FDD13AN06A0 [ONSEMI]

N 沟道,PowerTrench® MOSFET,60V,50A,13mΩ;
FDD13AN06A0
型号: FDD13AN06A0
厂家: ONSEMI    ONSEMI
描述:

N 沟道,PowerTrench® MOSFET,60V,50A,13mΩ

开关 晶体管
文件: 总14页 (文件大小:387K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
MOSFET – N-Channel,  
POWERTRENCH)  
V
R
MAX  
I MAX  
D
DSS  
DS(on)  
60 V  
13.5 mW @ 10 V  
50 A  
60 V, 50 A, 13 mW  
D
FDD13AN06A0  
G
S
Features  
R  
Q  
= 11.5 mW (Typ.) @ V = 10 V, I = 50 A  
GS D  
DS(on)  
G(tot)  
DPAK3 (TO−252 3 LD)  
CASE 369AS  
= 22 nC (Typ.) @ V = 10 V  
GS  
Low Miller Charge  
Low Q Body Diode  
rr  
MARKING DIAGRAM  
UIS Capability (Single Pulse and Repetitive Pulse)  
This Device is Pb−Free, Halide Free and is RoHS Compliant  
&Z&3&K  
FDD13AN0  
6A0  
Applications  
Consumer Appliances  
LED TV  
Synchronous Rectification  
Battery Protection Circuit  
Motor Drives and Uninterruptible Power Supplies  
&Z  
&3  
&K  
= Assembly Plant Code  
= 3−Digit Date Code  
= 2−Digits Lot Run Traceability Code  
FDD13AN06A0 = Device Code  
D
MOSFET MAXIMUM RATINGS (T = 25°C, unless otherwise noted)  
C
Symbol  
Parameter  
Drain to Source Voltage  
Ratings  
60  
Unit  
V
V
DSS  
V
GS  
Gate to Source Voltage  
20  
V
G
I
Drain Current  
A
D
Continuous (T < 80°C, V = 10 V)  
50  
9.9  
C
GS  
GS  
= 52°C/W)  
Continuous (T = 25°C, V = 10 V,  
A
S
R
q
JA  
Pulsed  
Figure 4  
56  
N−Channel  
E
AS  
Single Pulse Avalanche Energy (Note 1)  
Power Dissipation  
mJ  
W
P
115  
D
Derate above 25°C  
0.77  
W/°C  
°C  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 12 of  
this data sheet.  
T , T  
Operating and Storage Temperature  
−55 to 175  
J
STG  
Stresses exceeding those listed in the Maximum Ratings table may damage the  
device. If any of these limits are exceeded, device functionality should not be  
assumed, damage may occur and reliability may be affected.  
THERMAL CHARACTERISTICS (T = 25°C, unless otherwise noted)  
C
Symbol  
Parameter  
Ratings  
Unit  
R
q
JC  
Thermal Resistance Junction to Case, Max.  
D−PAK  
1.3  
°C/W  
R
Thermal Resistance Junction to Ambient,  
Max. D−PAK  
100  
52  
q
JA  
JA  
R
q
Thermal Resistance Junction to Ambient,  
°C/W  
2
Max. D−PAK, 1 in Copper Pad Area  
© Semiconductor Components Industries, LLC, 2003  
1
Publication Order Number:  
May, 2023 − Rev. 3  
FDD13AN06A0/D  
FDD13AN06A0  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
C
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
B
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
I
= 250 mA, V = 0 V  
60  
V
VDSS  
D
GS  
I
V
V
V
= 50 V, V = 0 V  
1
mA  
DSS  
DS  
DS  
GS  
GS  
= 50 V, V = 0 V, T = 150°C  
250  
100  
GS  
C
I
Gate to Source Leakage Current  
=
20 V  
nA  
GSS  
ON CHARACTERISTICS  
V
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
V
= V , I = 250 mA  
2
4
V
GS(TH)  
GS  
DS D  
R
I
D
I
D
I
D
= 50 A, V = 10 V  
0.0115  
0.022  
0.026  
0.0135  
0.034  
0.030  
W
DS(on)  
GS  
= 25 A, V = 6 V  
GS  
= 50 A, V = 10 V, T = 175°C  
GS  
J
DYNAMIC CHARACTERISTICS  
C
Input Capacitance  
V
= 25 V, V = 0 V, f = 1 MHz  
1350  
260  
90  
pF  
pF  
pF  
nC  
ISS  
DS  
GS  
C
Output Capacitance  
OSS  
RSS  
C
Reverse Transfer Capacitance  
Total Gate Charge at 10 V  
Q
g(TOT)  
V
GS  
= 0 V to 10 V, V = 30 V, I = 50 A,  
22  
29  
DD  
D
I = 1.0 mA  
g
Q
g(TH)  
Threshold Gate Charge  
V
= 0 V to 2 V, V = 30 V, I = 50 A,  
2.6  
3.4  
nC  
GS  
DD  
D
I = 1.0 mA  
g
Q
Gate to Source Gate Charge  
Gate Charge Threshold to Plateau  
Gate to Drain “Miller” Charge  
V
DD  
= 30 V, I = 50 A, I = 1.0 mA  
8.2  
5.6  
6.4  
nC  
nC  
nC  
gs  
D
g
Q
gs2  
Q
gd  
SWITCHING CHARACTERISTICS (V = 10 V)  
GS  
t
Turn−On Time  
Turn−On Delay Time  
Rise Time  
V
DD  
V
GS  
= 30 V, I = 50 A  
9
130  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
D
= 10 V, R = 12 W  
GS  
t
d(ON)  
t
r
77  
26  
25  
t
Turn−Off Delay Time  
Fall Time  
d(OFF)  
t
f
t
Turn−Off Time  
77  
OFF  
DRAIN−SOURCE DIODE CHARACTERISTICS  
V
Source to Drain Diode Voltage  
I
I
I
I
= 50 A  
= 25 A  
1.25  
1.0  
24  
V
V
SD  
SD  
SD  
SD  
SD  
t
Reverse Recovery Time  
= 50 A, dI /dt = 100 A/ms  
ns  
nC  
rr  
SD  
Q
Reverse Recovered Charge  
= 50 A, dI /dt = 100 A/ms  
15  
RR  
SD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
1. Starting T = 25°C, L = 45 mH, I = 50 A.  
J
AS  
www.onsemi.com  
2
FDD13AN06A0  
TYPICAL CHARACTERISTICS (T = 25°C, unless otherwise noted)  
C
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
80  
CURRENT LIMITED  
BY PACKAGE  
60  
40  
20  
0
0
0
25  
50  
75  
100  
125  
150  
175  
25  
50  
75  
100  
125  
150  
175  
101  
101  
T , CASE TEMPERATURE (°C)  
T , CASE TEMPERATURE (°C)  
C
C
Figure 1. Normalized Power Dissipation vs.  
Ambient Temperature  
Figure 2. Maximum Continuous Drain Current vs.  
Case Temperature  
2
DUTY CYCLE − DESCENDING ORDER  
0.5  
0.2  
0.1  
0.05  
0.02  
0.01  
1
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t / t  
1
2
SINGLE PULSE  
10−4  
PEAK T = P  
x Z  
x R  
+ T  
JC C  
q
q
J
DM  
JC  
0.01  
10−5  
10−3  
10−2  
10−1  
100  
t, RECTANGULAR PULSE DURATION (s)  
Figure 3. Normalized Maximum Transient Thermal Impedance  
800  
T
C
= 25°C  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
FOR TEMPERATURES  
ABOVE 25°C DERATE PEAK  
CURRENT AS FOLLOWS:  
175 * TC  
Ǹ
I + I25 ƪ ƫ  
V
GS  
= 10 V  
150  
100  
10  
10−5  
10−4  
10−3  
10−2  
10−1  
100  
t, PULSE WIDTH (s)  
Figure 4. Peak Current Capability  
www.onsemi.com  
3
FDD13AN06A0  
TYPICAL CHARACTERISTICS (T = 25°C, unless otherwise noted) (continued)  
C
1000  
100  
10  
100  
If R = 0  
t
AV  
= (L) (I ) / (1.3 x RATED BV  
− V  
)
AS  
DSS  
DD  
10 ms  
100 ms  
1 ms  
If R 0  
= (L / R) ln [(I x R) / (1.3 x RATED BV  
t
AV  
− V ) + 1]  
DD  
AS  
DSS  
STARTING T = 25°C  
J
10  
OPERATION IN THIS  
AREA MAY BE LIMITED  
STARTING T = 150°C  
J
10 ms  
BY R  
DS(on)  
1
SINGLE PULSE  
T = MAX RATED  
DC  
J
T
C
= 25°C  
1
0.01  
0.1  
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
100  
0.1  
1
10  
100  
V
DS  
t , TIME IN AVALANCHE (ms)  
AV  
NOTE: Refer to onsemi Application Notes AN7514 and AN7515  
Figure 5. Forward Bias Safe Operating Area  
Figure 6. Unclamped Inductive Switching Capability  
100  
100  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
T
C
= 25°C  
V
V
= 20 V  
= 10 V  
GS  
80  
60  
40  
20  
0
80  
60  
40  
20  
0
V
DD  
= 15 V  
GS  
V
GS  
= 6 V  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
T = 175°C  
J
T = 25°C  
J
T = −55°C  
J
V
GS  
= 5 V  
3
4
5
6
7
0
0.5  
1.0  
1.5  
2.0  
V
GS  
, GATE TO SOURCE VOLTAGE (V)  
V
DS  
, DRAIN TO SOURCE VOLTAGE (V)  
Figure 7. Transfer Characteristics  
Figure 8. Saturation Characteristics  
30  
25  
20  
15  
10  
2.5  
2.0  
1.5  
1.0  
0.5  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
V
GS  
= 6 V  
V
GS  
= 10 V  
V
= 10 V, I = 50 A  
D
GS  
0
10  
20  
30  
40  
50  
−80  
−40  
0
40  
80  
120  
160  
200  
I , DRAIN CURRENT (A)  
D
T , JUNCTION TEMPERATURE (°C)  
J
Figure 9. Drain to Source On Resistance vs.  
Drain Current  
Figure 10. Normalized Drain to Source On Resistance  
vs. Junction Temperature  
www.onsemi.com  
4
FDD13AN06A0  
TYPICAL CHARACTERISTICS (T = 25°C, unless otherwise noted) (continued)  
C
1.4  
1.2  
1.0  
0.8  
0.6  
0.4  
1.2  
V
= V , I = 250 mA  
I = 250 mA  
D
GS  
DS  
D
1.1  
1.0  
0.9  
−80  
−40  
0
40  
80  
120  
160  
200  
−80  
−40  
0
40  
80  
120  
160  
200  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 11. Normalized Gate Threshold Voltage vs.  
Junction Temperature  
Figure 12. Normalized Drain to Source Breakdown  
Voltage vs. Junction Temperature  
10  
3000  
V
DD  
= 30 V  
8
6
4
2
0
C
= C + C  
GS GD  
ISS  
1000  
C
@ C + C  
DS GD  
OSS  
C
= C  
GD  
RSS  
WAVEFORMS IN  
DESCENDING ORDER:  
100  
40  
I
D
I
D
= 50 A  
= 25 A  
V
= 0 V, f = 1 MHz  
1
GS  
0.1  
10  
60  
0
5
10  
15  
20  
25  
V
DS  
, DRAIN TO SOURCE VOLTAGE (V)  
Q , GATE CHARGE (nC)  
g
Figure 13. Capacitance vs. Drain to Source Voltage  
Figure 14. Gate Charge Waveforms for Constant  
Gate Currents  
www.onsemi.com  
5
FDD13AN06A0  
TEST CIRCUITS AND WAVEFORMS  
V
BV  
DSS  
DS  
t
P
V
DS  
L
I
AS  
V
DD  
VARY t TO OBTAIN  
P
+
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
0 V  
AS  
0
0.01 W  
t
AV  
Figure 15. Unclamped Energy Test Circuit  
Figure 16. Unclamped Energy Waveforms  
Q
g(TOT)  
V
DS  
V
DD  
V
DS  
V
GS  
L
V
= 10 V  
GS  
V
GS  
Q
+
gs2  
V
DD  
V
= 2 V  
DUT  
GS  
0
I
Q
g(REF)  
g(TH)  
Q
Q
gs  
gd  
I
g(REF)  
0
Figure 17. Gate Charge Test Circuit  
Figure 18. Gate Charge Waveforms  
t
t
V
ON  
OFF  
t
d(OFF)  
DS  
t
d(ON)  
t
t
f
r
R
L
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
90%  
50%  
DUT  
R
GS  
V
0
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
Figure 19. Switching Time Test Circuit  
Figure 20. Switching Time Waveforms  
www.onsemi.com  
6
FDD13AN06A0  
THERMAL RESISTANCE VS. MOUNTING PAD AREA  
The maximum rated junction temperature, T , and the  
can be evaluated using the onsemi device Spice thermal  
JM  
thermal resistance of the heat dissipating path determines  
model or manually utilizing the normalized maximum  
transient thermal impedance curve.  
the maximum allowable device power dissipation, P , in  
DM  
an application. Therefore the application’s ambient  
Thermal resistances corresponding to other copper areas  
can be obtained from Figure 21 or by calculation using  
Equation 2 or 3. Equation 2 is used for copper area defined  
in inches square and Equation 3 is for area in centimeters  
square. The area, in square inches or square centimeters is  
the top copper area including the gate and source pads.  
temperature, T (°C), and thermal resistance R  
(°C/W)  
qJA  
A
must be reviewed to ensure that T is never exceeded.  
JM  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
ǒT  
Ǔ
JM * TA  
PDM  
+
23.84  
(eq. 1)  
RqJA + 33.32 )  
RqJA  
(eq. 2)  
(0.268 ) Area)  
In using surface mount devices such as the TO−252  
package, the environment in which it is applied will have a  
significant influence on the part’s current and maximum  
Area in Inches Squared  
154  
RqJA + 33.32 )  
power dissipation ratings. Precise determination of P  
complex and influenced by many factors:  
is  
(eq. 3)  
(1.73 ) Area)  
DM  
Area in Centimeters Squared  
1. Mounting pad area onto which the device is  
attached and whether there is copper on one side  
or both sides of the board.  
2. The number of copper layers and the thickness of  
the board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
5. Air flow and board orientation.  
6. For non steady state applications, the pulse width,  
125  
R
= 33.32 + 23.84 / (0.268 + Area) eq.2  
= 33.32 + 154 / (1.73 + Area) eq.3  
q
JA  
R
q
JA  
100  
75  
the duty cycle and the transient thermal response of  
the part, the board and the environment they are in.  
onsemi provides thermal information to assist the  
designer’s preliminary application evaluation. Figure 21  
50  
25  
defines the R for the device as a function of the top copper  
qJA  
0.01  
0.1  
(0.645)  
1
10  
(64.5)  
(component side) area. This is for a horizontally positioned  
FR−4 board with 1 oz copper after 1000 seconds of steady  
state power with no air flow. This graph provides the  
necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse applications  
(0.0645)  
(6.45)  
2
2
AREA, TOP COPPER AREA in (cm )  
Figure 21. Thermal Resistance vs. Mounting Pad Area  
www.onsemi.com  
7
 
FDD13AN06A0  
PSPICE ELECTRICAL MODEL  
.SUBCKT FDD13AN06A0 2 1 3 ; rev August 2002  
Ca 12 8 5.1e−10  
Cb 15 14 5.8e−10  
Cin 6 8 1.3e−9  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
Ebreak 11 7 17 18 65.40  
Eds 14 8 5 8 1  
Egs 13 8 6 8 1  
Esg 6 10 6 8 1  
Evthres 6 21 19 8 1  
Evtemp 20 6 18 22 1  
It 8 17 1  
Lgate 1 9 5.2e−9  
Ldrain 2 5 1.0e−9  
Lsource 3 7 2.14e−9  
RLgate 1 9 52  
RLdrain 2 5 10  
RLsource 3 7 21.4  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 3.1e−3  
Rgate 9 20 3.71  
RSLC1 5 51 RSLCMOD 1e−6  
RSLC2 5 50 1e3  
Rsource 8 7 RsourceMOD 5.5e−3  
Rvthres 22 8 RvthresMOD 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e−6*160),6))}  
.MODEL DbodyMOD D (IS=1.0E−11 N=1.08 RS=3.5e−3 TRS1=2.2e−3 TRS2=2.5e−9  
+ CJO=.9e−9 M=5.1e−1 TT=1e−9 XTI=3.9)  
.MODEL DbreakMOD D (RS=1.5e−1 TRS1=1e−3 TRS2=−8.9e−6)  
.MODEL DplcapMOD D (CJO=4.1e−10 IS=1e−30 N=10 M=0.45)  
.MODEL MmedMOD NMOS (VTO=3.5 KP=6 IS=1e−30 N=10 TOX=1 L=1u W=1u RG=3.71)  
.MODEL MstroMOD NMOS (VTO=4.3 KP=50 IS=1e−30 N=10 TOX=1 L=1u W=1u)  
.MODEL MweakMOD NMOS (VTO=2.91 KP=0.05 IS=1e−30 N=10 TOX=1 L=1u W=1u RG=3.71e+1 RS=0.1)  
www.onsemi.com  
8
FDD13AN06A0  
.MODEL RbreakMOD RES (TC1=9e−4 TC2=−5e−7)  
.MODEL RdrainMOD RES (TC1=1.3e−2 TC2=5.2e−5)  
.MODEL RSLCMOD RES (TC1=1.8e−3 TC2=1.7e−5)  
.MODEL RsourceMOD RES (TC1=1e−3 TC2=1e−6)  
.MODEL RvthresMOD RES (TC1=−5.3e−3 TC2=−1.0e−5)  
.MODEL RvtempMOD RES (TC1=−2.5e−3 TC2=1e−6)  
.MODEL S1AMOD VSWITCH (RON=1e−5 ROFF=0.1 VON=−5 VOFF=−2)  
.MODEL S1BMOD VSWITCH (RON=1e−5 ROFF=0.1 VON=−2 VOFF=−5)  
.MODEL S2AMOD VSWITCH (RON=1e−5 ROFF=0.1 VON=−1.5 VOFF=.5)  
.MODEL S2BMOD VSWITCH (RON=1e−5 ROFF=0.1 VON=.5 VOFF=−1.5)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub−Circuit for the Power MOSFET  
Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written  
by William J. Hepp and C. Frank Wheatley.  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
DBODY  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
+
50  
17  
18  
RDRAIN  
6
8
EBREAK  
ESG  
EVTHRES  
+
16  
21  
+
19  
8
MWEAK  
LGATE  
EVTEMP  
RGATE  
GATE  
1
6
+
18  
22  
MMED  
9
20  
MSTRO  
8
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
S2B  
RVTEMP  
19  
S1B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
8
22  
RVTHRES  
Figure 22.  
www.onsemi.com  
9
FDD13AN06A0  
SABER ELECTRICAL MODEL  
rev August 2002  
template FDD13AN06A0 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl=1.0e−11,nl=1.08,rs=3.5e−3,trs1=2.2e−3,trs2=2.5e−9,cjo=.9e−9,m=5.1e−1,tt=1e−9,xti=3.9)  
dp..model dbreakmod = (rs=1.5e−1,trs1=1e−3,trs2=−8.9e−6)  
dp..model dplcapmod = (cjo=4.1e−10,isl=10e−30,nl=10,m=0.45)  
m..model mmedmod = (type=_n,vto=3.5,kp=6,is=1e−30, tox=1)  
m..model mstrongmod = (type=_n,vto=4.3,kp=50,is=1e−30, tox=1)  
m..model mweakmod = (type=_n,vto=2.91,kp=0.05,is=1e−30, tox=1,rs=0.1)  
sw_vcsp..model s1amod = (ron=1e−5,roff=0.1,von=−5,voff=−2)  
sw_vcsp..model s1bmod = (ron=1e−5,roff=0.1,von=−2,voff=−5)  
sw_vcsp..model s2amod = (ron=1e−5,roff=0.1,von=−1.5,voff=.5)  
sw_vcsp..model s2bmod = (ron=1e−5,roff=0.1,von=.5,voff=−1.5)  
c.ca n12 n8 = 5.1e−10  
c.cb n15 n14 = 5.8e−10  
c.cin n6 n8 = 1.3e−9  
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
spe.ebreak n11 n7 n17 n18 = 65.40  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
i.it n8 n17 = 1  
l.lgate n1 n9 = 5.2e−9  
l.ldrain n2 n5 = 1.0e−9  
l.lsource n3 n7 = 2.14e−9  
res.rlgate n1 n9 = 52  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 21.4  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
res.rbreak n17 n18 = 1, tc1=9e−4,tc2=−5e−7  
res.rdrain n50 n16 = 3.1e−3, tc1=1.3e−2,tc2=5.2e−5  
res.rgate n9 n20 = 3.71  
res.rslc1 n5 n51 = 1e−6, tc1=1.8e−3,tc2=1.7e−5  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 5.5e−3, tc1=1e−3,tc2=1e−6  
res.rvthres n22 n8 = 1, tc1=−5.3e−3,tc2=−1.0e−5  
res.rvtemp n18 n19 = 1, tc1=−2.5e−3,tc2=1e−6  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
www.onsemi.com  
10  
FDD13AN06A0  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51−>n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e−9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/160))** 6))  
}}  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
51  
RSLC2  
ISCL  
DBREAK  
50  
RDRAIN  
6
8
11  
ESG  
DBODY  
EVTHRES  
+
16  
21  
+
19  
8
MWEAK  
LGATE  
EVTEMP  
RGATE  
GATE  
1
+
6
18  
22  
EBREAK  
+
MMED  
9
20  
MSTRO  
8
17  
18  
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
S1A  
S2A  
S2B  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
19  
S1B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
8
22  
RVTHRES  
Figure 23.  
www.onsemi.com  
11  
FDD13AN06A0  
JUNCTION  
th  
PSPICE ELECTRICAL MODEL  
REV 22 August 2002  
FDD13AN06A0T  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
CTHERM1 TH 6 9.7e−4  
CTHERM2 6 5 6.2e−3  
CTHERM3 5 4 4.6e−3  
CTHERM4 4 3 4.9e−3  
CTHERM5 3 2 8e−3  
6
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
CTHERM6 2 TL 4.2e−2  
5
RTHERM1 TH 6 5.24e−2  
RTHERM2 6 5 10.08e−2  
RTHERM3 5 4 4.28e−1  
RTHERM4 4 3 1.8e−1  
RTHERM5 3 2 1.9e−1  
RTHERM6 2 TL 2.1e−1  
4
3
2
SABER ELECTRICAL MODEL  
SABER thermal model FDD13AN06A0T  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 =9.7e−4  
ctherm.ctherm2 6 5 =6.2e−3  
ctherm.ctherm3 5 4 =4.6e−3  
ctherm.ctherm4 4 3 =4.9e−3  
ctherm.ctherm5 3 2 =8e−3  
ctherm.ctherm6 2 tl =4.2e−2  
rtherm.rtherm1 th 6 =5.24e−2  
rtherm.rtherm2 6 5 =10.08e−2  
rtherm.rtherm3 5 4 =4.28e−1  
rtherm.rtherm4 4 3 =1.8e−1  
rtherm.rtherm5 3 2 =1.9e−1  
rtherm.rtherm6 2 tl =2.1e−1  
}
tl  
CASE  
Figure 24.  
PACKAGE MARKING AND ORDERING INFORMATION  
Device  
Device Marking  
Package  
Reel Size  
330 mm  
Tape Width  
Shipping  
FDD13AN06A0  
FDD13AN06A0  
DPAK3 (TO−252 3 LD)  
(Pb−Free, Halide Free)  
16 mm  
2500 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States  
and/or other countries.  
www.onsemi.com  
12  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
DPAK3 (TO252 3 LD)  
CASE 369AS  
ISSUE A  
DATE 28 SEP 2022  
GENERIC  
MARKING DIAGRAM*  
XXXXXX  
XXXXXX  
AYWWZZ  
XXXX = Specific Device Code  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
A
Y
= Assembly Location  
= Year  
WW = Work Week  
ZZ  
= Assembly Lot Code  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
98AON13810G  
DPAK3 (TO252 3 LD)  
PAGE 1 OF 1  
DESCRIPTION:  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

SI9130DB

5- and 3.3-V Step-Down Synchronous Converters

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135LG-T1-E3

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9135_11

SMBus Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9136_11

Multi-Output Power-Supply Controller

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130CG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130LG-T1-E3

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9130_11

Pin-Programmable Dual Controller - Portable PCs

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY

SI9137DB

Multi-Output, Sequence Selectable Power-Supply Controller for Mobile Applications

Warning: Undefined variable $rtag in /www/wwwroot/website_ic37/www.icpdf.com/pdf/pdf/index.php on line 211
-
VISHAY