FSCQ0965RTYDTU [ONSEMI]

用于 110W 离线反激转换器的 650V 集成电源开关;
FSCQ0965RTYDTU
型号: FSCQ0965RTYDTU
厂家: ONSEMI    ONSEMI
描述:

用于 110W 离线反激转换器的 650V 集成电源开关

开关 电源开关 转换器
文件: 总33页 (文件大小:1968K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
DATA SHEET  
www.onsemi.com  
Green Mode Fairchild  
Power Switch (FPSt)  
FSCQ Series  
FSCQ0765RT / FSCQ0965RT /  
FSCQ1265RT / FSCQ1565RT  
TO2205  
CASE 340BH  
MARKING DIAGRAM  
Description  
A QuasiResonant Converter (QRC) typically shows lower EMI  
and higher power conversion efficiency compared to a conventional  
hardswitched converter with a fixed switching frequency. Therefore,  
a QRC is well suited for noisesensitive applications, such as color TV  
and audio. Each product in the FSCQ series contains an integrated  
$Y&Z&3&K  
CQxx65RT  
®
Pulse Width Modulation (PWM) controller and a SENSEFET . This  
series is specifically designed for quasiresonant offline Switch  
Mode Power Supplies (SMPS) with minimal external components.  
The PWM controller includes an integrated fixed frequency oscillator,  
undervoltage lockout, leadingedge blanking (LEB), optimized gate  
driver, internal softstart, temperaturecompensated precise current  
sources for loop compensation, and selfprotection circuitry.  
Compared with a discrete MOSFET and PWM controller solution,  
the FSCQ series can reduce total cost, component count, size,  
and weight; while increasing efficiency, productivity, and system  
reliability. These devices provide a basic platform for costeffective  
designs of quasiresonant switching flyback converters.  
$Y  
&Z  
&3  
&K  
= onsemi Logo  
= Assembly Plant Code  
= Date Code (Year & Week)  
= Lot Code  
CQXX65RT = Specific Device Code  
XX  
= 07, 09, 12, 15  
Features  
ORDERING INFORMATION  
Optimized for QuasiResonant Converter (QRC)  
Advanced BurstMode Operation for under 1 W Standby Power  
Consumption  
See detailed ordering and shipping information on page 31 of  
this data sheet.  
PulsebyPulse Current Limit  
Overload Protection (OLP) – Auto Restart  
OverVoltage Protection (OVP) – Auto Restart  
Abnormal OverCurrent Protection (AOCP) – Latch  
Internal Thermal Shutdown (TSD) – Latch  
UnderVoltage Lockout (UVLO) with Hysteresis  
Low Startup Current (Typical: 25 mA)  
Internal High Voltage SENSEFET  
Builtin SoftStart (20 ms)  
Extended QuasiResonant Switching  
This is a PbFree and HalidFree Device  
Applications  
CTV  
Audio Amplifier  
Related Resources  
https://www.onsemi.com/pub/Collateral/AN4146.pdf  
https://www.onsemi.com/pub/Collateral/AN4140.pdf  
© Semiconductor Components Industries, LLC, 2006  
1
Publication Order Number:  
September, 2021 Rev. 2  
FSCQ1565RT/D  
FSCQ Series  
V
O
AC  
IN  
Drain  
GND  
FSCQSeries  
PWM  
Sync  
V
CC  
V
FB  
Figure 1. Typical Flyback Application  
Table 1. MAXIMUM OUTPUT POWER (Note 1)  
230 V + 15% (Note 2)  
85265 V  
AC  
AC  
Product  
Open Frame (Note 3)  
100 W  
Open Frame (Note 3)  
FSCQ0765RT  
FSCQ0965RT  
FSCQ1265RT  
FSCQ1565RT  
85 W  
110 W  
140 W  
170 W  
130 W  
170 W  
210 W  
1. The junction temperature can limit the maximum output power.  
2. 230 V or 100/115 V with doubler.  
AC  
AC  
3. Maximum practical continuous power in an open frame design at 50°C ambient.  
www.onsemi.com  
2
 
FSCQ Series  
Internal Block Diagram  
Sync  
5
Vcc  
3
Drain  
1
+
QuasiResonant  
(QR) Switching  
Controller  
+
fs  
Threshold  
9 V/15 V  
Soft Start  
4.6 V/2.6 V: Normal QR  
3.0 V/1.8 V: Extended QR  
Vcc good  
Auxiliary  
Burst Mode  
Controller  
OSC  
Vref  
Main Bias  
VBurst  
Normal Operation  
Burst Switching  
Normal  
Internal  
Bias  
Vref  
IBFB  
Vref  
IFB  
Vref  
IB  
Operation  
Vcc  
Idelay  
PWM  
VFB  
S
R
Q
Q
4
2.5 R  
Gate  
Driver  
R
LEB  
600 ns  
VSD  
Sync  
S
R
Q
Q
AOCP  
Q
Q
S
R
Vovp  
Vcc good  
2
GND  
(Vcc = 9 V)  
TSD  
Vocp  
Power Off Reset (Vcc = 6 V)  
Figure 2. Functional Block Diagram  
www.onsemi.com  
3
FSCQ Series  
Pin Configuration  
SYNC  
VFB  
VCC  
GND  
5
4
3
2
DRAIN  
1
Figure 3. Pin Assignments (Top View)  
PIN DESCRIPTION  
Pin No.  
Symbol  
Description  
This pin is the highvoltage power SENSEFET drain connection.  
This pin is the control ground and the SENSEFET source.  
1
2
3
DRAIN  
GND  
VCC  
This pin is the positive supply input. This pin provides internal operating current for both startup  
and steadystate operation.  
4
VFB  
This pin is internally connected to the inverting input of the PWM comparator. The collector  
of an optocoupler is typically tied to this pin. For stable operation, a capacitor should be placed  
between this pin and GND. If the voltage of this pin reaches 7.5 V, the overload protection  
triggers, which results in the FPS] shutting down.  
5
SYNC  
This pin is internally connected to the sync detect comparator for quasiresonant switching. In  
normal quasiresonant operation, the threshold of the sync comparator is 4.6 V / 2.6 V. Whereas,  
the sync threshold is changed to 3.0 V / 1.8 V in an extended quasiresonant operation.  
ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise specified)  
A
Parameter  
Drain Pin Voltage  
Symbol  
Value  
650  
Unit  
V
V
DS  
V
CC  
Supply Voltage  
20  
V
Analog Input Voltage Range  
V
sync  
0.3 to 13  
V
V
0.3 to V  
15.2  
16.4  
21.2  
26.4  
3.8  
FB  
CC  
Drain Current Pulsed (Note 4)  
FSCQ0765RT  
I
A
DM  
FSCQ0965RT  
FSCQ1265RT  
FSCQ1565RT  
FSCQ0765RT  
FSCQ0965RT  
FSCQ1265RT  
FSCQ1565RT  
FSCQ0765RT  
FSCQ0965RT  
FSCQ1265RT  
FSCQ1565RT  
FSCQ0765RT  
FSCQ0965RT  
FSCQ1265RT  
FSCQ1565RT  
Continuous Drain Current (T = 25°C)  
C
I
A
C
D
(rms)  
(rms)  
(rms)  
(T : Case Back Surface Temperature)  
4.1  
5.3  
6.6  
Continuous Drain Current* (T = 25°C)  
I *  
7.0  
A
A
DL  
D
(T : Case Back Surface Temperature)  
DL  
7.6  
11.0  
13.3  
2.4  
Continuous Drain Current (T = 100°C)  
I
D
C
2.6  
3.4  
4.4  
www.onsemi.com  
4
FSCQ Series  
ABSOLUTE MAXIMUM RATINGS (T = 25°C unless otherwise specified) (continued)  
A
Parameter  
Symbol  
Value  
570  
Unit  
SinglePulsed Avalanche Energy (Note 5)  
FSCQ0765RT  
FSCQ0965RT  
FSCQ1265RT  
FSCQ1565RT  
FSCQ0765RT  
FSCQ0965RT  
FSCQ1265RT  
FSCQ1565RT  
E
AS  
mJ  
630  
950  
1050  
45  
Total Power Dissipation (T = 25°C with Infinite Heat Sink)  
P
D
W
C
49  
50  
75  
Operating Junction Temperature  
Operating Ambient Temperature  
Storage Temperature Range  
T
150  
°C  
°C  
°C  
kV  
V
J
T
A
25 to +85  
55 to +150  
2.0  
T
STG  
Human Body Model (All Pins Except V  
)
(GND V = 1.7 kV)  
ESD  
FB  
FB  
Machine Model (All Pins Except V  
)
(GND V = 170 V)  
300  
FB  
FB  
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
4. Repetitive rating: pulse width limited by maximum junction temperature.  
5. L = 15 mH, starting T = 25°C. These parameters, although guaranteed by design, are not tested in production.  
J
THERMAL CHARACTERISTICS (T = 25°C unless otherwise specified)  
A
Characteristic  
Characteristic  
FSCQ0765RT  
FSCQ0965RT  
FSCQ1265RT  
FSCQ1565RT  
Symbol  
Value  
2.60  
2.55  
2.50  
2.00  
Unit  
Junctionto Case Thermal Impedance  
J
°C/W  
C
www.onsemi.com  
5
 
FSCQ Series  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise specified)  
A
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
SENSEFET PART  
BV  
DrainSource Breakdown Voltage  
Zero Gate Voltage Drain Current  
DrainSource OnState Resistance  
V
= 0 V, I = 250 mA  
650  
250  
1.60  
1.20  
0.90  
0.70  
V
mA  
W
DSS  
GS  
D
I
V
DS  
= 650 V, V = 0 V  
DSS  
GS  
R
FSCQ0765RT  
FSCQ0965RT  
FSCQ1265RT  
FSCQ1565RT  
FSCQ0765RT  
FSCQ0965RT  
FSCQ1265RT  
FSCQ1565RT  
FSCQ0765RT  
FSCQ0965RT  
FSCQ1265RT  
FSCQ1565RT  
V
V
V
V
= 10 V, I = 1 A  
1.40  
1.00  
0.75  
0.53  
1415  
1750  
2400  
3050  
100  
130  
175  
220  
DS(ON)  
GS  
GS  
GS  
GS  
D
= 10 V, I = 1 A  
D
= 10 V, I = 1 A  
D
= 10 V, I = 1 A  
D
C
Input Capacitance  
Output Capacitance  
V
V
= 0 V, V = 25 V,  
pF  
pF  
ISS  
GS  
DS  
f = 1 MHz  
C
= 0 V, V = 25 V,  
OSS  
GS  
DS  
f = 1 MHz  
CONTROL SECTION  
f
Switching Frequency  
V
= 5 V, V = 18 V  
18  
0
20  
5
22  
10  
0.80  
98  
kHz  
%
OSC  
FB  
CC  
Df  
Switching Frequency Variation (Note 7)  
Feedback Source Current  
Maximum Duty Cycle  
25°C T 85°C  
A
OSC  
I
FB  
V
FB  
= 0.8 V, V = 18 V  
0.50  
92  
0.65  
95  
0
mA  
%
CC  
D
V
= 5 V, V = 18 V  
CC  
MAX  
FB  
FB  
D
Minimum Duty Cycle  
V
= 0 V, V = 18 V  
%
MIN  
CC  
V
UVLO Threshold Voltage  
V = 1 V  
FB  
14  
8
15  
9
16  
10  
22  
V
START  
V
STOP  
t
SS  
SoftStart Time (Note 6)  
18  
20  
ms  
BURST MODE SECTION  
V
Burst Mode Enable Feedback Voltage  
Burst Mode Feedback Source Current  
Burst Mode Switching Time  
0.25  
60  
0.40  
100  
1.4  
0.55  
140  
1.6  
V
BEN  
BFB  
I
V
= 0 V  
mA  
ms  
ms  
FB  
t
V
= 0.9 V, Duty = 50%  
1.2  
1.2  
BS  
BH  
FB  
t
Burst Mode Hold Time  
V
= 0.9 V 0 V  
1.4  
1.6  
FB  
PROTECTION SECTION  
V
Shutdown Feedback Voltage  
Shutdown Delay Current  
V
= 18 V  
7.0  
4
7.5  
5
8.0  
6
V
mA  
V
SD  
DELAY  
CC  
I
V
= 5 V, V = 18 V  
FB CC  
V
OVP  
V
OCL  
OverVoltage Protection  
V
= 3 V  
11  
12  
1.0  
13  
1.1  
FB  
OverCurrent Latch Voltage (Note 6)  
Thermal Shutdown Temperature (Note 7)  
V
CC  
= 18 V  
0.9  
140  
V
TSD  
SYNC SECTION  
°C  
V
Sync Threshold in Normal QR (H)  
Sync Threshold in Normal QR (L)  
Sync Threshold in Extended QR (H)  
Sync Threshold in Extended QR (L)  
Extended QR Enable Frequency  
Extended QR Disable Frequency  
V
CC  
= 18 V, V = 5 V  
4.2  
2.3  
2.7  
1.6  
4.6  
2.6  
3.0  
1.8  
90  
5.0  
2.9  
3.3  
2.0  
V
V
SH1  
FB  
V
SL1  
SH2  
V
V
V
V
SL2  
f
kHz  
kHz  
SYH  
f
45  
SYL  
www.onsemi.com  
6
FSCQ Series  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise specified) (continued)  
A
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
TOTAL DEVICE SECTION  
I
Operating Supply Current in Normal  
Operation (Note 8)  
FSCQ0765RT  
FSCQ0965RT  
FSCQ1265RT  
FSCQ1565RT  
V
= 5 V  
4
6
6
8
mA  
OP  
FB  
6
8
7
9
I
Operating Supply Current in Burst Mode  
(NonSwitching) (Note 8)  
0.25  
0.50  
mA  
OB  
V
FB  
= GND  
I
Startup Current  
V
= V 0.1 V  
START  
25  
50  
50  
mA  
mA  
START  
CC  
I
Sustain Latch Current (Note 6)  
V
= V 0.1 V  
STOP  
100  
SN  
CC  
CURRENT SENSE SECTION  
I
Maximum Current Limit (Note 9)  
FSCQ0765RT  
FSCQ0965RT  
FSCQ1265RT  
FSCQ1565RT  
FSCQ0765RT  
FSCQ0965RT  
FSCQ1265RT  
FSCQ1565RT  
V
= 18 V, V = 5 V  
4.40  
5.28  
6.16  
7.04  
0.65  
0.60  
0.80  
5.00  
6.00  
7.00  
8.00  
0.90  
0.90  
1.20  
1.00  
5.60  
6.72  
7.84  
8.96  
1.15  
1.20  
1.60  
A
LIM  
CC  
FB  
I
Burst Peak Current  
V
= 18 V, V = Pulse  
A
BUR(pk)  
CC FB  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
6. These parameters, although guaranteed, are tested only in wafer test process.  
7. These parameters, although guaranteed by design, are not tested in production.  
8. This parameter is the current flowing in the control IC.  
9. These parameters indicate inductor current.  
10.These parameters, although guaranteed, are tested only in wafer test process.  
www.onsemi.com  
7
 
FSCQ Series  
TYPICAL PERFORMANCE CHARACTERISTICS  
Figure 4. Operating Supply Current  
Figure 5. Burst Mode Supply Current  
(NonSwitching)  
Figure 7. Start Threshold Voltage  
Figure 6. Startup Current  
Figure 8. Stop Threshold Voltage  
Figure 9. Initial Frequency  
www.onsemi.com  
8
FSCQ Series  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Figure 10. Maximum Duty Cycle  
Figure 11. OverVoltage Protection  
Figure 13. Shutdown Feedback Voltage  
Figure 12. Shutdown Delay Current  
Figure 14. Feedback Source Current  
Figure 15. Burst Mode Feedback Source Current  
www.onsemi.com  
9
FSCQ Series  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Figure 16. Feedback Offset Voltage  
Figure 17. Burst Mode Enable Feedback Voltage  
Figure 19. Sync. Threshold in Normal QR(L)  
Figure 18. Sync. Threshold in Normal QR(H)  
Figure 20. Sync. Threshold in Extended QR(H)  
Figure 21. Sync. Threshold in Extended QR(L)  
www.onsemi.com  
10  
FSCQ Series  
TYPICAL PERFORMANCE CHARACTERISTICS (continued)  
Figure 23. Extended QR Disable Frequency  
Figure 22. Extended QR Enable Frequency  
Figure 24. PulsebyPulse Current Limit  
www.onsemi.com  
11  
FSCQ Series  
Functional Description  
The minimum average of the current supplied from the  
AC is given by:  
Startup  
MIN  
Ǹ
2 @ VAC  
VSTART  
Figure 25 shows the typical startup circuit and the  
transformer auxiliary winding for the FSCQ series. Before  
the FSCQ series begins switching, it consumes only startup  
current (typically 25 mA). The current supplied from the AC  
1
AVG  
ISUP  
+
@
ǒ
Ǔ
(eq. 1)  
p
2
RSTR  
min  
where V  
is the minimum input voltage, V  
is  
ac  
START  
line charges the external capacitor (C ) that is connected to  
the FSCQ series’ start voltage (15 V), and R is  
a1  
str  
the V pin. When V reaches the start voltage of 15 V  
the startup resistor. The startup resistor should be  
CC  
CC  
avg  
(V ), the FSCQ series begins switching and its current  
START  
chosen so that I  
is larger than the maximum  
sup  
consumption increases to IOP. Then, the FSCQ series  
continues normal switching operation and the power  
required is supplied from the transformer auxiliary winding,  
startup current (50 mA).  
Once the resistor value is determined, the maximum loss in  
the startup resistor is obtained as:  
unless V drops below the stop voltage of 9 V (V  
guarantee stable operation of the control IC, V  
). To  
has  
CC  
STOP  
2
MAX  
2
MAX  
Ǹ
ǒV  
Ǔ
) V  
CC  
2
2 @ V  
@ V  
START AC  
ȡ
ȣ
AC  
START  
1
Loss +  
@
*
undervoltage lockout (UVLO) with 6 V hysteresis.  
Figure 26 shows the relationship between the operating  
supply current of the FSCQ series and the supply voltage  
ȧ
ȧ
p
R
2
STR  
Ȣ
Ȥ
(eq. 2)  
(V ).  
CC  
max  
where V  
is the maximum input voltage.  
ac  
The startup resistor should have properly rated dissipation  
wattage.  
CDC  
Synchronization  
The FSCQ series employs a quasiresonant switching  
technique to minimize the switching noise and loss. In this  
technique, a capacitor (Cr) is added between the MOSFET  
drain and the source, as shown in Figure 27. The basic  
waveforms of the quasiresonant converter are shown in  
Figure 28. The external capacitor lowers the rising slope of  
the drain voltage to reduce the EMI caused when the  
MOSFET turns off. To minimize the MOSFET’s switching  
loss, the MOSFET should be turned on when the drain  
voltage reaches its minimum value, as shown in Figure 28.  
1N4007  
Isup  
AC line max  
(V min Vac  
)
ac  
Rstr  
Da  
VCC  
FSCQSeries  
Ca2  
Ca1  
+
VDC  
Np  
Lm  
CDC  
Ns  
Figure 25. Startup Circuit  
Vo  
Drain  
ICC  
IOP Value  
+
Vds  
Cr  
Ids  
FSCQ0565RT: 4 mA (Typ.)  
FSCQ0765RT: 4 mA (Typ.)  
FSCQ0965RT: 6 mA (Typ.)  
FSCQ1265RT: 6 mA (Typ.)  
FSCQ1565RT: 7 mA (Typ.)  
Sync  
GND  
Da  
Vco  
Vcc  
Rcc  
Ca2  
Na  
IOP  
Ca1  
DSY  
Power Up  
RSY1  
Power Down  
ISTART  
VCC  
CSY  
RSY2  
VSTOP = 9 V VSTART = 15 V  
VZ  
Figure 26. Relationship between Operating Supply  
Current and VCC Voltage  
Figure 27. Synchronization Circuit  
www.onsemi.com  
12  
 
FSCQ Series  
MOSFET  
On  
Vds  
MOSFET  
Off  
Vgs  
Vds  
2VRO  
tQ  
VRO  
VRO  
Vsync  
V
VDC  
Vrh (4.6 V)  
Vrf (2.6 V)  
tR  
Ids  
Ipk  
MOSFET Gate  
ON  
Figure 28. QuasiResonant Operation Waveforms  
ON  
The minimum drain voltage is indirectly detected by  
Figure 29. Normal QR Operation Waveforms  
monitoring the V winding voltage, as shown in Figure 27  
CC  
and Figure 29. Choose voltage dividers, R  
and R , so  
SY1  
SY2  
that the peak voltage of the sync signal (V  
) is lower than  
sypk  
Switching  
Frequency  
the OVP voltage (12 V) to avoid triggering OVP in normal  
operation. It is typical to set V to be lower than OVP  
sypk  
Extended QR  
Operation  
voltage by 3–4 V. To detect the optimum time to turn on  
MOSFET, the sync capacitor (CSY) should be determined  
so that t is the same with t , as shown in Figure 29. The t  
R
Q
R
Normal QR  
Operation  
90 kHz  
and t are given as:  
Q
VCO  
2.6  
RSY2  
@ In ǒ  
Ǔ
tR + RSY2 @ CSY  
@
(eq. 3)  
RSY1 ) RSY2  
Ǹ
tQ + p @ Lm @ Ceo  
(eq. 4)  
(eq. 5)  
@ ǒV  
Ǔ
O ) VFO  
Na  
VCO  
+
* VFa  
Ns  
Output Power  
Figure 30. Extended QuasiResonant Operation  
where:  
L
is the primary side inductance of the  
transformer,  
m
In general, the QRC has a limitation in a wide load range  
application, since the switching frequency increases as the  
output load decreases, resulting in a severe switching loss in  
the light load condition. To overcome this limitation, the  
FSCQ series employs an extended quasiresonant switching  
operation. Figure 30 shows the mode change between  
normal and extended quasiresonant operations. In the  
normal quasiresonant operation, the FSCQ series enters  
into the extended quasiresonant operation when the  
switching frequency exceeds 90 kHz as the load reduces. To  
reduce the switching frequency, the MOSFET is turned on  
when the drain voltage reaches the second minimum level,  
N
N
V
V
C
is the number of turns for the output  
winding,  
s
is the number of turns for the V  
a
CC  
winding,  
is the diode forwardvoltage drop of  
the output winding,  
is the diode forwardvoltage drop of  
Fo  
Fa  
the V winding; and  
CC  
is the sum of the output capacitance  
of the MOSFET and the external  
eo  
capacitor, C .  
r
www.onsemi.com  
13  
 
FSCQ Series  
as shown in Figure 31. Once the FSCQ series enters into the  
Leading Edge Blanking (LEB)  
extended quasiresonant operation, the first sync signal is  
ignored. After the first sync signal is applied, the sync  
threshold levels are changed from 4.6 V and 2.6 V to 3 V and  
1.8 V, respectively, and the MOSFET turnon time is  
synchronized to the second sync signal. The FSCQ series  
returns to its normal quasiresonant operation when the  
switching frequency reaches 45 kHz as the load increases.  
At the instant the internal SENSEFET is turned on, there  
is usually a high current spike through the SENSEFET,  
caused by the external resonant capacitor across the  
MOSFET and secondaryside rectifier reverse recovery.  
Excessive voltage across the R  
resistor can lead to  
sense  
incorrect feedback operation in the current mode PWM  
control. To counter this effect, the FSCQ series employs a  
leading edge blanking (LEB) circuit. This circuit inhibits the  
Vds  
PWM comparator for a short time (t ) after the Sense FET  
LEB  
is turned on.  
2VRO  
VCC  
Idelay  
Vref  
IFB  
Vfb  
VO  
OSC  
4
Vsyn  
c
H11A817A  
KA431  
D1  
D2  
CB  
2.5R  
R
+
Vfb  
Gate  
Driver  
*
4.6 V  
2.6 V  
3 V  
1.8 V  
OLP  
Rsense  
VSD  
MOSFET Gate  
Figure 32. Pulse Width Modulation (PWM) Circuit  
ON  
ON  
Protection Circuits  
Figure 31. Extended QR Operation Waveforms  
The FSCQ series has several selfprotective functions  
such as overload protection (OLP), abnormal overcurrent  
protection (AOCP), overvoltage protection (OVP), and  
thermal shutdown (TSD). OLP and OVP are autorestart  
mode protections, while TSD and AOCP are latch mode  
protections. Because these protection circuits are fully  
integrated into the IC without external components, the  
reliability can be improved without increasing cost.  
AutoRestart Mode Protection: Once the fault condition  
is detected, switching is terminated and the SENSEFET  
Feedback Control  
The FSCQ series employs current mode control, as shown  
in Figure 32. An optocoupler (such as onsemi’s H11A817A)  
and shunt regulator (such as onsemi’s KA431) are typically  
used to implement the feedback network. Comparing the  
feedback voltage with the voltage across the R  
resistor,  
sense  
plus an offset voltage, makes it possible to control the  
switching duty cycle. When the reference pin voltage of the  
shunt regulator exceeds the internal reference voltage of 2.5  
V, the optocoupler LED current increases, pulling down the  
feedback voltage and reducing the duty cycle. This typically  
occurs when input voltage is increased or output load is  
decreased.  
remains off. This causes V to fall. When V falls to  
CC  
CC  
the under voltage lockout (UVLO) stop voltage of 9 V, the  
protection is reset and the FSCQ series consumes only  
startup current (25 mA). Then, the V  
capacitor is  
CC  
charged up, since the current supplied through the startup  
resistor is larger than the current that the FPS consumes.  
PulsebyPulse Current Limit  
When V reaches the start voltage of 15 V, the FSCQ  
CC  
Because current mode control is employed, the peak  
current through the SENSEFET is limited by the inverting  
series resumes its normal operation. If the fault condition  
is not removed, the SENSEFET remains off and V  
CC  
input of the PWM comparator (V *) as shown in Figure 32.  
drops to stop voltage again. In this manner, the  
autorestart can alternately enable and disable the  
switching of the power SENSEFET until the fault  
condition is eliminated (see Figure 33).  
fb  
The feedback current (I ) and internal resistors are  
FB  
designed so that the maximum cathode voltage of diode D  
2
is about 2.8 V, which occurs when all IFB flows through the  
internal resistors. Since D is blocked when the feedback  
Latch Mode Protection: Once this protection is triggered,  
switching is terminated and the SENSEFET remains off  
1
voltage (V ) exceeds 2.8 V, the maximum voltage of the  
fb  
cathode of D is clamped at this voltage, thus clamping V *.  
until the AC power line is unplugged. Then, V  
2
fb  
CC  
Therefore, the peak value of the current through the  
SENSEFET is limited.  
continues charging and discharging between 9 V and  
15 V. The latch is reset only when V is discharged to  
CC  
6 V by unplugging the AC power line.  
www.onsemi.com  
14  
 
FSCQ Series  
Fault  
Abnormal Over Current Protection (AOCP)  
occurs  
Fault  
removed  
Power  
on  
V
ds  
When the secondary rectifier diodes or the transformer  
pins are shorted, a steep current with extremely high di/dt  
can flow through the SENSEFET during the LEB time.  
Even though the FSCQ series has OLP (Overload  
Protection), it is not enough to protect the FSCQ series in  
that abnormal case, since severe current stress will be  
imposed on the SENSEFET until the OLP triggers. The  
FSCQ series has an internal AOCP (Abnormal  
OverCurrent Protection) circuit as shown in Figure 35.  
When the gate turnon signal is applied to the power  
SENSEFET, the AOCP block is enabled and monitors the  
current through the sensing resistor. The voltage across the  
resistor is then compared with a preset AOCP level. If the  
sensing resistor voltage is greater than the AOCP level, the  
set signal is applied to the latch, resulting in the shutdown of  
SMPS. This protection is implemented in the latch mode.  
V
cc  
15 V  
9 V  
ICC  
IOP  
ISTART  
t
Normal Fault  
Normal  
operation  
operation situation  
Figure 33. Auto Restart Mode Protection  
2.5R  
OSC  
Overload Protection (OLP)  
Overload is defined as the load current exceeding its  
normal level due to an unexpected abnormal event. In this  
situation, the protection circuit should trigger to protect the  
SMPS. However, even when the SMPS is in the normal  
operation, the over load protection circuit can be triggered  
during the load transition. To avoid this undesired operation,  
the overload protection circuit is designed to trigger after a  
specified time to determine whether it is a transient situation  
or an overload situation. Because of the pulsebypulse  
current limit capability, the maximum peak current through  
the SENSEFET is limited, and therefore the maximum input  
power is restricted with a given input voltage. If the output  
consumes more than this maximum power, the output  
voltage (Vo) decreases below the set voltage. This reduces  
the current through the optocoupler LED, which also  
reduces the optocoupler transistor current, thus increasing  
S
R
Q
Q
PWM  
Gate  
Driver  
R
LEB  
R
+
2
AOCP  
GND  
VAOCP  
Figure 35. AOCP Block  
OverVoltage Protection (OVP)  
If the secondary side feedback circuit malfunctions or a  
solder defect causes an open in the feedback path, the current  
through the optocoupler transistor becomes almost zero.  
Then, V climbs up in a similar manner to the over load  
fb  
the feedback voltage (V ). If V exceeds 2.8 V, D is  
fb  
fb  
1
situation, forcing the preset maximum current to be supplied  
to the SMPS until the over load protection triggers. Because  
more energy than required is provided to the output, the  
output voltage may exceed the rated voltage before the  
overload protection triggers, resulting in the breakdown of  
the devices in the secondary side. In order to prevent this  
situation, an over voltage protection (OVP) circuit is  
employed. In general, the peak voltage of the sync signal is  
proportional to the output voltage and the FSCQ series uses  
a sync signal instead of directly monitoring the output  
voltage. If the sync signal exceeds 12 V, an OVP is triggered  
resulting in a shutdown of SMPS. In order to avoid  
undesired triggering of OVP during normal operation, the  
peak voltage of the sync signal should be designed to be  
below 12 V. This protection is implemented in the auto  
restart mode.  
blocked, and the 5 mA current source starts to charge C  
B
slowly up to V . In this condition, Vfb continues  
CC  
increasing until it reaches 7.5 V, then the switching operation  
is terminated as shown in Figure 34. The delay for shutdown  
is the time required to charge CB from 2.8 V to 7.5 V with  
5 mA. In general, a 20~50 ms delay is typical for most  
applications. OLP is implemented in auto restart mode.  
V
FB  
Overload Protection  
7.5 V  
2.8 V  
t
12  
= C *(7.5 2.8)/I  
B delay  
t1  
t
t
Figure 34. Overload Protection  
www.onsemi.com  
15  
 
FSCQ Series  
Thermal Shutdown (TSD)  
Figure 38 shows the burst mode operation waveforms.  
When the picture ON signal is disabled, Q is turned off and  
The SENSEFET and the control IC are built in one  
package. This makes it easy for the control IC to detect  
abnormal over temperature of the SENSEFET. When the  
temperature exceeds approximately 150°C, the thermal  
shutdown triggers. This protection is implemented in the  
latch mode.  
1
R and Dz are connected to the reference pin of KA431  
3
stby  
through D . Before Vo2 drops to V  
, the voltage on the  
1
o2  
reference pin of KA431 is higher than 2.5 V, which increases  
the current through the opto LED. This pulls down the  
feedback voltage (V ) of FSCQ series and forces FSCQ  
FB  
series to stop switching. If the switching is disabled longer  
than 1.4 ms, FSCQ series enters into burst operation and the  
Soft Start  
The FSCQ series has an internal softstart circuit that  
increases PWM comparator’s inverting input voltage  
together with the SENSEFET current slowly after it starts  
up. The typical soft start time is 20 ms. The pulse width to  
the power switching device is progressively increased to  
establish the correct working conditions for transformers,  
inductors, and capacitors. Increasing the pulse width to the  
power switching device also helps prevent transformer  
saturation and reduces the stress on the secondary diode  
during startup. For a fast build up of the output voltage, an  
offset is introduced in the softstart reference current.  
operating current is reduced from I to 0.25 mA (IOB).  
OP  
Since there is no switching, V decreases until it reaches  
o2  
stby  
stby  
V
. As V reaches V  
, the current through the opto  
o2  
o2  
o2  
LED decreases allowing the feedback voltage to rise. When  
the feedback voltage reaches 0.4 V, FSCQ series resumes  
switching with a predetermined peak drain current of 0.9 A.  
After burst switching for 1.4 ms, FSCQ series stops  
switching and checks the feedback voltage. If the feedback  
voltage is below 0.4 V, FSCQ series stops switching until the  
feedback voltage increases to 0.4 V. If the feedback voltage  
is above 0.4 V, FSCQ series goes back to the normal  
operation. The output voltage drop circuit can be  
implemented alternatively, as shown in Figure 37. In the  
circuit, the FSCQ series goes into burst mode, when picture  
Burst Operation  
To minimize the power consumption in the standby mode,  
the FSCQ series employs burst operation. Once FSCQ series  
enters burst mode, FSCQ series allows all output voltages  
and effective switching frequency to be reduced. Figure 36  
shows the typical feedback circuit for CTV applications. In  
normal operation, the picture on signal is applied and the  
off signal is applied to Q . Then, V is determined by the  
1
o2  
Zener diode breakdown voltage. Assuming that the forward  
voltage drop of opto LED is 1 V, the approximate value of  
V
o2  
in standby mode is given by:  
transistor Q is turned on, which decouples R , D and D  
from the feedback network. Therefore, only V  
1
3
Z
1
is  
STBY  
VO2  
+ VZ ) 1  
(eq. 8)  
O1  
regulated by the feedback circuit in normal operation and  
VO2  
determined by R and R as:  
1
2
R1 ) R2  
NORM  
Micom  
Linear  
Regulator  
+ 2.5 @ ǒ Ǔ  
VO1  
(eq. 6)  
R2  
In standby mode, the picture ON signal is disabled and the  
transistor Q is turned off, which couples R , D , and D to  
RD  
V
O1 (B+)  
1
3
Z
1
R
bias  
the reference pin of KA431. Then, V is determined by the  
O2  
Zener diode breakdown voltage. Assuming that the forward  
R1  
CF  
RF  
voltage drop of D is 0.7 V, V in standby mode is  
1
O2  
approximately given by:  
C
STBY  
R
VO2  
+ VZ ) 0.7 ) 2.5  
(eq. 7)  
KA431  
A
R2  
Dz  
VO2  
Micom  
Linear  
Regulator  
VO1 (B+)  
Q
1
Picture OFF  
RD  
Dz  
R
bias  
R3  
R1  
D1  
Figure 37. Feedback Circuit to Drop Output  
Voltage in Standby Mode  
CF RF  
Q1  
Picture ON  
C
A
R
KA431  
R2  
Figure 36. Typical Feedback Circuit to Drop  
Output Voltage in Standby Mode  
www.onsemi.com  
16  
 
FSCQ Series  
(a)  
(b)  
(c)  
norm  
V
o2  
stby  
V
o2  
VFB  
0.4 V  
Iop  
IOP  
IOB  
Vds  
Picture  
On  
Picture  
On  
Picture Off  
Burst Mode  
0.4 V  
0.3 V  
0.4 V  
0.4 V  
VFB  
V
ds  
1.4 ms  
1.4 ms  
0.9 A  
0.9 A  
I
ds  
(a) Mode Change to Burst Operation  
(b) Burst Operation  
(c) Mode Change to Normal Operation  
Figure 38. Burst Operation Waveforms  
www.onsemi.com  
17  
FSCQ Series  
FSCQ0765RT Typical Application Circuit  
FSCQ0765RT TYPICAL APPLICATION CIRCUIT  
Application  
Output Power  
Input Voltage  
Output Voltage (Max. Current)  
12 V (1 A)  
CTV  
83 W  
Universal Input  
(90270 V  
)
ac  
18 V (0.5 A)  
125 V (0.4 A)  
24 V (0.5 A)  
Features  
Enhanced System Reliability Through Various  
Protection Functions  
Internal SoftStart (20 ms)  
High Efficiency (>83% at 90 V Input)  
ac  
Wider Load Range through the Extended  
QuasiResonant Operation  
Key Design Notes  
24 V Output Designed to Drop to 8 V in Standby Mode  
Low Standby Mode Power Consumption (<1 W)  
Low Component Count  
T1  
EER3540  
D205  
EGP20D  
12 V, 1.0 A  
18 V, 0.5 A  
125 V,, 0.4 A  
24 V, 0.5 A  
10  
11  
RT101  
5D9  
1
3
C204  
1000uF  
35V  
C210  
470pF  
1kV  
C102  
220uF  
400V  
D204  
EGP20D  
BEAD101  
R 102  
150kΩ  
0. 25W  
R 101  
100kΩ  
4
13  
12  
0..25W  
C205  
1000uF  
35V  
C107  
1nF  
1kV  
BD101  
C209  
470pF  
1k V  
R106 C104  
1.5kΩ 10uF  
1W  
D102  
1N4937  
D104  
1
50V  
UF4007  
Dra in  
D202  
EGP20J  
SYNC  
ZD101  
18V  
1W  
3
Vcc  
5
IC101  
FSCQ0965RT  
6
R 104  
1.5kΩ  
0.25W  
R 103  
5.1Ω  
0.25W  
D103  
14  
15  
D101  
1N4937  
L201  
BEAD  
C202  
47uF  
160V  
GND FB  
C201  
100uF  
160V  
1N4148  
C207  
470pF  
1k V  
2
4
16  
C 105  
3.9nF  
50V  
C103  
10uF  
50V  
R105  
470Ω  
0.25W  
C106  
47nF  
50V  
D203  
EGP20D  
17  
18  
7
C203  
1000uF  
35V  
C208  
470pF  
1k V  
LF101  
VR2201  
30kΩ  
R205  
220kΩ  
0. 25W  
R201  
1kΩ  
0. 25W  
OPTO101  
FOD817A  
Normal  
ZD202  
5.1V  
0. 5W  
R202  
1kΩ  
C101  
330nF  
275VAC  
0. 25W  
R208  
1kΩ  
0. 25W  
SW201  
Standby  
R 207  
5.1kΩ  
0.25W  
FUSE  
250V  
2.0A  
ZD201  
C206  
22nF  
50V  
R203  
39kΩ  
0. 25W  
D201  
Q 202  
R 206  
5.1kΩ  
0. 25W  
KSC945  
C301  
2. 2nF  
R 204  
4.7kΩ  
0. 25W  
Q201  
K A 431  
Figure 39. FSCQ0765RT Typical Application Circuit Schematic  
www.onsemi.com  
18  
FSCQ Series  
EER3540  
1
2
3
18  
17  
16  
15  
14  
13  
12  
11  
10  
Np1  
N24V  
N
a
N
18V  
Np2  
N
125V/2  
N125V/2  
4
5
6
7
8
9
Np2  
N
125V/2  
N12V  
N24V  
N12V  
N
125V/2  
Na  
Np1  
N18V  
Figure 40. Transformer Schematic Diagram  
WINDING SPECIFICATION  
No  
Pin (s " f)  
13  
Wire  
Turns  
Winding Method  
Center Winding  
N
0.5φ x 1  
0.5φ x 1  
0.4φ x 2  
0.5φ x 2  
0.5φ x 1  
0.5φ x 1  
0.4φ x 2  
0.3φ x 1  
32  
32  
13  
7
p1  
N
/2  
1615  
1817  
1213  
34  
125V  
N
N
24V  
12V  
N
32  
32  
10  
20  
p2  
N
/2  
1514  
1110  
76  
125V  
N
18V  
N
a
ELECTRICAL CHARACTERISTICS  
Pin  
13  
13  
Specification  
515 mH 5%  
10 mH Max.  
Remarks  
Inductance  
1 kHz, 1 V  
nd  
Leakage Inductance  
2
all short  
Core & Bobbin  
Core: EER3540  
Bobbin: EER3540  
2
Ae: 107 mm  
www.onsemi.com  
19  
FSCQ Series  
BILL OF MATERIALS  
BILL OF MATERIALS (continued)  
Part  
Value  
Note  
Part  
Value  
Note  
C207  
C208  
C209  
C210  
C301  
470 pF / 1 kV  
470 pF / 1 kV  
470 pF / 1 kV  
470 pF / 1 kV  
2.2 nF / 1 kV  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
AC Ceramic Capacitor  
Fuse  
250 V / 2 A  
NTC  
FUSE  
RT101  
5D9  
Resistor  
100 kW  
Inductor  
R101  
R102  
R103  
R104  
R105  
R106  
R107  
R201  
R202  
R203  
R204  
R205  
R206  
R207  
R208  
VR201  
0.25 W  
0.25 W  
0.25 W  
0.25 W  
0.25 W  
1 W  
BEAD101  
BEAD201  
BEAD  
150 kW  
5.1 W  
5 mH  
3 A  
Diode  
1.5 kW  
470 W  
1.5 kW  
Open  
D101  
D102  
D103  
D104  
D105  
ZD101  
ZD102  
ZD201  
D201  
D202  
D203  
D204  
D205  
1N4937  
1N4937  
1N4148  
Short  
1 A, 600 V  
1 A, 600 V  
0.15 A, 50 V  
1 kW  
0.25 W  
0.25 W  
Open  
1 kW  
1N4746  
Open  
18 V, 1 W  
39 kW  
4.7 kW  
220 kW  
5.1 kW  
5.1 kW  
1 kW  
0.25 W  
0.25 W, 1%  
0.25 W, 1%  
0.25 W  
1N5231  
1N4148  
5.1 V, 0.5 W  
0.15 A, 50 V  
2 A, 600 V  
2 A, 200 V  
2 A, 200 V  
2 A, 200 V  
EGP20J  
EGP20D  
EGP20D  
EGP20D  
0.25 W  
0.25 W  
30 kW  
Capacitor  
330 nF / 275 V  
Bridge Diode  
GSIB660  
Line Filter  
C101  
C102  
C103  
C104  
C105  
C106  
C107  
C108  
C201  
C202  
C203  
C204  
C205  
C206  
AC  
BD101  
LF101  
T101  
6 A, 600 V  
14 mH  
220 mF / 400 V  
10 mF / 50 V  
10 mF / 50 V  
3.9 nF / 50 V  
47 nF / 50 V  
680 pF / 1 kV  
Open  
Box Capacitor  
Electrolytic  
Electrolytic  
Transformer  
EER3540  
Switch  
ON/OFF  
Electrolytic  
Film Capacitor  
Film Capacitor  
SW201  
For MCU Signal  
TO220F5L  
TO92  
IC  
FSCQ0765RT  
100 mF / 160 V  
47 mF / 160 V  
1000 mF / 35 V  
1000 mF / 35 V  
1000 mF / 35 V  
22 nF / 50 V  
Electrolytic  
Electrolytic  
Electrolytic  
Electrolytic  
Electrolytic  
Film Capacitor  
IC101  
OPT101  
Q201  
FOD817A  
KA431LZ  
KSC945  
Q202  
www.onsemi.com  
20  
FSCQ Series  
FSCQ0965RT Typical Application Circuit  
FSCQ0965RT TYPICAL APPLICATION CIRCUIT  
Application  
Output Power  
Input Voltage  
Output Voltage (Max. Current)  
12 V (0.5 A)  
CTV  
102 W  
Universal Input  
(90270 V  
)
ac  
18 V (0.5 A)  
125 V (0.5 A)  
24 V (1.0 A)  
Features  
Enhanced System Reliability Through Various  
Protection Functions  
Internal SoftStart (20 ms)  
High Efficiency (>83% at 90 V Input)  
ac  
Wider Load Range through the Extended  
QuasiResonant Operation  
Key Design Notes  
24 V Output Designed to Drop to 8 V in Standby Mode  
Low Standby Mode Power Consumption (<1 W)  
Low Component Count  
T1  
EER3540  
D205  
EGP20D  
12 V, 0.5 A  
18 V, 0.5 A  
125 V, 0.5 A  
24 V, 1.0 A  
10  
11  
RT101  
5D9  
1
3
C204  
1000uF  
35V  
C210  
470pF  
1kV  
C102  
220uF  
400V  
D204  
EGP20D  
BEAD101  
R102  
150kΩ  
0. 25W  
R101  
100kΩ  
0. 25W  
4
13  
12  
C205  
1000uF  
35V  
C107  
1nF  
1kV  
BD101  
C209  
470pF  
1kV  
R106 C104  
1.5kΩ 10uF  
1W  
D102  
1N4937  
D104  
UF4007  
1
50V  
Dra in  
D202  
EGP30J  
SYNC  
ZD101  
18V  
1W  
3
Vcc  
5
IC101  
FSCQ0965RT  
6
R104  
1.5kΩ  
0. 25W  
R103  
5.1Ω  
D103  
14  
15  
D101  
1N 4937  
L201  
BEAD  
C202  
47uF  
160V  
GND FB  
C201  
100uF  
160V  
1N4148  
0. 25W  
C207  
470pF  
1kV  
2
4
16  
C105  
3. 9nF  
50V  
C103  
10uF  
50V  
R105  
470Ω  
0.25W  
C106  
47nF  
50V  
D203  
EGP30D  
17  
18  
7
C203  
1000uF  
35V  
C208  
470pF  
1kV  
LF101  
VR201  
30kΩ  
R205  
220kΩ  
0. 25W  
R201  
1kΩ  
0. 25W  
OPTO101  
FOD817A  
Normal  
ZD202  
5.1V  
0. 5W  
R202  
1kΩ  
C101  
330nF  
275VAC  
0. 25W  
R208  
1kΩ  
0. 25W  
SW201  
Standby  
R207  
5.1kΩ  
0. 25W  
FUSE  
250V  
3.0A  
ZD201  
C206  
22nF  
50V  
R203  
39kΩ  
0. 25W  
D201  
Q202  
KSC945  
R 206  
C301  
5.1kΩ  
0. 25W  
2. 2nF  
R204  
4.7kΩ  
0. 25W  
Q201  
KA431  
Figure 41. FSCQ0965RT Typical Application Circuit Schematic  
www.onsemi.com  
21  
FSCQ Series  
EER3540  
1
2
3
18  
17  
16  
15  
14  
13  
12  
11  
10  
Np1  
N24V  
N
a
N
18V  
Np2  
N
125V/2  
N
125V/2  
4
5
6
7
8
9
Np2  
N
125V/2  
N12V  
N24V  
N12V  
N
125V/2  
Na  
Np1  
N18V  
Figure 42. Transformer Schematic Diagram  
WINDING SPECIFICATION  
No  
Pin (s " f)  
13  
Wire  
Turns  
Winding Method  
Center Winding  
N
0.5φ x 1  
0.5φ x 1  
0.4φ x 2  
0.5φ x 2  
0.5φ x 1  
0.5φ x 1  
0.4φ x 2  
0.3φ x 1  
32  
32  
13  
7
p1  
N
/2  
1615  
1817  
1213  
34  
125V  
N
N
24V  
12V  
N
32  
32  
10  
20  
p2  
N
/2  
1514  
1110  
76  
125V  
N
18V  
N
a
ELECTRICAL CHARACTERISTICS  
Pin  
13  
13  
Specification  
410 mH 5%  
10 mH Max.  
Remarks  
Inductance  
1 kHz, 1 V  
nd  
Leakage Inductance  
2
all short  
Core & Bobbin  
Core: EER3540  
Bobbin: EER3540  
2
Ae: 107 mm  
www.onsemi.com  
22  
FSCQ Series  
BILL OF MATERIALS  
BILL OF MATERIALS (continued)  
Part  
Value  
Note  
Part  
Value  
Note  
C207  
C208  
C209  
C210  
C301  
470 pF / 1 kV  
470 pF / 1 kV  
470 pF / 1 kV  
470 pF / 1 kV  
2.2 nF / 1 kV  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
AC Ceramic Capacitor  
Fuse  
250 V / 3 A  
NTC  
FUSE  
RT101  
5D9  
Resistor  
100 kW  
Inductor  
R101  
R102  
R103  
R104  
R105  
R106  
R107  
R201  
R202  
R203  
R204  
R205  
R206  
R207  
R208  
VR201  
0.25 W  
0.25 W  
0.25 W  
0.25 W  
0.25 W  
1 W  
BEAD101  
BEAD201  
BEAD  
150 kW  
5.1 W  
5 mH  
3 A  
Diode  
1.5 kW  
470 W  
1.5 kW  
Open  
D101  
D102  
D103  
D104  
D105  
ZD101  
ZD102  
ZD201  
D201  
D202  
D203  
D204  
D205  
1N4937  
1N4937  
1N4148  
Short  
1 A, 600 V  
1 A, 600 V  
0.15 A, 50 V  
1 kW  
0.25 W  
0.25 W  
Open  
1 kW  
1N4746  
Open  
18 V, 1 W  
39 kW  
4.7 kW  
220 kW  
5.1 kW  
5.1 kW  
1 kW  
0.25 W  
0.25 W, 1%  
0.25 W, 1%  
0.25 W  
1N5231  
1N4148  
5.1 V, 0.5 W  
0.15 A, 50 V  
3 A, 600 V  
3 A, 200 V  
2 A, 200 V  
2 A, 200 V  
EGP30J  
EGP30D  
EGP20D  
EGP20D  
0.25 W  
0.25 W  
30 kW  
Capacitor  
330 nF / 275 V  
Bridge Diode  
GSIB660  
Line Filter  
C101  
C102  
C103  
C104  
C105  
C106  
C107  
C108  
C201  
C202  
C203  
C204  
C205  
C206  
AC  
BD101  
LF101  
T101  
6 A, 600 V  
14 mH  
220 mF / 400 V  
10 mF / 50 V  
10 mF / 50 V  
3.9 nF / 50 V  
47 nF / 50 V  
1 nF / 1 kV  
Box Capacitor  
Electrolytic  
Electrolytic  
Transformer  
EER3540  
Switch  
ON/OFF  
Electrolytic  
Film Capacitor  
Film Capacitor  
SW201  
For MCU Signal  
TO220F5L  
TO92  
Open  
IC  
FSCQ0965RT  
100 mF / 160 V  
47 mF / 160 V  
1000 mF / 35 V  
1000 mF / 35 V  
1000 mF / 35 V  
22 nF / 50 V  
Electrolytic  
Electrolytic  
Electrolytic  
Electrolytic  
Electrolytic  
Film Capacitor  
IC101  
OPT101  
Q201  
FOD817A  
KA431LZ  
KSC945  
Q202  
www.onsemi.com  
23  
FSCQ Series  
FSCQ1265RT Typical Application Circuit  
FSCQ1265RT TYPICAL APPLICATION CIRCUIT  
Application  
Output Power  
Input Voltage  
Output Voltage (Max. Current)  
8.5 V (0.5 A)  
CTV  
132 W  
Universal Input  
(90270 V  
)
ac  
15 V (0.5 A)  
140 V (0.6 A)  
24 V (1.5 A)  
Features  
Enhanced System Reliability Through Various  
Protection Functions  
Internal SoftStart (20 ms)  
High Efficiency (>83% at 90 V Input)  
ac  
Wider Load Range through the Extended  
QuasiResonant Operation  
Key Design Notes  
24 V Output Designed to Drop to 8 V in Standby Mode  
Low Standby Mode Power Consumption (<1 W)  
Low Component Count  
T1  
EER4042  
D205  
EGP20D  
15 V, 0.5 A  
8. 5 V, 0.5 A  
140 V, 0.6 A  
24 V, 1.5 A  
10  
11  
RT101  
5D11  
1
3
C204  
1000uF  
35V  
C 210  
470pF  
1k V  
C102  
330uF  
400V  
D204  
EGP20D  
BEAD101  
R102  
150kΩ  
0. 25W  
4
13  
12  
R101  
100kΩ  
0. 25W  
C 205  
1000uF  
35V  
C107  
1nF  
1kV  
BD101  
C 209  
470pF  
1k V  
R106 C 104  
1kΩ 10uF  
1W  
D105  
1N4937  
1
50V  
Dra in  
D202  
EGP30J  
S Y N C  
3
V c c  
5
IC 101  
F S C Q 1265R T  
ZD102  
18V  
1W  
6
R104  
1.5kΩ  
0. 25W  
R103  
5.1Ω  
0. 25W  
D106  
14  
15  
D103  
1N 4937  
L 202  
BEAD  
C202  
68uF  
160V  
G N D F B  
C 201  
150uF  
160V  
1N 4148  
C 207  
470pF  
1k V  
2
4
16  
C105  
3. 3nF  
50V  
C103  
10μF  
50V  
R105  
470Ω  
0. 25W  
C106  
47nF  
50V  
D203  
EGP30D  
17  
18  
7
C 203  
1000uF  
35V  
C 208  
470pF  
1k V  
LF101  
VR201  
30kΩ  
R201  
1kΩ  
0. 25W  
OPTO101  
FOD817A  
ZD201  
5. 1V  
0. 5W  
R 208  
1kΩ  
0. 25W  
R202  
1kΩ  
0. 25W  
R203  
39kΩ  
0. 25W  
C101  
330nF  
275VAC  
C206  
150nF  
50V  
R205  
240kΩ  
0. 25W 1N4148  
D201  
SW201  
R207  
FUSE  
5.1kΩ  
250V  
5.0A  
0. 25W  
C301  
3. 3nF  
Q202  
KSC945  
Q201  
KA431  
LZ  
R204  
4.7kΩ  
0. 25W  
R206  
10kΩ  
0. 25W  
Figure 43. FSCQ1265RT Typical Application Circuit Schematic  
www.onsemi.com  
24  
FSCQ Series  
EER4042  
1
2
3
18  
17  
16  
15  
14  
13  
12  
11  
10  
Np1  
N24V  
N
a
N
15V  
N8.5V  
N140V/2  
NP2  
Np2  
N
140V/2  
4
5
6
7
8
9
N
140V/2  
N140V/2  
NP1  
N8.5V  
Na  
N24V  
N15V  
Figure 44. Transformer Schematic Diagram  
WINDING SPECIFICATION  
No  
Pin (s " f)  
1817  
Wire  
Turns  
Winding Method  
Space Winding  
Center Winding  
Center Winding  
Center Winding  
Center Winding  
Space Winding  
Space Winding  
Space Winding  
N
0.65φ x 2  
8
24  
N
13  
1615  
34  
0.1φ x 10 x 2  
0.1φ x 10 x 2  
0.1φ x 10 x 2  
0.1φ x 10 x 2  
0.6φ x 1  
20  
23  
20  
22  
3
P1  
N
N
/2  
/2  
140V  
N
p2  
140V  
1514  
1213  
1110  
76  
N
8.5V  
N
0.6φ x 1  
6
15V  
N
0.3φ x 1  
13  
a
ELECTRICAL CHARACTERISTICS  
Pin  
14  
14  
Specification  
315 mH 5%  
10 mH Max.  
Remarks  
Inductance  
1 kHz, 1 V  
nd  
Leakage Inductance  
2
all short  
Core & Bobbin  
Core: EER4042  
Bobbin: EER4042 (18 Pin)  
2
Ae: 153 mm  
www.onsemi.com  
25  
FSCQ Series  
BILL OF MATERIALS  
BILL OF MATERIALS (continued)  
Part  
Value  
Note  
Part  
Value  
Note  
C207  
C208  
C209  
C210  
C301  
470 pF / 1 kV  
470 pF / 1 kV  
470 pF / 1 kV  
470 pF / 1 kV  
3.3 nF / 1 kV  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
AC Ceramic Capacitor  
Fuse  
250 V / 5 A  
NTC  
FUSE  
RT101  
5D11  
Resistor  
100 kW  
Inductor  
R101  
R102  
R103  
R104  
R105  
R106  
R107  
R201  
R202  
R203  
R204  
R205  
R206  
R207  
R208  
VR201  
0.25 W  
0.25 W  
0.25 W  
0.25 W  
0.25 W  
1 W  
BEAD101  
BEAD201  
BEAD  
150 kW  
5.1 W  
1.5 kW  
470 W  
1 kW  
5 mH  
3 A  
Diode  
D101  
D102  
D103  
D104  
D105  
ZD101  
ZD102  
ZD201  
D201  
D202  
D203  
D204  
D205  
1N4937  
1N4937  
1N4148  
Short  
1 A, 600 V  
1 A, 600 V  
0.15 A, 50 V  
Open  
1 kW  
0.25 W  
0.25 W  
Open  
1 kW  
1N4746  
Open  
18 V, 1 W  
39 kW  
4.7 kW  
240 kW  
10 kW  
5.1 kW  
1 kW  
0.25 W  
0.25 W, 1%  
0.25 W, 1%  
0.25 W  
1N5231  
1N4148  
5.1 V, 0.5 W  
0.15 A, 50 V  
3 A, 600 V  
3 A, 200 V  
2 A, 200 V  
2 A, 200 V  
EGP30J  
EGP30D  
EGP20D  
EGP20D  
0.25 W  
0.25 W  
30 kW  
Capacitor  
330 nF / 275 V  
Bridge Diode  
GSIB660  
Line Filter  
C101  
C102  
C103  
C104  
C105  
C106  
C107  
C108  
C201  
C202  
C203  
C204  
C205  
C206  
AC  
BD101  
LF101  
T101  
6 A, 600 V  
14 mH  
330 mF / 400 V  
10 mF / 50 V  
10 mF / 50 V  
3.3 nF / 50 V  
47 nF / 50 V  
1 nF / 1 kV  
Box Capacitor  
Electrolytic  
Electrolytic  
Transformer  
EER4042  
Switch  
ON/OFF  
Electrolytic  
Film Capacitor  
Film Capacitor  
SW201  
For MCU Signal  
TO220F5L  
TO92  
Open  
IC  
FSCQ1265RT  
100 mF / 160 V  
68 mF / 160 V  
1000 mF / 35 V  
1000 mF / 35 V  
1000 mF / 35 V  
150 nF / 50 V  
Electrolytic  
Electrolytic  
Electrolytic  
Electrolytic  
Electrolytic  
Film Capacitor  
IC101  
OPT101  
Q201  
FOD817A  
KA431LZ  
KSC945  
Q202  
www.onsemi.com  
26  
FSCQ Series  
FSCQ1565RT Typical Application Circuit  
FSCQ1565RT TYPICAL APPLICATION CIRCUIT  
Application  
Output Power  
Input Voltage  
Output Voltage (Max. Current)  
8.5 V (0.5 A)  
CTV  
160 W  
Universal Input  
(90270 V  
)
ac  
15 V (0.5 A)  
140 V (0.8 A)  
24 V (1.5 A)  
Features  
Enhanced System Reliability Through Various  
Protection Functions  
Internal SoftStart (20 ms)  
High Efficiency (>83% at 90 V Input)  
ac  
Wider Load Range through the Extended  
QuasiResonant Operation  
Key Design Notes  
24 V Output Designed to Drop to 8 V in Standby Mode  
Low Standby Mode Power Consumption (<1 W)  
Low Component Count  
T1  
EER4245  
D205  
EGP20D  
15 V, 0.5 A  
8. 5 V, 0.5 A  
140 V, 0.8 A  
24 V, 1.5 A  
10  
11  
RT101  
6D22  
1
3
C204  
1000μF  
35V  
C210  
470pF  
1kV  
C102  
470μF  
400V  
D204  
EGP20D  
BEAD101  
R102  
150kΩ  
0. 25W  
4
13  
12  
R101  
100kΩ  
0. 25W  
C205  
1000μF  
35V  
C107  
1nF  
1V  
BD101  
C209  
470pF  
1kV  
R106 C104  
1kΩ 10uF  
1W  
D105  
1N4937  
1
50V  
Dra in  
D202  
EGP30J  
S Y N C  
3
V c c  
5
IC 101  
F S C Q 1565R T  
ZD102  
18V  
1W  
6
R104  
1.5kΩ  
0. 25W  
R103  
5.1Ω  
D106  
14  
15  
D103  
1N4937  
L202  
BEAD  
C202  
68μF  
160V  
G N D F B  
C201  
220μF  
160V  
1N 4148  
0. 25W  
C207  
470pF  
1kV  
2
4
16  
C105  
2. 7nF  
50V  
C103  
10uF  
50V  
R105  
470Ω  
0. 25W  
C106  
47nF  
50V  
D203  
EGP30D  
17  
18  
7
C203  
1000uF  
35V  
C208  
470pF  
1kV  
LF101  
VR201  
30kΩ  
R201  
1kΩ  
0. 25W  
OPTO101  
FOD817A  
ZD201  
5. 1V  
0. 5W  
R208  
1kΩ  
0. 25W  
R202  
1kΩ  
0. 25W  
R203  
39kΩ  
0. 25W  
C101  
330nF  
275VAC  
C206  
150nF  
50V  
R205  
240kΩ  
D201  
0. 25W 1N4148  
SW201  
R207  
FUSE  
5.1kΩ  
250V  
5.0A  
0. 25W  
C301  
3. 3nF  
Q202  
KSC945  
Q201  
KA431  
LZ  
R204  
4.7kΩ  
0. 25W  
R206  
10kΩ  
0. 25W  
Figure 45. FSCQ1565RT Typical Application Circuit Schematic  
www.onsemi.com  
27  
FSCQ Series  
EER4245  
1
2
3
18  
17  
16  
15  
14  
13  
12  
11  
10  
Np1  
N24V  
N
a
N
15V  
N8.5V  
N140V/2  
NP2  
Np2  
N
140V/2  
4
5
6
7
8
9
N
140V/2  
N140V/2  
NP1  
N8.5V  
Na  
N24V  
N15V  
Figure 46. Transformer Schematic Diagram  
WINDING SPECIFICATION  
No  
Pin (s " f)  
1817  
Wire  
Turns  
Winding Method  
Space Winding  
Center Winding  
Center Winding  
Center Winding  
Center Winding  
Space Winding  
Space Winding  
Space Winding  
N
0.65φ x 2  
5
13  
15  
13  
14  
2
24V  
N
13  
1615  
34  
0.08φ x 20 x 2  
0.08φ x 20 x 2  
0.08φ x 20 x 2  
0.08φ x 20 x 2  
0.6φ x 1  
P1  
N
/2  
/2  
140V  
N
p2  
140V  
N
1514  
1213  
1110  
76  
N
8.5V  
N
0.6φ x 1  
3
15V  
N
0.3φ x 1  
8
a
ELECTRICAL CHARACTERISTICS  
Pin  
14  
14  
Specification  
220 mH 5%  
10 mH Max.  
Remarks  
Inductance  
1 kHz, 1 V  
nd  
Leakage Inductance  
2
all short  
Core & Bobbin  
Core: EER4245  
Bobbin: EER4245 (18 Pin)  
2
Ae: 201.8 mm  
www.onsemi.com  
28  
FSCQ Series  
BILL OF MATERIALS  
BILL OF MATERIALS (continued)  
Part  
Value  
Note  
Part  
Value  
Note  
C207  
C208  
C209  
C210  
C301  
470 pF / 1 kV  
470 pF / 1 kV  
470 pF / 1 kV  
470 pF / 1 kV  
3.3 nF / 1 kV  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
Ceramic Capacitor  
AC Ceramic Capacitor  
Fuse  
250 V / 5 A  
NTC  
FUSE  
RT101  
6D22  
Resistor  
100 kW  
Inductor  
R101  
R102  
R103  
R104  
R105  
R106  
R107  
R201  
R202  
R203  
R204  
R205  
R206  
R207  
R208  
VR201  
0.25 W  
0.25 W  
0.25 W  
0.25 W  
0.25 W  
1 W  
BEAD101  
BEAD201  
BEAD  
150 kW  
5.1 W  
1.5 kW  
470 W  
1.5 kW  
Open  
1 kW  
5 mH  
3 A  
Diode  
D101  
D102  
D103  
D104  
D105  
ZD101  
ZD102  
ZD201  
D201  
D202  
D203  
D204  
D205  
1N4937  
1N4937  
1N4148  
Short  
1 A, 600 V  
1 A, 600 V  
0.15 A, 50 V  
0.25 W  
0.25 W  
Open  
1 kW  
1N4746  
Open  
18 V, 1 W  
39 kW  
4.7 kW  
240 kW  
10 kW  
5.1 kW  
1 kW  
0.25 W  
0.25 W, 1%  
0.25 W, 1%  
0.25 W  
1N5231  
1N4148  
5.1 V, 0.5 W  
0.15 A, 50 V  
3 A, 600 V  
3 A, 200 V  
2 A, 200 V  
2 A, 200 V  
EGP30J  
EGP30D  
EGP20D  
EGP20D  
0.25 W  
0.25 W  
30 kW  
Capacitor  
330 nF / 275 V  
Bridge Diode  
GSIB660  
Line Filter  
C101  
C102  
C103  
C104  
C105  
C106  
C107  
C108  
C201  
C202  
C203  
C204  
C205  
C206  
AC  
BD101  
LF101  
T101  
6 A, 600 V  
14 mH  
470 mF / 400 V  
10 mF / 50 V  
10 mF / 50 V  
2.7 nF / 50 V  
47 nF / 50 V  
1 nF / 1 kV  
Box Capacitor  
Electrolytic  
Electrolytic  
Transformer  
EER4245  
Switch  
ON/OFF  
Electrolytic  
Film Capacitor  
Film Capacitor  
SW201  
For MCU Signal  
TO220F5L  
TO92  
Open  
IC  
FSCQ1565RT  
220 mF / 160 V  
68 mF / 160 V  
1000 mF / 35 V  
1000 mF / 35 V  
1000 mF / 35 V  
150 nF / 50 V  
Electrolytic  
Electrolytic  
Electrolytic  
Electrolytic  
Electrolytic  
Film Capacitor  
IC101  
OPT101  
Q201  
FOD817A  
KA431LZ  
KSC945  
Q202  
www.onsemi.com  
29  
FSCQ Series  
PCB Layout  
Figure 47. Top View  
Figure 48. Bottom View  
www.onsemi.com  
30  
FSCQ Series  
ORDERING INFORMATION TABLE  
Part Number  
Package  
TO220F5L (Forming)  
Marking Code  
CQ0765RT  
CQ0965RT  
CQ1265RT  
CQ1565RT  
BV  
(V)  
R
Max. (W)  
DSON  
DSS  
FSCQ0765RTYDTU  
FSCQ0965RTYDTU  
FSCQ1265RTYDTU  
FSCQ1565RTYDTU  
650  
1.6  
1.2  
0.9  
0.7  
FPS is a trademark of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States and/or other  
countries.  
SENSEFET is a registered trademark of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or subsidiaries in the United States  
and/or other countries.  
All brand names and product names appearing in this document are registered trademarks or trademarks of their respective holders.  
www.onsemi.com  
31  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
TO220FULLPAK 5LD LF  
CASE 340BH  
ISSUE A  
DATE 22 JUL 2021  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98AON13841G  
TO220 FULLPAK 5LD LF  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FSCQ1265RT

Green Mode Fairchild Power Switch (FPS) for Quasi-Resonant Switching Converter
FAIRCHILD

FSCQ1265RTYDTU

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCQ1265RTYDTU

用于 140W 离线反激转换器的 650V 集成电源开关
ONSEMI

FSCQ1465RT

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCQ1465RTYDTU

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCQ1565RP

Green Mode Fairchild Power Switch (FPS) for Quasi-Resonant Switching Converter
FAIRCHILD

FSCQ1565RPSYDTU

Green Mode Fairchild Power Switch (FPS) for Quasi-Resonant Switching Converter
FAIRCHILD

FSCQ1565RPVDTU

Green Mode Fairchild Power Switch (FPS⑩)
FAIRCHILD

FSCQ1565RT

Green Mode Fairchild Power Switch (FPS) for Quasi-Resonant Switching Converter
FAIRCHILD

FSCQ1565RTYDTU

Green Mode Fairchild Power Switch (FPS)
FAIRCHILD

FSCQ1565RTYDTU

用于 170W 离线反激转换器的 650V 集成电源开关
ONSEMI

FSCQ1565RTYDTU_NL

暂无描述
FAIRCHILD