FDN86501LZ [ONSEMI]

N 沟道,屏蔽门极,PowerTrench® MOSFET,60 V,2.6 A,116 mΩ;
FDN86501LZ
型号: FDN86501LZ
厂家: ONSEMI    ONSEMI
描述:

N 沟道,屏蔽门极,PowerTrench® MOSFET,60 V,2.6 A,116 mΩ

文件: 总7页 (文件大小:339K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
MOSFET – N-Channel,  
Shielded Gate,  
POWERTRENCH)  
V
r
MAX  
I MAX  
D
DS  
DS(on)  
60 V  
116 mW @ 10 V  
173 mW @ 4.5 V  
2.6 A  
60 V, 2.6 A, 116 mW  
FDN86501LZ  
General Description  
This N−Channel MOSFET is produced using onsemi’s advanced  
POWERTRENCH process that incorporates Shielded Gate technology.  
SOT−23/SUPERSOTt−23, 3 LEAD, 1.4x2.9  
CASE 527AG  
This process has been optimized for r , switching performance and  
DS(on)  
ruggedness.  
Features  
MARKING DIAGRAM  
8650M  
Shielded Gate MOSFET Technology  
Max r  
Max r  
= 116 mW at V = 10 V, I = 2.6 A  
DS(on)  
GS  
D
= 173 mW at V = 4.5 V, I = 2.1 A  
DS(on)  
GS  
D
High Performance Trench Technology for Extremely Low r  
DS(on)  
8650 = Specific Device Code  
M
= Date Code  
High Power and Current Handling Capability in a Widely Used  
Surface Mount Package  
Fast Switching Speed  
PIN ASSIGNMENT  
100% UIL Tested  
This Device is Pb−Free, Halide Free and is RoHS Compliant  
D
Applications  
Primary DC−DC Switch  
Load Switch  
MOSFET MAXIMUM RATINGS (T = 25°C, unless otherwise noted)  
A
G
S
Symbol  
Parameter  
Drain to Source Voltage  
Ratings  
Unit  
V
V
DS  
V
GS  
60  
Gate to Source Voltage  
Continuous (Note 1a)  
20  
V
I
D
2.6  
A
ORDERING INFORMATION  
See detailed ordering and shipping information on page 5 of  
this data sheet.  
Pulsed (Note 4)  
24  
E
AS  
Single Pulse Avalanche Energy (Note 3)  
6
1.5  
mJ  
W
P
D
Power Dissipation  
(Note 1a)  
(Note 1b)  
0.6  
T , T  
Operating and Storage Junction  
Temperature Range  
−55 to 150  
°C  
J
STG  
Stresses exceeding those listed in the Maximum Ratings table may damage the  
device. If any of these limits are exceeded, device functionality should not be  
assumed, damage may occur and reliability may be affected.  
THERMAL CHARACTERISTICS (T = 25°C, unless otherwise noted)  
A
Symbol  
Parameter  
Ratings  
Unit  
R
Thermal Resistance, Junction−to−Case  
(Note 1)  
75  
°C/W  
q
JC  
R
Thermal Resistance, Junction−to−Ambient  
(Note 1a)  
80  
°C/W  
q
JA  
© Semiconductor Components Industries, LLC, 2015  
1
Publication Order Number:  
January, 2023 − Rev. 2  
FDN86501LZ/D  
FDN86501LZ  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
BV  
Drain to Source Breakdown Voltage  
I
I
= 250 mA, V = 0 V  
60  
V
DSS  
D
GS  
Breakdown Voltage Temperature Coefficient  
= 250 mA, referenced to 25_C  
68  
mV/_C  
DBVDSS  
DTJ  
D
I
Zero Gate Voltage Drain Current  
Gate to Source Leakage Current  
V
V
= 48 V, V = 0 V  
1
mA  
mA  
DSS  
GSS  
DS  
GS  
I
=
20 V, V = 0 V  
10  
GS  
DS  
ON CHARACTERISTICS (Note 2)  
V
Gate to Source Threshold Voltage  
V
I
= V , I = 250 mA  
1.0  
1.9  
−5  
2.4  
V
GS(th)  
GS  
DS D  
Gate to Source Threshold Voltage  
Temperature Coefficient  
= 250 mA, referenced to 25_C  
mV/_C  
DVGS(th)  
DTJ  
D
r
Static Drain to Source On Resistance  
Forward Transconductance  
V
GS  
V
GS  
V
GS  
V
DS  
= 10 V, I = 2.6 A  
89  
121  
152  
8
116  
173  
198  
mW  
DS(on)  
D
= 4.5 V, I = 2.1 A  
D
= 10 V, I = 2.6 A, T = 125_C  
D
J
g
FS  
= 10 V, I = 2.6 A  
S
D
DYNAMIC CHARACTERISTICS  
C
Input Capacitance  
V
DS  
= 30 V, V = 0 V, f = 1 MHz  
236  
77  
335  
110  
10  
pF  
pF  
pF  
W
iss  
GS  
C
oss  
Output Capacitance  
Reverse Transfer Capacitance  
Gate Resistance  
C
rss  
4.9  
0.8  
R
0.1  
2.0  
g
SWITCHING CHARACTERISTICS (Note 2)  
t
Turn−On Delay Time  
Rise Time  
V
R
= 30 V, I = 2.6 A, V = 10 V,  
4.4  
1.2  
9.6  
1.2  
3.8  
10  
10  
20  
10  
5.4  
ns  
ns  
ns  
ns  
nC  
d(on)  
DD  
D
GS  
= 6 W  
GEN  
t
r
t
Turn−Off Delay Time  
Fall Time  
d(off)  
t
f
Q
g
Total Gate Charge  
V
GS  
V
DD  
= 0 V to 10 V  
= 30 V, I = 2.6 A  
D
Q
g
Total Gate Charge  
V
GS  
V
DD  
= 0 V to 4.5 V  
1.9  
2.7  
nC  
= 30 V, I = 2.6 A  
D
Q
Gate to Source Gate Charge  
Gate to Drain “Miller” Charge  
V
DD  
= 30 V, I = 2.6 A  
0.7  
0.6  
nC  
nC  
gs  
D
Q
gd  
DRAIN−SOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS  
V
Source to Drain Diode Forward Voltage  
Reverse Recovery Time  
V
= 0 V, I = 2.6 A (Note 2)  
0.9  
31  
19  
1.3  
50  
31  
V
SD  
GS  
S
t
I = 2.6 A, di/dt = 100 A/ms  
F
ns  
nC  
rr  
Q
Reverse Recovery Charge  
rr  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
1. R  
is the sum of the junction−to−case and case−to−ambient thermal resistance where the case thermal reference is defined as the solder  
q
JA  
mounting surface of the drain pins. R  
is guaranteed by design while R  
is determined by the user’s board design.  
q
q
CA  
JC  
a. 80°C/W when mounted on a  
b. 180°C/W when mounted on a  
minimum pad.  
2
1 in pad of 2 oz copper.  
2. Pulse Test: Pulse Width < 300 ms, Duty Cycle < 2.0%.  
3. E of 6 mJ is based on starting T = 25°C, L = 3 mH, I = 2 A, V = 60 V, V = 10 V. 100% test at L = 0.1 mH, I = 9 A.  
AS  
J
AS  
DD  
GS  
AS  
4. Pulsed Id please refer to Figure 11 SOA graph for more details.  
www.onsemi.com  
2
 
FDN86501LZ  
TYPICAL CHARACTERISTICS  
(T = 25°C unless otherwise noted)  
J
5
4
3
2
1
10  
8
V
= 10 V  
= 5.5 V  
GS  
V = 3 V  
GS  
V
GS  
= 4.5 V  
V
GS  
V
GS  
= 3.5 V  
6
V
GS  
= 3.5 V  
4
V
GS  
= 4.5 V  
2
V
= 10 V  
V
= 3 V PULSE DURATION = 80 ms  
GS  
GS  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
DUTY CYCLE = 0.5% MAX  
V
GS  
= 5.5 V  
8
0
0
0
2
4
6
10  
0
1
2
3
4
5
V
DS  
, DRAIN TO SOURCE VOLTAGE (V)  
I , DRAIN CURRENT (A)  
D
Figure 1. On−Region Characteristics  
Figure 2. Normalized On−Resistance vs.  
Drain Current and Gate Voltage  
2.0  
1.8  
500  
I
V
= 2.6 A  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
D
= 10 V  
GS  
400  
I
D
= 2.6 A  
1.6  
1.4  
1.2  
1.0  
300  
200  
100  
0
T = 125°C  
J
0.8  
0.6  
T = 25°C  
J
−75 −50 −25  
0
25 50 75 100 125 150  
2
3
4
5
6
7
8
9
10  
T , JUNCTION TEMPERATURE (°C)  
J
V
GS  
, GATE TO SOURCE VOLTAGE (V)  
Figure 3. Normalized On−Resistance vs.  
Junction Temperature  
Figure 4. On−Resistance vs. Gate to Source Voltage  
20  
10  
10  
PULSE DURATION = 80 ms  
V
GS  
= 0 V  
DUTY CYCLE = 0.5% MAX  
8
V
DS  
= 5 V  
1
6
4
2
0
T = 150°C  
J
0.1  
T = 25°C  
J
T = 150°C  
T = 25°C  
J
J
0.01  
0.001  
T = −55°C  
J
T = −55°C  
J
1
2
3
4
5
0.0  
0.2  
0.4  
0.6  
0.8  
1.0  
1.2  
V
GS  
, GATE TO SOURCE VOLTAGE (V)  
V
SD  
, BODY DIODE FORWARD VOLTAGE (V)  
Figure 5. Transfer Characteristics  
Figure 6. Source to Drain Diode Forward Voltage  
vs. Source Current  
www.onsemi.com  
3
FDN86501LZ  
TYPICAL CHARACTERISTICS  
(T = 25°C unless otherwise noted) (continued)  
J
10  
8
1000  
I
D
= 2.6 A  
C
V
DD  
= 20 V  
iss  
100  
10  
1
V
= 30 V  
DD  
C
oss  
6
V
= 40 V  
DD  
4
C
rss  
2
f = 1 MHz  
= 0 V  
V
GS  
0
0
1
2
3
4
0.1  
1
10  
60  
Q , GATE CHARGE (nC)  
g
V
DS  
, DRAIN TO SOURCE VOLTAGE (V)  
Figure 7. Gate Charge Characteristics  
Figure 8. Capacitance vs. Drain to Source Voltage  
10−1  
20  
V
= 0 V  
DS  
10−2  
10−3  
10−4  
10−5  
10−6  
10−7  
10−8  
10−9  
10  
T = 25°C  
J
T = 125°C  
J
T = 100°C  
J
T = 25°C  
J
T = 125°C  
J
1
0.001  
0.01  
0.1  
1
10  
0
6
, GATE TO SOURCE VOLTAGE (V)  
GS  
12  
18  
24  
30  
36  
t , TIME IN AVALANCHE (ms)  
AV  
V
Figure 9. Unclamped Inductive Switching  
Capability  
Figure 10. Gate Leakage Current vs.  
Gate to Source Voltage  
50  
1000  
SINGLE PULSE  
= 180°C/W  
T = 25°C  
A
R
qJA  
10  
10 ms  
100  
10  
1
100 ms  
1 ms  
10 ms  
1
THIS AREA IS  
0.1  
LIMITED BY r  
100 ms  
DS(on)  
1 s  
SINGLE PULSE  
10 s  
T = MAX RATED  
0.01  
J
DC  
R
q
JA  
= 180°C/W CURVE BENT TO  
T = 25°C  
A
MEASURED DATA  
0.001  
0.1  
0.1  
1
10  
100 300  
10−5 10−4 10−3 10−2 10−1  
1
10 100 1000  
V
DS  
, DRAIN TO SOURCE VOLTAGE (V)  
t, PULSE WIDTH (s)  
Figure 11. Forward Bias Safe Operating Area  
Figure 12. Single Pulse Maximum Power Dissipation  
www.onsemi.com  
4
FDN86501LZ  
TYPICAL CHARACTERISTICS  
(T = 25°C unless otherwise noted) (continued)  
J
2
1
DUTY CYCLE−DESCENDING ORDER  
D = 0.5  
0.2  
0.1  
0.01  
PDM  
0.1  
0.05  
0.02  
0.01  
t1  
t2  
NOTES:  
SINGLE PULSE  
Z
q
(t) = r(t) x R  
q
JA  
= 180°C/W  
JA  
0.001  
0.0001  
R
q
JA  
Peak T = P  
x Z (t) + T  
q
JA A  
J
DM  
Duty Cycle, D = t / t  
1
2
10−5  
10−4  
10−3  
10−2  
10−1  
1
10  
100  
1000  
t, RECTANGULAR PULSE DURATION (s)  
Figure 13. Junction−to−Ambient Transient Thermal Response Curve  
PACKAGE MARKING AND ORDERING INFORMATION  
Device  
Device Marking  
Package  
Reel Size  
Tape Width  
8 mm  
Shipping  
FDN86501LZ  
8650  
SOT−23/SUPERSOT−23, 3 LEAD, 1.4x2.9  
(Pb−Free, Halide Free)  
7”  
3000 / Tape & Reel  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
SUPERSOT is trademark of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other  
countries.  
www.onsemi.com  
5
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOT23/SUPERSOTt23, 3 LEAD, 1.4x2.9  
CASE 527AG  
ISSUE A  
DATE 09 DEC 2019  
GENERIC  
MARKING DIAGRAM*  
*This information is generic. Please refer to  
XXX = Specific Device Code  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
M
= Month Code  
XXXMG  
G
= PbFree Package  
G
(Note: Microdot may be in either location)  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON34319E  
SOT23/SUPERSOT23, 3 LEAD, 1.4X2.9  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FDOAK

Jeux dadaptateurs de mecanismes de commande pour coupecircuit a bride
HAMMOND

FDOMO

Filters for domotic applications
PREMO

FDOMO-20

Filters for domotic applications
PREMO

FDOMO-40

Filters for domotic applications
PREMO

FDOMO-63

Filters for domotic applications
PREMO

FDOMO-BI-16

Filters for domotic applications
PREMO

FDOMO-BI-2

Filters for domotic applications
PREMO

FDP-08-T

Board Connector, 8 Contact(s), Female, Straight, 0.1 inch Pitch, Solder Terminal, Locking, Black Insulator, Plug
ADAM-TECH

FDP-14-T

IDC DIP & TRANSITION PLUGS .100 [2.54] CENTERLINE
ADAM-TECH

FDP-24-T

IDC DIP & TRANSITION PLUGS .100 [2.54] CENTERLINE
ADAM-TECH

FDP020N06B

New Products, Tips and Tools for Power and Mobile Applications
FAIRCHILD

FDP020N06B-F102

N 沟道 PowerTrench® MOSFET 60V,313A,2mΩ
ONSEMI