FL5150 [ONSEMI]

IGBT and MOSFET AC Phase Cut Dimmer Controller;
FL5150
型号: FL5150
厂家: ONSEMI    ONSEMI
描述:

IGBT and MOSFET AC Phase Cut Dimmer Controller

双极性晶体管
文件: 总23页 (文件大小:630K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Is Now Part of  
To learn more about ON Semiconductor, please visit our website at  
www.onsemi.com  
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers  
will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor  
product management systems do not have the ability to manage part nomenclature that utilizes an underscore  
(_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain  
device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated  
device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please  
email any questions regarding the system integration to Fairchild_questions@onsemi.com.  
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number  
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right  
to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON  
Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON  
Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s  
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA  
Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out  
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor  
is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
May 2016  
FL5150/60  
IGBT and MOSFET AC Phase Cut Dimmer Controller  
Features  
Description  
.
Selectable Earth Ground or Line-Hot Zero Cross  
Detection: Complies with UL1472 2015 2nd Edition  
for Addition of Ground Leakage Current for Flicker  
Reduction (North America)  
The FL5150 and FL5160 are controllers for varying the  
pulse width for AC loads. The FL5150 is for 50 Hz and  
the FL5160 is for 60 Hz applications. The FL5150/60 is  
powered from the AC line and generates a programmable  
gate drive for controlling the pulse width for external IGBT  
or MOSFET transistors. The pulse width can be user  
programmable with either an external resistor or 0 to 10 V  
DC signal or controlled by a µP with a logic signal. The  
pulse width can be controlled from 0 to 100% duty cycle  
to provide a wide AC symmetric dimming control function  
when biased with a 3-wire application. For 2-wire Line-  
Hot and Load-Hot applications, the pulse width can  
typically be varied from 0 to a maximum gate pulse so  
that the load voltage is >95% of the AC line voltage. The  
FL5150/60 will automatically override the pulse width  
control setting to allow maximum gate pulse width without  
flicker.  
.
User Programmable Leading or Trailing Edge  
Dimming Control  
.
.
.
.
.
Dynamic Over-Current and Temperature Protection  
Powered from the AC Line  
Symmetric AC Current Control  
IGBT or MOSFET Gate Driver  
Gate Pulse Width Programmable from 0 to 100%  
tON  
.
.
8 Bit ADC Input for Dimming Control with an  
Adjustable Resistor or 0 to 10 V DC Voltage  
The FL5150/60 takes advantage of the UL1472 2015 2nd  
edition code revision that allows for up to 0.5 mA of  
ground leakage current when a neutral wire is not  
available in the switch box. This improves the flicker  
performance for non-resistive loads. If the application  
does not allow ground leakage current then the Line Hot  
signal can be used as the ZC signal.  
226 Dimming Pulse Widths with 25 s Resolution  
and Built-in Ramp Up/Down Control for Smooth  
Dimming  
.
Automatically Maximum Gate Pulse Width Control  
(Auto Max.)  
.
.
.
Minimum External Components  
The FL5150/60 has user programmable over-current  
and temperature protection. With external sense  
resistors, the maximum voltage drop across Q1 and Q2  
can be set to limit the maximum current and transistor  
power dissipation.  
600 A Quiescent Current  
Precision Temperature Compensated 2% Internal  
Timer  
.
.
.
Low Power Electronic Off State Mode  
Space Savings SOIC 10-pin Package  
50 Hz and 60 Hz Options  
The FL5150/60 can be programmed for trailing edge  
dimming when the DIM Mode pin is low at startup (pulse  
width starts at the zero-crossing) or leading edge  
dimming when the DIM Mode pin is connected to the  
VDD pin at startup (pulse width ends at the zero  
crossing). When an OFF state is selected (DIM Control  
pin is 0 V) the FL5150/60 will go into a low power  
electronic OFF state that reduces the power consumption  
to less than 100 mW if an external NPN transistor is used.  
Applications  
.
.
Dimmer Switches  
AC Controls  
The FL5150/60 has an internal 8 bit ADC that allows for  
typically 226 selectable dimming pulse widths with a  
resolution of 25 µs per step. The FL5150/60 controls the  
dim pulse width rate of change so that the minimum to  
maximum dim ramp time is approximately 1 second.  
This feature allows for a smooth dim transition.  
Internally, the FL5150/60 contains a 17 V shunt regulator,  
5 V linear regulator, 8Bit ADC, detection comparators,  
control logic and an IGBT or MOSFET gate driver.  
The 10-pin SOIC package provides for a low-cost,  
compact design and layout.  
© 2016 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FL5150/60 • 1.0  
Ordering Information  
Operating  
Temperature Range  
Part Number  
Package  
Packing Method  
FL5150MX  
FL5160MX  
-40°C to +85°C  
10 Lead SOIC, JEDEC MS-012, 150” Narrow Body  
Tape and Reel  
Typical Applications  
Line Hot  
D2  
RZC Monitor  
RSENSE1  
OC Sense1  
ZC Monitor  
Q1  
Q2  
RGATE  
DRV Gate  
OC Sense2  
Low power  
VS  
DIM Control  
CGATE  
RSENSE2  
Radj  
VDD  
C1  
C2  
C3  
Roffset  
DIM Mode  
GND  
R1  
D1  
Load Hot  
Figure 1. Typical 120 VAC 60 Hz Application with Air Gap Switch (TE Mode Selected)  
Line Hot  
D2  
RZC Monitor  
RSENSE1  
Q1  
Q2  
OC Sense1  
DRV Gate  
ZC Monitor  
DIM Control  
VDD  
RGATE  
CGATE  
RSENSE2  
OC Sense2  
Low power  
VS  
Radj  
C3  
C1  
R2  
R1  
DIM Mode  
Roffset  
GND  
Q3  
C2  
D1  
Load Hot  
Figure 2. Typical 120 VAC 60 Hz Low Power Application (LE Mode Selected)  
Table 1.  
Typical Values  
R1: 10 k  
R2: 150 k  
RADJ: 0 to 250 k  
C1: 100 nF  
ROFFSET: 0 to 50 k  
C2: 2.5 F  
RZC Monitor: 1 M  
RGATE: 1 k  
C3: 100 nF  
RSENSE1: 1 M  
CGATE: 22 nF  
RSENSE2: 1 M  
Q1: FDPF33N25  
Q2: FDPF33N25  
Q3: KSP44  
© 2016 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FL5150/60 • 1.0  
2
 
 
Line Hot  
D2  
RZC Monitor  
RSENSE1  
Q1  
Q2  
OC Sense1  
DRV Gate  
OC Sense2  
Low power  
ZC Monitor  
DIM Control  
VDD  
RGATE  
CGATE  
RSENSE2  
Radj  
C3  
C1  
Z1  
R1  
R2  
DIM Mode  
Roffset  
VS  
GND  
Q3  
C2  
D1  
Load Hot  
Figure 3. 120 VAC 60 Hz Application with Current Mirror for R1 Lower Power Dissipation (LE Mode Selected)  
Table 2.  
Typical Values  
R1: 2 k  
R2: 150 k  
RADJ: 0 to 250 k  
C1: 100 nF  
ROFFSET: 0 to 50 k  
C2: 2.5 F  
RZC Monitor: 1 M  
RGATE: 1 k  
C3: 100 nF  
CGATE: 22 nF  
RSENSE1: 1 M  
RSENSE2: 1 M  
Z1: 7.5 V  
Q1: FDPF33N25  
Q2: FDPF33N25  
Q3: KSP44  
Line Hot  
RZC Monitor  
RSENSE1  
Q1  
Q2  
OC Sense1  
DRV Gate  
ZC Monitor  
RGATE  
DIM Control  
VDD  
CGATE  
RSENSE2  
Radj  
C3  
OC Sense2  
Low power  
VS  
C1  
R2  
R1  
DIM Mode  
Roffset  
GND  
Q3  
C2  
D1  
Load Hot  
Neutral  
Figure 4. Typical 120 VAC 60 Hz Low Power 3-Wire Application  
Table 3. Typical Values  
R1: 30 k  
RADJ: 0 to 250 k  
C1: 100 nF  
R2: 150 k  
C2: 4.7 F  
Q3: KSP44  
RZC Monitor: 1 M  
RGATE: 1 k  
RSENSE1: 1 M  
CGATE: 22 nF  
C3: 100 nF  
RSENSE2: 1 M  
Q1: FDPF33N25 Q2: FDPF33N25  
© 2016 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FL5150/60 • 1.0  
3
 
 
Line Hot  
D2  
RZC Monitor  
RSENSE1  
OC Sense1  
DRV Gate  
ZC Monitor  
DIM Control  
VDD  
Q1  
Q2  
RGATE  
CGATE  
RSENSE2  
OC Sense2  
Low power  
VS  
Radj  
C3  
C1  
R2  
R1  
DIM Mode  
Roffset  
GND  
Q3  
C2  
D1  
Load Hot  
Figure 5. Typical 230 VAC 50 Hz 2-Wire Application (LE Mode Shown)  
Table 4.  
Typical Values  
R1: 35 k  
RADJ: 0 to 250 k  
C1: 100 nF  
R2: 350 k  
C2: 3 F  
RZC Monitor: 2 M  
RGATE: 1 k  
RSENSE1: 2 M  
CGATE: 22nF  
C3: 100 nF  
RSENSE2: 2 M  
Q1:NGTB10N60FG Q2: NGTB10N60FG  
Q3: KSP44  
Block Diagram  
OC Sense1  
OC Sense2  
8 Bit  
ADC  
DIM  
Control  
VS  
Digital &  
Analog  
Circuitry  
DRV Gate  
ZC Monitor  
VDD  
Low Power  
VS  
Linear  
Regulator  
DIM Mode  
VDD  
GND  
Figure 6. Block Diagram  
© 2016 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FL5150/60 • 1.0  
4
 
Pin Configuration  
10  
9
1
2
3
4
5
ZC Monitor  
PIN 1  
OC Sense1  
DRV Gate  
OC Sense2  
Low Power  
DIM Control  
VDD  
8
DIM Mode  
7
6
GND  
VS  
Figure 7. Pin Assignments  
Pin Definitions  
Pin#  
Name  
Description  
1
ZC Monitor  
ZC Monitor This signal is used for the zero crossing threshold.  
DIM Control The voltage at this pin is the input for an 8 Bit ADC with a 2.5 V  
reference. Table 5 shows the pulse width selection per DIM Control pin  
voltage. This pin sources 10 A of current so that with an external adjustable  
resistor, the dim pulse width can be selected. With a 4 to 1 resistor divided, a 0  
to 10 V DC (Ground reference to pin 5) signal can be used to control the dim  
pulse width.  
2
3
4
DIM Control  
VDD  
VDD The internal 5 V supply for the digital logic  
DIM Mode This pin selects either trailing edge or leading edge pulse width  
dimming. When a Power-On-Reset (POR) occurs, this pin will be monitored for  
its logic level. If it is connected to GND then trailing edge dimming will be  
selected. If it is connected to VDD then leading edge dimming will be selected.  
The DIM Mode state is latched at startup (60 ms) and will remain in its selected  
DIM Mode until a POR signal occurs.  
DIM Mode  
5
6
GND  
VS  
GND Supply input for the FL5150/60 circuitry  
VS Supply input for the FL5150/60 circuitry. An internal shunt regulator will  
clamp this pin at 17 V.  
Low Power When an off state is selected (DIM Control pin at 0 V) an internal  
PMOS transistor will be enabled which shorts this pin to VS. If an external NPN  
transistor is used per Figure 2, the FL5150/60 power consumption will be  
reduced to typically 100 mW.  
7
Low Power  
OC Sense2 An external resistor connected to the collector/drain of Q2 sets the  
maximum voltage difference across Q1 and Q2 for both positive and negative  
half cycles.  
8
9
OC Sense2  
DRV Gate  
DRV Gate Gate drive signal for external IGBT or MOSFET transistors.  
OC Sense1 An external resistor connected to the collector/drain of Q1 sets the  
maximum voltage difference across Q1 and Q2 for both positive and negative  
half cycles.  
10  
OC Sense1  
© 2016 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FL5150/60 • 1.0  
5
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.  
The absolute maximum ratings are stress ratings only.  
Symbol  
IS  
Parameter  
Condition  
Continuous Current, VS to GND  
Continuous Voltage, VS to GND  
Min. Max. Unit  
Supply Current  
25  
mA  
V
VS  
Supply Voltage  
-0.8  
-0.8  
20.0  
DRVG  
LP  
DRV Gate and Low Power  
Continuous Voltage to GND  
20.0  
5.0  
V
OCSen1  
OCSen2  
Sense1, Sense2  
Continuous Voltage to GND  
Continuous Voltage to GND  
-0.8  
V
All other pins  
-0.8  
-65  
6.0  
+150  
2
TSTG  
ESD  
Storage Temperature Range  
°C  
kV  
Human Body Model, JESD22-A114  
Charged device Model, JESD22-C101  
Electrostatic Discharge  
Capability  
2
© 2016 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FL5150/60 • 1.0  
6
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended  
operating conditions are specified to ensure optimal performance to the data sheet specifications. Fairchild does not  
recommend exceeding them or designing to Absolute Maximum Ratings. Unless otherwise specified, refer to Figure 1 to  
Figure 5. TA=25°C, ISHUNT=5 mA, and phase=60 Hz.  
Symbol  
Parameter  
Conditions  
Min.  
Typ. Max. Unit  
FL5150/60 Electrical Parameters (TA=25°C, Ishunt=5 mA, unless otherwise specified)  
Power Supply Shunt Regulator  
Voltage  
V
V
VS  
VS to GND  
16  
17  
18  
VS to GND, Rising Enable  
FL5160/50  
9.2  
9.5  
9.8  
VS to GND, Falling  
Hysteresis Terminate DRV  
Gate Pulse  
Under-Voltage Lockout  
(Power-on-Reset)  
0.5  
2.2  
UVLO  
VS to GND, Falling  
Hysteresis Disable  
FL5150/60  
IQ  
Quiescent Current  
VS to GND = 12 V  
VPW Control = 0  
600  
5.0  
800  
5.5  
µA  
V
VDD  
VDD Supply Voltage  
4.5  
OCSen1VH  
OCSen2VH  
Sense1&2 Clamp High  
Sense1&2 Clamp Low  
IH = 350 µA  
IL = -350 µA  
4.0  
V
V
OCSen1VL  
OCSen2VL  
-0.7  
ZCMonVH  
ZCMonVL  
ZC Monitor Clamp High  
ZC Monitor Clamp Low  
IH = 350 µA  
IH = -350 µA  
4.0  
V
V
-0.7  
194  
FL5160  
FL5150  
200  
206  
OSC  
Internal Timer  
VDIM Control = 0  
kHz  
161.7  
9.4  
166.7 171.7  
10.0 10.6  
DIMCNISOURCE DIM Control Source Current  
DIMCNVFORCE DIM Control 100% Duty Cycle  
VDIM Control = 0  
VDIM Control  
VADC (8-Bit)  
A  
V
VDD 0.5  
VREFADC  
DRVGVH  
DRVGVL  
ADC Reference Voltage  
DRV Gate High  
2.56  
17.0  
V
RADJ Open (VS=17 V)  
16.0  
V
DRV Gate Low  
RADJ Connected to GND  
100 mV  
DRVGTLH  
DRVGTHL  
DRV Gate L to H  
DRV Gate H to L  
CLoad = 3 nF, 10 to 90%  
CLoad = 3 nF, 10 to 90%  
150  
50  
250  
100  
ns  
ns  
DIM Mode Logic Low  
(Select Trailing Edge)  
DMVL  
VL  
1.0  
V
DIM Mode Logic High  
(Select Leading Edge)  
DMVH  
VH  
VDD - 1.0  
7
V
DMISOURCE  
DIM Mode Source Current  
IDIM Mode  
FL5160  
10  
60  
13  
A  
DIM Mode Selection Time after  
Under-Voltage lock Out Enable  
Threshold  
DMTSEL  
LPMTEN  
ms  
FL5150  
72  
FL5160, VDIM Control = 0  
FL5150, VDIM Control = 0  
0 to 43°  
100  
120  
3.5  
LP Mode Enable Time  
ms  
Over-Current Threshold,  
Trailing Edge  
RSENSE1,2 =1 M  
43° to 65°  
Half Cycle  
Phase Angle  
65° to 86°  
2.9  
2.4  
2.0  
OCVTH  
V
I Q1DRAIN Q2DRAIN I  
86° to 180°  
© 2016 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FL5150/60 • 1.0  
7
Table 5.  
DIM Control Voltage Pulse Width Selection(1)  
DIM Mode=0  
Trailing Edge  
DIM Mode=0  
Trailing Edge  
DIM Mode=1  
DIM Mode=1  
Leading Edge  
Leading Edge  
DIM_Control  
Voltage (mV)  
VOUTRMS(V)(2)  
tON (Rising) s tON (Falling)s tOFF (Rising) s tOFF (Falling) s  
0
0
0
0
0
>8333  
>8333  
>8333  
>8333  
>8333  
>8333  
>8333  
>8333  
>8333  
>8333  
7800  
7750  
7700  
7650  
7600  
7550  
7500  
7450  
7400  
7350  
7300  
7250  
7200  
7150  
7100  
7050  
7025  
7000  
6975  
6950  
6925  
6900  
6875  
6850  
6825  
6800  
>8333  
>8333  
>8333  
>8333  
>8333  
7800  
7800  
7800  
7800  
7800  
7800  
7750  
7700  
7650  
7600  
7550  
7500  
7450  
7400  
7350  
7300  
7250  
7200  
7150  
7100  
7050  
7025  
7000  
6975  
6950  
6925  
6900  
6875  
6850  
6825  
6800  
0
0
0
0
0
0
0
0
0
0
0
40  
0
0
0
50  
0
0
500  
500  
500  
500  
500  
500  
550  
600  
650  
700  
750  
800  
850  
900  
950  
1000  
1050  
1100  
1150  
1200  
1250  
1275  
1300  
1325  
1350  
1375  
1400  
1425  
1450  
1475  
1500  
60  
0
0
70  
0
0
80  
0
0
90  
0
0
100  
110  
120  
130  
140  
150  
160  
170  
180  
190  
200  
210  
220  
230  
240  
250  
260  
270  
280  
290  
300  
310  
320  
330  
340  
350  
4.5  
5.3  
6.1  
6.9  
7.7  
8.5  
9.4  
10.3  
11.2  
12.1  
13  
14  
15  
16  
17  
18  
18.5  
19  
19.5  
20  
20.5  
21  
21.5  
22  
22.5  
23  
500  
550  
600  
650  
700  
750  
800  
850  
900  
950  
1000  
1050  
1100  
1150  
1200  
1250  
1275  
1300  
1325  
1350  
1375  
1400  
1425  
1450  
1475  
1500  
Continued on the following page…  
© 2016 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FL5150/60 • 1.0  
8
 
Table 5. DIM Control Voltage Pulse Width Selection(1) (Continued)  
DIM Mode=0  
Trailing Edge  
DIM Mode=0  
Trailing Edge  
DIM Mode=1  
DIM Mode=1  
Leading Edge  
Leading Edge  
DIM_Control  
Voltage (mV)  
VOUTRMS(V)(2)  
tON (Rising) s tON (Falling)s tOFF (Rising) s tOFF (Falling) s  
360  
370  
380  
390  
400  
410  
420  
430  
440  
450  
460  
470  
480  
490  
500  
510  
520  
530  
540  
550  
560  
570  
580  
590  
600  
610  
620  
630  
640  
650  
660  
670  
680  
690  
700  
710  
23.6  
24.2  
24.8  
25.4  
26  
1525  
1550  
1575  
1600  
1625  
1650  
1675  
1700  
1725  
1750  
1775  
1800  
1825  
1850  
1875  
1900  
1925  
1950  
1975  
2000  
2025  
2050  
2075  
2100  
2125  
2150  
2175  
2200  
2225  
2250  
2275  
2300  
2325  
2350  
2375  
2400  
1525  
1550  
1575  
1600  
1625  
1650  
1675  
1700  
1725  
1750  
1775  
1800  
1825  
1850  
1875  
1900  
1925  
1950  
1975  
2000  
2025  
2050  
2075  
2100  
2125  
2150  
2175  
2200  
2225  
2250  
2275  
2300  
2325  
2350  
2375  
2400  
6775  
6750  
6725  
6700  
6675  
6650  
6625  
6600  
6575  
6550  
6525  
6500  
6475  
6450  
6425  
6400  
6375  
6350  
6325  
6300  
6275  
6250  
6225  
6200  
6175  
6150  
6125  
6100  
6075  
6050  
6025  
6000  
5975  
5950  
5925  
5900  
6775  
6750  
6725  
6700  
6675  
6650  
6625  
6600  
6575  
6550  
6525  
6500  
6475  
6450  
6425  
6400  
6375  
6350  
6325  
6300  
6275  
6250  
6225  
6200  
6175  
6150  
6125  
6100  
6075  
6050  
6025  
6000  
5975  
5950  
5925  
5900  
26.6  
27.2  
27.8  
28.4  
29  
29.6  
30.2  
30.8  
31.4  
32  
32.6  
33.2  
33.8  
34.4  
35  
35.6  
36.2  
36.8  
37.4  
38  
38.6  
39.2  
39.8  
40.4  
41  
41.6  
42.2  
42.8  
43.4  
44  
44.6  
Continued on the following page…  
© 2016 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FL5150/60 • 1.0  
9
Table 5. DIM Control Voltage Pulse Width Selection(1) (Continued)  
DIM Mode=0  
Trailing Edge  
DIM Mode=0  
Trailing Edge  
DIM Mode=1  
DIM Mode=1  
Leading Edge  
Leading Edge  
DIM_Control  
Voltage (mV)  
VOUTRMS(V)(2)  
tON (Rising) s tON (Falling)s tOFF (Rising) s tOFF (Falling) s  
720  
730  
740  
750  
760  
770  
780  
790  
800  
810  
820  
830  
840  
850  
860  
870  
880  
890  
900  
910  
920  
930  
940  
950  
960  
970  
980  
990  
1000  
1010  
1020  
1030  
1040  
1050  
1060  
1070  
45.2  
45.8  
46.4  
47  
2425  
2450  
2475  
2500  
2525  
2550  
2575  
2600  
2625  
2650  
2675  
2700  
2725  
2750  
2775  
2800  
2825  
2850  
2875  
2900  
2925  
2950  
2975  
3000  
3025  
3050  
3075  
3100  
3125  
3150  
3175  
3200  
3225  
3250  
3275  
3300  
2425  
2450  
2475  
2500  
2525  
2550  
2575  
2600  
2625  
2650  
2675  
2700  
2725  
2750  
2775  
2800  
2825  
2850  
2875  
2900  
2925  
2950  
2975  
3000  
3025  
3050  
3075  
3100  
3125  
3150  
3175  
3200  
3225  
3250  
3275  
3300  
5875  
5850  
5825  
5800  
5775  
5750  
5725  
5700  
5675  
5650  
5625  
5600  
5575  
5550  
5525  
5500  
5475  
5450  
5425  
5400  
5375  
5350  
5325  
5300  
5275  
5250  
5225  
5200  
5175  
5150  
5125  
5100  
5075  
5050  
5025  
5000  
5875  
5850  
5825  
5800  
5775  
5750  
5725  
5700  
5675  
5650  
5625  
5600  
5575  
5550  
5525  
5500  
5475  
5450  
5425  
5400  
5375  
5350  
5325  
5300  
5275  
5250  
5225  
5200  
5175  
5150  
5125  
5100  
5075  
5050  
5025  
5000  
47.6  
48.2  
48.8  
49.4  
50  
50.6  
51.2  
51.8  
52.4  
53  
53.6  
54.2  
54.8  
55.4  
56  
56.6  
57.2  
57.8  
58.4  
59  
59.6  
60.2  
60.8  
61.4  
62  
62.6  
63.2  
63.8  
64.4  
65  
65.6  
66.2  
Continued on the following page…  
© 2016 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FL5150/60 • 1.0  
10  
Table 5. DIM Control Voltage Pulse Width Selection(1) (Continued)  
DIM Mode=0  
Trailing Edge  
DIM Mode=0  
Trailing Edge  
DIM Mode=1  
DIM Mode=1  
Leading Edge  
Leading Edge  
DIM_Control  
Voltage (mV)  
VOUTRMS(V)(2)  
tON (Rising) s tON (Falling)s tOFF (Rising) s tOFF (Falling) s  
1080  
1090  
1100  
1110  
1120  
1130  
1140  
1150  
1160  
1170  
1180  
1190  
1200  
1210  
1220  
1230  
1240  
1250  
1260  
1270  
1280  
1290  
1300  
1310  
1320  
1330  
1340  
1350  
1360  
1370  
1380  
1390  
1400  
1410  
1420  
1430  
66.8  
67.4  
68  
3325  
3350  
3375  
3400  
3425  
3450  
3475  
3500  
3525  
3550  
3575  
3600  
3625  
3650  
3675  
3700  
3725  
3750  
3775  
3800  
3825  
3850  
3875  
3900  
3925  
3950  
3975  
4000  
4025  
4050  
4075  
4100  
4125  
4150  
4175  
4200  
3325  
3350  
3375  
3400  
3425  
3450  
3475  
3500  
3525  
3550  
3575  
3600  
3625  
3650  
3675  
3700  
3725  
3750  
3775  
3800  
3825  
3850  
3875  
3900  
3925  
3950  
3975  
4000  
4025  
4050  
4075  
4100  
4125  
4150  
4175  
4200  
4975  
4950  
4925  
4900  
4875  
4850  
4825  
4800  
4775  
4750  
4725  
4700  
4675  
4650  
4625  
4600  
4575  
4550  
4525  
4500  
4475  
4450  
4425  
4400  
4375  
4350  
4325  
4300  
4275  
4250  
4225  
4200  
4175  
4150  
4125  
4100  
4975  
4950  
4925  
4900  
4875  
4850  
4825  
4800  
4775  
4750  
4725  
4700  
4675  
4650  
4625  
4600  
4575  
4550  
4525  
4500  
4475  
4450  
4425  
4400  
4375  
4350  
4325  
4300  
4275  
4250  
4225  
4200  
4175  
4150  
4125  
4100  
68.6  
69.2  
69.8  
70.4  
71  
71.6  
72.2  
72.8  
73.4  
74  
74.6  
75.2  
75.8  
76.4  
77  
77.5  
78  
78.5  
79  
79.5  
80  
80.5  
81  
81.5  
82  
82.5  
83  
83.5  
84  
84.5  
85  
85.5  
86  
Continued on the following page…  
© 2016 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FL5150/60 • 1.0  
11  
Table 5. DIM Control Voltage Pulse Width Selection(1) (Continued)  
DIM Mode=0  
Trailing Edge  
DIM Mode=0  
Trailing Edge  
DIM Mode=1  
DIM Mode=1  
Leading Edge  
Leading Edge  
DIM_Control  
Voltage (mV)  
VOUTRMS(V)(2)  
tON (Rising) s tON (Falling)s tOFF (Rising) s tOFF (Falling) s  
1440  
1450  
1460  
1470  
1480  
1490  
1500  
1510  
1520  
1530  
1540  
1550  
1560  
1570  
1580  
1590  
1600  
1610  
1620  
1630  
1640  
1650  
1660  
1670  
1680  
1690  
1700  
1710  
1720  
1730  
1740  
1750  
1760  
1770  
1780  
1790  
86.5  
87  
4225  
4250  
4275  
4300  
4325  
4350  
4375  
4400  
4425  
4450  
4475  
4500  
4525  
4550  
4575  
4600  
4625  
4650  
4675  
4700  
4725  
4750  
4775  
4800  
4825  
4850  
4875  
4900  
4925  
4950  
4975  
5000  
5025  
5050  
5075  
5100  
4225  
4250  
4275  
4300  
4325  
4350  
4375  
4400  
4425  
4450  
4475  
4500  
4525  
4550  
4575  
4600  
4625  
4650  
4675  
4700  
4725  
4750  
4775  
4800  
4825  
4850  
4875  
4900  
4925  
4950  
4975  
5000  
5025  
5050  
5075  
5100  
4075  
4050  
4025  
4000  
3975  
3950  
3925  
3900  
3875  
3850  
3825  
3800  
3775  
3750  
3725  
3700  
3675  
3650  
3625  
3600  
3575  
3550  
3525  
3500  
3475  
3450  
3425  
3400  
3375  
3350  
3325  
3300  
3275  
3250  
3225  
3200  
4075  
4050  
4025  
4000  
3975  
3950  
3925  
3900  
3875  
3850  
3825  
3800  
3775  
3750  
3725  
3700  
3675  
3650  
3625  
3600  
3575  
3550  
3525  
3500  
3475  
3450  
3425  
3400  
3375  
3350  
3325  
3300  
3275  
3250  
3225  
3200  
87.5  
88  
88.5  
89  
89.5  
90  
90.5  
91  
91.5  
92  
92.4  
92.8  
93.2  
93.6  
94  
94.4  
94.8  
95.2  
95.6  
96  
96.4  
96.8  
97.2  
97.6  
98  
98.4  
98.8  
99.2  
99.6  
100  
100.4  
100.8  
101.2  
101.6  
Continued on the following page…  
© 2016 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FL5150/60 • 1.0  
12  
Table 5. DIM Control Voltage Pulse Width Selection(1) (Continued)  
DIM Mode=0  
Trailing Edge  
DIM Mode=0  
Trailing Edge  
DIM Mode=1  
DIM Mode=1  
Leading Edge  
Leading Edge  
DIM_Control  
Voltage (mV)  
VOUTRMS(V)(2)  
tON (Rising) s tON (Falling)s tOFF (Rising) s tOFF (Falling) s  
1800  
1810  
1820  
1830  
1840  
1850  
1860  
1870  
1880  
1890  
1900  
1910  
1920  
1930  
1940  
1950  
1960  
1970  
1980  
1990  
2000  
2010  
2020  
2030  
2040  
2050  
2060  
2070  
2080  
2090  
2100  
2110  
2120  
2130  
2140  
2150  
102  
5125  
5150  
5175  
5200  
5225  
5250  
5275  
5300  
5325  
5350  
5375  
5400  
5425  
5450  
5475  
5500  
5525  
5550  
5575  
5600  
5625  
5650  
5675  
5700  
5725  
5750  
5775  
5800  
5825  
5850  
5875  
5900  
5925  
5950  
5975  
6000  
5125  
5150  
5175  
5200  
5225  
5250  
5275  
5300  
5325  
5350  
5375  
5400  
5425  
5450  
5475  
5500  
5525  
5550  
5575  
5600  
5625  
5650  
5675  
5700  
5725  
5750  
5775  
5800  
5825  
5850  
5875  
5900  
5925  
5950  
5975  
6000  
3175  
3150  
3125  
3100  
3075  
3050  
3025  
3000  
2975  
2950  
2925  
2900  
2875  
2850  
2825  
2800  
2775  
2750  
2725  
2700  
2675  
2650  
2625  
2600  
2575  
2550  
2525  
2500  
2475  
2450  
2425  
2400  
2375  
2350  
2325  
2300  
3175  
3150  
3125  
3100  
3075  
3050  
3025  
3000  
2975  
2950  
2925  
2900  
2875  
2850  
2825  
2800  
2775  
2750  
2725  
2700  
2675  
2650  
2625  
2600  
2575  
2550  
2525  
2500  
2475  
2450  
2425  
2400  
2375  
2350  
2325  
2300  
102.4  
102.8  
103.2  
103.6  
104  
104.4  
104.8  
105.2  
105.6  
106  
106.4  
106.8  
107.2  
107.6  
108  
108.3  
108.6  
108.9  
109.2  
109.5  
109.8  
110.1  
110.4  
110.7  
111  
111.3  
111.6  
111.9  
112.2  
112.5  
112.8  
113.1  
113.4  
113.7  
113  
Continued on the following page…  
© 2016 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FL5150/60 • 1.0  
13  
Table 5. DIM Control Voltage Pulse Width Selection(1) (Continued)  
DIM Mode=0  
Trailing Edge  
DIM Mode=0  
Trailing Edge  
DIM Mode=1  
DIM Mode=1  
Leading Edge  
Leading Edge  
DIM_Control  
Voltage (mV)  
VOUTRMS(V)(2)  
tON (Rising) s tON (Falling)s tOFF (Rising) s tOFF (Falling) s  
2160  
2170  
113.2  
113.4  
113.6  
113.8  
114  
6025  
6050  
6075  
6100  
6125  
6150  
6175  
6200  
6225  
6250  
6275  
6300  
6325  
6350  
6375  
6400  
6425  
6450  
6475  
6500  
6525  
8.333  
6025  
6050  
6075  
6100  
6125  
6150  
6175  
6200  
6225  
6250  
6275  
6300  
6325  
6350  
6375  
6400  
6425  
6450  
6475  
6500  
6525  
8.333  
2275  
2250  
2225  
2200  
2175  
2150  
2125  
2100  
2075  
2050  
2025  
2000  
1975  
1950  
1925  
1900  
1875  
1850  
1825  
1800  
1775  
0
2275  
2250  
2225  
2200  
2175  
2150  
2125  
2100  
2075  
2050  
2025  
2000  
1975  
1950  
1925  
1900  
1875  
1850  
1825  
1800  
1775  
0
2180  
2190  
2200  
2210  
114.2  
114.4  
114.6  
114.8  
115  
2220  
2230  
2240  
2250  
2260  
115.2  
115.4  
115.6  
115.8  
116  
2270  
2280  
2290  
2300  
2310  
116.2  
116.4  
116.6  
116.8  
117  
2320  
2330  
2340  
2350  
2360  
>4000(3)  
117.2  
119  
Notes:  
1. The pulse width times shown in Table 5 are reference to the ZC threshold. For trailing edge DIM mode, the pulse  
width time is the gate tON time. For leading edge DIM mode, the pulse width time is the gate tOFF time. The shown  
pulse width time is typical for the FL5160. For the FL5150, the values will be scaled by +20%.  
2. VOUTRMS typical value with a 60 W incandescent Load and 120 VRMS input.  
3. If the DIM Control voltage is >4 V a 100% duty cycle is selected and the DRV Gate will be on 100%. However, a  
100% duty cycle can only occur for a 3-wire application. If a 2-wire application is used and the DIM Control pin  
voltage is >4 V a POR will occur  
© 2016 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FL5150/60 • 1.0  
14  
 
 
 
Description  
(Refer to Figure 1 to Figure 5)  
occur. A 100% duty cycle can only be selected for a 3-  
wire application (Neutral wire present).  
Present AC controls or dimmer switches typically use  
TRIAC circuits to generate the AC symmetric chopped  
or phase cut current function. The TRIAC is basically  
two back to back SCR transistors that allow for  
symmetric AC operation in both the positive and  
negative half cycles. The TRIAC dimmer circuit controls  
the AC voltage pulse width to the load by turning off the  
TRIAC when its holding current is below the minimum  
threshold level. This occurs near the AC zero-crossing.  
The TRIAC is turned on at a selected phase angle  
during the half cycle. The TRIAC minimum holding  
current can become an issue for newer low wattage  
lighting products. In addition, newer lighting products  
typically have capacitive load impedance so the current  
and voltage phases are shifted. This can cause  
problems for the detection of the AC zero-cross signal  
and lead to unwanted flickering.  
When the voltage on the DIM Control pin is changed,  
the FL5160 will increase or decrease the dim steps by  
one step every 4.17 ms (or two steps per half cycle).  
This provides for a smooth dim pulse width transition.  
From minimum to maximum pulse width, the FL5160 will  
control the dim ramp rate to about 1 second.  
The FL5160 has an internal difference amplifier which  
measures the voltage difference across Q1 and Q2.  
With the external OC Sense 1&2 resistors, this diff amp  
will measure the voltage difference across the collectors  
or drains of Q1 and Q2 when the DRV Gate signal is  
high. If the maximum voltage threshold is exceeded for  
longer than 50s the gate pulse will be disabled until the  
next AC zero-crossing. This feature will limit the  
maximum load current and also limit the power  
dissipation for Q1 and Q2. If 16 consecutive over  
current pulses occur (see Figure 12) the FL5160 will  
disable the DRV gate and require a POR to reset the  
disable state. The OC (over-current) trip threshold is  
dynamic: it is a function of the VAC phase angle. The OC  
threshold is higher at startup to allow for higher transient  
currents during startup typical of incandescent bulbs.  
The FL5150/60 controller addresses these issues by  
controlling back to back MOSFET or IGBT transistors  
which can be turned on or off at any time during the AC  
half cycle. In addition, the FL5160 can use the earth  
ground leakage current to better determine the zero-  
cross threshold for non-resistive loads. Up to 500 µA of  
ground leakage current is now allowed per the UL1472  
2nd edition specification for 2-wire applications.  
The desired steady state (phase angle> 90°) over-  
current threshold can be programmed with the following  
equation:  
The FL5160 product is for North America 120 VAC  
60 Hz applications and the FL5150 product is for  
230 VAC 50 Hz applications. The internal timing  
,
| Q1VD Q2VD | = 2 x RSENSE  
IOC x RDSON + VF = 2 x RSENSE  
,
(1)  
oscillator is selected for 50 Hz for the FL5150 and 60 Hz  
for the FL5160. For the below description, the timing  
information is in reference to the FL5160 60 Hz option.  
For the FL5150 option, the tON pulse width is scaled by  
+20%.  
Where:  
RDSON  
=
MOSFET drain to source resistance  
VF = MOSFET body diode  
So,  
The FL5160 has a selectable DIM Mode pin that allows  
for either Trailing Edge or Leading Edge dimming  
modulation. At startup when an under-voltage lockout  
enable signal is detected (POR) the DIM Mode pin is  
monitored for its logic state and after 60ms this state will  
be latched and program the FL5160 for either trailing  
edge dimming if this pin is low or leading edge dimming  
if this pin is high. The DIM Mode pin enables a 10 µA  
pull up current source after Power-on-Reset (POR).  
Once the dimming mode is latched, this pin will be  
disabled until a POR enable signal occurs. For trailing  
edge dimming, the gate pulse is enabled at the ZC  
signal and disabled after the tON pulse width per Table 5.  
For leading edge dimming, the gate pulse is disabled at  
the ZC signal and enabled after the tOFF pulse width per  
Table 5.  
IOC = (2 x RSENSE VF) / RDSON  
note: RSENSE in M  
(2)  
For the FDPF33N25 transistor,  
RDSON= 94 mand VF = 0.7 V @25°C  
RDSON= 170 mand VF = 0.6 V @100°C  
(3)  
(4)  
So,  
IOC = 13.8 A @25°C with RSENSE = 1 M  
IOC = 8.2 A @100°C with RSENSE = 1 M  
The FL5160 has a low power electronic off state feature.  
If an external NPN transistor is connected per Figure 2,  
the power consumption for the OFF state can be  
significantly reduced. When an OFF state is selected  
(DIM Control pin at 0 V) an internal 100 ms timer starts.  
After the timer expires, the FAN5160 will enable an  
internal PMOS transistor which shorts the Low power  
and VS pins. This will turn off Q3 which de-biases R1.  
The FL5160 is now biased by R2. This reduces the  
electronic off state power consumption from 1 W to  
100 mW for a 120 VAC input.  
The gate pulse width is determined by the value of the  
voltage at the DIM Control pin. The DIM Control pin  
sources a 10 µA current. The voltage at this pin is  
connected to an 8 Bit ADC with an internal full scale  
reference of 2.56 V so the ADC step size is ~10 mV.  
Table 5 shows the gate pulse width versus the DIM  
Control pin voltage for a 60 Hz FL5160 application. If  
the DIM Control pin is connected to VDD a force 100%  
duty cycle will be selected. However, if the VS voltage  
drops to the POR voltage threshold a logic reset will  
© 2016 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FL5150/60 • 1.0  
15  
Figure 4 shows a typical 3 wire application. For a three  
wire application, the neutral wire is available in addition  
to the Line Hot and Load Hot connections. External  
components D1, R1 and C2 provide for the DC bias of  
the FL5160. During the AC half cycle when Line Neutral  
is positive, the C2 capacitor will charge positive and be  
clamped to 17 V by the FL5160’s shunt regulator  
connected to VS. The gate driver circuit is supplied from  
the VS pin. During the AC half cycle when Line Neutral  
is negative, the FL5160 is biased by the capacitor C2.  
Figure 8 shows the VS, DRV Gate and load current  
waveforms for a LED load. The pulse width can be  
controlled from 0 to 100% duty cycle with a 3-wire  
application. The RZC Monitor resistor detects the AC  
zero crossing. The typical value for this resistor is 1 M  
for 120 VAC applications.  
current, an output voltage typically >95% of the AC Line  
voltage is possible. Figure 9 shows the VS, DRV Gate  
and load current waveforms for a LED load. For the R1  
and C2 values shown, a maximum gate pulse of 6.5 ms  
is possible. However, some LED loads will not allow a  
6.5 ms maximum gate pulse. The FL5160 has a DIM  
Control override feature for LED loads that do not  
support a maximum gate pulse of 6.5 ms (Auto Max.).  
The FL5160 detects when the maximum gate pulse  
width occurs and overrides the DIM Control voltage to  
provide the maximum Load voltage without flicker. This  
feature automatically adjusts per the Load impedance.  
The power dissipation for R1 (Figure 1) is highest when  
an off state is selected. To reduce the power dissipation  
for R1, an emitter follower current mirror circuit can be  
used as shown per Figure 3. Zener Z1 (7.5 V) will bias  
R1 so ~3.5 mA flows through R1, independent of the  
VAC voltage. The power dissipation for R1 will be  
~25 mW. The power dissipation for Q3 will be  
~425 mW.  
Figure 1 shows a typical 120 VAC 2-wire application.  
This 2-wire application does not have the neutral wire  
available, which is typical for most switch box  
applications in North America: only the Line Hot, Load  
Hot and earth ground wires are available. The FL5160 is  
powered from the AC line by D1, D2, R1 and C2.  
The above description refers predominantly to the  
FL5160 functionality. The FL5150 controller is the same  
as the FL5160 except the internal timer is trimmed for a  
50 Hz AC frequency.  
Capacitor C2 charges when the Q1 & Q2 transistors are  
off. When Q1 and Q2 are on, C2 provides the bias for  
the FAN5160. Since C2 can only charge when both Q1  
and Q2 are off, a 100% duty cycle is not possible. The  
maximum duty cycle is determined by the load;  
however, because the FL5160 has a low quiescent  
Whereas the above applications refer to VAC input  
voltages of 120 and 230, other AC voltages can be used  
as long as the discrete components are correctly scaled.  
© 2016 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FL5150/60 • 1.0  
16  
Typical Performance Characteristics  
Unless otherwise specified, TA=25°C and according to Figure 1 to Figure 5.  
Ch1: DRV Gate (Pin 9) 5 V/Div  
Ch2: Load Current 100 mA/Div  
Ch3: VS (Pin 6) 5 V/Div  
VS discharges during the positive half cycle.  
Figure 8. Typical 120 VAC 60 Hz 3-Wire Waveforms with an 8 W LED Load (TE Mode)  
Ch1: DRV Gate (Pin 9) 5 V/Div  
Ch2: VS (Pin 6) 5 V/Div  
Ch4: Load Current 100 mA/Div  
VS discharges when Q1 & Q2 are on.  
Figure 9. Typical 120 VAC 60 Hz 2-Wire Waveforms with an 8 W LED Load (TE Mode)  
© 2016 Fairchild Semiconductor Corporation  
FL5150/60 • 1.0  
www.fairchildsemi.com  
17  
Typical Performance Characteristics (Continued)  
Unless otherwise specified, TA=25°C and according to Figure 1 to Figure 5.  
Ch1: DRV Gate (Pin 9) 5 V/Div  
Ch4: Load Current 200 mA/Div  
Ch2: VS (Pin6) 5 V/Div  
Figure 10. Typical 120 VAC 60 Hz 2-Wire Waveforms with an 11 W LED Load (LE Mode)  
Ch1: DRV Gate (Pin 9) 5 V/Div  
Ch4: Load Current 500 mA/Div  
Ch2: VS (Pin 6) 5 V/Div  
Figure 11. Typical 230 VAC 50 Hz 2-Wire Waveforms with a 60 W Incandescent Load (LE Mode)  
© 2016 Fairchild Semiconductor Corporation  
FL5150/60 • 1.0  
www.fairchildsemi.com  
18  
Typical Performance Characteristics (Continued)  
Unless otherwise specified, TA=25°C and according to Figure 1 to Figure 5.  
Ch1: VLOAD HOT 50 V/Div  
Ch4: ILOAD 10 A/Div  
Shown is a steady state 600 W incandescent  
Load  
An additional 300 W incandescent Load is added  
to the 600 W Load. The peak current is limited to  
~30 A for 50 µs and after 16-consecutive over-  
current pulses the DRV Gate signal is disabled  
C1[VLOAD HOT]C4[ILOAD  
]
Figure 12. Over-Current Protection  
© 2016 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FL5150/60 • 1.0  
19  
Typical Temperature Characteristics  
3.00%  
2.00%  
1.00%  
0.00%  
-1.00%  
-2.00%  
-3.00%  
0.40%  
0.20%  
0.00%  
-0.20%  
-0.40%  
-40 -20  
0
20 40 60 80 100  
-40 -20 0 20 40 60 80 100  
Temperature °C  
Temperature °C  
Figure 13. Shunt Regulator Voltage vs. Temperature  
Figure 14. Quiescent Current vs. Temperature  
0.40%  
0.20%  
0.00%  
-0.20%  
0.50%  
0.25%  
0.00%  
-0.25%  
-0.50%  
-0.40%  
-40 -20  
0
20 40 60 80 100  
-40 -20 0 20 40 60 80 100  
Temperature °C  
Temperature °C  
Figure 15. Under-Voltage Lockout Rising vs.  
Temperature  
Figure 16. VDD vs. Temperature  
1.00%  
0.50%  
0.00%  
-0.50%  
-1.00%  
0.20%  
0.00%  
-0.20%  
-0.40%  
-0.60%  
-40 -20 0 20 40 60 80 100  
-40 -20  
0
20 40 60 80 100  
Temperature °C  
Temperature °C  
Figure 17. Oscillator Frequency vs. Temperature  
Figure 18. DIM Control Source Current vs.  
Temperature  
© 2016 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FL5150/60 • 1.0  
20  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
Semiconductor Components Industries, LLC  
www.onsemi.com  

相关型号:

FL5150MX

IGBT and MOSFET AC Phase Cut Dimmer Controller
ONSEMI

FL5160MX

IGBT 和 MOSFET 交流切相调光控制器
ONSEMI

FL5200001

Parallel - Fundamental Quartz Crystal, 52MHz Nom, SMD, 4 PIN
DIODES

FL520WFMT1

Parallel - Fundamental Quartz Crystal, 52MHz Nom,
DIODES

FL521

THYRISTOR MODULE|BRIDGE|HALF-CNTLD|CA|400V V(RRM)|25A I(T)
ETC

FL522

THYRISTOR MODULE|BRIDGE|HALF-CNTLD|CA|600V V(RRM)|25A I(T)
ETC

FL523

THYRISTOR MODULE|BRIDGE|HALF-CNTLD|CA|800V V(RRM)|25A I(T)
ETC

FL524

THYRISTOR MODULE|BRIDGE|HALF-CNTLD|CA|1.2KV V(RRM)|25A I(T)
ETC

FL5252050R

Small Signal Field-Effect Transistor, 2.1A I(D), 20V, 1-Element, P-Channel, Silicon, Metal-oxide Semiconductor FET, MO-178AA, HALOGEN FREE AND ROHS COMPLIANT, MINI5-G3-B, MO-178, SC-74A, 5 PIN
PANASONIC

FL5310005

Parallel - Fundamental Quartz Crystal, 53.1MHz Nom, SMD, 4 PIN
DIODES

FL541

THYRISTOR MODULE|BRIDGE|FULLY-CNTLD|400V V(RRM)|25A I(T)
ETC

FL542

THYRISTOR MODULE|BRIDGE|FULLY-CNTLD|600V V(RRM)|25A I(T)
ETC