FIN1019MTCX [ONSEMI]

3.3V LVDS 高速差分驱动器/接收器;
FIN1019MTCX
型号: FIN1019MTCX
厂家: ONSEMI    ONSEMI
描述:

3.3V LVDS 高速差分驱动器/接收器

驱动 光电二极管 接口集成电路 驱动器
文件: 总15页 (文件大小:2040K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
3.3 V LVDS High Speed  
Differential Driver/Receiver  
14  
1
TSSOP−14 WB  
CASE 948G  
FIN1019  
General Description  
This driver and receiver pair are designed for high speed  
interconnects utilizing Low Voltage Differential Signaling (LVDS)  
technology. The driver translates LVTTL signals to LVDS levels with  
a typical differential output swing of 350 mV and the receiver  
translates LVDS signals, with a typical differential input threshold of  
100 mV, into LVTTL levels. LVDS technology provides low EMI at  
ultra low power dissipation even at high frequencies. This device is  
ideal for high speed clock or data transfer.  
MARKING DIAGRAM  
14  
$Y&Z&2&K  
FIN  
1019  
1
Features  
$Y  
&Z  
&2  
&K  
= Logo  
= Assembly Plant Code  
= 2−Digit Date Code  
= 2−Digits Lot Run Traceability Code  
Greater than 400 Mbs Data Rate  
3.3 V Power Supply Operation  
0.5 ns Maximum Differential Pulse Skew  
2.5 ns Maximum Propagation Delay  
Low Power Dissipation  
FIN1019 = Specific Device Code  
CONNECTION DIAGRAM  
Power−Off Protection  
100 mV Receiver Input Sensitivity  
DE 1  
14 V  
CC  
Fail Safe Protection Open−circuit, Shorted and Terminated  
D
2
13 NC  
IN  
Conditions  
NC 3  
12 D  
11 D  
10 R  
OUT+  
OUT−  
IN+  
Meets or Exceeds the TIA/EIA−644 LVDS Standard  
Flow−through Pinout Simplifies PCB Layout  
R
4
OUT  
NC 5  
NC 6  
14−Lead TSSOP Package Save Space  
9
8
R
IN−  
This Device is Pb−Free, Halide Free and is RoHS Compliant  
GND 7  
RE  
FUNCTION TABLE  
R
R
RE  
L
R
OUT  
IN+  
IN−  
ORDERING INFORMATION  
L
H
L
H
X
L
X
L
H
Z
Order Number  
FIN1019MTCX TSSOP−14 WB 2500 / Tape &  
(Pb−Free) Reel  
Package  
Shipping  
H
L
Fail Safe Condition  
H
†For information on tape and reel specifications,  
including part orientation and tape sizes, please  
refer to our Tape and Reel Packaging Specifications  
Brochure, BRD8011/D.  
D
DE  
H
D
D
OUT−  
IN  
OUT+  
L
L
H
H
X
H
H
Z
L
L
Z
H
L
Open−Circuit or Z  
H
H = HIGH Logic Level  
Z = High Impedance  
L = LOW Logic Level  
Fail Safe = Open, Shorted, Terminated  
X = Don’t Care  
© Semiconductor Components Industries, LLC, 2001  
1
Publication Order Number:  
November, 2022 − Rev. 1  
FIN1019/D  
FIN1019  
PIN DESCRIPTIONS  
Pin Name  
Description  
D
IN  
LVTTL Data Input  
D
D
Non−inverting LVDS Output  
Inverting LVDS Output  
Driver Enable (LVTTL, Active HIGH)  
Non−Inverting LVDS Input  
Inverting LVDS Input  
LVTTL Receiver Output  
Receiver Enable (LVTTL, Active LOW)  
Power Supply  
OUT+  
OUT  
DE  
R
IN+  
IN−  
R
R
OUT  
RE  
V
CC  
GND  
NC  
Ground  
No Connect  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Rating  
−0.5 V to +4.6 V  
−0.5 V to +6 V  
−0.5 V to 4.7 V  
−0.5 V to +6 V  
−0.5 V to 4.7 V  
Continuous  
16 mA  
V
CC  
Supply Voltage  
D
, DE, RE  
LVTTL DC Input Voltage  
LVDS DC Input Voltage  
LVTTL DC Output Voltage  
LVDS DC Output Voltage  
IN  
R
, R  
IN+  
IN−  
R
OUT  
D
OUT+  
, D  
OUT−  
I
LVDS Driver Short Circuit Current  
LVTTL DC Output Current  
OSD  
I
O
T
Storage Temperature Range  
Max Junction Temperature  
−65°C to +150°C  
150°C  
STG  
T
J
T
L
Lead Temperature (Soldering, 10 Seconds)  
ESD (Human Body Model)  
260°C  
6500 V  
ESD (Machine Model)  
300 V  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Value  
V
CC  
Supply Voltage  
3.0 V to 3.6 V  
V
Input Voltage  
0 to V  
CC  
IN  
ID  
IC  
|V  
V
|
Magnitude of Differential Voltage  
Common−Mode Input Voltage  
Operating Temperature  
100 mV to V  
CC  
0.05 V to 2.35 V  
T
−40°C to +85°C  
A
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
www.onsemi.com  
2
FIN1019  
DC ELECTRICAL CHARACTERISTICS (Over supply voltage and operating temperature ranges, unless otherwise specified)  
Typ  
(Note 1)  
Symbol  
Parameter  
Test Conditions  
Min  
Max  
Unit  
LVDS DIFFERENTIAL DRIVER CHARACTERISTICS  
V
Output Differential Voltage  
V Magnitude Change from  
OD  
R = 100 W, See Figure 1  
L
250  
350  
450  
25  
mV  
mV  
OD  
DV  
OD  
Differential LOW−to−HIGH  
V
Offset Voltage  
1.125  
1.25  
1.375  
25  
V
OS  
DV  
Offset Magnitude Change from  
Differential LOW−to−HIGH  
mV  
OS  
I
Disabled Output Leakage Current  
Power Off Output Current  
V
V
V
V
= V or GND, DE = 0 V  
20  
20  
−8  
8
mA  
mA  
OZD  
OUT  
CC  
I
= 0 V, V  
= 0 V or 3.6 V  
OFF  
CC  
OUT  
I
Short Circuit Output Current  
mA  
= 0 V, DE = V  
OS  
OUT  
CC  
= 0 V, DE = V  
OD  
CC  
LVTTL DRIVER CHARACTERISTICS  
V
Output HIGH Voltage  
V
CC  
− 0.2  
V
V
I
= −100 mA, RE = 0 V, See Figure 6 and Table 1  
OH  
OH  
I
= −8 mA, RE = 0 V, V = 400 mV  
2.4  
OH  
ID  
V
= 400 mV, V = 1.2 V, see Figure 6  
ID  
IC  
V
Output LOW Voltage  
0.2  
0.5  
20  
I
OL  
= 100 mA, RE = 0 V, V = −400 mV  
OL  
ID  
See Figure 6 and Table 1  
I
OL  
= −8 mA, RE = 0 V, V = −400 mV  
ID  
V
= −400 mV, V = 1.2 V, see Figure 6  
ID  
IC  
I
Disabled Output Leakage Current  
V
= V or GND, RE = V  
CC  
mA  
OZ  
OUT  
CC  
LVDS RECEIVER CHARACTERISTICS  
V
Differential Input Threshold HIGH  
Differential Input Threshold LOW  
Input Current  
See Figure 6 and Table 1  
See Figure 6 and Table 1  
−100  
100  
mV  
mV  
mA  
TH  
V
TL  
IN  
I
V
V
= 0 V or V  
20  
20  
IN  
CC  
I
Power−OFF Input Current  
= 0 V, V = 0 V or 3.6 V  
mA  
I(OFF)  
CC  
IN  
LVTTL DRIVER AND CONTROL SIGNALS CHARACTERISTICS  
V
Input HIGH Voltage  
Input LOW Voltage  
Input Current  
2.0  
GND  
V
V
V
IH  
CC  
V
0.8  
20  
20  
IL  
I
IN  
V
V
= 0 V or V  
CC  
mA  
mA  
V
IN  
I
Power−OFF Input Current  
Input Clamp Voltage  
= 0 V, V = 0 V or 3.6 V  
I(OFF)  
CC  
IN  
V
I
IK  
= −18 mA  
−1.5  
IK  
DEVICE CHARACTERISTICS  
I
Power Supply Current  
12.5  
12.5  
mA  
mA  
Driver Enabled, Driver Load: R = 100 W  
Receiver Disabled, No Receiver Load  
CC  
L
Driver Enabled, Driver Load: R = 100 W,  
L
Receiver Enabled, (R = 1 V and R = 1.4 V)  
IN+  
IN−  
or (R = 1.4 V and R  
= 1 V)  
IN+  
OUT−  
Driver Disabled, Receiver Enabled, (R = 1 V and  
IN+  
R
= 1.4 V) or (R = 1.4 V and R = 1 V)  
IN−  
IN+ IN−  
7.0  
7.0  
mA  
mA  
pF  
Driver Disabled, Receiver Disabled  
Any LVTTL or LVDS Input  
4
6
C
Input Capacitance  
Output Capacitance  
IN  
C
OUT  
Any LVTTL or LVDS Output  
pF  
1. All typical values are at T = 25°C and with V = 3.3 V.  
A
CC  
www.onsemi.com  
3
 
FIN1019  
AC ELECTRICAL CHARACTERISTICS (Over supply voltage and operating temperature ranges, unless otherwise specified)  
Typ  
(Note 2)  
Symbol  
Parameter  
Test Conditions  
Min  
Max  
Unit  
DRIVER TIMING CHARACTERISTICS  
t
t
Differential Propagation Delay  
LOW−to−HIGH  
R = 100 W, C = 10 pF,  
See Figure 2 and Figure 3  
0.5  
0.5  
1.5  
1.5  
ns  
ns  
PLHD  
L
L
Differential Propagation Delay  
HIGH−to−LOW  
PHLD  
t
t
Differential Output Rise Time (20% to 80%)  
Differential Output Fall Time (80% to 20%)  
0.4  
0.4  
1.0  
1.0  
0.5  
1.0  
5.0  
5.0  
5.0  
5.0  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
TLHD  
THLD  
SK(P)  
t
Pulse Skew |t  
− t  
PHL  
|
PLH  
t
Part−to−Part Skew (Note 3)  
R = 100 W, C = 10 pF,  
See Figure 4 and Figure 5  
SK(PP)  
L
L
t
Differential Output Enable Time from Z to HIGH  
Differential Output Enable Time from Z to LOW  
Differential Output Disable Time from HIGH to Z  
Differential Output Disable Time from LOW to Z  
ZHD  
t
ZLD  
HZD  
t
t
LZD  
RECEIVER TIMING CHARACTERISTICS  
t
t
Propagation Delay LOW−to−HIGH  
Propagation Delay HIGH−to−LOW  
Output Rise Time (20% to 80%)  
Output Fall Time (80% to 20%)  
|V | = 400 mV, C = 10 pF,  
See Figure 6 and Figure 7  
0.9  
0.9  
2.5  
2.5  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
ns  
PLH  
PHL  
ID  
L
t
t
0.5  
0.5  
TLH  
THL  
t
Pulse Skew |t  
− t |  
PHL  
0.5  
1.0  
5.0  
5.0  
5.0  
5.0  
SK(P)  
PLH  
t
Part−to−Part Skew (Note 3)  
SK(PP)  
t
LVTTL Output Enable Time from Z to HIGH  
LVTTL Output Enable Time from Z to LOW  
LVTTL Output Disable Time from HIGH to Z  
LVTTL Output Disable Time from LOW to Z  
R = 500 W, C = 10 pF, See Figure 8  
ZH  
L
L
t
ZL  
t
HZ  
t
LZ  
2. All typical values are at T = 25°C and with V = 5 V.  
A
CC  
3. t  
is the magnitude of the difference in propagation delay times between any specified terminals of two devices switching in the same  
SK(PP)  
direction (either LOW−to−HIGH or HIGH−to−LOW) when both devices operate with the same supply voltage, same temperature, and have  
identical test circuits.  
www.onsemi.com  
4
 
FIN1019  
NOTE A: Input pulses have frequency = 10 MHz, t or t = 2 ns  
R
F
NOTE B: C includes all probe and fixture capacitances  
L
Figure 1. Differential Driver DC Test Circuit  
Figure 2. Differential Driver Propagation Delay and  
Transition Time Test Circuit  
NOTE B: Input pulses have the frequency = 10 MHz, t or t = 2 ns  
R
F
NOTE A: C includes all probe and fixture capacitances  
L
Figure 3. AC Waveforms for Differential Driver  
Figure 4. Differential Driver Enable and Disable  
Test Circuit  
Figure 5. Enable and Disable AC Waveforms  
www.onsemi.com  
5
FIN1019  
NOTE A: Input pulses have frequency = 10 MHz, tR or tF = 1 ns  
NOTE B: CL includes all probe and fixture capacitance  
Figure 6. Differential Receiver Voltage Definitions and Propagation Delay and Transition Time Test Circuit  
Table 1. RECEIVER MINIMUM AND MAXIMUM INPUT THRESHOLD TEST VOLTAGES  
Resulting Differential  
Input Voltage (mV)  
Resulting Common Mode  
Input Voltage (V)  
Applied Voltages (V)  
V
IA  
V
IB  
V
ID  
V
IC  
1.25  
1.15  
2.4  
2.3  
0.1  
0
1.15  
1.25  
2.3  
2.4  
0
100  
−100  
100  
1.2  
1.2  
2.35  
2.35  
0.05  
0.05  
1.2  
−100  
100  
0.1  
0.9  
1.5  
1.8  
2.4  
0
−100  
600  
1.5  
0.9  
2.4  
1.8  
0.6  
0
−600  
600  
1.2  
2.1  
−600  
600  
2.1  
0.3  
0.6  
−600  
0.3  
www.onsemi.com  
6
FIN1019  
Figure 7. LVDS Input to LVTTL Output AC Waveforms  
Test Circuit for LVTTL Outputs  
Voltage Waveforms Enable and Disable Times  
Figure 8. LVTTL Outputs Test Circuit and AC Waveforms  
www.onsemi.com  
7
FIN1019  
DC / AC TYPICAL PERFORMANCE CURVES  
Drivers  
Figure 9. Output High Voltage vs.  
Figure 10. Output Low Voltage vs.  
Power Supply Voltage  
Power Supply Voltage  
Figure 11. Output Short Circuit Current vs.  
Power Supply Voltage  
Figure 12. Differential Output Voltage vs.  
Power Supply Voltage  
Figure 13. Differential Output Voltage vs.  
Load Resistor  
Figure 14. Offset Voltage vs. Power  
Supply Voltage  
www.onsemi.com  
8
FIN1019  
DC / AC TYPICAL PERFORMANCE CURVES (continued)  
Figure 15. Power Supply Current vs. Frequency  
Figure 16. Power Supply Current vs.  
Power Supply Voltage  
Figure 17. Power Supply Current vs.  
Ambient Temperature  
Figure 18. Differential Propagation Delay vs.  
Power Supply  
Figure 19. Differential Propagation Delay vs.  
Ambient Temperature  
Figure 20. Differential Skew (tPLH − tPHL) vs.  
Power Supply Voltage  
www.onsemi.com  
9
FIN1019  
DC / AC TYPICAL PERFORMANCE CURVES (continued)  
Figure 21. Differential Pulse Skew (tPLH − tPHL  
vs. Ambient Temperature  
)
Figure 22. Transition Time vs. Power Supply  
Voltage  
Figure 23. Transition Times vs. Ambient Temperature  
www.onsemi.com  
10  
FIN1019  
DC / AC TYPICAL PERFORMANCE CURVES  
Receiver  
Figure 24. Output High Voltage vs.  
Power Supply Voltage  
Figure 25. Output Low Voltage vs.  
Power Supply Voltage  
Figure 26. Output Short Circuit Current vs.  
Power Supply Voltage  
Figure 27. Power Supply Current vs. Frequency  
Figure 28. Power Supply Current vs.  
Power Supply Voltage  
Figure 29. Power Supply Current vs.  
Ambient Temperature  
www.onsemi.com  
11  
FIN1019  
DC / AC TYPICAL PERFORMANCE CURVES (continued)  
Figure 30. Differential Propagation Delay vs.  
Figure 31. Differential Propagation Delay vs.  
Ambient Temperature  
Power Supply Voltage  
Figure 32. Differential Skew (tPHL − tPHL) vs.  
Power Supply Voltage  
Figure 33. Differential Skew (tPLH − tPHL) vs.  
Ambient Temperature  
Figure 34. Differential Propagation Delay vs.  
Differential Input Voltage  
Figure 35. Differential Propagation Delay vs.  
Common−Mode Voltage  
www.onsemi.com  
12  
FIN1019  
DC / AC TYPICAL PERFORMANCE CURVES (continued)  
Figure 36. Transition Time vs.  
Figure 37. Transition Time vs. Ambient Temperature  
Power Supply Voltage  
Figure 38. Differential Propagation Delay vs. Load  
Figure 39. Transition Time vs. Load  
www.onsemi.com  
13  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TSSOP14 WB  
CASE 948G  
ISSUE C  
14  
DATE 17 FEB 2016  
1
SCALE 2:1  
NOTES:  
14X K REF  
1. DIMENSIONING AND TOLERANCING PER  
ANSI Y14.5M, 1982.  
M
S
S
V
0.10 (0.004)  
T U  
2. CONTROLLING DIMENSION: MILLIMETER.  
3. DIMENSION A DOES NOT INCLUDE MOLD  
FLASH, PROTRUSIONS OR GATE BURRS.  
MOLD FLASH OR GATE BURRS SHALL NOT  
EXCEED 0.15 (0.006) PER SIDE.  
4. DIMENSION B DOES NOT INCLUDE  
INTERLEAD FLASH OR PROTRUSION.  
INTERLEAD FLASH OR PROTRUSION SHALL  
NOT EXCEED 0.25 (0.010) PER SIDE.  
5. DIMENSION K DOES NOT INCLUDE DAMBAR  
PROTRUSION. ALLOWABLE DAMBAR  
PROTRUSION SHALL BE 0.08 (0.003) TOTAL  
IN EXCESS OF THE K DIMENSION AT  
MAXIMUM MATERIAL CONDITION.  
S
0.15 (0.006) T U  
N
0.25 (0.010)  
14  
8
2X L/2  
M
B
L
N
U−  
PIN 1  
IDENT.  
F
7
1
6. TERMINAL NUMBERS ARE SHOWN FOR  
REFERENCE ONLY.  
DETAIL E  
7. DIMENSION A AND B ARE TO BE  
DETERMINED AT DATUM PLANE W.  
S
K
0.15 (0.006) T U  
A
V−  
MILLIMETERS  
DIM MIN MAX  
INCHES  
MIN MAX  
K1  
A
B
C
D
F
G
H
J
4.90  
4.30  
−−−  
0.05  
0.50  
5.10 0.193 0.200  
4.50 0.169 0.177  
J J1  
1.20  
−−− 0.047  
0.15 0.002 0.006  
0.75 0.020 0.030  
SECTION NN  
0.65 BSC  
0.026 BSC  
0.60 0.020 0.024  
0.20 0.004 0.008  
0.16 0.004 0.006  
0.30 0.007 0.012  
0.25 0.007 0.010  
0.50  
0.09  
0.09  
0.19  
J1  
K
W−  
C
K1 0.19  
L
M
6.40 BSC  
0.252 BSC  
0.10 (0.004)  
0
8
0
8
_
_
_
_
SEATING  
PLANE  
T−  
H
G
DETAIL E  
D
GENERIC  
MARKING DIAGRAM*  
14  
SOLDERING FOOTPRINT  
XXXX  
XXXX  
ALYWG  
G
7.06  
1
1
A
L
= Assembly Location  
= Wafer Lot  
Y
W
G
= Year  
= Work Week  
= PbFree Package  
0.65  
PITCH  
(Note: Microdot may be in either location)  
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “G”, may  
or may not be present. Some products may  
not follow the Generic Marking.  
01.34X6  
14X  
1.26  
DIMENSIONS: MILLIMETERS  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASH70246A  
TSSOP14 WB  
PAGE 1 OF 1  
onsemi and  
are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves  
the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular  
purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation  
special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FIN1019MTCX_NL

Line Transceiver, 1 Func, 1 Driver, 1 Rcvr, PDSO14, 4.40 MM, MO-153, TSSOP-14
FAIRCHILD

FIN1019MX

LINE TRANSCEIVER|1 DRIVER|1 RCVR|SOP|14PIN|PLASTIC
FAIRCHILD

FIN1022

2 X 2 LVDS High Speed Crosspoint Switch
FAIRCHILD

FIN1022M

2 X 2 LVDS High Speed Crosspoint Switch
FAIRCHILD

FIN1022MTC

2 X 2 LVDS High Speed Crosspoint Switch
FAIRCHILD

FIN1022MTCX

TELECOM SWITCHING CIRCUIT|TSSOP|16PIN|PLASTIC
FAIRCHILD

FIN1022MTCX

2 X 2 LVDS 高速交点开关
ONSEMI

FIN1022MX

TELECOM SWITCHING CIRCUIT|SOP|16PIN|PLASTIC
FAIRCHILD

FIN1022M_NL

暂无描述
FAIRCHILD

FIN1025

3.3V LVDS 2-Bit High Speed Differential Driver
FAIRCHILD

FIN1025MTC

3.3V LVDS 2-Bit High Speed Differential Driver
FAIRCHILD

FIN1025MTCX

Line Driver, 2 Func, 2 Driver, PDSO14, 4.40 MM, MO-153, TSSOP-14
FAIRCHILD