIMIT RILIMIT  
20 k10 nF 30 kꢁ  
MCU/  
MCU signal  
(DC)  
Sec. Stage  
(PFC Ready)  
DC Setting Level  
Figure 52. Schematic of Design Example  
www.onsemi.com  
22  
FAN9673  
Specification  
Switching Frequency: 40 kHz  
for RDY: 2.4 V/1.55 V (96% / 62%)  
V Maximum Rating: 20 V  
DD  
V  
FBPFC  
V OVP: 24 V  
DD  
R : 12 Mꢁ  
IAC  
V UVLO: 10.3 V/12.8 V  
CC  
Inductor Schematic Diagram  
Core: QP2925H (3C94)  
Bobbin: 4 Pins  
PVO: 0 V 1 V  
PFC SoftStart: C = 0.47 F  
SS  
BrownIn/Out: 175 V/165 V  
Figure 53. Inductor Schematic Diagram  
Table 6. WINDING SPECIFICATION  
No.  
1
Winding  
Pin (S " F)  
1 4  
Wire  
Turns  
Winding Method  
N1  
0.1× 40 *1  
46  
Solenoid Winding  
2
Insulation: Polyester Tape t = 0.025 mm, 2Layer  
CopperFoil 1.2T to PIN3  
3
Table 7. MOSFET AND DIODE REFERENCE SPECIFICATION  
IGBT’s  
Voltage Rating  
600 V (IGBT)  
FGH40N60SMDF  
Boost Diodes  
FFH30S60STU  
600 V  
Typical Performance  
Table 8. EFFICIENCY  
25% Load  
50% Load  
96.5%  
75% Load  
96.5%  
100% Load  
96.2%  
180 V/50 Hz  
220 V/50 Hz  
264 V/50 Hz  
96.5%  
97.0%  
97.6%  
97.1%  
97.2%  
97.1%  
97.9%  
97.7%  
97.6%  
Table 9. POWER FACTOR  
25% Load  
0.9912  
50% Load  
0.9947  
75% Load  
0.9971  
100% Load  
0.9974  
180 V/50 Hz  
220 V/50 Hz  
264 V/50 Hz  
0.9800  
0.9868  
0.9905  
0.9924  
0.9365  
0.9369  
0.9526  
0.9600  
www.onsemi.com  
23  
FAN9673  
Table 10. TOTAL HARMONIC DISTORTION  
25% Load  
50% Load  
9.17%  
75% Load  
6.62%  
100% Load  
6.40%  
180 V/50 Hz  
220 V/50 Hz  
264 V/50 Hz  
10.55%  
14.32%  
25.85%  
14.36%  
33.22%  
12.55%  
29.59%  
11.26%  
27.29%  
System Design Precautions  
downstream power stage is enabled to operate at full load  
once the PFC output voltage has reaches a level close to  
the specified steadystate value.  
Pay attention to the inrush current when AC input is first  
connected to the boost PFC convertor. It is recommended  
to use NTC and a parallel connected relay circuit to reduce  
inrush current.  
Add bypass diode to provide a path for inrush current  
when PFC start up.  
The PVO function is used to change the output voltage of  
PFC, V . The V  
should be kept at least 25 V higher  
PFC  
PFC  
than V .  
IN  
The PFC stage is normally used to provide power to a  
downstream DCDC or inverter. It’s recommend that  
www.onsemi.com  
24  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
LQFP32, 7x7  
CASE 561AB01  
ISSUE O  
DATE 19 JUN 2008  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON30893E  
32 LEAD LQFP, 7X7  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
Email Requests to: orderlit@onsemi.com  
TECHNICAL SUPPORT  
North American Technical Support:  
Voice Mail: 1 8002829855 Toll Free USA/Canada  
Phone: 011 421 33 790 2910  
Europe, Middle East and Africa Technical Support:  
Phone: 00421 33 790 2910  
For additional information, please contact your local Sales Representative  
ON Semiconductor Website: www.onsemi.com  
www.onsemi.com  

相关型号:

FAP

Shock-Safe Fuseholder, 5 x 20 mm, Fingergrip, vertical, PC1
SCHURTER

FAP-#4

Board Connector, 10 Contact(s), 2 Row(s), Male, Straight, Solder Terminal, Plug
YAMAICHI

FAP-01

Board Connector, 10 Contact(s), 2 Row(s), Male, Right Angle, Wire Wrap Terminal, Plug
YAMAICHI

FAP-01-K

Space-saving Plug-in Signal Conditioners F-UNIT
MSYSTEM

FAP-01-K/Q

Space-saving Plug-in Signal Conditioners F-UNIT
MSYSTEM

FAP-01-L

Space-saving Plug-in Signal Conditioners F-UNIT
MSYSTEM

FAP-01-L/Q

Space-saving Plug-in Signal Conditioners F-UNIT
MSYSTEM

FAP-01-P

Space-saving Plug-in Signal Conditioners F-UNIT
MSYSTEM

FAP-01-P/Q

Space-saving Plug-in Signal Conditioners F-UNIT
MSYSTEM

FAP-01-R

Space-saving Plug-in Signal Conditioners F-UNIT
MSYSTEM

FAP-01-R/Q

Space-saving Plug-in Signal Conditioners F-UNIT
MSYSTEM

FAP-02

Board Connector, 10 Contact(s), 2 Row(s), Male, Right Angle, Solder Terminal, Plug
YAMAICHI