FNB81560T3 [ONSEMI]

智能功率模块,600V,15A;
FNB81560T3
型号: FNB81560T3
厂家: ONSEMI    ONSEMI
描述:

智能功率模块,600V,15A

文件: 总15页 (文件大小:780K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FNB81560T3  
Motion SPM) 8 Series  
FNB81560T3 is a Motion SPM 8 module providing a  
fully−featured, high−performance inverter output stage for AC  
Induction, BLDC, and PMSM motors. These modules integrate  
optimized gate drive of the built−in IGBTs to minimize EMI and  
losses, while also providing multiple on−module protection features  
including under−voltage lockouts, inter−lock function, over−current  
shutdown, thermal monitoring of drive IC, and fault reporting. The  
built−in, high−speed HVIC requires only a single supply voltage and  
translates the incoming logic−level gate inputs to the high−voltage,  
high−current drive signals required to properly drive the module’s  
robust shortcircuit−rated IGBTs. Separate negative IGBT terminals  
are available for each phase to support the widest variety of control  
algorithms.  
www.onsemi.com  
Features  
UL Certified No. E209204 (UL1557)  
600 V − 15 A 3−Phase IGBT Inverter Including Control IC for Gate  
Drive and Protections  
Low−Loss, Short−Circuit Rated IGBTs  
Separate Open−Emitter Pins from Low−Side IGBTs for Three−Phase  
Current Sensing  
Active−high Interface, works with 3.3 / 5 V Logic, Schmitt−trigger  
3D Package Drawing  
(Click to Activate 3D Content)  
Input  
HVIC for Gate Driving, Under−Voltage and Short−Circuit Current  
Protection  
SPMFA−A25  
CASE MODEZ  
Fault Output for Under−Voltage and Short−Circuit Current Protection  
Inter−Lock Function to Prevent Short−Circuit  
Shut−Down Input  
MARKING DIAGRAM  
HVIC Temperature−Sensing Built−In for Temperature Monitoring  
Isolation Rating: 1500 V / min.  
rms  
Applications  
Motion Control − Home Appliance / Industrial Motor  
Related Resources  
AN−9112 * Smart Power Module, Motion SPM 8 Series User’s  
ON  
NB81560T3  
XXX  
Y
= ON Semiconductor Logo  
Guide  
= Specific Device Code  
= Lot Number  
= Year  
AN−9584 * SPM 8 Package Assembly Guidance for 25L double  
DIP  
WW  
= Work Week  
Integrated Power Functions  
600 V − 15 A IGBT Inverter for Three Phase DC / AC Power  
Conversion (Please refer to Figure 2)  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 9 of  
this data sheet.  
Integrated Drive, Protection and System Control Functions  
For Inverter High−side IGBTs: gate drive circuit, high−voltage  
isolated high−speed level shifting control circuit Under−Voltage  
Lock−Out (UVLO) protection (Note: Available bootstrap circuit  
example is given in Figures 4 and 16)  
© Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
August, 2019 − Rev. 3  
FNB81560T3/D  
FNB81560T3  
Control Circuit Under−Voltage Lock−Out (UVLO) protection  
For Inverter Low−side IGBTs: gate drive circuit, Over Current  
Protection (OCP), Short−Circuit Protection (SCP) control supply  
circuit Under−Voltage Lock−Out (UVLO) protection  
Fault Signaling: corresponding to UVLO (low−side supply) and SC  
faults  
Input Interface: High−active interface, works with 3.3 / 5 V logic,  
Schmitt trigger input  
PIN CONFIGURATION  
(25) VBU  
(1) P  
(24) COM  
(23) INUH  
(22) INUL  
(21) VDD  
(20) /SDU  
(2) U, VSU  
Case temperature (Tc)  
Detecting point  
(3) NU  
(19) VBV  
(4) V, VSV  
(5) NV  
(18) INVH  
(17) INVL  
(16) VDD  
(15) /SDV  
(14) VBW  
(13) INWH  
(12) INWL  
(6) W, VSW  
(7) NW  
(11) VDD  
(10) Csc  
(9) /FO,/SDW,VTS  
(8) COM  
Figure 1. Pin Configuration − Top View  
Table 1. PIN DESCRIPTIONS  
Pin Number  
Pin Name  
P
Pin Description  
1
2
3
4
5
6
7
8
9
Positive DC−Link Input  
U, VSU  
NU  
Output for U Phase  
Negative DC−Link Input for U Phase  
Output for V Phase  
V, VSV  
NV  
Negative DC−Link Input for V Phase  
Output for W Phase  
W, VSW  
NW  
Negative DC−Link Input for W Phase  
Common Supply Ground  
COM  
/FO, /SDW, VTS Fault Output, Shut−Down Input for W Phase, Temperature Output of Drive IC  
10  
11  
12  
13  
CSC  
VDD  
INWL  
INWH  
Shut Down Input for Over Current and Short Circuit Protection  
Common Bias Voltage for IC and IGBTs Driving  
Signal Input for Low−Side W Phase  
Signal Input for High−Side W Phase  
www.onsemi.com  
2
 
FNB81560T3  
Table 1. PIN DESCRIPTIONS  
Pin Number  
Pin Name  
VBW  
Pin Description  
14  
15  
High−Side Bias Voltage for W−Phase IGBT Driving  
Shut−Down Input for V Phase  
/SDV  
16  
17  
18  
19  
20  
VDD  
INVL  
INVH  
VBV  
/SDU  
Common Bias Voltage for IC and IGBTs Driving  
Signal Input for Low−Side V Phase  
Signal Input for High−Side V Phase  
High−Side Bias Voltage for V−Phase IGBT Driving  
Shut−Down Input for U Phase  
21  
22  
23  
24  
25  
VDD  
INUL  
INUH  
COM  
VBU  
Common Bias Voltage for IC and IGBTs Driving  
Signal Input for Low−Side U Phase  
Signal Input for High−Side U Phase  
Common Supply Ground  
High−Side Bias Voltage for U−Phase IGBT Driving  
INTERNAL EQUIVALENT CIRCUIT AND INPUT/OUTPUT PINS  
P
VBU  
VB  
HIN  
LIN  
HO  
VS  
LO  
INUH  
INUL  
VDD  
U,VSU  
VDD  
/SDU  
/SDU  
COM  
COM  
NU  
VBV  
INVH  
INVL  
VB  
HIN  
LIN  
HO  
VS  
LO  
V,VSV  
VDD  
VDD  
/SDV  
COM  
/SDV  
Nv  
VBW  
INWH  
INWL  
VB  
HIN  
LIN  
HO  
VS  
LO  
VDD  
W,VSW  
VDD  
Csc  
Csc  
/FO, /SDW, VTS  
COM  
/FO, /SDW, VTS  
COM  
Nw  
Notes:  
1. Inverter high−side is composed of three IGBTs, freewheeling diodes.  
2. Inverter low−side is composed of three IGBTs, freewheeling diodes.  
3. Inverter power side is composed of four inverter DC−link input terminals and three inverter output terminals.  
Figure 2. Internal Block Diagram  
www.onsemi.com  
3
FNB81560T3  
Table 2. ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise specified)  
J
Symbol  
Parameter  
Conditions  
Rating  
Unit  
INVERTER PART  
V
Supply Voltage  
Applied between P − N , N , N  
450  
500  
600  
15  
V
V
V
A
A
PN  
PN(Surge)  
U
V
W
V
Supply Voltage (Surge)  
Applied between P − N , N , N  
U V  
W
V
CES  
Collector − Emitter Voltage  
Each IGBT Collector Current  
Each IGBT Collector Current (Peak)  
I
C
T
T
= 25°C, T 150°C (Note 1)  
C
J
I
= 25°C, T 150°C, Under 1 ms Pulse Width  
30  
CP  
C
J
(Note 1)  
T
Operating Junction Temperature  
−40 ~ 150  
_C  
J
CONTROL PART  
V
Control Supply Voltage  
Applied between V − COM  
20  
20  
V
V
DD  
DD  
V
High−Side Control Bias Voltage  
Applied between VB − VS , VB − VS , VB  
BS  
U
U
V
V
W
VS  
W
V
IN  
Input Signal Voltage  
Applied between IN , IN , IN , IN , IN  
IN − COM  
WL  
,
−0.3 ~ V + 0.3  
V
UH  
VH  
WH  
UL  
VL  
DD  
V
Function Supply Voltage  
Fault Current  
Applied between /FO, /SD , V − COM  
−0.3 ~ V + 0.3  
V
mA  
V
FS  
W
TS  
DD  
I
Sink Current at /FO, /SD , V pin  
2
FO  
W
TS  
V
SC  
Current Sensing Input Voltage  
Applied between C − COM  
−0.3 ~ V + 0.3  
SC  
DD  
TOTAL SYSTEM  
V
Self Protection Supply Voltage Limit  
(Short Circuit Protection Capability)  
V
= V = 13.5 ~ 16.5 V, T = 150°C, Non−  
400  
V
PN(PROT)  
DD  
BS  
J
Repetitive, < 2 ms  
T
Storage Temperature  
−40 ~ 125  
1600  
_C  
Vrms  
STG  
V
Isolation Voltage  
Connect Pins to Heat Sink Plate  
AC 60 Hz, Sinusoidal, AC 1 Minute, Connection  
Pins to Heat Sink Plate  
ISO  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
1. These values had been made an acquisition by the calculation considered to design factor.  
Table 3. THERMAL RESISTANCE  
Symbol  
Parameter  
Conditions  
Inverter IGBT part, (Per Module)  
Inverter FWDi part, (Per Module)  
Min  
Typ  
Max  
3.40  
3.86  
Unit  
_C/W  
_C/W  
R
th(j−c)Q  
Junction−to−Case Thermal  
Resistance (Note 2)  
R
th(j−c)F  
2. For the measurement point of case temperature (T ), please refer to Figure 1.  
C
www.onsemi.com  
4
 
FNB81560T3  
Table 4. ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise specified.)  
J
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
INVERTER PART  
VCE(SAT)  
TJ = 25°C  
TJ = 150°C  
TJ = 25°C  
TJ = 150°C  
1.60  
1.80  
2.00  
1.90  
2.10  
V
V
V
V
VDD = VBS = 15 V, VIN = 5 V,  
IC = 12 A  
Collector − Emitter Saturation  
Voltage  
VF  
FWDi Forward Voltage  
2.50  
VIN = 0 V, IF = 12 A  
HS  
tON  
Switching Times  
0.25  
0.75  
1.25  
ms  
VPN = 400 V, VDD = VBS = 15 V, IC = 15 A, TJ = 25°C  
IN = 0 V 5 V, Inductive load (Note 3)  
V
tC(ON)  
tOFF  
0.20  
0.55  
0.10  
0.50  
1.05  
0.40  
ms  
ms  
ms  
tC(OFF)  
trr  
0.25  
0.10  
0.75  
0.20  
ms  
ms  
ms  
LS  
tON  
1.25  
0.50  
VPN = 400 V, VDD = VBS = 15 V, IC = 15 A, TJ = 25°C  
VIN = 0 V 5 V, Inductive load (Note 3)  
tC(ON)  
tOFF  
0.55  
0.10  
0.10  
1.05  
0.40  
ms  
ms  
ms  
tC(OFF)  
trr  
ICES  
VCE = VCES  
1.00  
mA  
Collector − Emitter Leakage  
Current  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
3. t  
and t  
include the propagation delay of the internal drive IC. t  
and t are the switching times of IGBT under the given  
ON  
OFF  
C(ON)  
C(OFF)  
gate−driving condition internally. For the detailed information, please see Figure 3.  
HINx  
LINx  
trr  
toff  
ton  
100% ICx  
ICx  
90% ICx  
10% VCEx  
10% VCEx  
vCEx  
10% ICx  
10% ICx  
tc(on)  
tc(off)  
Figure 3. Switching Time  
www.onsemi.com  
5
 
FNB81560T3  
One−Leg Diagram of SPM 8  
IC  
VBS  
P
V
CBS  
+15V  
VB  
LS Switching  
HO  
HIN  
VPN  
HS Switching  
U,V,W  
VS  
V
Inductor  
400V  
LIN  
VDD  
LS Switching  
/Fo, /SDw, VTS  
LO  
VIN  
HS Switching  
5V  
0V  
VDD  
V
10kW  
Csc  
COM  
NU,V,W  
+15V  
V
+5V  
Figure 4. Example Circuit for Switching Test  
Inductive Load, VPN= 300V, V =15V, T=25  
Inductive Load, VPN= 300V, V =15V, T=150  
°C  
DD J  
°C  
DD  
J
700  
600  
500  
400  
300  
200  
100  
0
700  
600  
500  
400  
300  
200  
100  
0
IGBT Turn−on, Eon  
IGBT Turn−off, Eoff  
FRD Turn−off, Erec  
IGBT Turn−on, Eon  
IGBT Turn−off, Eoff  
FRD Turn−off, Erec  
0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 16.5  
COLLECTOR CURRENT, IC [AMPERES]  
0.0 1.5 3.0 4.5 6.0 7.5 9.0 10.5 12.0 13.5 15.0 16.5  
COLLECTOR CURRENT, IC [AMPERES]  
Figure 5. Switching Loss Characteristics  
4.8  
4.3  
3.8  
3.3  
2.8  
2.3  
1.8  
1.3  
3.3V pull−up with 4.7kohm  
5V pull−up with 10kohm  
0
25  
50  
75  
THVIC [ C]  
100  
125  
150  
O
Figure 6. V−T Curve of Temperature Output of IC  
www.onsemi.com  
6
FNB81560T3  
Table 5. ELECTRICAL CHARACTERISTICS  
Symbol  
Parameter  
Conditions  
Min  
Typ  
Max  
Unit  
CONTROL PART  
IQDD  
VDD − COM  
VDD − COM  
1.7  
2.2  
mA  
mA  
mA  
IN  
Quiescent VDD Supply  
Current  
VDD = 15 V, (UH,VH,WH,UL,VL,WL) = 0 V  
IPDD  
IQBS  
IPBS  
VDD = 15 V, fPWM = 20 kHz, duty = 50%,  
applied to one PWM signal input  
Operating VDD Supply  
Current  
VBS = 15 V, IN(UH, VH, WH) = 0 V  
VB(U) − VS(U), VB(V) −  
VS(V), VB(W) − VS(W)  
100  
700  
Quiescent VBS Supply  
Current  
VDD = VBS = 15 V, fPWM = 20 kHz,  
duty = 50%, applied to one PWM signal  
input for high − side  
VB(U) − VS(U), VB(V) −  
VS(V), VB(W) − VS(W)  
mA  
Operating VBS Supply  
Current  
VFOH  
Fault Output Voltage  
3.81  
V
VSC = 0 V, VF Circuit: 10 kW to 5 V Pull−up  
VSC = 1 V, VF Circuit: 10 kW to 5 V Pull−up  
VFOL  
0.5  
V
V
V
VSC(ref)  
Short−Circuit Trip Level VDD = 15 V (Note 4)  
0.46  
10.0  
0.49  
11.5  
0.52  
13.0  
UVDDD  
Detection level  
Supply Circuit Under−  
Voltage Protection  
UVDDR  
UVBSD  
Reset level  
10.5  
9.5  
12.0  
11.0  
11.5  
13.5  
12.5  
13.0  
V
V
V
Detection level  
Reset level  
UVBSR  
IFO_T  
10.0  
VDD = VBS = 15 V, THVIC = 25°C  
VDD = VBS = 15 V, THVIC = 75°C  
82.5  
207.5  
4.18  
mA  
mA  
V
HVIC Temperature  
Sensing Current  
VFO_T  
VDD = VBS = 15 V, THVIC = 25°C, 10 kW to 5 V Pull−up  
VDD = VBS = 15 V, THVIC = 75°C, 10 kW to 5 V Pull−up  
HVIC Temperature  
Sensing Voltage See  
Figure 7  
2.93  
V
tFOD  
Fault−Out Pulse Width  
40  
2.4  
ms  
V
VFSDR  
VFSDD  
Shut−down Reset level Applied between /FO − COM  
0.8  
V
Shut−down Detection  
level  
VIN(ON)  
ON Threshold Voltage  
2.4  
V
V
Applied between IN(UH), IN(VH), IN(WH), IN(UL), IN(VL), IN(WL) − COM  
VIN(OFF) OFF Threshold Voltage  
0.8  
BOOTSTRAP DIODE PART  
VDD = 15 V, TJ = 25°C  
RBS  
Bootstrap Diode Resis-  
tance  
280  
W
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
4. Short−circuit current protection function is for all six IGBTs if the /FO, /SDW, VTS pin is connected to /SDx pins.  
www.onsemi.com  
7
 
FNB81560T3  
0.06  
0.05  
0.04  
0.03  
0.02  
0.01  
0.00  
TJ=25 oC, V DD=15V  
0
1
2
3
4
5
6
7
8
9
10 11 12 13 14 15  
VF [V]  
Figure 7. Built−In Bootstrap Diode Characteristics  
Table 6. RECOMMENDED OPERATING CONDITIONS  
Symbol  
Parameter  
Supply Voltage  
Conditions  
Min  
Typ  
Max  
Unit  
VPN  
Applied between P − NU, NV, NW  
300  
400  
V
VDD  
VBS  
Control Supply Voltage  
High − Side Bias Voltage  
Control Supply Variation  
Applied between VDD − COM  
14.0  
13.0  
−1  
15  
15  
16.5  
18.5  
1
V
V
Applied between VBU − VSU, VBV −VSV, VBW − VSW  
V/ms  
dVDD / dt,  
dVBS / dt  
tdead  
For each input signal  
0.5  
−4  
4
ms  
Blanking Time for Preventing  
Arm − Short  
VSEN  
V
Applied between NU, NV, NW − COM (Including surge  
voltage)  
Voltage for Current Sensing  
Minimun Input Pulse Width  
PWIN(ON)  
0.7  
0.7  
ms  
VDD = VBS = 15 V, IC 30 A, Wiring Inductance  
between NU, V, W and DC Link N < 10nH (Note 5)  
PWIN(OFF)  
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond  
the Recommended Operating Ranges limits may affect device reliability.  
5. This product might not make response if input pulse width is less than the recommended value.  
Table 7. MECHANICAL CHARACTERISTICS AND RATINGS  
Parameter  
Device Flatness  
Conditions  
Min  
−50  
0.6  
5.9  
Typ  
Max  
100  
0.8  
7.9  
Unit  
mm  
See Figure 8  
Mounting Torque  
Mounting Screw: M3  
Recommended 0.7 N m  
Recommended 7.1 kg cm  
0.7  
6.9  
5.0  
N m  
kg cm  
g
See Figure 9 (Note 6, 7)  
Weight  
6. Do not make over torque when mounting screws. Much mounting torque may cause package cracks, as well as bolts and Al heat−sink  
destruction.  
7. Avoid one side tightening stress. Figure 9 shows the recommended torque order for mounting screws. Uneven mounting can cause the DBC  
substrate of package to be damaged. The pre−screwing torque is set to 20 ~ 30% of maximum torque rating.  
www.onsemi.com  
8
 
FNB81560T3  
Figure 8. Flatness Measurement Position  
Pre−Screwing: 1 2  
Final Screwing: 2 1  
2
1
Figure 9. Mounting Screws Torque Order  
PACKAGE MARKING AND ORDERING INFORMATION  
Device  
Device Marking  
Package  
Shipping  
FNB81560T3  
NB81560T3  
SPMFA−A25  
15 Units / Rail  
www.onsemi.com  
9
FNB81560T3  
TIME CHARTS OF PROTECTIVE FUNCTION  
Input Signal  
Protection  
Circuit State  
RESET  
SET  
RESET  
UVDDR  
a1  
a6  
UVDDD  
a2  
Control  
Supply Voltage  
a3  
a4  
a7  
Output Current  
a5  
Fault Output Signal  
a1: Control supply voltage rises: after the voltage rises UV  
a2: Normal operation: IGBT ON and carrying current.  
, the circuits start to operate when next input is applied.  
DDR  
a3: Under−voltage detection (UV  
).  
DDD  
a4: IGBT OFF in spite of control input condition.  
a5: Fault output operation starts.  
a6: Under−voltage reset (UV  
).  
DDR  
a7: Normal operation: IGBT ON and carrying current.  
Figure 10. Under−Voltage Protection (Low−Side)  
Input Signal  
Protection  
Circuit State  
RESET  
SET  
RESET  
UVBSR  
b5  
b1  
UVBSD  
b2  
Control  
Supply Voltage  
b3  
b4  
b6  
Output Current  
High−level (no fault output)  
Fault Output Signal  
b1: Control supply voltage rises: after the voltage reaches UV  
b2: Normal operation: IGBT ON and carrying current.  
, the circuits start to operate when next input is applied.  
BSR  
b3: Under−voltage detection (UV  
).  
BSD  
b4: IGBT OFF in spite of control input condition, but there is no fault output signal.  
b5: Under−voltage reset (UV ).  
BSR  
b6: Normal operation: IGBT ON and carrying current.  
Figure 11. Under−Voltage Protection (High−Side)  
www.onsemi.com  
10  
FNB81560T3  
Hin  
Lin  
Ho  
Lo  
d3  
d4  
d5  
Hin : High−side Input Signal  
Lin : Low−side Input Signal  
Ho : High−side IGBT Gate Voltage  
Lo : Low−side IGBT Gate Voltage  
/Fo : Fault Output  
d1  
d2  
/Fo  
d1: High Side First − Input − First − Output Mode  
d2: Low Side Noise Mode: No LO  
d3: High Side Noise Mode: No HO  
d4: Low Side First − Input − First − Output Mode  
d5: IN − Phase Mode: No HO  
Figure 12. Inter−Lock Function  
HIN  
LIN  
HO  
Smart Turn−off  
Activated by next input  
after fault clear  
Soft Off  
LO  
Over−Current  
Detection  
CSC  
No Output  
/FO  
HIN : High−side Input Signal  
LIN : Low−side Input Signal  
HO : High−Side Output Signal  
LO : Low−Side Output Signal  
C
: Over Current Detection Input  
SC  
/FO : Fault Out Function  
Figure 13. Fault−Out Function by Over Current Protection  
www.onsemi.com  
11  
FNB81560T3  
HIN  
LIN  
HO  
Activated by next  
input after fault  
clear  
No Output  
Smart  
Turn−off  
Soft Off  
LO  
CSC  
External  
/SDx  
shutdown input  
HIN : High−side Input Signal  
LIN : Low−side Input Signal  
HO : High−Side Output Signal  
LO : Low−Side Output Signal  
C
: Over Current Detection Input  
SC  
/SD : Shutdown Input Function  
x
Figure 14. Shutdown Input Function by External Command  
INPUT/OUTPUT INTERFACE CIRCUIT  
5 V Line (MCU or Control power)  
R PF  
= 10k W  
SPM  
IN UH , IN VH , IN  
WH  
IN UL , IN VL , IN  
/FO, /SD W , V  
WL  
TS  
MCU  
COM  
NOTE: RC coupling at each input (parts shown dotted) might change depending on the PWM control scheme used in the  
application and the wiring impedance of the application’s printed circuit board. The input signal section of the SPM 8  
product integrates 5 kW (typ.) pull−down resistor. Therefore, when using an external filtering resistor, please pay  
attention to the signal voltage drop at input terminal.  
Figure 15. Recommended MCU I/O Interface Circuit  
www.onsemi.com  
12  
 
FNB81560T3  
P
U,VSU  
Nu  
15V  
VBU  
VB  
HO  
VS  
LO  
CBS  
CBSC  
RS  
RS  
INUH  
INUL  
HIN  
LIN  
Gating UH  
Gating UL  
VDD  
CPS CPS  
VDD  
/SDU  
COM  
/SDU  
COM  
VBV  
HO  
VS  
LO  
VB  
M
C
U
CBS  
CBSC  
V,VSV  
RS  
RS  
INVH  
INVL  
M
Gating VH  
Gating VL  
HIN  
LIN  
CDCS  
VDC  
VDD  
CPS CPS  
VDD  
/SDV  
/SDV  
COM  
5V  
Nv  
VBW  
VB  
HO  
VS  
LO  
CBS  
CBSC  
RS  
RS  
INWH  
INWL  
HIN  
LIN  
Gating WH  
Gating WL  
W,VSW  
VDD  
VDD  
Fault  
/Fo, /SDw, VTS  
Csc  
A
/Fo, /SDw, VTS  
Csc  
COM  
RSU  
E
COM  
Nw  
RF  
D
CPS CPS CPF  
CSP15  
CSPC15  
CSC  
RSV  
RSW  
Power  
GND Line  
B
C
Control  
W−Phase Current  
GND Line  
Input Signal for  
V−Phase Current  
U−Phase Current  
Short−Circuit Protection  
Figure 16. Typical Application Circuit  
NOTES:  
8. To avoid malfunction, the wiring of each input should be as short as possible (Less than 2 ~ 3 cm).  
9. /FO is open−drain type. This signal line should be pulled up to the positive side of the MCU or control power supply with a resistor that makes  
up to 2 mA. (Figure 15.)  
I
FO  
10.C  
of around seven times larger than bootstrap capacitor C is recommended.  
SP15  
BS  
11. Input signal is active−HIGH type. There is a 5 kW resistor inside the IC to pull down each input signal line to GND. RC coupling circuits are  
recommended for the prevention of input signal oscillation. R C time constant should be selected in the range 50 ~ 150 ns (Recommended  
S
PS  
R
= 100 W, C = 1 nF).  
S
PS  
12.Each wiring pattern inductance of A point should be minimized (Recommend less than 10nH). Use the shunt resistor R  
of surface  
S(U/V/W)  
mounted (SMD) type to reduce wiring inductance. To prevent malfunction, wiring of point E should be connected to the terminal of the shunt  
resistor R as close as possible.  
S(U/V/W)  
13.To prevent errors of the protection function, the wiring of B, C, and D point should be as short as possible.  
14.In the short−circuit current protection circuit, please select the R C time constant in the range 1.5 ~ 2 ms. Do enough evaluation on the  
F
SC  
real system because short−circuit protection time may vary wiring pattern layout and value of the R and C time constant.  
F
SC  
15.The connection between control GND line and power GND line which includes the N , N , N must be connected to only one point. Please  
U
V
W
do not connect the control GND to the power GND by the broad pattern. Also, the wiring distance between control GND and power GND  
should be as short as possible.  
16.Each capacitor should be mounted as close to the pins of the Motion SPM 8 product as possible.  
17.To prevent surge destruction, the wiring between the smoothing capacitor and the P and GND pins should be as short as possible. The use  
of a high frequency non−inductive capacitor of around 0.1 ~ 0.22 mF between the P and GND pins is recommended.  
18.Relays are used in almost every systems of electrical equipments of home appliances. In these cases, there should be sufficient distance  
between the CPU and the relays.  
19.The zener diode or transient voltage suppressor should be adapted for the protection of ICs from the surge destruction between each pair  
of control supply terminals (Recommended zener diode is 22 V / 1 W, which has the lower zener impedance characteristic than about 15 W).  
20.Please choose the electrolytic capacitor with good temperature characteristic in C . Also, choose 0.1 ~ 0.2 mF R−category ceramic  
BS  
capacitors with good temperature and frequency characteristics in C  
21.For the detailed information, please refer to the application notes.  
22./FO and /SD must be connected as short as possible.  
.
BSC  
SPM is a registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
www.onsemi.com  
13  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
SPMFAA25 / 25LD, FULL PACK, DIP TYPE, SPM8 SERIES  
CASE MODEZ  
ISSUE O  
DATE 31 JAN 2017  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13572G  
SPMFAA25 / 25LD, FULL PACK, DIP TYPE, SPM8 SERIES  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FNC-234P020-G/E

Board Connector, 20 Contact(s), 2 Row(s), Male, Straight, Solder Terminal, Plug
FUJITSU

FNC-234P028-G/E

Board Connector, 28 Contact(s), 2 Row(s), Male, Straight, Solder Terminal, Plug
FUJITSU

FNC-234P036-G/E

Board Connector, 36 Contact(s), 2 Row(s), Male, Straight, Solder Terminal, Plug
FUJITSU

FNC-234P068-G/E

Board Connector, 68 Contact(s), 2 Row(s), Male, Straight, Solder Terminal, Plug
FUJITSU

FNC1005154103

Cylindrical Case Filters
KEMET

FNC1005154103A

Single Phase EMI Filter, 275V, 50/60HzHz,
KEMET

FNC1005154103P

Single Phase EMI Filter, 275V, 50/60HzHz,
KEMET

FNC1005154472

Cylindrical Case Filters
KEMET

FNC1005154472A

Single Phase EMI Filter, 275V, 50/60HzHz,
KEMET

FNC1005154472P

Single Phase EMI Filter, 275V, 50/60HzHz,
KEMET

FNC1005474253

Cylindrical Case Filters
KEMET

FNC1005474253A

Single Phase EMI Filter, 275V, 50/60HzHz,
KEMET