FDS8876-F40 [ONSEMI]

N 沟道,PowerTrench® MOSFET,30V,12.5A,8.5mΩ;
FDS8876-F40
型号: FDS8876-F40
厂家: ONSEMI    ONSEMI
描述:

N 沟道,PowerTrench® MOSFET,30V,12.5A,8.5mΩ

文件: 总15页 (文件大小:353K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
MOSFET – N-Channel,  
POWERTRENCH)  
V
MAX  
r
MAX  
I MAX  
D
DSS  
DS(on)  
30 V  
8.2 mW @ 10 V  
12.5 A  
10.2 mW @ 4.5 V  
30 V, 12.5 A, 8.2 mW  
FDS8876, FDS8876-F40  
5
6
7
8
General Description  
4
3
2
1
This NChannel MOSFET has been designed specifically to  
improve the overall efficiency of DC/DC converters using either  
synchronous or conventional switching PWM controllers. It has been  
SOIC8  
(SO8)  
CASE 751EB  
optimized for low gate charge, low r  
and fast switching speed.  
DS(on)  
Features  
r  
r  
= 8.2 mW, V = 10 V, I = 12.5 A  
GS D  
DS(on)  
DS(on)  
MARKING DIAGRAM  
= 10.2 mW, V = 4.5 V, I = 11.4 A  
GS  
D
High Performance Trench Technology for Extremely Low r  
Low Gate Charge  
DS(on)  
$Y&Z&2&K  
FDS  
FDS8876  
ALYW  
High Power and Current Handling Capability  
These Devices are PbFree and are RoHS Compliant  
8876  
Applications  
FDS8876  
FDS8878F40  
DC/DC Converters  
FDS8876 = Device Code  
A
= Assembly Site  
L
= Wafer Lot Number  
= Assembly Start Week  
= onsemi Logo  
= Assembly Plant Code  
= 2Digit Code Format  
= 2Digits Lot Run Traceability Code  
MOSFET MAXIMUM RATINGS (T = 25°C unless otherwise noted)  
A
YW  
$Y  
&Z  
&2  
&K  
Symbol  
Parameter  
Drain to Source Voltage  
Gate to Source Voltage  
Ratings  
30  
Unit  
V
V
DSS  
V
GSS  
20  
V
I
D
Drain  
Current  
Continuous (T = 25°C,  
12.5  
A
A
V
= 10 V, R  
= 50°C/W)  
JA  
q
GS  
Continuous (T = 25°C,  
11.4  
A
PIN CONNECTIONS  
A
V
= 4.5 V, R  
= 50°C/W)  
JA  
q
GS  
Pulsed  
91  
105  
A
mJ  
5
6
7
8
4
3
2
1
E
AS  
Single Pulse Avalanche Energy (Note 1)  
Power Dissipation  
P
D
2.5  
W
Derate above 25°C  
20  
mW/°C  
°C  
T , T  
Operating and Storage Temperature  
–55 to 150  
J
STG  
Stresses exceeding those listed in the Maximum Ratings table may damage the  
device. If any of these limits are exceeded, device functionality should not be  
assumed, damage may occur and reliability may be affected.  
1. Starting T = 25°C, L = 1 mH, I = 14.5 A, V = 30 V, V = 10 V.  
J
AS  
DD  
GS  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 13 of  
this data sheet.  
© Semiconductor Components Industries, LLC, 2007  
1
Publication Order Number:  
February, 2022 Rev. 3  
FDS8876/D  
 
FDS8876, FDS8876F40  
THERMAL CHARACTERISTICS  
Symbol  
Parameter  
Ratings  
25  
Unit  
°C/W  
°C/W  
°C/W  
R
q
JC  
R
q
JA  
R
q
JA  
Thermal Resistance, JunctiontoCase (Note 2)  
Thermal Resistance, JunctiontoAmbient (Note 2a)  
Thermal Resistance, JunctiontoAmbient (Note 2b)  
50  
125  
2. R  
is the sum of the junctiontocase and casetoambient thermal resistance where the case thermal reference is defined as the solder  
q
JA  
mounting surface of the drain pins. R  
is guaranteed by design while R  
is determined by the user’s board design.  
q
q
JC  
JA  
2
a. 50°C/W when mounted on a 1in pad of 2 oz copper.  
b. 125°C/W when mounted on a minimum pad.  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Symbol  
Parameter  
Test Conditions  
Min  
Typ  
Max  
Unit  
OFF CHARACTERISTICS  
B
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
I
= 250 mA, V = 0 V  
30  
V
VDSS  
D
GS  
I
V
V
V
= 24 V, V = 0 V  
1
mA  
DSS  
DS  
DS  
GS  
GS  
= 24 V, V = 0 V, T = 150°C  
250  
100  
GS  
J
I
Gate to Source Leakage Current  
=
20 V  
nA  
GSS  
ON CHARACTERISTICS  
V
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
V
= V , I = 250 mA  
1.2  
2.5  
8.2  
V
GS(TH)  
DS(on)  
GS  
DS  
D
r
I
D
I
D
I
D
= 12.5 A, V = 10 V  
6.8  
8.3  
10.9  
mW  
GS  
= 11.4 A, V = 4.5 V  
10.2  
14.1  
GS  
= 12.5 A, V = 10 V, T = 150°C  
GS  
J
DYNAMIC CHARACTERISTICS  
C
Input Capacitance  
V
= 15 V, V = 0 V, f = 1 MHz  
1650  
330  
180  
2.3  
pF  
pF  
pF  
W
ISS  
DS  
GS  
C
OSS  
C
RSS  
Output Capacitance  
Reverse Transfer Capacitance  
Gate Resistance  
R
V
V
= 0.5 V, f = 1 MHz  
0.6  
4.0  
36  
G
GS  
Q
Total Gate Charge at 10 V  
= 0 V to 10 V, V = 15 V,  
28  
nC  
g(TOT)  
GS  
DD  
I
= 12.5 A, I = 1.0 mA  
D
g
Q
Total Gate Charge at 5 V  
Threshold Gate Charge  
V
D
= 0 V to 5 V,V = 15 V,  
15  
20  
nC  
nC  
g(5)  
GS  
DD  
I
= 12.5 A, I = 1.0 mA  
g
Q
V
D
= 0 V to 1 V, V = 15 V,  
1.5  
2.0  
g(TH)  
GS  
DD  
I
= 12.5 A, I = 1.0 mA  
g
Q
Gate to Source Gate Charge  
Gate Charge Threshold to Plateau  
Gate to Drain “Miller” Charge  
V
DD  
= 15 V, I = 12.5 A, I = 1.0 mA  
4.3  
2.8  
5.0  
nC  
nC  
nC  
gs  
D
g
Q
gs2  
Q
gd  
SWITCHING CHARACTERISTICS (V = 10 V)  
GS  
t
TurnOn Time  
TurnOn Delay Time  
Rise Time  
V
= 15 V, I = 12.5 A, V = 10 V,  
8
63  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
GS  
D
GS  
R
= 10 W  
t
d(ON)  
t
r
34  
53  
19  
t
TurnOff Delay Time  
Fall Time  
d(OFF)  
t
f
t
TurnOff Time  
108  
OFF  
DRAINSOURCE DIODE CHARACTERISTICS AND MAXIMUM RATINGS  
V
Source to Drain Diode Voltage  
I
I
I
I
= 12.5 A  
= 2.1 A  
1.25  
1.0  
29  
V
V
SD  
SD  
SD  
SD  
SD  
t
Reverse Recovery Time  
= 12.5 A, dI /dt = 100 A/ms  
ns  
nC  
rr  
SD  
Q
Reverse Recovered Charge  
= 12.5 A, dI /dt = 100 A/ms  
15  
RR  
SD  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
www.onsemi.com  
2
 
FDS8876, FDS8876F40  
TYPICAL CHARACTERISTICS  
(T = 25°C unless otherwise noted)  
J
1.2  
1.0  
0.8  
0.6  
0.4  
0.2  
0
16  
12  
8
V
= 10 V  
GS  
V
= 4.5 V  
GS  
4
R
= 50°C/W  
q
JA  
0
0
25  
50  
75  
100  
125  
150  
25  
50  
75  
100  
125  
150  
T , AMBIENT TEMPERATURE (°C)  
A
T , AMBIENT TEMPERATURE (°C)  
A
Figure 1. Normalized Power Dissipation vs.  
Ambient Temperature  
Figure 2. Maximum Continuous Drain Current vs.  
Ambient Temperature  
2
1
DUTY CYCLEDESCENDING ORDER  
D = 0.5  
0.2  
0.1  
0.1  
0.05  
0.02  
0.01  
0.01  
SINGLE PULSE  
R
= 125°C/W  
q
JA  
0.001  
0.0005  
104  
103  
102  
101  
100  
101  
102  
103  
t, RECTANGULAR PULSE DURATION (s)  
Figure 3. Normalized Maximum Transient Thermal Impedance  
2000  
1000  
SINGLE PULSE  
V
GS  
= 10 V  
R
= 125°C/W  
q
JA  
T = 25°C  
A
100  
10  
1
0.5  
104  
103  
102  
101  
100  
101  
102  
103  
t, PULSE WIDTH (s)  
Figure 4. Single Pulse Maximum Power Dissipation  
www.onsemi.com  
3
FDS8876, FDS8876F40  
TYPICAL CHARACTERISTICS  
(T = 25°C unless otherwise noted) (continued)  
J
50  
100  
10  
If R = 0  
= (L) (I ) / (1.3 * RATED BV  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
= 15 V  
t
AV  
V  
)
AS  
DSS  
DD  
If R 0  
= (L / R) ln [(I x R) / (1.3 x RATED BV  
40  
30  
20  
10  
0
V
DD  
t
AV  
V ) +1]  
DD  
AS  
DSS  
T = 25°C  
J
STARTING T = 25°C  
J
T = 150°C  
J
T = 55°C  
J
STARTING T = 150°C  
J
1
0.01  
0.1  
1
10  
100  
2.0  
2.5  
3.0  
3.5  
t , TIME IN AVALANCHE (ms)  
AV  
V
GS  
, GATE TO SOURCE VOLTAGE (V)  
NOTE: Refer to onsemi Application Notes AN7514 and AN7515  
Figure 6. Transfer Characteristics  
Figure 5. Unclamped Inductive Switching Capability  
50  
50  
40  
30  
20  
10  
0
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
V
GS  
= 10 V  
V
= 5 V  
GS  
40  
30  
20  
10  
0
V
= 3.5 V  
I
= 12.5 A  
GS  
D
V
= 3 V  
GS  
T = 25°C  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
A
I
D
= 1 A  
0
0.2  
0.4  
0.6  
0.8  
2
4
6
8
10  
V
DS  
, DRAIN TO SOURCE VOLTAGE (V)  
V
GS  
, GATE TO SOURCE VOLTAGE (V)  
Figure 7. Saturation Characteristics  
Figure 8. Drain to Source On Resistance vs.  
Gate Voltage and Drain Current  
1.6  
1.4  
1.2  
1.0  
0.8  
0.6  
1.2  
PULSE DURATION = 80 ms  
DUTY CYCLE = 0.5% MAX  
V
= V , I = 250 mA  
GS DS D  
1.0  
0.8  
0.6  
0.4  
V
GS  
= 10 V, I = 12.5 A  
D
80  
40  
0
40  
80  
120  
160  
80  
40  
0
40  
80  
120  
160  
200  
T , JUNCTION TEMPERATURE (°C)  
J
T , JUNCTION TEMPERATURE (°C)  
J
Figure 9. Normalized Drain to Source  
On Resistance vs. Junction Temperature  
Figure 10. Normalized Gate Threshold Voltage vs.  
Junction Temperature  
www.onsemi.com  
4
FDS8876, FDS8876F40  
TYPICAL CHARACTERISTICS  
(T = 25°C unless otherwise noted) (continued)  
J
10  
3000  
1000  
C
= C + C  
GD  
ISS  
GS  
V
DD  
= 15 V  
8
6
4
2
0
C
C + C  
DS GD  
OSS  
C
= C  
GD  
RSS  
WAVEFORMS IN  
DESCENDING ORDER:  
I
D
I
D
= 12.5 A  
= 1 A  
V
= 0 V, f = 1 MHz  
1
GS  
100  
0.1  
10  
30  
0
5
10  
15  
20  
25  
30  
V
DS  
, DRAIN TO SOURCE VOLTAGE (V)  
Q , GATE CHARGE (nC)  
g
Figure 11. Capacitance vs. Drain to Source Voltage  
Figure 12. Gate Charge Waveforms for  
Constant Gate Currents  
200  
100  
100 ms  
10  
1 ms  
10 ms  
1
0.1  
THIS AREA IS  
LIMITED BY r  
100 ms  
1 s  
DS(on)  
SINGLE PULSE  
T = MAX RATED  
J
10 s  
DC  
R
= 125°C/W  
q
JA  
T = 25°C  
A
0.01  
0.01  
0.1  
1
10  
100  
V
DS  
, DRAIN TO SOURCE VOLTAGE (V)  
Figure 13. Forward Bis Safe Operating Area  
www.onsemi.com  
5
FDS8876, FDS8876F40  
TEST CIRCUITS AND WAVEFORMS  
VDS  
BVDSS  
tP  
VDS  
L
IAS  
VDD  
VARY t TO OBTAIN  
P
+
VDD  
REQUIRED PEAK I  
RG  
AS  
VGS  
DUT  
t P  
IAS  
0.01 W  
0 V  
0
tAV  
Figure 14. Unclamped Inductive Load Test Circuit  
Figure 15. Unclamped Inductive Waveforms  
VDS  
VDD  
Qg(TOT)  
VDS  
VGS  
L
VGS = 10 V  
Qg(5)  
VGS  
Qgs2  
+
VGS = 5 V  
VDD  
DUT  
VGS = 1 V  
0
Ig(REF)  
Qg(TH)  
Qgs  
Qgd  
Ig(REF)  
0
Figure 16. Gate Charge Test Circuit  
Figure 17. Gate Charge Waveforms  
tON  
td(ON)  
tOFF  
td(OFF)  
VDS  
t
t
f
r
RL  
VDS  
90%  
90%  
+
VGS  
VDD  
10%  
10%  
0
90%  
50%  
DUT  
RGS  
VGS  
50%  
PULSE WIDTH  
10%  
0
VGS  
Figure 18. Switching Time Test Circuit  
Figure 19. Switching Time Waveforms  
www.onsemi.com  
6
FDS8876, FDS8876F40  
THERMAL RESISTANCE VS. MOUNTING PAD AREA  
The maximum rated junction temperature, T , and the  
Thermal resistances corresponding to other copper areas  
JM  
thermal resistance of the heat dissipating path determines  
can be obtained from Figure 20 or by calculation using  
Equation 2. The area, in square inches is the top copper area  
including the gate and source pads.  
the maximum allowable device power dissipation, P , in  
DM  
an application. Therefore the application’s ambient  
temperature, T (°C), and thermal resistance R  
(°C/W)  
A
qJA  
26  
RqJA + 64 )  
must be reviewed to ensure that T is never exceeded.  
(eq. 2)  
JM  
0.23 ) Area  
Equation 1 mathematically represents the relationship and  
serves as the basis for establishing the rating of the part.  
The transient thermal impedance (Z ) is also effected  
qJA  
by varied top copper board area. Figure 21 shows the effect  
of copper pad area on single pulse transient thermal  
impedance. Each trace represents a copper pad area in  
square inches corresponding to the descending list in the  
graph. Spice and SABER thermal models are provided for  
each of the listed pad areas.  
Copper pad area has no perceivable effect on transient  
thermal impedance for pulse widths less than 100 ms. For  
pulse widths less than 100 ms the transient thermal  
impedance is determined by the die and package. Therefore,  
CTHERM1 through CTHERM5 and RTHERM1 through  
RTHERM5 remain constant for each of the thermal models.  
A listing of the model component values is available in  
Table 1.  
(TJM * TA)  
PDM  
+
(eq. 1)  
RqJA  
In using surface mount devices such as the SO8 package,  
the environment in which it is applied will have a significant  
influence on the part’s current and maximum power  
dissipation ratings. Precise determination of PDM is complex  
and influenced by many factors:  
1. Mounting pad area onto which the device is  
attached and whether there is copper on one side  
or both sides of the board.  
2. The number of copper layers and the thickness of  
the board.  
3. The use of external heat sinks.  
4. The use of thermal vias.  
5. Air flow and board orientation.  
200  
R
= 64 + 26 / (0.23 + Area)  
q
JA  
6. For non steady state applications, the pulse width,  
the duty cycle and the transient thermal response of  
the part, the board and the environment they are in.  
onsemi provides thermal information to assist the  
designer’s preliminary application evaluation. Figure 20  
150  
100  
50  
defines the R for the device as a function of the top copper  
qJA  
(component side) area. This is for a horizontally positioned  
FR4 board with 1 oz copper after 1000 seconds of steady  
state power with no air flow. This graph provides the  
necessary information for calculation of the steady state  
junction temperature or power dissipation. Pulse  
applications can be evaluated using the onsemi device Spice  
thermal model or manually utilizing the normalized  
maximum transient thermal impedance curve.  
0.001  
0.01  
0.1  
1
10  
2
AREA, TOP COPPER AREA (in )  
Figure 20. Thermal Resistance vs. Mounting Pad Area  
150  
COPPER BOARD AREA DESCENDING ORDER  
2
0.04 in  
120  
90  
60  
30  
0
2
2
2
2
0.28 in  
0.52 in  
0.76 in  
1.00 in  
101  
100  
101  
102  
103  
t, RECTANGULAR PULSE DURATION (s)  
Figure 21. Thermal Impedance vs. Mounting Pad Area  
www.onsemi.com  
7
 
FDS8876, FDS8876F40  
PSPICE ELECTRICAL MODEL  
.SUBCKT FDS8876 2 1 3 ; rev January 2005  
Ca 12 8 10.3e10  
Cb 15 14 10.3e10  
Cin 6 8 1.6e9  
Dbody 7 5 DbodyMOD  
Dbreak 5 11 DbreakMOD  
Dplcap 10 5 DplcapMOD  
Ebreak 11 7 17 18 33.7  
Eds 14 8 5 8 1  
Egs 13 8 6 8 1  
Esg 6 10 6 8 1  
Evthres 6 21 19 8 1  
Evtemp 20 6 18 22 1  
It 8 17 1  
Lgate 1 9 5.29e9  
Ldrain 2 5 1.0e9  
Lsource 3 7 0.18e10  
RLgate 1 9 52.9  
RLdrain 2 5 10  
RLsource 3 7 1.8  
Mmed 16 6 8 8 MmedMOD  
Mstro 16 6 8 8 MstroMOD  
Mweak 16 21 8 8 MweakMOD  
Rbreak 17 18 RbreakMOD 1  
Rdrain 50 16 RdrainMOD 2.6e3  
Rgate 9 20 2.3  
RSLC1 5 51 RSLCMOD 1e6  
RSLC2 5 50 1e3  
Rsource 8 7 RsourceMOD 3.8e3  
Rvthres 22 8 RvthresMOD 1  
Rvtemp 18 19 RvtempMOD 1  
S1a 6 12 13 8 S1AMOD  
S1b 13 12 13 8 S1BMOD  
S2a 6 15 14 13 S2AMOD  
S2b 13 15 14 13 S2BMOD  
Vbat 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e6*170),5))}  
.MODEL DbodyMOD D (IS=2.0E12 IKF=10 N=1.01 RS=5.6e3 TRS1=8e4 TRS2=2e7  
+CJO=5.7e10 M=0.52 TT=7e11 XTI=2)  
.MODEL DbreakMOD D (RS=0.2 TRS1=1e3 TRS2=8.9e6)  
.MODEL DplcapMOD D (CJO=5.3e10 IS=1e30 N=10 M=0.37)  
.MODEL MmedMOD NMOS (VTO=1.9 KP=5 IS=1e30 N=10 TOX=1 L=1u W=1u RG=2.3)  
.MODEL MstroMOD NMOS (VTO=2.42 KP=150 IS=1e30 N=10 TOX=1 L=1u W=1u)  
.MODEL MweakMOD NMOS (VTO=1.62 KP=0.02 IS=1e30 N=10 TOX=1 L=1u W=1u RG=23 RS=0.1)  
www.onsemi.com  
8
FDS8876, FDS8876F40  
.MODEL RbreakMOD RES (TC1=8.3e4 TC2=8e7)  
.MODEL RdrainMOD RES (TC1=8.0e3 TC2=1.0e6)  
.MODEL RSLCMOD RES (TC1=1e4 TC2=1e6)  
.MODEL RsourceMOD RES (TC1=1e3 TC2=3e6)  
.MODEL RvthresMOD RES (TC1=2.0e3 TC2=6e6)  
.MODEL RvtempMOD RES (TC1=1.8e3 TC2=2e7)  
.MODEL S1AMOD VSWITCH (RON=1e5 ROFF=0.1 VON=4 VOFF=3.5)  
.MODEL S1BMOD VSWITCH (RON=1e5 ROFF=0.1 VON=3.5 VOFF=4)  
.MODEL S2AMOD VSWITCH (RON=1e5 ROFF=0.1 VON=1.5 VOFF=1.0)  
.MODEL S2BMOD VSWITCH (RON=1e5 ROFF=0.1 VON=1.0 VOFF=1.5)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE SubCircuit for the Power MOSFET  
Featuring Global Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written  
by William J. Hepp and C. Frank Wheatley.  
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
DBODY  
RSLC1  
DBREAK  
11  
51  
+
RSLC2  
5
51  
ESLC  
+
50  
17  
RDRAIN  
6
8
18  
EBREAK  
MWEAK  
ESG  
EVTHRES  
+
16  
21  
+
19  
8
LGATE  
EVTEMP  
RGATE  
GATE  
1
+
6
18  
22  
MMED  
9
20  
MSTRO  
8
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
S1B  
S2B  
13  
CB  
19  
CA  
IT  
14  
+
+
VBAT  
+
6
8
5
8
EGS  
EDS  
8
22  
RVTHRES  
Figure 22.  
www.onsemi.com  
9
FDS8876, FDS8876F40  
SABER ELECTRICAL MODEL  
REV January 2005  
template FDS8876 n2,n1,n3  
electrical n2,n1,n3  
{
var i iscl  
dp..model dbodymod = (isl=2.0e12,ikf=10,nl=1.01,rs=5.6e3,trs1=8e4,trs2=2e7,cjo=5.7e10,m=0.52,tt=7e11,xti=2)  
dp..model dbreakmod = (rs=0.2,trs1=1e3,trs2=8.9e6)  
dp..model dplcapmod = (cjo=5.3e10,isl=10e30,nl=10,m=0.37)  
m..model mmedmod = (type=_n,vto=1.9,kp=5,is=1e30, tox=1)  
m..model mstrongmod = (type=_n,vto=2.42,kp=150,is=1e30, tox=1)  
m..model mweakmod = (type=_n,vto=1.62,kp=0.02,is=1e30, tox=1,rs=0.1)  
sw_vcsp..model s1amod = (ron=1e5,roff=0.1,von=4,voff=3.5)  
sw_vcsp..model s1bmod = (ron=1e5,roff=0.1,von=3.5,voff=4)  
sw_vcsp..model s2amod = (ron=1e5,roff=0.1,von=1.5,voff=1.0)  
sw_vcsp..model s2bmod = (ron=1e5,roff=0.1,von=1.0,voff=1.5)  
c.ca n12 n8 = 10.3e10  
c.cb n15 n14 = 10.3e10  
c.cin n6 n8 = 1.6e9  
dp.dbody n7 n5 = model=dbodymod  
dp.dbreak n5 n11 = model=dbreakmod  
dp.dplcap n10 n5 = model=dplcapmod  
spe.ebreak n11 n7 n17 n18 = 33.7  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evthres n6 n21 n19 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
i.it n8 n17 = 1  
l.lgate n1 n9 = 5.29e9  
l.ldrain n2 n5 = 1.0e9  
l.lsource n3 n7 = 0.18e9  
res.rlgate n1 n9 = 52.9  
res.rldrain n2 n5 = 10  
res.rlsource n3 n7 = 1.8  
m.mmed n16 n6 n8 n8 = model=mmedmod, l=1u, w=1u  
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l=1u, w=1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l=1u, w=1u  
res.rbreak n17 n18 = 1, tc1=8.3e4,tc2=8e7  
res.rdrain n50 n16 = 2.6e3, tc1=8.0e3,tc2=1.0e6  
res.rgate n9 n20 = 2.3  
res.rslc1 n5 n51 = 1e6, tc1=1e4,tc2=1e6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 3.8e3, tc1=1e3,tc2=3e6  
res.rvthres n22 n8 = 1, tc1=2.0e3,tc2=6e6  
res.rvtemp n18 n19 = 1, tc1=1.8e3,tc2=2e7  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
www.onsemi.com  
10  
FDS8876, FDS8876F40  
v.vbat n22 n19 = dc=1  
equations {  
i (n51>n50) +=iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/170))** 5))  
}
}
LDRAIN  
DPLCAP  
DRAIN  
2
5
10  
RLDRAIN  
RSLC1  
51  
RSLC2  
ISCL  
DBREAK  
50  
RDRAIN  
6
8
11  
ESG  
DBODY  
EVTHRES  
+
16  
21  
+
19  
8
MWEAK  
LGATE  
EVTEMP  
RGATE  
GATE  
1
+
6
18  
22  
EBREAK  
+
MMED  
9
20  
MSTRO  
8
17  
18  
RLGATE  
LSOURCE  
CIN  
SOURCE  
3
7
RSOURCE  
RLSOURCE  
S1A  
S2A  
RBREAK  
12  
15  
13  
8
14  
13  
17  
18  
RVTEMP  
S1B  
S2B  
13  
CB  
19  
CA  
IT  
14  
+
+
VBAT  
+
6
8
5
8
EGS  
EDS  
8
22  
RVTHRES  
Figure 23.  
www.onsemi.com  
11  
FDS8876, FDS8876F40  
JUNCTION  
th  
SPICE THERMAL MODEL  
REV January 2005  
FDS8876  
Copper Area =1.0 in  
2
RTHERM1  
CTHERM1  
CTHERM1 TH 8 2.0e3  
CTHERM2 8 7 5.0e3  
CTHERM3 7 6 1.0e2  
CTHERM4 6 5 4.0e2  
CTHERM5 5 4 9.0e2  
CTHERM6 4 3 2e1  
CTHERM7 3 2 1  
8
7
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
RTHERM7  
RTHERM8  
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
CTHERM7  
CTHERM8  
CTHERM8 2 TL 3  
RTHERM1 TH 8 1e1  
RTHERM2 8 7 5e1  
RTHERM3 7 6 1  
RTHERM4 6 5 5  
RTHERM5 5 4 8  
RTHERM6 4 3 12  
RTHERM7 3 2 18  
RTHERM8 2 TL 25  
6
5
4
3
2
SABER THERMAL MODEL  
SABER thermal model FDS8876  
2
Copper Area = 1.0 in  
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 8 =2.0e3  
ctherm.ctherm2 8 7 =5.0e3  
ctherm.ctherm3 7 6 =1.0e2  
ctherm.ctherm4 6 5 =4.0e2  
ctherm.ctherm5 5 4 =9.0e2  
ctherm.ctherm6 4 3 =2e1  
ctherm.ctherm7 3 2 1  
ctherm.ctherm8 2 tl 3  
rtherm.rtherm1 th 8 =1e1  
rtherm.rtherm2 8 7 =5e1  
rtherm.rtherm3 7 6 =1  
rtherm.rtherm4 6 5 =5  
rtherm.rtherm5 5 4 =8  
rtherm.rtherm6 4 3 =12  
rtherm.rtherm7 3 2 =18  
rtherm.rtherm8 2 tl =25  
}
tl  
CASE  
Figure 24.  
www.onsemi.com  
12  
FDS8876, FDS8876F40  
Table 1. THERMAL MODES  
2
2
2
2
2
COMPONANT  
CTHERM6  
CTHERM7  
CTHERM8  
RTHERM6  
RTHERM7  
RTHERM8  
0.04 in  
1.2e1  
0.28 in  
0.52 in  
0.76 in  
1.0 in  
1.5e1  
1.0  
2.0e1  
1.0  
2.0e1  
1.0  
2.0e1  
1.0  
3.0  
12  
0.5  
1.3  
26  
39  
55  
2.8  
3.0  
3.0  
20  
15  
13  
24  
21  
19  
18  
38.7  
31.3  
29.7  
25  
PACKAGE MARKING AND ORDERING INFORMATION  
Device  
FDS8876  
Device Marking  
Package Type  
Reel Size  
Tape Width  
Shipping  
FDS8876  
SOIC8 (SO8)  
(PbFree)  
13”  
12 mm  
2500 / Tape & Reel  
2500 / Tape & Reel  
FDS8876F40  
FDS8876  
SOIC8 (SO8)  
(PbFree)  
13”  
12 mm  
†For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging  
Specifications Brochure, BRD8011/D.  
POWERTRENCH is registered trademark of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United  
States and/or other countries.  
www.onsemi.com  
13  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SOIC8  
CASE 751EB  
ISSUE A  
DATE 24 AUG 2017  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13735G  
SOIC8  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FDS8876_07

N-Channel PowerTrench㈢ MOSFET 30V, 12.5A, 8.2mヘ
FAIRCHILD

FDS8876_NL

N-Channel PowerTrench MOSFET
FAIRCHILD

FDS8878

N-Channel PowerTrench MOSFET
FAIRCHILD

FDS8878

N 沟道,PowerTrench® MOSFET,30V,10.2A,14mΩ
ONSEMI

FDS8878-F123

N 沟道,PowerTrench® MOSFET,30V,10.2A,14mΩ
ONSEMI

FDS8878_07

N-Channel PowerTrench㈢ MOSFET
FAIRCHILD

FDS8878_NL

N-Channel PowerTrench MOSFET
FAIRCHILD

FDS8880

N-Channel PowerTrench MOSFET
FAIRCHILD

FDS8880

20 V, 6 A Synchronous Step-Down
ADI

FDS8880

N 沟道,PowerTrench® MOSFET,30V,11.6A,10mΩ
ONSEMI

FDS8880_07

N-Channel PowerTrench㈢ MOSFET
FAIRCHILD

FDS8882

N-Channel PowerTrench® MOSFET 30 V, 9 A, 20.0 mΩ
FAIRCHILD