FNB33060T [ONSEMI]

智能功率模块,600 V,30A;
FNB33060T
型号: FNB33060T
厂家: ONSEMI    ONSEMI
描述:

智能功率模块,600 V,30A

文件: 总14页 (文件大小:779K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Motion SPM) 3 Series  
FNB33060T  
FNB33060T is an advanced Motion SPM 3 module providing  
a fullyfeatured, highperformance inverter output stage for AC  
Induction, BLDC, and PMSM motors. These modules integrate  
optimized gate drive of the builtin IGBTs to minimize EMI  
and losses, while also providing multiple onmodule protection  
features including undervoltage lockouts, overcurrent shutdown,  
thermal monitoring of drive IC, and fault reporting. The builtin,  
highspeed HVIC requires only a single supply voltage and translates  
the incoming logiclevel gate inputs to the highvoltage, highcurrent  
drive signals required to properly drive the module’s internal IGBTs.  
Separate negative IGBT terminals are available for each phase  
to support the widest variety of control algorithms.  
3D Package Drawing  
(Click to Activate 3D Content)  
SPMCA027 / PDD STD, SPM27CA, DBC TYPE  
CASE MODFJ  
Features  
MARKING DIAGRAM  
600 V 30 A 3Phase IGBT Inverter with Integral Gate Drivers  
and Protection  
LowLoss, ShortCircuit Rated IGBTs  
Very Low Thermal Resistance Using Al O DBC Substrate  
&Y  
FNB33060T  
&Z&K &3  
EK&Z&K&3  
2
3
BuiltIn Bootstrap Diodes and Dedicated Vs Pins Simplify  
PCB Layout  
Separate OpenEmitter Pins from LowSide IGBTs for  
ThreePhase Current Sensing  
SingleGrounded Power Supply  
LVIC TemperatureSensing BuiltIn for Temperature  
Monitoring  
$Y  
&Z  
&K  
&3  
= onsemi Logo  
= Assembly Plant Code  
= 2Digits Lot Run Traceability Code  
= 3Digit Date Code  
FNB33060T = Specific Device Code  
Isolation Rating: 2500 V / min  
rms  
This Device is PbFree and Halide Free  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 12 of  
this data sheet.  
Applications  
Motion Control Home Appliance / Industrial Motor  
Integrated Power Functions  
600 V 30 A IGBT Inverter for Threephase DC / AC Power  
Conversion (Please refer to Figure 2)  
Related Resources  
®
AN9088 Motion SPM 3 V6 Series  
Users Guide  
AN9086 SPM 3 Package Mounting  
Integrated Drive, Protection and System Control Functions  
For Inverter Highside IGBTs: gate drive circuit, highvoltage  
isolated highspeed level shifting control circuit UnderVoltage  
LockOut Protection (UVLO)  
Guide  
(Note: Available bootstrap circuit example is given in Figures 5  
and 15)  
For Inverter Lowside IGBTs: gate drive circuit, ShortCircuit  
Protection (SCP) control supply circuit UnderVoltage LockOut  
protection (UVLO)  
Fault Signaling: corresponding to UVLO (lowside supply) and SC  
faults  
Input Interface: ActiveHIGH interface, works with 3.3 / 5 V logic,  
Schmitttrigger input  
© Semiconductor Components Industries, LLC, 2016  
1
Publication Order Number:  
October, 2022 Rev. 2  
FNB33060T/D  
FNB33060T  
PIN CONFIGURATION  
Figure 1. Pin Configuration Top View  
Table 1. PIN DESCRIPTIONS  
Pin No.  
Pin Name  
Pin Description  
1
2
V
LowSide Common Bias Voltage for IC and IGBTs Driving  
Common Supply Ground  
DD(L)  
COM  
3
IN  
IN  
Signal Input for LowSide UPhase  
(UL)  
(VL)  
(WL)  
4
Signal Input for LowSide VPhase  
5
IN  
Signal Input for LowSide WPhase  
6
V
FO  
Fault Output  
7
V
C
Output for LVIC Temperature Sensing Voltage Output  
Shut Down Input for ShortCircuit Current Detection Input  
Signal Input for HighSide UPhase  
TS  
SC  
8
9
IN  
(UH)  
DD(H)  
10  
11  
12  
13  
14  
15  
16  
17  
V
HighSide Common Bias Voltage for IC and IGBTs Driving  
HighSide Bias Voltage for UPhase IGBT Driving  
HighSide Bias Voltage Ground for UPhase IGBT Driving  
Signal Input for HighSide VPhase  
V
B(U)  
V
S(U)  
IN  
(VH)  
V
DD(H)  
HighSide Common Bias Voltage for IC and IGBTs Driving  
HighSide Bias Voltage for VPhase IGBT Driving  
HighSide Bias Voltage Ground for V Phase IGBT Driving  
Signal Input for HighSide WPhase  
V
B(V)  
S(V)  
(WH)  
V
IN  
www.onsemi.com  
2
 
FNB33060T  
Table 1. PIN DESCRIPTIONS (continued)  
Pin No.  
18  
Pin Name  
Pin Description  
V
DD(H)  
HighSide Common Bias Voltage for IC and IGBTs Driving  
HighSide Bias Voltage for WPhase IGBT Driving  
HighSide Bias Voltage Ground for WPhase IGBT Driving  
Negative DCLink Input for UPhase  
Negative DCLink Input for VPhase  
Negative DCLink Input for WPhase  
Output for UPhase  
19  
V
B(W)  
20  
V
S(W)  
21  
N
N
U
22  
V
23  
N
W
24  
U
25  
V
W
P
Output for VPhase  
26  
Output for WPhase  
27  
Positive DCLink Input  
INTERNAL EQUIVALENT CIRCUIT AND INPUT/OUTPUT PINS  
P (27)  
(19) V  
(18) V  
B(W)  
V
B
DD(H)  
V
DD  
OUT  
V
COM  
IN  
(17) IN  
(WH)  
W (26)  
S
(20) V  
S(W)  
(15) V  
(14) V  
B(V)  
V
B
DD(H)  
V
DD  
OUT  
V
COM  
IN  
(13) IN  
(VH)  
V (25)  
S
(16) V  
S(V)  
(11) V  
B(U)  
V
V
B
(10) V  
DD(H)  
DD  
OUT  
V
COM  
IN  
(9) IN  
(12) V  
(UH)  
U (24)  
S
S(U)  
(8) C  
SC  
OUT  
OUT  
OUT  
C
V
SC  
(7) V  
(6) V  
TS  
TS  
N
(23)  
(22)  
(21)  
W
FO  
V
FO  
(5) IN  
(WL)  
IN  
(4) IN  
(3) IN  
(VL)  
IN  
N
V
(UL)  
IN  
(2) COM  
(1) V  
COM  
DD(L)  
V
DD  
N
U
Notes:  
1. Inverter lowside is composed of three IGBTs, freewheeling diodes for each IGBT, and one control IC. It has gate drive and protection  
functions.  
2. Inverter power side is composed of four inverter DClink input terminals and three inverter output terminals.  
3. Inverter highside is composed of three IGBTs, freewheeling diodes, and three drive ICs for each IGBT.  
Figure 2. Internal Block Diagram  
www.onsemi.com  
3
FNB33060T  
Table 2. ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise specified)  
J
Symbol  
Parameter  
Conditions  
Rating  
Unit  
INVERTER PART  
V
Supply Voltage  
Applied between P N , N , N  
450  
500  
600  
30  
V
V
V
A
A
PN  
PN(Surge)  
U
V
W
V
Supply Voltage (Surge)  
Applied between P N , N , N  
U V  
W
V
CES  
Collector Emitter Voltage  
Each IGBT Collector Current  
Each IGBT Collector Current (Peak)  
I
C
T
T
= 25°C, T 150°C (Note 4)  
J
C
I
= 25°C, T 150°C, Under 1 ms Pulse Width  
60  
CP  
C
J
(Note 4)  
P
C
Collector Dissipation  
T
C
= 25°C per One Chip (Note 4)  
89  
W
T
Operating Junction Temperature  
40 ~ 150  
_C  
J
CONTROL PART  
V
Control Supply Voltage  
Applied between V  
, V COM  
DD(H) DD(L)  
20  
20  
V
V
DD  
V
HighSide Control Bias Voltage  
Applied between V  
V , V  
S(U) B(V)  
V  
,
BS  
B(U)  
S(V)  
V
V  
S(W)  
B(W)  
V
IN  
Input Signal Voltage  
Applied between IN  
, IN  
, IN  
, IN  
,
0.3 ~ V + 0.3  
V
(UH)  
(VH)  
(WH)  
(UL)  
DD  
IN  
, IN  
COM  
(VL)  
(WL)  
V
Fault Output Supply Voltage  
Fault Output Current  
Applied between V COM  
0.3 ~ V + 0.3  
V
mA  
V
FO  
FO  
DD  
I
Sink Current at V pin  
2
FO  
FO  
V
SC  
CurrentSensing Input Voltage  
Applied between C COM  
0.3 ~ V + 0.3  
SC  
DD  
BOOTSTRAP DIODE PART  
V
Maximum Repetitive Reverse Voltage  
Forward Current  
600  
0.5  
2.0  
V
A
A
RRM  
I
F
T
T
= 25°C, T 150°C (Note 4)  
J
C
I
Forward Current (Peak)  
= 25°C, T 150°C, Under 1 ms Pulse Width  
J
(Note 4)  
FP  
C
T
Operating Junction Temperature  
40 ~ 150  
_C  
J
TOTAL SYSTEM  
V
Self Protection Supply Voltage Limit  
(ShortCircuit Protection Capability)  
V
J
= V = 13.5 ~ 16.5 V,  
400  
V
PN(PROT)  
DD  
BS  
T = 150°C, NonRepetitive, < 2 ms  
T
Module Case Operation Temperature  
Storage Temperature  
See Figure 1  
40 ~ 125  
40 ~ 125  
2500  
_C  
_C  
C
T
STG  
V
ISO  
Isolation Voltage  
60 Hz, Sinusoidal, AC 1 Minute,  
Connection Pins to Heat Sink Plate  
V
rms  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
4. These values had been made an acquisition by the calculation considered to design factor.  
Table 3. THERMAL RESISTANCE  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
1.4  
Unit  
_C/W  
_C/W  
R
Inverter IGBT part, (Per 1 / 6 Module)  
Inverter FWDi part, (Per 1 / 6 Module)  
th(jc)Q  
Junction to Case Thermal  
Resistance (Note 5)  
R
2.4  
th(jc)F  
5. For the measurement point of case temperature (T ), please refer to Figure 1.  
C
www.onsemi.com  
4
 
FNB33060T  
Table 4. ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise specified.)  
J
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
INVERTER PART  
V
Collector Emitter  
Saturation Voltage  
V
V
= V = 15 V,  
I
C
= 30 A, T = 25°C  
1.6  
2.2  
V
CE(SAT)  
DD  
IN  
BS  
J
= 5 V  
V
FWDi Forward Voltage  
Switching Times  
V
V
= 0 V  
I = 30 A, T = 25°C  
0.50  
2.0  
0.90  
0.20  
0.85  
0.15  
0.08  
0.80  
0.25  
0.90  
0.15  
0.10  
2.6  
1.40  
0.60  
1.35  
0.45  
V
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
ms  
mA  
F
IN  
F
J
HS  
t
= 300 V, V = 15 V, I = 30 A,  
PN DD C  
T = 25°C  
ON  
J
t
C(ON)  
V
IN  
= 0 V 5 V, Inductive load  
See Figure 4  
(Note 6)  
t
OFF  
t
C(OFF)  
t
rr  
LS  
t
V
PN  
= 300 V, V = 15 V, I = 30 A,  
0.40  
1.30  
0.60  
1.40  
0.45  
ON  
DD  
C
T = 25°C  
J
t
C(ON)  
V
IN  
= 0 V 5 V, Inductive load  
See Figure 4  
(Note 6)  
t
OFF  
t
C(OFF)  
t
rr  
I
Collector Emitter Leakage VCE = VCES  
Current  
5
CES  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
6. t and t  
include the propagation delay time of the internal drive IC. t  
and t  
are the switching times of IGBT itself under the  
ON  
OFF  
C(ON)  
C(OFF)  
given gate driving condition internally. For the detailed information, please see Figure 3.  
100% I  
100% I  
C
C
t
rr  
V
CE  
V
CE  
I
C
I
C
V
IN  
V
IN  
t
ON  
t
OFF  
t
t
C(OFF)  
C(ON)  
10% I  
C
10% V  
CE  
10% I  
C
V
IN(ON)  
V
IN(OFF)  
90% I  
10% V  
CE  
C
(a) turnon  
(b) turnoff  
Figure 3. Switching Time Definition  
www.onsemi.com  
5
 
FNB33060T  
OneLeg Diagram of SPM 3  
I
C
P
C
BS  
VB  
COM(H)OUT(H)  
V
(H)  
DD  
LS Switching  
VS  
IN(H)  
V
PN  
HS Switching  
LS Switching  
U,V,W  
V
Inductor  
300 V  
IN(L)  
V
(L)  
DD  
VFO  
TSU  
CSC  
V
IN  
HS Switching  
OUT(L)  
5 V  
0 V  
V
DD  
4.7 kW  
V
COM(L)  
V
U, V, W  
+15V  
V
+5V  
Figure 4. Example Circuit for Switching Test  
Inductive Load, V = 300 V, V = 15 V, T = 1505C  
Inductive Load, V = 300 V, V = 15 V, T = 255C  
PN  
DD  
J
PN  
DD  
J
2000  
1800  
1600  
1400  
1200  
1000  
800  
2000  
1800  
1600  
1400  
1200  
1000  
800  
IGBT Turnon, Eon  
IGBT Turnoff, Eoff  
FRD Turnoff, Erec  
IGBT Turnon, Eon  
IGBT Turnoff, Eoff  
FRD Turnoff, Erec  
600  
600  
400  
400  
200  
200  
0
0
25  
0
5
10  
15  
20  
30  
0
5
10  
15  
20  
25  
30  
I
C
, Collector Current (A)  
I
C
, Collector Current (A)  
Figure 5. Switching Loss Characteristics  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
0.5  
0.0  
0
20  
40  
60  
80  
(5C)  
100  
120  
160  
140  
T
LVIC  
Figure 6. Temperature Profile of VTS (Typical)  
www.onsemi.com  
6
FNB33060T  
Table 5. ELECTRICAL CHARACTERISTICS  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
BOOTSTRAP DIODE PART  
V
Forward Voltage  
I = 0.1 A, T = 25°C  
2.5  
80  
V
F
F
J
t
rr  
Reverse Recovery  
Time  
I = 0.1 A, dI / dt = 50 A/ms, T = 25°C  
ns  
F
F
J
CONTROL PART  
I
Quiescent V Supply  
V
V
V
= 15 V, IN  
= 15 V, IN  
= 0 V  
V
DD(H)  
V
DD(L)  
V
DD(H)  
COM  
COM  
COM  
0.50  
6.00  
0.50  
mA  
mA  
mA  
QDDH  
DD  
DD(H)  
DD(L)  
DD(H)  
(UH,VH,WH)  
Current  
I
= 0 V  
(UL,VL,WL)  
QDDL  
I
Operating V Supply  
= 15 V, f  
= 20 kHz, duty = 50%,  
PDDH  
DD  
PWM  
Current  
applied to one PWM signal  
input for HighSide  
I
V
= 15 V, f  
= 20 kHz, duty = 50%,  
V
COM  
10.0  
0.30  
4.50  
mA  
mA  
mA  
PDDL  
DD(L)  
PWM  
DD(L)  
applied to one PWM signal  
input for LowSide  
I
Quiescent V Supply  
V
= 15 V, IN  
= 0 V  
V
V
V
) V  
S(V)  
V  
,
QBS  
BS  
BS  
DD  
(UH, VH, WH)  
B(U  
B(V)  
B(W)  
S(U)  
Current  
V  
,
S(W)  
I
Quiescent V Supply  
V
= V = 15 V, f  
= 20 kHZ,  
V
V
V
) V  
S(V)  
V  
,
PBS  
BS  
BS  
PWM  
B(U  
B(V)  
B(W)  
S(U)  
Current  
duty = 50%, applied to one PWM  
signal input for HighSide  
V  
,
S(W)  
V
Fault Output Voltage  
V
V
V
= 15 V, V = 0 V, V Circuit: 4.7 kW to 5 V Pullup  
4.5  
V
V
FOH  
DD  
DD  
DD  
SC  
FO  
V
= 15 V, V = 1 V, V Circuit: 4.7 kW to 5 V Pullup  
0.5  
FOL  
SC  
FO  
V
SC(ref)  
Short Circuit Trip Level  
= 15 V (Note 7)  
C
COM  
SC  
0.45  
9.8  
10.3  
9.0  
9.5  
50  
0.50  
0.55  
13.3  
13.8  
12.5  
13.0  
V
UV  
Supply Circuit  
UnderVoltage  
Protection  
Detection level  
Reset level  
V
DDD  
DDR  
BSD  
BSR  
UV  
UV  
UV  
V
Detection level  
Reset level  
V
V
t
FaultOut Pulse Width  
ms  
mV  
FOD  
V
LVIC Temperature  
Sensing Voltage  
Output  
V
DD(L)  
= 15 V, T = 25C (Note 8)  
LVIC  
540  
640  
740  
TS  
See Figure 6  
V
ON Threshold Voltage Applied between IN  
COM,  
2.6  
V
V
IN(ON)  
(UH, VH, WH)  
IN  
COM  
(UL, VL, WL)  
V
OFF Threshold Voltage  
0.8  
IN(OFF)  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
7. Shortcircuit current protection functioning only at the lowsides.  
8. T  
is the temperature of LVIC itself. V is only for sensing temperature of LVIC and can not shutdown IGBTs automatically.  
LVIC  
TS  
www.onsemi.com  
7
 
FNB33060T  
Table 6. RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Supply Voltage  
Conditions  
Applied between P N , N , N  
W
Min  
Typ  
300  
15  
Max  
400  
Unit  
V
V
PN  
DD  
U
V
V
Control Supply Voltage  
Applied between V  
Applied between V  
, V  
COM  
14.0  
13.0  
16.5  
18.5  
V
DD(H) DD(L)  
V
BS  
High Side Bias Voltage  
V  
, V  
V ,  
S(V)  
15  
V
B(U)  
S(U) B(V)  
V
V  
B(W)  
S(W)  
dV / dt, Control Supply Variation  
1  
1
V/ms  
ms  
DD  
dV / dt  
BS  
t
Blanking Time for Preventing  
Arm Short  
For each input signal  
40°C T 125°C, 40°C T 150°C  
1.0  
dead  
f
PWM Input Signal  
20  
5
kHz  
V
PWM  
C
J
V
SEN  
Voltage for Current Sensing  
Applied between N , N , N COM  
5  
U
V
W
(Including Surge Voltage)  
PW  
Minimum Input Pulse Width  
V
= V = 15 V, I 60 A, Wiring Inductance  
2.0  
2.0  
ms  
IN(ON)  
DD  
BS  
C
between N  
and DC Link N < 10 nH (Note 9)  
U, V, W  
PW  
IN(OFF)  
T
Junction Temperature  
40  
150  
°C  
J
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
9. This product might not make response if input pulse width is less than the recommended value.  
25  
f
= 5 kHz  
SW  
20  
15  
10  
5
f
= 15 kHz  
SW  
V
= 300 V, V = V = 15 V  
DD BS  
DC  
T = 150°C, T = 125°C  
j
c
M.I. = 0.9, P.F. = 0.8  
Sinusoidal PWM  
0
0
20  
40  
60  
80  
100  
120  
140  
T , Case Temperature (5C)  
C
Figure 7. Allowable Maximum Output Current  
NOTE:  
10.This allowable output current value is the reference data for the safe operation of this product.  
This may be different from the actual application and operating condition.  
www.onsemi.com  
8
 
FNB33060T  
Table 7. MECHANICAL CHARACTERISTICS AND RATINGS  
Parameter  
Device Flatness  
Conditions  
Min  
0
Typ  
Max  
+150  
0.8  
8.1  
Unit  
mm  
See Figure 8  
Mounting Torque  
Mounting Screw: M3  
See Figure 9  
Recommended 0.7 N m  
Recommended 7.1 kg cm  
0.6  
6.2  
10  
2
0.7  
7.1  
N m  
kg cm  
s
Terminal Pulling Strength  
Terminal Bending Strength  
Weight  
Load 19.6 N  
Load 9.8 N, 90 deg. bend  
times  
g
15  
( + )  
( + )  
Figure 8. Flatness Measurement Position  
PreScrewing: 1 2  
Final Screwing: 2 1  
2
1
NOTES:  
11. Do not make over torque when mounting screws. Much mounting torque may cause DBC cracks, as well as bolts and Al heatsink  
destruction.  
12.Avoid onesided tightening stress. Figure 9 shows the recommended torque order for mounting screws. Uneven mounting can cause the  
DBC substrate of package to be damaged. The prescrewing torque is set to 20 ~ 30% of maximum torque rating.  
Figure 9. Mounting Screws Torque Order  
www.onsemi.com  
9
 
FNB33060T  
TIME CHARTS OF SPMS PROTECTIVE FUNCTION  
Input Signal  
Protection  
Circuit State  
RESET  
a1  
RESET  
SET  
UV  
DDR  
a6  
Control  
Supply Voltage  
UV  
a3  
a4  
DDD  
a2  
a7  
Output Current  
a5  
Fault Output Signal  
a1: Control supply voltage rises: after the voltage rises UV  
a2: Normal operation: IGBT ON and carrying current.  
, the circuits start to operate when next input is applied.  
DDR  
a3: Undervoltage detection (UV  
).  
DDD  
a4: IGBT OFF in spite of control input condition.  
a5: Fault output operation starts with a fixed pulse width.  
a6: Undervoltage reset (UV  
).  
DDR  
a7: Normal operation: IGBT ON and carrying current by triggering next signal from LOW to HIGH.  
Figure 10. UnderVoltage Protection (LowSide)  
Input Signal  
Protection  
RESET  
SET  
RESET  
Circuit State  
UV  
BSR  
b5  
b1  
Control  
Supply Voltage  
b3  
b4  
UV  
BSD  
b6  
b2  
Output Current  
Highlevel (no fault output)  
Fault Output Signal  
b1: Control supply voltage rises: after the voltage reaches UV  
b2: Normal operation: IGBT ON and carrying current.  
, the circuits start to operate when next input is applied.  
BSR  
b3: Under voltage detection (UV  
).  
BSD  
b4: IGBT OFF in spite of control input condition, but there is no fault output signal.  
b5: Undervoltage reset (UV ).  
BSR  
b6: Normal operation: IGBT ON and carrying current by triggering next signal from LOW to HIGH.  
Figure 11. UnderVoltage Protection (HighSide)  
www.onsemi.com  
10  
FNB33060T  
Lower arms  
control input  
c6  
c7  
Protection  
Circuit state  
SET  
RESET  
c4  
Internal IGBT  
GateEmitter Voltage  
Internal delay  
at protection circuit  
SC current trip level  
c8  
c1  
Output Current  
SC Reference Voltage  
Sensing Voltage  
of sense resistor  
RC Filter circuit  
time constant  
delay  
Fault Output Signal  
c5  
(with the external sense resistance and RC filter connection)  
c1: Normal operation: IGBT ON and carrying current.  
c2: Short circuit current detection (SC trigger).  
c3: All lowside IGBT’s gate are hard interrupted.  
c4: All lowside IGBTs turn OFF.  
c5: Fault output operation starts with a fixed pulse width.  
c6: Input HIGH: IGBT ON state, but during the active period of fault output the IGBT doesn’t turn ON.  
c7: Fault output operation finishes, but IGBT doesn’t turn on until triggering next signal from LOW to HIGH.  
c8: Normal operation: IGBT ON and carrying current.  
Figure 12. ShortCircuit Protection (LowSide Operation Only)  
INPUT/OUTPUT INTERFACE CIRCUIT  
5 V Line (MCU or Control power)  
4.7 kW  
SPM  
, IN , IN  
(VH)  
IN  
IN  
(UH)  
(WH)  
(WL)  
, IN , IN  
(VL)  
(UL)  
FO  
MCU  
V
COM  
NOTE:  
13.RC coupling at each input might change depending on the PWM control scheme used in the application and the wiring impedance  
of the application’s printed circuit board. The input signal section of the Motion SPM 3 product integrates 5 kW (typ.) pulldown resistor.  
Therefore, when using an external filtering resistor, please pay attention to the signal voltage drop at input terminal.  
Figure 13. Recommended MCU I/O Interface Circuit  
www.onsemi.com  
11  
 
FNB33060T  
P (27)  
W (26)  
R1  
(17) IN(WH)  
(18) VDD(H)  
Gating WH  
Gating VH  
Gating UH  
IN  
VDD  
OUT  
VS  
C4  
COM  
(19) VB(W)  
C3 C4  
VB  
(20) VS(W)  
D2  
D2  
D2  
R1  
(13) IN (VH)  
IN  
VDD  
(14) VDD(H)  
OUT  
VS  
C4  
COM  
(15) VB(V)  
(16) VS(V)  
C3 C4  
V (25)  
VB  
M
R1  
(9) IN  
(UH)  
IN  
(10) VDD(H)  
VDD  
COM  
C7  
VDC  
M-  
C-  
U
OUT  
VS  
C4  
C1 C1 C1  
(11) VB(U)  
(12) VS(U)  
U (24)  
5 V line  
R3  
C3 C4  
VB  
VTS  
R6  
D
C6  
C5  
(8) CSC  
(7) VTS  
B
OUT  
OUT  
OUT  
C
CSC  
VTS  
R4  
A
NW (23)  
NV (22)  
NU (21)  
R1  
R1  
(6) VFO  
VFO  
Fault  
(5) IN  
(WL)  
Gating WL  
Gating VL  
Gating UL  
IN  
IN  
IN  
R1  
R1  
(4) IN(VL)  
R4  
R4  
(3) IN  
(UL)  
E
(2) COM  
(1) VDD(L)  
Power  
5 V line  
COM  
VDD  
C1  
C1  
C1 C1 C1  
GND Line  
C4  
C2  
D2  
R5  
R5  
R5  
Control  
GND Line  
WPhase Current  
VPhase Current  
UPhase Current  
Input Signal for  
ShortCircuit Protection  
C5  
C5  
C5  
Figure 14. Typical Application Circuit  
NOTES:  
14.To avoid malfunction, the wiring of each input should be as short as possible (less than 2 3 cm).  
15.V output is opendrain type. This signal line should be pulled up to the positive side of the MCU or control power supply with a resistor  
FO  
that makes I up to 2 mA. Please refer to Figure 13.  
FO  
16.Input signal is activeHIGH type. There is a 5 kW resistor inside the IC to pulldown each input signal line to GND. RC coupling circuits should  
be adopted for the prevention of input signal oscillation. R C time constant should be selected in the range 50 ~ 150 ns. (Recommended  
1
1
R1 = 100 W, C1 = 1 nF).  
17.Each wiring pattern inductance of A point should be minimized (Recommend less than 10 nH). Use the shunt resistor R of surface mounted  
4
(SMD) type to reduce wiring inductance. To prevent malfunction, wiring of point E should be connected to the terminal of the shunt resistor  
R as close as possible.  
4
18.To prevent errors of the protection function, the wiring of B, C, and D point should be as short as possible.  
19.In the shortcircuit protection circuit, please select the R C time constant in the range 1.5 ~ 2 ms. Do enough evaluation on the real system  
6
6
because shortcircuit protection time may vary wiring pattern layout and value of the R C time constant.  
6
6
®
20.Each capacitor should be mounted as close to the pins of the Motion SPM 3 product as possible.  
21.To prevent surge destruction, the wiring between the smoothing capacitor C7 and the P & GND pins should be as short as possible. The  
use of a highfrequency noninductive capacitor of around 0.1 ~ 0.22 mF between the P & GND pins is recommended.  
22.Relays are used at almost every systems of electrical equipments at industrial application. In these cases, there should be sufficient distance  
between the CPU and the relays.  
23.The zener diode or transient voltage suppressor should be adopted for the protection of ICs from the surge destruction between each pair  
of control supply terminals (Recommanded zener diode is 22 V / 1 W, which has the lower zener impedance characteristic than about 15 W).  
24.C of around 7 times larger than bootstrap capacitor C is recommended.  
2
3
25.Please choose the electrolytic capacitor with good temperature characteristic in C . Also, choose 0.1 ~ 0.2 mF Rcategory ceramic capacitors  
3
with good temperature and frequency characteristics in C .  
4
PACKAGE MARKING AND ORDERING INFORMATION  
Device  
Device Marking  
Package  
Shipping  
FNB33060T  
FNB33060T  
SPMCA027 / PDD STD, SPM27CA, DBC TYPE  
(PbFree / Halide Free)  
60 Units / Tube  
SPM is a registered trademark of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or  
other countries.  
www.onsemi.com  
12  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SPMCA027 / PDD STD, SPM27CA, DBC TYPE  
CASE MODFJ  
ISSUE O  
DATE 31 JAN 2017  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13563G  
SPMCA027 / PDD STD, SPM27CA, DBC TYPE  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FNB34060T

智能功率模块,600 V,40A
ONSEMI

FNB34060T6

Intelligent Power Module, 600 V, 40A
ONSEMI

FNB35060T

智能功率模块,600 V,50A
ONSEMI

FNB40560

Smart Power Module
FAIRCHILD

FNB40560

智能功率模块,600 V,5A
ONSEMI

FNB40560B2

Smart Power Module
FAIRCHILD

FNB40560B2

智能功率模块 (IPM),运动控制
ONSEMI

FNB41060

Smart Power Module
FAIRCHILD

FNB41060

智能功率模块,600V,10A
ONSEMI

FNB41060B2

智能功率模块,600V,10A
ONSEMI

FNB41560

Smart Power Module
FAIRCHILD

FNB41560

智能功率模块,600V,15A
ONSEMI