FSBH0F70WANY [ONSEMI]

用于 8 W 离线反激式转换器的 700 V 集成电源开关,100 kHz,提供通电/欠压保护;
FSBH0F70WANY
型号: FSBH0F70WANY
厂家: ONSEMI    ONSEMI
描述:

用于 8 W 离线反激式转换器的 700 V 集成电源开关,100 kHz,提供通电/欠压保护

开关 信息通信管理 电源开关 光电二极管 转换器
文件: 总16页 (文件大小:1061K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
Is Now Part of  
To learn more about ON Semiconductor, please visit our website at  
www.onsemi.com  
Please note: As part of the Fairchild Semiconductor integration, some of the Fairchild orderable part numbers  
will need to change in order to meet ON Semiconductor’s system requirements. Since the ON Semiconductor  
product management systems do not have the ability to manage part nomenclature that utilizes an underscore  
(_), the underscore (_) in the Fairchild part numbers will be changed to a dash (-). This document may contain  
device numbers with an underscore (_). Please check the ON Semiconductor website to verify the updated  
device numbers. The most current and up-to-date ordering information can be found at www.onsemi.com. Please  
email any questions regarding the system integration to Fairchild_questions@onsemi.com.  
ON Semiconductor and the ON Semiconductor logo are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor owns the rights to a number  
of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. ON Semiconductor reserves the right  
to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using ON  
Semiconductor products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON  
Semiconductor data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s  
technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA  
Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended  
or unauthorized application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out  
of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor  
is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
June 2013  
FSBH0F70WA, FSBH0170W, FSBH0270W  
Green Mode Fairchild Power Switch (FPS™)  
Features  
Description  
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
Brownout Protection with Hysteresis  
Built-In 5 ms Soft-Start Function  
Internal Avalanche-Rugged 700 VSenseFET  
Low Acoustic Noise During Light-Load Operation  
High-Voltage Startup  
The highly integrated FSBH-series consists of an  
integrated current-mode Pulse Width Modulator (PWM)  
and an avalanche-rugged 700 V SenseFET. It is  
specifically designed for high-performance offline  
Switched-Mode Power Supplies (SMPS) with minimal  
external components.  
The integrated PWM controller features include a  
proprietary green-mode function that provides off-time  
modulation to linearly decrease the switching frequency  
at light-load conditions to minimize standby power  
consumption. To avoid acoustic-noise problems, the  
minimum PWM frequency is set above 18 kHz. This  
green-mode function enables the power supply to meet  
international power conservation requirements. The  
PWM controller is manufactured using the BiCMOS  
process to further reduce power consumption. The  
FSBH-series turns off some internal circuits to improve  
power saving when VFB is lower than 1.6 V, which  
allows an operating current of only 2.5 mA.  
Linearly Decreasing PWM Frequency to 18 KHz  
Peak-Current-Mode Control  
Cycle-by-Cycle Current Limiting  
Leading-Edge Blanking (LEB)  
Synchronized Slope Compensation  
Internal Open-Loop Protection  
VDD Under-Voltage Lockout (UVLO)  
VDD Over-Voltage Protection (OVP)  
Internal Auto-Restart Circuit (OVP, OTP)  
Constant Power Limit (Full AC Input Range)  
Internal OTP Sensor with Hysteresis  
The FSBH-series has built-in synchronized slope  
compensation to achieve stable peak-current-mode  
control. The proprietary external line compensation  
ensures constant output power limit over a wide AC  
input voltage range, from 90 VAC to 264 VAC.  
Applications  
The FSBH-series provides many protection functions. In  
addition to cycle-by-cycle current limiting, the internal  
open-loop protection circuit ensures safety when an  
open-loop or output short occurs. PWM output is  
disabled until VDD drops below the VTH-OLP, then the  
controller starts up again. As long as VDD exceeds 28 V,  
the internal OVP circuit is triggered.  
General-purpose switched-mode power supplies and  
flyback power converters, including:  
.
.
Auxiliary Power Supply for PC and Server  
SMPS for VCR, SVR, STB, DVD & DVCD Player,  
Printer, Facsimile, and Scanner  
.
Adapter for Camcorder  
Compared with a discrete MOSFET and controller or  
RCC switching converter solution, the FSBH-series  
reduces component count, design size, and weight;  
while increasing efficiency, productivity, and system  
reliability. These devices provide a basic platform that is  
well suited for the design of cost-effective flyback  
converters, such as in PC auxiliary power supplies.  
© 2011 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FSBH0F70WA/0170W/0270W • Rev. 1.0.3  
Ordering Information  
Operating  
Temperature  
Range  
VIN Pin  
(PIN #4)  
Packing  
Method  
Part Number  
SenseFET  
Package  
Not  
Available  
FSBH0F70WANY 0.5 A700 V  
-40°C to +105°C 8-Pin, Dual In-Line Package (DIP)  
Tube  
FSBH0170WNY  
FSBH0270WNY  
1.0 A700 V  
2.0 A700 V  
Enabled  
Typical Application Diagram  
HV  
Drain  
VIN  
FB  
VDD  
GND  
Figure 1.  
Typical Flyback Application  
Table 1. Output Power Table(1)  
Product  
230 VAC ± 15%(2)  
Open Frame(4)  
85-265 VAC  
Open Frame(4)  
Adapter(3)  
Adapter(3)  
FSBH0F70WA  
FSBH0170W  
FSBH0270W  
7 W  
10 W  
15 W  
20 W  
6 W  
9 W  
8 W  
10 W  
14 W  
13 W  
16 W  
11 W  
Notes:  
1. The maximum output power can be limited by junction temperature.  
2. 230 VAC or 100/115 VAC with doublers.  
3. Typical continuous power in a non-ventilated enclosed adapter with sufficient drain pattern as a heat sink at 50C  
ambient.  
4. Maximum practical continuous power in an open-frame design with sufficient drain pattern as a heat sink at 50C  
ambient.  
© 2011 Fairchild Semiconductor Corporation  
FSBH0F70WA/0170W/0270W • Rev. 1.0.3  
www.fairchildsemi.com  
2
 
 
 
 
Block Diagram  
HV  
5
Drain  
6,7,8  
OVP  
OLP  
OTP  
Auto-ReStart  
Protection  
HV  
Startup  
OVP  
OSC  
Debounce  
PWM  
Soft  
Driver  
VDD-OVP  
VPWM  
S
R
Q
Internal  
BIAS  
VDD  
2
VRESET  
UVLO  
Pattern  
Generator  
Soft-Start  
Comparator  
12V/8V  
Soft-Start  
VRESET  
Current-Limit  
Comparator  
Green  
Mode  
VLimit  
GND  
1
3
PWM  
Comparator  
6V  
Max.  
Duty  
Slope  
VPWM  
Compensation  
3R  
ZFB  
VIN  
4
FB  
1.13V/0.59V  
R
High/Low Line  
Compensation  
VLimit  
OLP  
Delay  
OLP  
4.6V  
OLP  
Comparator  
Figure 2.  
FSBH0170W / 0270W Internal Block Diagram  
HV  
5
Drain  
6,7,8  
OVP  
Auto-ReStart  
OLP  
Protection  
OTP  
HV  
Startup  
OVP  
OSC  
Debounce  
PWM  
Soft  
Driver  
VDD-OVP  
VPWM  
S
R
Q
Internal  
BIAS  
VDD  
2
VRESET  
UVLO  
Pattern  
Generator  
Soft-Start  
Comparator  
12V/8V  
Soft-Start  
VRESET  
Current-Limit  
Comparator  
Green  
Mode  
VLimit  
GND  
1
3
PWM  
Comparator  
6V  
Max.  
Duty  
Slope  
VPWM  
Compensation  
3R  
ZFB  
NC  
4
FB  
R
OLP  
Delay  
OLP  
4.6V  
OLP  
Comparator  
Figure 3.  
FSBH0F70WA Internal Block Diagram  
© 2011 Fairchild Semiconductor Corporation  
FSBH0F70WA/0170W/0270W • Rev. 1.0.3  
www.fairchildsemi.com  
3
Pin Configuration  
8
8
F Fairchild Logo  
Z Plant Code  
ZXYTT  
BH0F70A  
WTPM  
ZXYTT  
BH0170  
WTPM  
X 1-Digit Year Code  
Y 1-Digit Week Code  
TT 2-Digit Die-Run Code  
T Package Type (N:DIP)  
P Y: Green Package  
M Manufacture Flow Code  
1
8
1
ZXYTT  
BH0270  
WTPM  
1
Figure 4.  
Pin Configuration and Top Mark Information  
Pin Definitions  
Pin # Name  
Description  
1
GND  
Ground. SenseFET source terminal on primary side and internal controller ground.  
Power Supply. The internal protection circuit disables PWM output as long as VDD exceeds the  
OVP trigger point.  
2
VDD  
Feedback. The signal from the external compensation circuit is fed into this pin. The PWM duty  
cycle is determined in response to the signal on this pin and the internal current-sense signal.  
3
4
FB  
Line-Voltage Detection. The line-voltage detection is used for brownout protection with  
hysteresis and constant output power limit over universal AC input range.  
VIN  
NC  
HV  
No Connection for FSBH0F70WA  
5
6
7
8
Startup. For startup, this pin is pulled HIGH to the line input or bulk capacitor via resistors.  
Drain SenseFET Drain. High-voltage power SenseFET drain connection.  
Drain SenseFET Drain. High-voltage power SenseFET drain connection.  
Drain SenseFET Drain. High-voltage power SenseFET drain connection.  
© 2011 Fairchild Semiconductor Corporation  
FSBH0F70WA/0170W/0270W • Rev. 1.0.3  
www.fairchildsemi.com  
4
Absolute Maximum Ratings  
Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be  
operable above the recommended operating conditions and stressing the parts to these levels is not recommended.  
In addition, extended exposure to stresses above the recommended operating conditions may affect device reliability.  
The absolute maximum ratings are stress ratings only.  
Symbol  
Parameter  
Min.  
Max.  
Unit  
FSBH0F70WA  
FSBH0170W  
FSBH0270W  
FSBH0F70WA  
FSBH0170W  
FSBH0270W  
FSBH0F70WA  
FSBH0170W  
FSBH0270W  
VDRAIN Drain Pin Voltage(5,6)  
700  
V
1.5  
4.0  
8.0  
10  
IDM  
Drain Current Pulsed(7)  
A
EAS  
Single Pulsed Avalanche Energy(8)  
50  
mJ  
140  
30  
VDD  
VFB  
DC Supply Voltage  
V
V
FB Pin Input Voltage  
VIN Pin Input Voltage  
HVPin Input Voltage  
Power Dissipation (TA50°C)  
-0.3  
-0.3  
7.0  
7.0  
700  
V
IN  
V
VHV  
PD  
V
1.5  
80  
20  
W
ΘJA  
ψJT  
TJ  
Junction-to-Air Thermal Resistance  
Junction-to-Top Thermal Resistance(9)  
Operating Junction Temperature  
C/W  
C/W  
C  
Internally limited(10 )  
TSTG  
TL  
Storage Temperature Range  
-55  
+150  
+260  
C  
Lead Temperature (Wave Soldering or IR, 10 Seconds)  
C  
FSBH0F70WA  
FSBH0170W  
FSBH0270W  
FSBH0F70WA  
FSBH0170W  
FSBH0270W  
5.0  
5.0  
5.0  
2.0  
2.0  
2.0  
Human Body Model  
(All Pins Except HV Pn): JESD22-A114  
ESD  
kV  
Charged Device Model  
(All Pins Except HV Pin): JESD22-C101  
Notes:  
5. All voltage values, except differential voltages, are given with respect to the network ground terminal.  
6. Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device.  
7. Non-repetitive rating: pulse width is limited by maximum junction temperature.  
8. L = 51 mH,starting TJ = 25C.  
9. Measured on the package top surface.  
10. Internally Limited of TJ refers to TOTP  
Recommended Operating Conditions  
The Recommended Operating Conditions table defines the conditions for actual device operation. Recommended  
operating conditions are specified to ensure optimal performance to the datasheet specifications. Fairchild does not  
recommend exceeding them or designing to Absolute Maximum Ratings.  
Symbol  
Parameter  
Operating Ambient Temperature  
Min.  
Max.  
Unit  
TA  
-40  
+105  
°C  
© 2011 Fairchild Semiconductor Corporation  
FSBH0F70WA/0170W/0270W • Rev. 1.0.3  
www.fairchildsemi.com  
5
 
 
 
 
 
 
Electrical Characteristics  
VDD=15 V and TA=25C unless otherwise specified.  
Symbol  
SenseFET Section  
Drain-Source  
Parameter  
Condition  
Min. Typ. Max. Unit  
BVDSS  
ID=250 µA, VGS=0 V  
700  
V
Breakdown Voltage  
VDS=700 V, VGS=0 V  
50  
200  
Zero-Gate-Voltage  
Drain Current  
IDSS  
μA  
VDS=560 V, VGS=0 V, TC=125C  
FSBH0F70WA  
14.00 19.00  
Drain-Source On-  
RDS(ON)  
CISS  
COSS  
CRSS  
tD(ON)  
tR  
VGS=10 V, ID=0.5 A  
FSBH0170W  
FSBH0270W  
FSBH0F70WA  
FSBH0170W  
FSBH0270W  
FSBH0F70WA  
FSBH0170W  
FSBH0270W  
FSBH0F70WA  
FSBH0170W  
FSBH0270W  
FSBH0F70WA  
FSBH0170W  
FSBH0270W  
FSBH0F70WA  
FSBH0170W  
FSBH0270W  
FSBH0F70WA  
FSBH0170W  
FSBH0270W  
FSBH0F70WA  
FSBH0170W  
FSBH0270W  
8.80  
6.00  
162  
250  
550  
18  
11.00  
7.20  
211  
325  
715  
24  
Ω
State Resistance(12)  
VGS=0 V, VDS=25 V,  
f=1 MHz  
Input Capacitance  
Output Capacitance  
pF  
pF  
pF  
ns  
ns  
ns  
ns  
VGS=0 V, VDS=25 V,  
f=1 MHz  
25  
33  
38  
50  
3.8  
10  
5.7  
Reverse Transfer  
Capacitance  
VGS=0 V, VDS=25 V,  
f=1 MHz  
15  
17  
26  
9.5  
12.0  
20.0  
19  
29.0  
34.0  
50.0  
48  
Turn-On Delay  
Rise Time  
VDS=350 V, ID=1.0 A  
VDS=350 V, ID=1.0 A  
VDS=350 V, ID=1.0 A  
VDS=350 V, ID=1.0 A  
4
18  
15  
40  
33.0  
30.0  
55.0  
42  
76.0  
70.0  
120.0  
94  
tD(OFF)  
Turn-Off Delay  
Fall Time  
tF  
10  
30  
25  
60  
Continued on the following page…  
© 2011 Fairchild Semiconductor Corporation  
FSBH0F70WA/0170W/0270W • Rev. 1.0.3  
www.fairchildsemi.com  
6
Electrical Characteristics (Continued)  
VDD=15 V and TA=25C unless otherwise specified.  
Symbol  
Parameter  
Condition  
Min.  
Typ.  
Max.  
Unit  
Control Section  
VDD Section  
VDD-ON  
Start Threshold Voltage  
11  
7
12  
8
13  
9
V
V
VDD-OFF  
Minimum Operating Voltage  
FSBH0170W  
FSBH0270W  
VDD-ON 0.16 V  
30  
IDD-ST  
Startup Current  
µA  
FSBH0F70WA  
VDD-ON 0.16 V  
240  
3.0  
320  
3.5  
400  
4.0  
IDD-OP  
Operating Supply Current  
VDD=15 V, VFB=3 V  
mA  
mA  
VDD=12 V,  
VFB=1.6 V  
IDD-ZDC  
Operating Current for VFB<VFB-ZDC  
1.5  
2.5  
3.5  
IDD-OLP  
VTH-OLP  
VDD-OVP  
Internal Sink Current  
IDD-OLP Off Voltage  
VTH-OLP+0.1 V  
30  
5
70  
6
90  
7
µA  
V
VDD Over-Voltage Protection  
27  
75  
28  
130  
29  
200  
V
tD-VDD-OVP VDD Over-Voltage Protection Debounce Time  
µs  
HV Section  
HV120 VDC  
VDD=0 Vwith 10 µF  
,
IHV  
Maximum Current Drawn from HVPin  
Leakage Current after Startup  
1.5  
3.5  
1
5.0  
20  
mA  
µA  
HV=700 V,  
VDD=VDD-OFF+1 V  
IHV-LC  
Oscillator Section  
fOSC  
fOSC-G  
DMAX  
fDV  
Frequency in Nominal Mode  
Center Frequency  
94  
14  
100  
18  
106  
22  
kHz  
kHz  
%
Green-Mode Frequency  
Maximum Duty Cycle  
85  
Frequency Variation vs. VDD Deviation  
VDD=11 V to 22 V  
5
5
%
Frequency Variation vs. Temperature  
Deviation(11)  
fDT  
TA=-25 to 85C  
%
VIN Section (FSBH0170W & FSBH0270W)  
V
PWM Turn-On Threshold Voltage  
PWM Turn-Off Threshold Voltage  
PWM Turn-Off Debounce Time  
1.08  
0.50  
1.13  
0.55  
500  
1.18  
0.60  
V
V
IN-ON  
V
IN-OFF  
tIN-OFF  
ms  
Feedback Input Section  
AV  
ZFB  
FB Voltage to Current-Sense Attenuation  
1/4.5  
4
1/4.0  
1/3.5  
7
V/V  
kΩ  
V
Input Impedance  
VFB-OPEN  
Output High Voltage  
FB Pin Open  
5.5  
Continued on the following page…  
© 2011 Fairchild Semiconductor Corporation  
FSBH0F70WA/0170W/0270W • Rev. 1.0.3  
www.fairchildsemi.com  
7
Electrical Characteristics (Continued)  
VDD=15 V and TA=25C unless otherwise specified.  
Symbol  
VFB-N  
Parameter  
Green-Mode Entry FB Voltage  
Green-Mode Ending FB Voltage  
Zero Duty Cycle FB Voltage  
Condition  
Min.  
2.3  
Typ.  
Max.  
2.7  
Unit  
V
2.5  
2.0  
1.6  
5.4  
4.6  
56  
VFB-G  
1.9  
2.1  
V
VFB-ZDC  
V
FSBH0F70WA  
FSBH0x7W  
5.2  
4.4  
50  
5.6  
4.8  
59  
FB Open-Loop  
Trigger Level  
VFB-OLP  
V
tD-OLP  
FB Open-Loop Protection Delay  
ms  
Current-Sense Section(15)  
FSBH0F70WA  
FSBH0170W  
FSBH0270W  
V
Open  
0.63  
0.70  
0.90  
4.5  
0.73  
0.80  
1.00  
5.0  
0.83  
0.90  
1.10  
5.5  
IN  
ILIM  
Peak Current Limit  
V =1.2 V  
IN  
A
V =1.2 V  
IN  
tSS  
Constant Power Limit (FSBH0170W & FSBH0270W)  
Period During Soft-Start Time(11)  
ms  
VLMT1  
VLMT2  
Threshold Voltage 1 for Current Limit  
Threshold Voltage 2 for Current Limit  
V =1.2 V  
0.73  
0.56  
0.80  
0.63  
0.87  
0.70  
V
V
IN  
V =3.6 V  
IN  
Constant Power Limit (FSBH0F70WA)  
VLMT  
Threshold Voltage for Current Limit  
0.97  
1.00  
1.03  
V
Over-Temperature Protection Section (OTP)  
TOTP  
Protection Junction Temperature(11,13)  
Restart Junction Temperature(11,14)  
+135  
+142  
+150  
°C  
°C  
TRESTART  
TOTP-25  
Notes:  
11. These parameters, although guaranteed, are not 100% tested in production.  
12. Pulse test: pulse width ≤ 300 µs, duty ≤ 2%.  
13. When activated, the output is disabled and the latch is turned off.  
14. The threshold temperature for enabling the output again and resetting the latch after over-temperature protection  
has been activated.  
15. These parameters, although guaranteed, are tested in wafer process.  
PWM Frequency  
fOSC  
fOSC-G  
VFB-ZDC  
VFB-G  
VFB-N  
VFB  
Figure 5.  
VFB vs. PWM Frequency  
© 2011 Fairchild Semiconductor Corporation  
FSBH0F70WA/0170W/0270W • Rev. 1.0.3  
www.fairchildsemi.com  
8
 
 
 
 
Typical Characteristics (Continued)  
14  
12  
10  
8
3.02  
3.00  
2.98  
2.96  
2.94  
2.92  
2.90  
2.88  
2.86  
6
4
2
0
-40  
-25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95 110 125  
Temperature(°C)  
Temperature(°C)  
Figure 6.  
IDD-ST vs. Temperature  
Figure 7.  
IDD-OP vs. Temperature  
12.4  
8.3  
12.2  
12.0  
11.8  
11.6  
11.4  
11.2  
8.2  
8.1  
8.0  
7.9  
7.8  
7.7  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature(°C)  
Temperature(°C)  
Figure 8.  
VDD-ON vs. Temperature  
Figure 9.  
VDD-OFF vs. Temperature  
6.6  
6.4  
6.2  
6.0  
5.8  
5.6  
5.4  
5.2  
5.0  
28.42  
28.41  
28.40  
28.39  
28.38  
28.37  
28.36  
28.35  
-40  
-25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature(°C)  
Temperature(°C)  
Figure 10. VTH-OLP vs. Temperature  
Figure 11. VDD-OVP vs. Temperature  
4.0  
3.5  
3.0  
2.5  
2.0  
1.5  
1.0  
7
6
5
4
3
2
1
0
-40 -25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40  
-25  
-10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature(°C)  
Temperature(°C)  
Figure 12. IHV vs. Temperature  
Figure 13. IHV-LC vs. Temperature  
© 2011 Fairchild Semiconductor Corporation  
FSBH0F70WA/0170W/0270W • Rev. 1.0.3  
www.fairchildsemi.com  
9
Typical Characteristics (Continued)  
101.5  
101.0  
100.5  
100.0  
99.5  
19.2  
19.1  
19.0  
18.9  
18.8  
18.7  
18.6  
99.0  
98.5  
98.0  
97.5  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40  
-25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
Temperature(°C)  
Temperature(°C)  
Figure 14. fOSC vs. Temperature  
Figure 15. fOSC-G vs. Temperature  
0.64  
0.63  
0.62  
0.61  
0.60  
0.59  
0.58  
1.17  
1.16  
1.15  
1.14  
1.13  
1.12  
1.11  
-40  
-25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40  
-25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
110 125  
110 125  
Temperature(°C)  
Temperature(°C)  
Figure 16. VIN-OFF vs. Temperature  
Figure 17. VIN-ON vs. Temperature  
2.56  
2.54  
2.52  
2.50  
2.48  
2.46  
2.44  
2.42  
2.60  
2.55  
2.50  
2.45  
2.40  
2.35  
2.30  
-40  
-25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25  
-10  
5
20  
35  
50  
65  
80  
95  
Temperature(°C)  
Temperature(°C)  
Figure 18. IDD-ZDC vs. Temperature  
Figure 19. VFB-N vs. Temperature  
2.20  
2.15  
2.10  
2.05  
2.00  
1.95  
1.90  
1.85  
1.80  
1.800  
1.700  
1.600  
1.500  
1.400  
1.300  
1.200  
-40  
-25 -10  
5
20  
35  
50  
65  
80  
95  
110 125  
-40 -25 -10  
5
20  
35  
50  
65  
80  
95  
Temperature(°C)  
Temperature(°C)  
Figure 20. VFB-G vs. Temperature  
Figure 21. VFB-ZDC vs. Temperature  
© 2011 Fairchild Semiconductor Corporation  
FSBH0F70WA/0170W/0270W • Rev. 1.0.3  
www.fairchildsemi.com  
10  
Functional Description  
Startup Operation  
FSBH0170W/0270W  
The HV pin is connected to bulk voltage through an  
external resistor, RHV, as shown in Figure 22. When AC  
voltage is applied to the power system, an internal HV  
startup circuit provides a high current (around 3.5 mA)  
to charge an external VDD capacitor until VDD voltage  
exceeds the turn-on threshold voltage (VDD-ON). For  
lower power consumption, the HV startup circuit shuts  
down during normal operation. The external VDD  
capacitor and auxiliary winding maintain the VDD voltage  
and provide operating current to controller.  
RA  
RB  
RC  
1.1V/0.6V  
VIN  
Brown-In/Out  
C
Figure 24. Brown-In/Out Function on VIN Pin  
RHV  
Once the VIN pin voltage is lower than 0.6 V and lasts  
for 500 ms, the PWM gate is disabled to protect the  
system from over current. FSBH0170W / 0270W starts  
2
5
HV  
VDD  
up as V increases above 1.1 V. Because the divider  
IN  
CDD  
NA  
resistors of the VIN pin are connected behind the  
bridge, the ratio calculations for brownout in PFC and  
non-PFC system are different, as shown in Figure 25.  
The formulas are provided in the following equations:  
Brownout with PFC:  
FSBH0x70W/WA  
AC line  
Figure 22. Startup Circuit  
RC  
2
2VAC _OUT  
0.6  
Slope Compensation  
(1)  
(2)  
(3)  
RA RB RC  
The FSBH-series is designed for flyback power  
converters. The peak-current-mode control is used to  
optimize system performance. Slope compensation is  
added to reduce current loop gain and improve power  
system stability. The FSBH-series has a built-in,  
synchronized, positive slope for each switching cycle.  
Brownout with non-PFC:  
RC  
2VAC _OUT 0.6  
RA RB RC  
Brown-in level is determined by:  
Soft-Start  
RA RB RC  
1.1  
2
VAC _IN  
The FSBH-series has an internal soft-start circuit that  
reduces the SenseFET switching current during power  
system startup. The characteristic curve of soft-start  
time versus VLMT level is shown in Figure 23. The VLMT  
level rises in six steps. By doing so, the power system  
can smoothly build up the rated output voltage and  
effectively reduce voltage stress on the PWM switch  
and output diode.  
RC  
PFC Stops  
PFC Runs  
AC Input  
VLMT  
0.89VLMT  
0.79VLMT  
0.68VLMT  
VIN  
0.58VLMT  
0.26VLMT  
Figure 25. VIN Level According to PFC Operation  
Brown-In Function of FSBH0F70WA  
1ms  
2ms  
3ms  
4ms  
5ms  
The VIN pin functions are disabled from FSBH0F70WA  
which still exist brown-in protection in VDD pin. There is  
a discharge current internal from VDD to ground during  
startup. The HV source current must be larger than IDD-  
ST to charge the capacitor of VDD. The brown-in level can  
be determined by RHV according to the equation:  
Figure 23. Soft-Start Function  
Brown-In/Out Function  
FSBH0170W/0270W has a built-in internal brown-in/out  
protection comparator monitoring voltage of the VIN pin.  
Figure 24 shows a resistive divider with low-pass  
filtering for line-voltage detection on the VIN pin.  
2VAC 12  
RHV  
(4)  
IDDST  
© 2011 Fairchild Semiconductor Corporation  
FSBH0F70WA/0170W/0270W • Rev. 1.0.3  
www.fairchildsemi.com  
11  
 
 
 
 
VLMT  
0.80  
Green-Mode Operation  
The FSBH-series uses feedback voltage (VFB) as an  
indicator of the output load and modulates the PWM  
frequency, as shown in Figure 26, such that the  
switching frequency decreases as load decreases. In  
heavy-load conditions, the switching frequency is  
100 kHz. Once VFB decreases below VFB-N (2.5 V), the  
PWM frequency starts to linearly decrease from  
100 kHz to 18 kHz to reduce switching losses. As VFB  
decreases below VFB-G (2.0 V), the switching frequency is  
fixed at 18 kHz and the FSBH-series enters “deep” green  
mode to reduce the standby power consumption.  
0.63  
0.5 1.2  
3.6 4.0  
VIN  
Figure 28. Constant Power Control  
Frequency  
PWM  
Protections  
Frequency  
The FSBH-series provides full protection functions to  
prevent the power supply and the load from being  
damaged. The protection features include:  
100kHz  
Open-Loop / Overload Protection (OLP)  
18kHz  
When the upper branch of the voltage divider for the  
shunt regulator (KA431 shown) is broken, as shown in  
Figure 29, or over current or output short occurs, there  
is no current flowing through the opto-coupler transistor,  
which pulls the feedback voltage up to 6 V.  
VFB-ZDC  
VFB-G  
VFB-N  
VFB  
Figure 26. PWM Frequency  
As VFB decreases below VFB-ZDC (1.6 V), the FSBH-  
series enters burst-mode operation. When VFB drops  
below VFB-ZDC, FSBH-series stops switching and the  
output voltage starts to drop, which causes the feedback  
voltage to rise. Once VFB rises above VFB-ZDC, switching  
resumes. Burst mode alternately enables and disables  
switching, thereby reducing switching loss to improve  
power saving, as shown in Figure 27.  
When feedback voltage is above 4.6 V for longer than  
56 ms, OLP is triggered. This protection is also triggered  
when the SMPS output drops below the nominal value  
longer than 56 ms due to the overload condition.  
VDD Over-Voltage Protection (OVP)  
VDD over-voltage protection prevents IC damage caused  
by over voltage on the VDD pin. The OVP is triggered  
when VDD voltage reaches 28 V. Debounce time (typically  
130 µs) prevents false trigger by switching noise.  
VO  
Over-Temperature Protection (OTP)  
The SenseFET and the control IC are integrated,  
making it easier to detect the temperature of the  
SenseFET. As the temperature exceeds approximately  
142°C, thermal shutdown is activated.  
VFB  
VFB.ZDC  
(1.6V)  
IDrain  
6V  
Switching  
Disabled  
Switching  
Disabled  
VFB  
Vo  
PWM  
2
3R  
R
Figure 27. Burst-Mode Operation  
H/L Line Over-Power Compensation  
KA431  
To limit the output power of the converter constantly,  
high/low line over-power compensation is included.  
Sensing the converter input voltage through the VIN pin,  
the high/low line compensation function generates a  
relative peak-current-limit threshold voltage for constant  
power control, as shown in Figure 28.  
56ms  
OLP  
Feedback Open  
Loop  
4.6V  
VFB  
6V  
VFB-OLP (4.6V)  
OLP Triggers  
OLP Shutdown Delay Time  
56ms  
Figure 29. OLP Operation  
© 2011 Fairchild Semiconductor Corporation  
FSBH0F70WA/0170W/0270W • Rev. 1.0.3  
www.fairchildsemi.com  
12  
 
 
 
 
Physical Dimensions  
0.400 10.160  
0.355 9.017  
[
]
8
5
PIN 1 INDICATOR  
0.280 7.112  
0.240 6.096  
[
]
1
4
HALF LEAD 4X  
0.005 [0.126]  
FULL LEAD 4X  
0.005 [0.126] MIN  
0.325 8.263  
0.300 7.628  
[
]
0.195 4.965  
MAX 0.210 [5.334]  
0.115  
[
2.933  
]
SEATING PLANE  
0.150 3.811  
0.115  
[
2.922  
]
C
MIN 0.015 [0.381]  
0.100 [2.540]  
0.300 [7.618]  
0.045 1.144  
0.030 0.763  
4X  
[
]
0.430 [10.922]  
MAX  
0.022 0.562  
0.014 0.358  
[
]
0.070 1.778  
0.045 1.143  
4X  
[
]
0.10  
C
NOTES:  
A) THIS PACKAGE CONFORMS TO  
JEDEC MS-001 VARIATION BA  
B) CONTROLING DIMS ARE IN INCHES  
C) DIMENSIONS ARE EXCLUSIVE OF BURRS,  
MOLD FLASH, AND TIE BAR EXTRUSIONS.  
D) DIMENSIONS AND TOLERANCES PER ASME  
Y14.5M -1982  
E) DRAWING FILENAME AND REVSION: MKT-N08MREV1.  
Figure 30.  
8-Pin Dual In-Line Package (DIP)  
Package drawings are provided as a service to customers considering Fairchild components. Drawings maychange in any manner  
without notice. Please note the revision and/or date on the drawing and contact a Fairchild Semiconductor representative to verify or  
obtain the most recent revision. Package specifications do not expand the terms of Fairchild’s worldwide terms and conditions, specificallythe  
warrantytherein, whichcovers Fairchild products.  
Always visit Fairchild Semiconductor’s online packaging area for the mostrecent package drawings:  
http://www.fairchildsemi.com/packaging/.  
© 2011 Fairchild Semiconductor Corporation  
FSBH0F70WA/0170W/0270W • Rev. 1.0.3  
www.fairchildsemi.com  
13  
© 2011 Fairchild Semiconductor Corporation  
www.fairchildsemi.com  
FSBH0F70WA/0170W/0270W • Rev. 1.0.3  
14  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
© Semiconductor Components Industries, LLC  
www.onsemi.com  

相关型号:

FSBM10SH60

SPM (Smart Power Module)
FAIRCHILD

FSBM10SH60A

SPM (Smart Power Module)
FAIRCHILD

FSBM10SM60A

SPMTM (Smart Power Module)
FAIRCHILD

FSBM15SH60

SPMTM (Smart Power Module)
FAIRCHILD

FSBM15SH60A

SPM (Smart Power Module)
FAIRCHILD

FSBM15SL60

SPMTM (Smart Power Module)
FAIRCHILD

FSBM15SM60A

SPM (Smart Power Module)
FAIRCHILD

FSBM20SH60A

SPM (Smart Power Module)
FAIRCHILD

FSBM20SL60

SPMTM (Smart Power Module)
FAIRCHILD

FSBM20SM60A

SPM (Smart Power Module)
FAIRCHILD

FSBM30SH60

SPMTM (Smart Power Module)
FAIRCHILD

FSBM30SH60A

SPMTM (Smart Power Module)
FAIRCHILD