FDD8896-F085 [ONSEMI]

30 V、94 A、4.7 mΩ、l DPAKN 沟道 PowerTrench®;
FDD8896-F085
型号: FDD8896-F085
厂家: ONSEMI    ONSEMI
描述:

30 V、94 A、4.7 mΩ、l DPAKN 沟道 PowerTrench®

文件: 总12页 (文件大小:549K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductor  
Is Now  
To learn more about onsemi™, please visit our website at  
www.onsemi.com  
onsemi andꢀꢀꢀꢀꢀꢀꢀand other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or  
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi  
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without  
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,  
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,  
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/  
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application  
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized  
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for  
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and holdonsemi and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative  
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.  
FDD8896-F085  
N-Channel PowerTrench® MOSFET  
30V, 94A, 5.7mΩ  
Features  
r
= 5.7mΩ, V = 10V, I = 35A  
DS(ON)  
GS D  
General Description  
r
= 6.8mΩ, V = 4.5V, I = 35A  
DS(ON)  
GS  
D
This N-Channel MOSFET has been designed specifically to  
improve the overall efficiency of DC/DC converters using  
either synchronous or conventional switching PWM  
controllers. It has been optimized for low gate charge, low  
High performance trench technology for extremely low  
r
DS(ON)  
Low gate charge  
r
and fast switching speed.  
DS(ON)  
High power and current handling capability  
Qualified to AEC Q101  
Applications  
DC/DC converters  
RoHS Compliant  
D
D
G
G
S
D-PAK  
S
(TO-252)  
MOSFET Maximum Ratings T = 25°C unless otherwise noted  
C
Symbol  
Parameter  
Ratings  
30  
Units  
V
V
V
V
Drain to Source Voltage  
Gate to Source Voltage  
DSS  
GS  
20  
Drain Current  
Continuous (T = 25 C, V = 10V) (Note 1)  
Continuous (T = 25 C, V = 4.5V) (Note 1)  
C GS  
Continuous (T  
o
94  
85  
A
A
C
GS  
o
I
D
o
o
= 25 C, V = 10V, with R = 52 C/W)  
θJA  
17  
A
amb  
GS  
Pulsed  
Figure 4  
168  
80  
0.53  
A
E
P
Single Pulse Avalanche Energy (Note 2)  
Power dissipation  
Derate above 25 C  
mJ  
W
AS  
D
o
o
W/ C  
o
T , T  
Operating and Storage Temperature  
-55 to 175  
C
J
STG  
Thermal Characteristics  
o
R
R
R
Thermal Resistance Junction to Case TO-252  
Thermal Resistance Junction to Ambient TO-252  
Thermal Resistance Junction to Ambient TO-252, 1in copper pad area  
1.88  
100  
52  
C/W  
θJC  
θJA  
θJA  
o
C/W  
2
o
C/W  
©2012 Semiconductor Components Industries, LLC.  
September2017, Rev. 3  
Publication Order Number:  
FDD8896-F085/D  
Package Marking and Ordering Information  
Device Marking  
Device  
Package  
Reel Size  
Tape Width  
Quantity  
FDD8896  
TO-252AA  
13”  
12mm  
2500 units  
FDD8896-F085  
Electrical Characteristics T = 25°C unless otherwise noted  
C
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Units  
Off Characteristics  
B
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
I
= 250μA, V = 0V  
30  
-
-
-
-
-
-
-
1
250  
100  
V
VDSS  
D
GS  
V
V
V
= 24V  
= 0V  
DS  
GS  
GS  
I
I
μA  
nA  
DSS  
o
T
= 150 C  
C
= 20V  
-
GSS  
On Characteristics  
V
Gate to Source Threshold Voltage  
V
= V , I = 250μA  
1.2  
-
2.5  
V
GS(TH)  
GS  
DS  
D
I
I
I
= 35A, V = 10V  
-
-
0.0047 0.0057  
0.0057 0.0068  
D
D
D
GS  
= 35A, V = 4.5V  
GS  
r
Drain to Source On Resistance  
Ω
DS(ON)  
= 35A, V = 10V,  
GS  
-
0.0075 0.0092  
o
T = 175 C  
J
Dynamic Characteristics  
C
C
C
R
Q
Q
Q
Q
Q
Q
Input Capacitance  
Output Capacitance  
Reverse Transfer Capacitance  
Gate Resistance  
Total Gate Charge at 10V  
Total Gate Charge at 5V  
Threshold Gate Charge  
Gate to Source Gate Charge  
Gate Charge Threshold to Plateau  
Gate to Drain “Miller” Charge  
-
-
-
-
-
-
-
-
-
-
2525  
490  
300  
2.1  
46  
-
-
-
pF  
pF  
pF  
Ω
nC  
nC  
nC  
nC  
nC  
nC  
ISS  
OSS  
RSS  
G
V
= 15V, V = 0V,  
GS  
DS  
f = 1MHz  
V
V
V
V
= 0.5V, f = 1MHz  
= 0V to 10V  
-
GS  
GS  
GS  
GS  
60  
32  
3.0  
-
-
-
g(TOT)  
g(5)  
g(TH)  
gs  
= 0V to 5V  
= 0V to 1V  
24  
V
D
= 15V  
DD  
= 35A  
2.3  
6.9  
4.6  
9.8  
I
I = 1.0mA  
g
gs2  
gd  
Switching Characteristics (V = 10V)  
GS  
t
t
t
t
t
t
Turn-On Time  
Turn-On Delay Time  
Rise Time  
Turn-Off Delay Time  
Fall Time  
-
-
-
-
-
-
-
9
106  
53  
41  
-
171  
-
-
-
-
ns  
ns  
ns  
ns  
ns  
ns  
ON  
d(ON)  
V
V
= 15V, I = 35A  
r
DD  
GS  
D
= 10V, R = 6.2Ω  
GS  
d(OFF)  
f
Turn-Off Time  
143  
OFF  
Drain-Source Diode Characteristics  
I
I
I
I
= 35A  
= 15A  
-
-
-
-
-
-
-
-
1.25  
1.0  
27  
V
V
ns  
nC  
SD  
SD  
SD  
SD  
V
Source to Drain Diode Voltage  
SD  
t
Reverse Recovery Time  
Reverse Recovered Charge  
= 35A, dI /dt = 100A/μs  
= 35A, dI /dt = 100A/μs  
rr  
SD  
Q
12  
RR  
SD  
Notes:  
1: Package current limitation is 35A.  
2: Starting T = 25°C, L = 0.43mH, I = 28A, V = 27V, V = 10V.  
J
AS  
DD  
GS  
www.onsemi.com  
2
Typical Characteristics T = 25°C unless otherwise noted  
C
1.2  
100  
CURRENT LIMITED  
BY PACKAGE  
1.0  
75  
0.8  
0.6  
50  
0.4  
25  
0.2  
0
0
0
25  
50  
75  
100  
150  
175  
125  
o
25  
50  
75  
100  
125  
150  
175  
T
, CASE TEMPERATURE ( C)  
o
C
T , CASE TEMPERATURE ( C)  
C
Figure 1. Normalized Power Dissipation vs Case  
Temperature  
Figure 2. Maximum Continuous Drain Current vs  
Case Temperature  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
1
0.2  
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
SINGLE PULSE  
0.01  
PEAK T = P  
x Z  
x R  
+ T  
θJC C  
J
DM  
θJC  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
10  
Figure 3. Normalized Maximum Transient Thermal Impedance  
1000  
o
T
= 25 C  
C
FOR TEMPERATURES  
ABOVE 25 C DERATE PEAK  
CURRENT AS FOLLOWS:  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
o
V
= 4.5V  
GS  
175 - T  
150  
C
I = I  
25  
100  
30  
-5  
-4  
-3  
-2  
-1  
0
1
10  
10  
10  
10  
t, PULSE WIDTH (s)  
10  
10  
10  
Figure 4. Peak Current Capability  
www.onsemi.com  
3
Typical Characteristics T = 25°C unless otherwise noted  
C
1000  
100  
10  
500  
If R = 0  
= (L)(I )/(1.3*RATED BV  
t
- V  
DD  
)
AV  
If R 0  
AS  
DSS  
10μs  
t
= (L/R)ln[(I *R)/(1.3*RATED BV  
- V ) +1]  
DD  
AV  
AS  
DSS  
100  
100μs  
o
STARTING T = 25 C  
J
OPERATION IN THIS  
AREA MAY BE  
10  
1
LIMITED BY r  
DS(ON)  
1ms  
1
10ms  
DC  
SINGLE PULSE  
T
T
= MAX RATED  
= 25 C  
o
J
STARTING T = 150 C  
J
o
C
0.1  
1
10  
, DRAIN TO SOURCE VOLTAGE (V)  
60  
0.01  
0.1  
1
10  
t , TIME IN AVALANCHE (ms)  
AV  
100  
V
DS  
Figure 5. Forward Bias Safe Operating Area  
Figure 6. Unclamped Inductive Switching  
Capability  
100  
100  
PULSE DURATION = 80μs  
PULSE DURATION = 80μs  
V
= 4V  
GS  
DUTY CYCLE = 0.5% MAX  
DUTY CYCLE = 0.5% MAX  
o
V
= 15V  
DD  
80  
60  
40  
20  
0
T = 25 C  
C
80  
60  
40  
20  
0
V
= 5V  
GS  
V
= 3V  
GS  
o
V
= 10V  
GS  
T
= 25 C  
J
V
= 2.5V  
o
GS  
o
T
= 175 C  
J
T
= -55 C  
J
0
0.2  
V , DRAIN TO SOURCE VOLTAGE (V)  
DS  
0.4  
0.6  
0.8  
1.5  
2.0  
2.5  
3.0  
3.5  
V
, GATE TO SOURCE VOLTAGE (V)  
GS  
Figure 7. Transfer Characteristics  
Figure 8. Saturation Characteristics  
14  
1.6  
PULSE DURATION = 80μs  
DUTY CYCLE = 0.5% MAX  
PULSE DURATION = 80μs  
DUTY CYCLE = 0.5% MAX  
I
= 35A  
D
12  
10  
8
1.4  
1.2  
1.0  
0.8  
0.6  
6
I
= 1A  
D
V
= 10V, I = 35A  
D
GS  
4
2
4
6
8
10  
-80  
-40  
0
40  
80  
120  
160  
200  
o
V
, GATE TO SOURCE VOLTAGE (V)  
T , JUNCTION TEMPERATURE ( C)  
GS  
J
Figure 9. Drain to Source On Resistance vs Gate  
Voltage and Drain Current  
Figure 10. Normalized Drain to Source On  
Resistance vs Junction Temperature  
www.onsemi.com  
4
Typical Characteristics T = 25°C unless otherwise noted  
C
1.2  
1.0  
0.8  
0.6  
0.4  
1.2  
1.1  
1.0  
0.9  
I
= 250μA  
V
= V , I = 250μA  
DS D  
D
GS  
-80  
-40  
0
40  
80  
120  
160  
200  
-80  
-40  
0
40  
80  
120  
o
160  
200  
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
Figure 11. Normalized Gate Threshold Voltage vs  
Junction Temperature  
Figure 12. Normalized Drain to Source  
Breakdown Voltage vs Junction Temperature  
5000  
10  
C
= C + C  
GS GD  
V
= 15V  
ISS  
DD  
8
6
4
2
0
C
C + C  
GD  
OSS  
DS  
1000  
C
= C  
GD  
RSS  
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
= 35A  
= 5A  
D
D
V
= 0V, f = 1MHz  
GS  
100  
0.1  
0
10  
20  
30  
40  
50  
1
10  
30  
V
, DRAIN TO SOURCE VOLTAGE (V)  
Q , GATE CHARGE (nC)  
DS  
g
Figure 13. Capacitance vs Drain to Source  
Voltage  
Figure 14. Gate Charge Waveforms for Constant  
Gate Current  
www.onsemi.com  
5
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
t
P
L
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
-
V
DD  
R
REQUIRED PEAK I  
G
AS  
V
DD  
V
GS  
DUT  
t
P
I
0V  
AS  
0
0.01Ω  
t
AV  
Figure 15. Unclamped Energy Test Circuit  
Figure 16. Unclamped Energy Waveforms  
V
DS  
V
Q
DD  
g(TOT)  
V
GS  
V
L
DS  
V
= 10V  
GS  
Q
V
g(5)  
GS  
+
-
Q
gs2  
V
V
= 5V  
DD  
GS  
DUT  
V
= 1V  
GS  
I
g(REF)  
0
Q
g(TH)  
Q
Q
gs  
gd  
I
g(REF)  
0
Figure 17. Gate Charge Test Circuit  
Figure 18. Gate Charge Waveforms  
V
DS  
t
t
ON  
OFF  
t
d(OFF)  
t
d(ON)  
R
L
t
t
f
r
V
DS  
90%  
90%  
+
-
V
GS  
V
DD  
10%  
10%  
0
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
V
10%  
GS  
0
Figure 19. Switching Time Test Circuit  
Figure 20. Switching Time Waveforms  
www.onsemi.com  
6
Thermal Resistance vs. Mounting Pad Area  
The maximum rated junction temperature, T , and the  
JM  
125  
100  
75  
thermal resistance of the heat dissipating path determines  
R
= 33.32+ 23.84/(0.268+Area) EQ.2  
= 33.32+ 154/(1.73+Area) EQ.3  
θJA  
the maximum allowable device power dissipation, P , in an  
DM  
R
application.  
Therefore the application’s ambient  
θJA  
o
o
temperature, T ( C), and thermal resistance R  
( C/W)  
A
θJA  
must be reviewed to ensure that T  
is never exceeded.  
JM  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
(T  
T )  
JM  
A
(EQ. 1)  
P
= -----------------------------  
50  
DM  
RθJA  
In using surface mount devices such as the TO-252  
package, the environment in which it is applied will have a  
significant influence on the part’s current and maximum  
25  
0.01  
0.1  
(0.645)  
1
10  
(0.0645)  
(6.45)  
(64.5)  
power dissipation ratings. Precise determination of P  
complex and influenced by many factors:  
is  
DM  
2
2
AREA, TOP COPPER AREA in (cm )  
Figure 21. Thermal Resistance vs Mounting  
Pad Area  
1. Mounting pad area onto which the device is attached and  
whether there is copper on one side or both sides of the  
board.  
2. The number of copper layers and the thickness of the  
board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
5. Air flow and board orientation.  
6. For non steady state applications, the pulse width, the  
duty cycle and the transient thermal response of the part,  
the board and the environment they are in.  
ON Semiconductor provides thermal information to  
assist  
evaluation. Figure 21  
defines the R for the device as a function of the top  
the  
designer’s  
preliminary  
application  
θJA  
copper (component side) area. This is for a horizontally  
positioned FR-4 board with 1oz copper after 1000 seconds  
of steady state power with no air flow. This graph provides  
the necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse  
applications  
can  
be  
evaluated  
using  
the  
ON  
Semiconductor device Spice thermal model or manually  
utilizing the normalized maximum transient thermal  
impedance curve.  
Thermal resistances corresponding to other copper areas  
can be obtained from Figure 21 or by calculation using  
Equation 2 or 3. Equation 2 is used for copper area defined  
in inches square and equation 3 is for area in centimeters  
square. The area, in square inches or square centimeters is  
the top copper area including the gate and source pads.  
23.84  
R
= 33.32 + ------------------------------------  
(EQ. 2)  
θJA  
θJA  
(0.268 + Area)  
Area in Inches Squared  
154  
R
= 33.32 + ---------------------------------  
(EQ. 3)  
(1.73 + Area)  
Area in Centimeters Squared  
www.onsemi.com  
7
PSPICE Electrical Model  
.SUBCKT FDD8896 2 1 3 ; rev July 2003  
Ca 12 8 2.3e-9  
Cb 15 14 2.3e-9  
Cin 6 8 2.3e-9  
LDRAIN  
DPLCAP  
5
10  
RLDRAIN  
RSLC1  
51  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
DBREAK  
11  
+
RSLC2  
5
ESLC  
51  
-
50  
+
17  
Ebreak 11 7 17 18 32.6  
Eds 14 8 5 8 1  
-
DBODY  
RDRAIN  
6
8
EBREAK 18  
-
ESG  
Egs 13 8 6 8 1  
EVTHRES  
+
16  
Esg 6 10 6 8 1  
21  
+
-
19  
MWEAK  
Evthres 6 21 19 8 1  
LGATE  
EVTEMP  
8
RGATE  
Evtemp 20 6 18 22 1  
GATE  
1
6
+
-
18  
22  
MMED  
9
20  
MSTRO  
8
It 8 17 1  
RLGATE  
LSOURCE  
CIN  
Lgate 1 9 4.6e-9  
Ldrain 2 5 1.0e-9  
Lsource 3 7 1.7e-9  
7
RSOURCE  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
RLgate 1 9 46  
RLdrain 2 5 10  
RLsource 3 7 17  
15  
13  
14  
17  
18  
8
13  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
+
CA  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
IT  
14  
-
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 2.2e-3  
Rgate 9 20 2.1  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RVTHRES  
Rsource 8 7 RsourceMOD 2e-3  
Rvthres 22 8 RvthresMOD 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*500),10))}  
.MODEL DbodyMOD D (IS=5E-12 IKF=10 N=1.01 RS=2.6e-3 TRS1=8e-4 TRS2=2e-7  
+ CJO=8.8e-10 M=0.57 TT=1e-16 XTI=0.9)  
.MODEL DbreakMOD D (RS=8e-2 TRS1=1e-3 TRS2=-8.9e-6)  
.MODEL DplcapMOD D (CJO=9.4e-10 IS=1e-30 N=10 M=0.4)  
.MODEL MmedMOD NMOS (VTO=1.85 KP=10 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=2.1 T_ABS=25)  
.MODEL MstroMOD NMOS (VTO=2.34 KP=350 IS=1e-30 N=10 TOX=1 L=1u W=1u T_ABS=25)  
.MODEL MweakMOD NMOS (VTO=1.55 KP=0.05 IS=1e-30 N=10 TOX=1 L=1u W=1u RG=21 RS=0.1 T_ABS=25)  
.MODEL RbreakMOD RES (TC1=8.3e-4 TC2=-4e-7)  
.MODEL RdrainMOD RES (TC1=1e-4 TC2=8e-6)  
.MODEL RSLCMOD RES (TC1=9e-4 TC2=1e-6)  
.MODEL RsourceMOD RES (TC1=7.5e-3 TC2=1e-6)  
.MODEL RvthresMOD RES (TC1=-1.7e-3 TC2=-8.8e-6)  
.MODEL RvtempMOD RES (TC1=-2.6e-3 TC2=2e-7)  
.MODEL S1AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-4 VOFF=-3)  
.MODEL S1BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-3 VOFF=-4)  
.MODEL S2AMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-2 VOFF=-0.5)  
.MODEL S2BMOD VSWITCH (RON=1e-5 ROFF=0.1 VON=-0.5 VOFF=-2)  
.ENDS  
Note: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank  
Wheatley.  
www.onsemi.com  
8
SABER Electrical Model  
rev July 2003  
template FDD8896 n2,n1,n3 =m_temp  
electrical n2,n1,n3  
number m_temp=25  
{
var i iscl  
dp..model dbodymod = (isl=5e-12,ikf=10,nl=1.01,rs=2.6e-3,trs1=8e-4,trs2=2e-7,cjo=8.8e-10,m=0.57,tt=1e-16,xti=0.9)  
dp..model dbreakmod = (rs=8e-2,trs1=1e-3,trs2=-8.9e-6)  
dp..model dplcapmod = (cjo=9.4e-10,isl=10e-30,nl=10,m=0.4)  
m..model mmedmod = (type=_n,vto=1.85,kp=10,is=1e-30, tox=1)  
m..model mstrongmod = (type=_n,vto=2.34,kp=350,is=1e-30, tox=1)  
m..model mweakmod = (type=_n,vto=1.55,kp=0.05,is=1e-30, tox=1,rs=0.1)  
LDRAIN  
sw_vcsp..model s1amod = (ron=1e-5,roff=0.1,von=-4,voff=-3)  
sw_vcsp..model s1bmod = (ron=1e-5,roff=0.1,von=-3,voff=-4)  
sw_vcsp..model s2amod = (ron=1e-5,roff=0.1,von=-2,voff=-0.5)  
sw_vcsp..model s2bmod = (ron=1e-5,roff=0.1,von=-0.5,voff=-2)  
c.ca n12 n8 = 2.3e-9  
DPLCAP  
5
DRAIN  
2
10  
RLDRAIN  
RSLC1  
51  
RSLC2  
c.cb n15 n14 = 2.3e-9  
ISCL  
c.cin n6 n8 = 2.3e-9  
DBREAK  
11  
50  
-
dp.dbody n7 n5 = model=dbodymod  
RDRAIN  
6
8
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
ESG  
DBODY  
EVTHRES  
+
16  
21  
+
-
19  
MWEAK  
LGATE  
EVTEMP  
8
spe.ebreak n11 n7 n17 n18 = 32.6  
RGATE  
GATE  
+
6
-
18  
22  
EBREAK  
+
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
MMED  
1
9
20  
MSTRO  
8
17  
RLGATE  
18  
LSOURCE  
CIN  
-
SOURCE  
3
7
RSOURCE  
RLSOURCE  
i.it n8 n17 = 1  
S1A  
S2A  
RBREAK  
12  
15  
13  
14  
17  
18  
l.lgate n1 n9 = 4.6e-9  
l.ldrain n2 n5 = 1.0e-9  
l.lsource n3 n7 = 1.7e-9  
8
13  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
+
CA  
IT  
14  
-
+
res.rlgate n1 n9 = 46  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 17  
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u, temp=m_temp  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u, temp=m_temp  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u, temp=m_temp  
RVTHRES  
res.rbreak n17 n18 = 1, tc1=8.3e-4,tc2=-4e-7  
res.rdrain n50 n16 = 2.2e-3, tc1=1e-4,tc2=8e-6  
res.rgate n9 n20 = 2.1  
res.rslc1 n5 n51 = 1e-6, tc1=9e-4,tc2=1e-6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 2e-3, tc1=7.5e-3,tc2=1e-6  
res.rvthres n22 n8 = 1, tc1=-1.7e-3,tc2=-8.8e-6  
res.rvtemp n18 n19 = 1, tc1=-2.6e-3,tc2=2e-7  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc=1  
equations {  
i (n51->n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/500))** 10))  
}
}
www.onsemi.com  
9
PSPICE Thermal Model  
JUNCTION  
th  
REV 23 July 2003  
FDD8896T  
CTHERM1 TH 6 9e-4  
CTHERM2 6 5 1e-3  
CTHERM3 5 4 2e-3  
CTHERM4 4 3 3e-3  
CTHERM5 3 2 7e-3  
CTHERM6 2 TL 8e-2  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
6
5
RTHERM1 TH 6 3.0e-2  
RTHERM2 6 5 1.0e-1  
RTHERM3 5 4 1.8e-1  
RTHERM4 4 3 2.8e-1  
RTHERM5 3 2 4.5e-1  
RTHERM6 2 TL 4.6e-1  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
SABER Thermal Model  
SABER thermal model FDD8896T  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 =9e-4  
ctherm.ctherm2 6 5 =1e-3  
ctherm.ctherm3 5 4 =2e-3  
ctherm.ctherm4 4 3 =3e-3  
ctherm.ctherm5 3 2 =7e-3  
ctherm.ctherm6 2 tl =8e-2  
4
3
2
rtherm.rtherm1 th 6 =3.0e-2  
rtherm.rtherm2 6 5 =1.0e-1  
rtherm.rtherm3 5 4 =1.8e-1  
rtherm.rtherm4 4 3 =2.8e-1  
rtherm.rtherm5 3 2 =4.5e-1  
rtherm.rtherm6 2 tl =4.6e-1  
}
tl  
CASE  
www.onsemi.com  
10  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
© Semiconductor Components Industries, LLC  
www.onsemi.com  

相关型号:

FDD8896_08

N-Channel PowerTrench㈢ MOSFET
FAIRCHILD

FDD8896_12

N-Channel PowerTrench® MOSFET 30V, 94A, 5.7mΩ
FAIRCHILD

FDD8896_NF054

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
FAIRCHILD

FDD8896_NL

Power Field-Effect Transistor, 17A I(D), 30V, 0.068ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-252AA, LEAD FREE, DPAK-3
FAIRCHILD

FDD8896_SBSW004

Power Field-Effect Transistor, N-Channel, Metal-oxide Semiconductor FET
FAIRCHILD

FDD8N50NZTM

N-Channel UniFETTM II MOSFETï€
FAIRCHILD

FDD8N50NZTM

功率 MOSFET,N 沟道,UniFETTM II,500 V,6.5 A,850 mΩ,DPAK
ONSEMI

FDD9407-F085

N 沟道,PowerTrench®,40V,100A,2.0mΩ
ONSEMI

FDD9407L-F085

N 沟道,逻辑电平,PowerTrench® MOSFET,40 V,100 A,1.7 mΩ
ONSEMI

FDD9409-F085

N 沟道,PowerTrench® MOSFET,40 V,90 A,3.2 mΩ
ONSEMI

FDD9409L

N-Channel Logic Level PowerTrench MOSFET
ONSEMI

FDD9409L-F085

N 沟道,逻辑电平,PowerTrench® MOSFET,40 V,90 A,2.6 mΩ
ONSEMI