FSGM300N [ONSEMI]

650V 集成电源开关,带异常 OCP,用于 30W 离线反激转换器;
FSGM300N
型号: FSGM300N
厂家: ONSEMI    ONSEMI
描述:

650V 集成电源开关,带异常 OCP,用于 30W 离线反激转换器

开关 电源开关 光电二极管 转换器
文件: 总16页 (文件大小:309K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
FSGM300N  
Green-Mode Power Switch  
Description  
The FSGM300N is an integrated Pulse Width Modulation (PWM)  
®
controller and SENSEFET specifically designed for offline  
SwitchMode Power Supplies (SMPS) with minimal external  
components. The PWM controller includes an integrated  
fixedfrequency oscillator, UnderVoltage Lockout (UVLO),  
LeadingEdge Blanking (LEB), optimized gate driver, internal  
softstart, temperaturecompensated precise current sources for loop  
compensation, and selfprotection circuitry. Compared with a discrete  
MOSFET and PWM controller solution, the FSGM series can reduce  
total cost, component count, size, and weight; while simultaneously  
increasing efficiency, productivity, and system reliability. This device  
provides a basic platform suited for costeffective design of a flyback  
converter.  
www.onsemi.com  
PDIP8  
CASE 62605  
MARKING DIAGRAM  
Features  
Advanced BurstMode Operation for Low Standby Power  
Random Frequency Fluctuation for Low EMI  
PulsebyPulse Current Limit  
$Y&E&Z&2&K  
FSGM300N  
Various Protection Functions: Overload Protection (OLP),  
OverVoltage Protection (OVP), Abnormal OverCurrent Protection  
(AOCP), Internal Thermal Shutdown (TSD) with Hysteresis,  
OutputShort Protection (OSP), and UnderVoltage Lockout  
(UVLO) with Hysteresis  
AutoRestart Mode  
Internal Startup Circuit  
$Y  
&E  
&Z  
&2  
&K  
= ON Semiconductor Logo  
‘= Designates Space  
= Assembly Plant Code  
= 2Digit Date Code Format  
= 2Digit Lot Run Tracebility Code  
FSGM300N = Specific Device Code  
Internal HighVoltage SENSEFET: 650 V  
Builtin SoftStart: 15 ms  
This is a PbFree Device  
ORDERING INFORMATION  
See detailed ordering and shipping information on page 2 of  
this data sheet.  
Applications  
Power Supply for LCD Monitor, STB and DVD Combination  
© Semiconductor Components Industries, LLC, 2019  
1
Publication Order Number:  
July, 2019 Rev. 3  
FSGM300N/D  
FSGM300N  
ORDERING INFORMATION  
Output Power Table (Note 2)  
85 265 V  
230V 15% (Note 3)  
AC  
AC  
Operating  
Junction  
Temperature  
Adapter  
(Note 4)  
Open Frame  
Adapter  
Open Frame  
Current  
Limit  
R
Replaces  
Device  
DS(ON)  
(Note 5)  
(Note 4)  
(Note 5)  
Part Number  
Package  
(Max.)  
Shipping  
FSGM300N  
8DIP  
40°C ~ +125°C  
1.60 A  
2.2 W  
26 W  
40 W  
20 W  
30 W  
FSFM300N 3000 / Tube  
1. Pbfree package per JEDEC JSTD020B.  
2. The junction temperature can limit the maximum output power.  
3. 230 V or 100 / 115 V with voltage doubler.  
AC  
AC  
4. Typical continuous power in a nonventilated enclosed adapter measured at 50°C ambient temperature.  
5. Maximum practical continuous power in an openframe design at 50°C ambient temperature.  
Application Circuit  
VO  
AC  
IN  
VSTR  
Drain  
N.C.  
PWM  
GND  
VCC  
FB  
Figure 1. Typical Application Circuit  
www.onsemi.com  
2
 
FSGM300N  
Internal Block Diagram  
V
STR  
V
CC  
Drain  
5
2
6, 7, 8  
ICH  
V
burst  
0.5 V / 0.7 V  
V
ref  
VCC good  
7.7 V / 12 V  
Random  
OSC  
VCC  
V
ref  
Soft Start  
IDELAY  
IFB  
S
R
Q
Q
PWM  
Gate  
Driver  
FB  
3
4
3R  
LEB (400 ns)  
R
N.C.  
t
< t  
OSP  
(1.0 ms)  
ON  
LPF  
1
GND  
V
AOCP  
VOSP  
S
R
Q
TSD  
V
6SVD  
VCC good  
Q
V
CC  
V
24OVVP  
Figure 2. Internal Block Diagram  
Pin Configuration  
1. GND  
2. V  
8. Drain  
7. Drain  
6. Drain  
CC  
FSGM300N  
3. FB  
4. NC  
5. V  
STR  
Figure 3. Pin Configuration (Top View)  
www.onsemi.com  
3
FSGM300N  
PIN DEFINITIONS  
Pin No.  
Name  
Description  
1
2
GND  
Ground. This pin is the control ground and the SENSEFET source.  
V
CC  
Power Supply. This pin is the positive supply input, w hich provides the internal operating current for both startup  
and steadystate operation.  
3
FB  
Feedback. This pin is internally connected to the inverting input of the PWM comparator. The collector of an  
optocoupler is typically tied to this pin. For stable operation, a capacitor should be placed between this pin and  
GND. If the voltage of this pin reaches 6 V, the overload protection triggers, which shuts down the power switch.  
4
5
N.C.  
No connection.  
V
STR  
Startup. This pin is connected directly, or through a resistor, to the highvoltage DC link. At startup, the internal  
highvoltage current source supplies internal bias and charges the external capacitor connected to the V pin.  
CC  
Once V reaches 12 V, the internal current source (I ) is disabled.  
CC  
CH  
6, 7, 8  
Drain  
SENSEFET Drain. Highvoltage power SENSEFET drain connection.  
ABSOLUTE MAXIMUM RATINGS  
Symbol  
Parameter  
Min  
Max  
650  
650  
26  
Unit  
V
V
STR  
V
STR  
Pin Voltage  
V
Drain Pin Voltage  
Pin Voltage  
V
DS  
V
CC  
V
V
CC  
V
Feedback Pin Voltage  
Drain Current Pulsed  
0.3  
8.0  
4
V
FB  
I
A
DM  
I
Continuous Switching Drain Current (Note 6)  
T
T
= 25°C  
1.90  
1.27  
190  
1.5  
150  
+125  
+150  
A
DS  
C
= 100°C  
A
C
E
Single Pulsed Avalanche Energy (Note 7)  
mJ  
W
°C  
°C  
°C  
kV  
AS  
P
Total Power Dissipation (T = 25°C) (Note 8)  
D
C
T
Maximum Junction Temperature  
Operating Junction Temperature (Note 9)  
Storage Temperature  
J
40  
55  
2
T
STG  
ESD  
Electrostatic Discharge Capability  
Human Body Model, JESD22A114  
Charged Device Model, JESD22C101  
2
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality  
should not be assumed, damage may occur and reliability may be affected.  
6. Repetitive peak switching current when the inductive load is assumed: Limited by maximum duty (D  
= 0.83) and junction temperature  
MAX  
(see Figure 4).  
7. L = 45 mH, starting T = 25°C.  
J
8. Infinite cooling condition (refer to the SEMI G3088).  
9. Although this parameter guarantees IC operation, it does not guarantee all electrical characteristics.  
IDS  
DMAX  
fSW  
Figure 4. Repetitive Peak Switching Current  
www.onsemi.com  
4
 
FSGM300N  
THERMAL CHARACTERISTICS  
Symbol  
Characteristic  
Value  
80  
Unit  
°C/W  
°C/W  
°C/W  
q
JA  
q
JC  
JunctiontoAmbient Thermal Impedance (Note 10)  
JunctiontoCase Thermal Impedance (Note 11)  
JunctiontoTop Thermal Impedance (Note 12)  
20  
Y
JT  
35  
10.Infinite cooling condition (refer to the SEMI G3088).  
11. Free standing with no heatsink under natural convection.  
12.Measured on the package top surface.  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
J
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
SENSEFET SECTION  
BV  
I
DrainSource Breakdown Voltage  
ZeroGateVoltage Drain Current  
DrainSource OnState Resistance  
Input Capacitance (Note 13)  
Output Capacitance (Note 13)  
Rise Time  
V
CC  
V
DS  
V
GS  
V
DS  
V
DS  
V
DS  
V
DS  
V
DS  
V
DS  
= 0 V, I = 250 mA  
650  
V
DSS  
D
250  
mA  
= 520 V, T = 125°C  
A
DSS  
R
= 10 V, I = 1 A  
1.8  
515  
75  
2.2  
W
pF  
pF  
ns  
ns  
ns  
ns  
DS(ON)  
D
C
= 25 V, V = 0 V, f = 1MHz  
GS  
ISS  
C
= 25 V, V = 0 V, f = 1MHz  
GS  
OSS  
t
= 325 V, I = 4 A, R = 25 W  
26  
r
D
G
t
Fall Time  
= 325 V, I = 4 A, R = 25 W  
25  
f
D
G
t
t
TurnOn Delay Time  
= 325 V, I = 4 A, R = 25 W  
14  
d(on)  
d(off)  
D
G
TurnOff Delay Time  
= 325 V, I = 4 A, R = 25 W  
32  
D
G
CONTROL SECTION  
f
Switching Frequency (Note 13)  
Switching Frequency Variation (Note 13)  
Maximum Duty Ratio  
V
= 14 V, V = 4 V  
61  
67  
5
73  
10  
83  
0
kHz  
%
S
CC  
FB  
25°C < T < 125°C  
Df  
J
S
D
V
CC  
V
CC  
V
FB  
V
FB  
= 14 V, V = 4 V  
71  
77  
%
MAX  
FB  
D
Minimum Duty Ratio  
= 14 V, V = 0 V  
%
MIN  
FB  
FB  
I
Feedback Source Current  
UVLO Threshold Voltage  
= 0  
120  
11  
150  
12  
180  
13  
8.5  
mA  
V
V
= 0 V, V Sweep  
CC  
START  
V
After Turnon, V = 0 V  
7.0  
7.7  
V
STOP  
FB  
V
OP  
V
CC  
Operating Range  
13  
22.5  
V
t
Internal SoftStart Time  
V
V
= 40 V, V Sweep  
15  
ms  
S/S  
STR  
CC  
BURSTMODE SECTION  
BurstMode Voltage  
V
= 14 V, V Sweep  
0.6  
0.4  
0.7  
0.5  
0.8  
0.6  
V
V
BURH  
CC  
FB  
V
BURL  
Hys  
200  
mV  
www.onsemi.com  
5
 
FSGM300N  
ELECTRICAL CHARACTERISTICS (T = 25°C unless otherwise noted) (continued)  
J
Symbol  
Parameter  
Test Condition  
Min  
Typ  
Max  
Unit  
PROTECTION SECTION  
I
Peak Drain Current Limit  
di/dt = 300 mA/ms  
1.44  
5.5  
2.0  
1.60  
6.0  
2.7  
400  
24.0  
1.0  
1.6  
2.5  
135  
40  
1.76  
6.5  
3.4  
A
V
LIM  
V
Shutdown Feedback Voltage  
Shutdown Delay Current  
V
CC  
V
CC  
= 14 V, V Sweep  
FB  
SD  
DELAY  
I
= 14 V, V = 4 V  
mA  
ns  
V
FB  
t
LeadingEdge Blanking Time (Note 13, 15)  
OverVoltage Protection  
LEB  
V
V
CC  
Sweep  
22.5  
0.7  
1.4  
2.0  
125  
25.5  
1.3  
1.8  
3.0  
145  
OVP  
OSP  
t
Output Short  
Protection (Note 13)  
Threshold Time  
OSP Triggered when t < t  
&
ms  
V
ON  
OSP  
V
t
> V  
OSP_FB  
(Lasts Longer than  
FB  
OSP  
)
V
Threshold V  
OSP  
FB  
t
V
Blanking Time  
ms  
°C  
°C  
OSP_FB  
FB  
T
Thermal Shutdown Temperature (Note 13)  
Shutdown Temperature  
Hysteresis  
SD  
Hys  
TOTAL DEVICE SECTION  
I
Operating Supply Current, (Control Part in  
Burst Mode)  
V
V
= 14 V, V = 0 V  
1.0  
2.1  
1.5  
2.5  
2.0  
2.9  
mA  
mA  
mA  
OP  
CC  
FB  
I
Operating Switching Current, (Control Part  
and SENSEFET Part)  
= 14 V, V = 2 V  
FB  
OPS  
CC  
I
Start Current  
V
V
= 11 V (Before V Reaches  
400  
500  
600  
START  
CC  
START  
CC  
)
I
Startup Charging Current  
V
= V = 0 V, V  
= 40 V  
Sweep  
0.95  
1.10  
26  
1.50  
mA  
V
CH  
CC  
FB  
STR  
V
STR  
Minimum V  
Supply Voltage  
V
CC  
= V = 0 V, V  
FB  
STR  
STR  
Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product  
performance may not be indicated by the Electrical Characteristics if operated under different conditions.  
13.Although these parameters are guaranteed, they are not 100% tested in production.  
14.Average value.  
15.t  
includes gate turnon time.  
LEB  
Table 1. COMPARISON OF FSFM300N AND FSGM300N  
Function  
FSFM300N  
FSGM300N  
Advantages of FSFM300N  
Random Frequency  
Fluctuation  
Builtin  
Low EMI  
Operating Current  
Protections  
3 mA  
1.4 mA  
Very low standby power  
OLP  
OVP  
AOCP  
TSD  
OLP  
OVP  
OSP  
AOCP  
Enhanced protections and high reliability  
TSD with Hysteresis  
Power Balance  
Long T  
Very Short T  
The difference of input power between the low and high input  
voltage is quite small  
CLD  
CLD  
www.onsemi.com  
6
 
FSGM300N  
TYPICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
40  
25  
0
25  
50  
75  
100  
120  
40  
25  
0
25  
50  
75  
100  
125  
Temperature [°C]  
Temperature [°C]  
Figure 5. Operating Supply Current (IOP) vs. TA  
Figure 6. Operating Switching Current (IOPS) vs. TA  
1.40  
1.30  
1.20  
1.10  
1.00  
0.90  
0.80  
0.70  
0.60  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
40  
25  
0
25  
50  
75  
100  
125  
40  
25  
0
25  
50  
75  
100  
125  
Temperature [°C]  
Temperature [°C]  
Figure 7. Startup Charging Current (ICH) vs. TA  
Figure 8. Peak Drain Current Limit (ILIM) vs. TA  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
40  
25  
0
25  
50  
75  
100  
125  
40  
25  
0
25  
50  
75  
100  
125  
Temperature [°C]  
Temperature [°C]  
Figure 9. Feedback Source Current (IFB) vs. TA  
Figure 10. Shutdown Delay Current (IDELAY) vs. TA  
www.onsemi.com  
7
FSGM300N  
TYPICAL CHARACTERISTICS (T = 25°C unless otherwise noted)  
A
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
40  
25  
0
25  
50  
75  
100  
125  
40  
25  
0
25  
50  
75  
100  
125  
Temperature [°C]  
Temperature [°C]  
Figure 11. UVLO Threshold Voltage (VSTART) vs. TA  
Figure 12. UVLO Threshold Voltage (VSTOP) vs. TA  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
40  
25  
0
25  
50  
75  
100  
125  
40  
25  
0
25  
50  
75  
100  
125  
Temperature [°C]  
Temperature [°C]  
Figure 13. Shutdown Feedback Voltage (VSD) vs. TA  
Figure 14. OverVoltage Protection (VOVP) vs. TA  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
1.20  
1.15  
1.10  
1.05  
1.00  
0.95  
0.90  
0.85  
0.80  
40  
25  
0
25  
50  
75  
100  
125  
40  
25  
0
25  
50  
75  
100  
125  
Temperature [°C]  
Temperature [°C]  
Figure 15. Switching Frequency (fS) vs. TA  
Figure 16. Maximum Duty Ratio (DMAX) vs. TA  
www.onsemi.com  
8
FSGM300N  
FUNCTIONAL DESCRIPTION  
the required output voltage. This helps prevent transformer  
saturation and reduces stress on the secondary diode during  
startup.  
Startup  
At startup, an internal highvoltage current source  
supplies the internal bias and charges the external capacitor  
Feedback Control  
(C ) connected to the V pin, as illustrated in Figure 17.  
This device employs currentmode control, as show n in  
Figure 18. An optocoupler (such as the FOD817) and shunt  
regulator (such as the KA431) are typically used to  
implement the feedback network. Comparing the feedback  
Vcc  
CC  
When V reaches 12 V, the FSGM300N begins switching  
CC  
and the internal highvoltage current source is disabled. The  
FSGM300N continues normal switching operation and the  
power is supplied from the auxiliary transformer winding  
voltage with the voltage across the R  
resistor makes it  
SENSE  
unless V  
goes below the stop voltage of 7.7 V.  
possible to control the switching duty cycle. When the  
reference pin voltage of the shunt regulator exceeds the  
internal reference voltage of 2.5 V, the optocoupler LED  
current increases, pulling down the feedback voltage and  
reducing drain current. This typically occurs when the input  
voltage is increased or the output load is decreased.  
CC  
VDC  
CVcc  
PulsebyPulse Current Limit  
Because currentmode control is employed, the peak  
current through the SENSEFET is limited by the inverting  
VCC  
VSTR  
2
5
input of PWM comparator (V *), as shown in Figure 18.  
FB  
ICH  
Assuming that the 150 mA current source flows only through  
the internal resistor (3R + R = 16 kW), the cathode voltage  
of diode D2 is about 2.4 V. Since D1 is blocked when the  
V
ref  
VCC good  
feedback voltage (V ) exceeds 2.4 V, the maximum  
FB  
7.7 V / 12.0 V  
Internal  
Bias  
voltage of the cathode of D2 is clamped at this voltage.  
Therefore, the peak value of the current through the  
SENSEFET is limited.  
Figure 17. Startup Block  
LeadingEdge Blanking (LEB)  
SoftStart  
At the instant the internal SENSEFET is turned on, a  
highcurrent spike usually occurs through the SENSEFET,  
caused by primaryside capacitance and secondaryside  
rectifier reverse recovery. Excessive voltage across the  
The FSGM300N has an internal softstart circuit that  
increases PWM comparator inverting input voltage,  
together with the SENSEFET current, slow ly after it starts.  
The typical softstart time is 15 ms. The pulse width to the  
power switching device is progressively increased to  
establish the correct working conditions for transformers,  
inductors, and capacitors. The voltage on the output  
capacitors is progressively increased to smoothly establish  
R
SENSE  
resistor leads to incorrect feedback operation in the  
current mode PWM control. To counter this effect, the  
FSGM300N employs a leadingedge blanking (LEB)  
circuit. This circuit inhibits the PWM comparator for t  
(400 ns) after the SenseFET is turned on.  
LEB  
Drain  
6, 7, 8  
Vref  
VCC  
IDELAY  
IFB  
D2  
OSC  
FB  
3R  
VOUT  
VFB  
PWM  
4
Gate  
Driver  
D1  
FOD817  
KA431  
*
CFB  
R
VFB  
LEB (400 ns)  
OSP  
OLP  
VOSP  
RSENSE  
GND  
1
AOCP  
V
AOCP  
VSD  
Figure 18. Pulse Width Modulation Circuit  
www.onsemi.com  
9
 
FSGM300N  
Protection Circuits  
current, thus increasing the feedback voltage (V ). If V  
FB  
FB  
The FSGM300N has several selfprotective functions,  
such as Overload Protection (OLP), Abnormal  
OverCurrent Protection (AOCP), OutputShort Protection  
(OSP), OverVoltage Protection (OVP), and Thermal  
Shutdown (TSD). All the protections are implemented as  
autorestart. Once the fault condition is detected, switching  
is terminated and the SENSEFET remains off. This causes  
exceeds 2.4 V, D1 is blocked and the 2.7 mA current source  
starts to charge C slowly up In this condition, V  
continues increasing until it reaches 6.0 V, when the  
switching operation is terminated, as show n in Figure 20.  
The delay time for shutdown is the time required to charge  
FB  
.
FB  
C
FB  
from 2.4 V to 6.0 V with 2.7 mA. A 25 ~ 50 ms delay is  
typical for most applications. This protection is  
implemented in autorestart mode.  
V
CC  
to fall. When V falls to the UnderVoltage Lockout  
CC  
(UVLO) stop voltage of 7.7 V, the protection is reset and the  
startup circuit charges the V capacitor. When V reaches  
the start voltage of 12.0 V, the FSGM300N resumes normal  
operation. If the fault condition is not removed, the  
VFB  
CC  
CC  
Overload Protection  
6.0 V  
2.4 V  
SENSEFET remains off and V drops to stop voltage  
CC  
again. In this manner, the autorestart can alternately enable  
and disable the switching of the power SENSEFET until the  
fault condition is eliminated. Because these protection  
circuits are fully integrated into the IC without external  
components, the reliability is improved without increasing  
cost.  
t
12  
= C x (6.0 2.4) / I  
FB delay  
t1  
t 2  
t
Fault  
occurs  
Fault  
removed  
Power  
on  
VDS  
Figure 20. Overload Protection  
Abnormal OverCurrent Protection (AOCP)  
When the secondary rectifier diodes or the transformer  
pins are shorted, a steep current with extremely high di/dt  
can flow through the SENSEFET during the minimum  
turnon time. Even though the FSGM300N has overload  
protection, it is not enough to protect the FSGM300N in that  
abnormal case; since severe current stress is imposed on the  
SENSEFET until OLP is triggered. The FSGM300N  
internal AOCP circuit is shown in Figure 21. When the gate  
turnon signal is applied to the power SENSEFET, the  
AOCP block is enabled and monitors the current through the  
sensing resistor. The voltage across the resistor is compared  
with a preset AOCP level. If the sensing resistor voltage is  
greater than the AOCP level, the set signal is applied to the  
S- R latch, resulting in the shutdown of the SMPS.  
VCC  
12.0 V  
7.5 V  
t
Normal  
operation  
Fault  
situation  
Normal  
operation  
Figure 19. AutoRestart Protection Waveforms  
Overload Protection (OLP)  
Drain  
Overload is defined as the load current exceeding its  
normal level due to an unexpected abnormal event. In this  
situation, the protection circuit should trigger to protect the  
SMPS. However, even when the SMPS is in normal  
operation, the overload protection circuit can be triggered  
during the load transition. To avoid this undesired operation,  
the overload protection circuit is designed to trigger only  
after a specified time to determine whether it is a transient  
situation or a true overload situation. Because of the  
pulsebypulse current limit capability, the maximum peak  
current through the SENSEFET is limited and, therefore, the  
maximum input power is restricted with a given input  
voltage. If the output consumes more than this maximum  
6, 7, 8  
OSC  
3R  
PWM  
Gate  
Driver  
*
R
VFB  
LEB (400 ns)  
RSENSE  
VAOCP  
GND  
Q
Q
S
1
R
VCC good  
pow er, the output voltage (V  
voltage. This reduces the current through the optocoupler  
LED, which also reduces the optocoupler transistor  
) decreases below the set  
OUT  
Figure 21. Abnormal OverCurrent Protection  
www.onsemi.com  
10  
 
FSGM300N  
OutputShort Protection (OSP)  
operation. The FSGM300N operates in autorestart mode  
until the temperature decreases to around 95°C, when  
normal operation resumes.  
If the output is shorted, steep current with extremely high  
di/dt can flow through the SENSEFET during the minimum  
turnon time. Such a steep current brings highvoltage  
stress on the drain of the SENSEFET when turned off. To  
protect the device from this abnormal condition, OSP is  
Soft BurstMode Operation  
To minimize power dissipation in standby mode, the  
FSGM300N enters burstmode operation. As the load  
decreases, the feedback voltage decreases. As shown in  
Figure 23, the device automatically enters burst mode when  
included. It is comprised of detecting V and SENSEFET  
FB  
turnon time. When the V is higher than 1.6 V and the  
FB  
SENSEFET turnon time is lower than 1.0 ms, the  
FSGM300N recognizes this condition as an abnormal error  
and shuts down PWM switching until V reaches V  
again. An abnormal condition output short is shown in  
Figure 22.  
the feedback voltage drops below V  
(500 mV). At this  
BURL  
point, switching stops and the output voltages start to drop  
at a rate dependent on standby current load. This causes the  
CC  
START  
feedback voltage to rise. Once it passes V  
(700 mV),  
BURH  
switching resumes. The feedback voltage then falls and the  
process repeats. Burstmode operation alternately enables  
and disables switching of the SENSEFET, thereby reducing  
switching loss in standby mode.  
MOSFET  
Drain  
Current  
Rectifier  
Diode  
Current  
ILIM  
* = 0.4 V  
V
FB  
*
V * = 1.6 V  
FB  
VFB  
VO  
ILm  
0
t
1.0 ms  
1.0 ms  
tOFF tON  
output short occurs  
t
VFB  
VOUT  
IOUT  
0
0.70 V  
0.50 V  
t
t
t
OSP triggered  
OSP  
IDS  
Soft Burst  
0
Figure 22. OutputShort Protection  
t
OverVoltage Protection (OVP)  
VDS  
If the secondaryside feedback circuit malfunctions or a  
solder defect causes an opening in the feedback path, the  
current through the optocoupler transistor becomes almost  
zero. Then V climbs up in a similar manner to the overload  
FB  
t
situation, forcing the preset maximum current to be supplied  
to the SMPS until the overload protection is triggered.  
Because more energy than required is provided to the output,  
the output voltage may exceed the rated voltage before the  
overload protection is triggered, resulting in the breakdown  
of the devices in the secondary side. To prevent this  
Switching  
disabled  
Switching  
disabled  
t4  
t1  
t2 t3  
Figure 23. BurstMode Operation  
Random Frequency Fluctuation (RFF)  
situation, an OVP circuit is employed. In general, the V  
is proportional to the output voltage and the FSGM300N  
Fluctuating switching frequency of an SMPS can reduce  
EMI by spreading the energy over a wide frequency range.  
The amount of EMI reduction is directly related to the  
switching frequency variation, which is limited internally.  
The switching frequency is determined randomly by  
external feedback voltage and internal freerunning  
oscillator at every switching instant. This Random  
Frequency Fluctuation scatters the EMI noise around typical  
switching frequency (67 kHz) effectively and can reduce the  
cost of the input filter included to meet the EMI  
requirements (e.g. EN55022).  
CC  
uses V instead of directly monitoring the output voltage.  
CC  
If V exceeds 24.0 V, an OVP circuit is triggered, resulting  
CC  
in the termination of the switching operation. To avoid  
undesired activation of OVP during normal operation, V  
CC  
should be designed to be below 24.0 V.  
Thermal Shutdown (TSD)  
The SENSEFET and the control IC on a die in one  
package makes it easier for the control IC to detect the over  
temperature of the SENSEFET. If the temperature exceeds  
~135°C, the thermal shutdown is triggered and stops  
www.onsemi.com  
11  
 
FSGM300N  
TYPICAL APPLICATION CIRCUIT  
I
DS  
Table 2. TYPICAL APPLICATION CIRCUIT  
f
SW  
Application Input Voltage Rated Output Rated Power  
Df  
SW  
t (ms)  
LCD Monitor  
Power Supply  
85 ~ 265 V  
5.0 V (2 A)  
14.0 V (1.2 A)  
26.8 W  
AC  
f
SW  
f
+ 1/2 Df  
SW  
SW  
f
1/2 Df  
SW  
SW  
Key Design Notes:  
No repetition  
1. The delay time for overload protection is designed  
to be about 30 ms with C105 (22 nF). OLP time  
between 25 ms (18 nF) and 50 ms (39 nF) is  
recommended.  
t (ms)  
Figure 24. Random Frequency Fluctuation  
2. The SMDtype capacitor (C106) must be placed  
as close as possible to the V pin to avoid  
CC  
malfunction by abrupt pulsating noises and to  
improve ESD and surge immunity. Capacitance  
between 100 nF and 220 nF is recommended.  
Schematic  
L201  
5mH  
D201  
MBRF10H100  
T1  
EER3016  
14V, 1.2A  
10  
1
2
C201  
1000mF  
25V  
C202  
1000mF  
25V  
R103  
C104  
3.3nF  
630V  
R102  
68kW  
43kW  
6
1W  
D101  
C103  
100mF  
400V  
1N4007  
3
2
BD101  
2KBP06M  
C301  
4.7nF  
Y2  
FSGM300N  
VSTR  
5
1
6,7,8  
3
Drain  
C107  
47mF  
50V  
D202  
MBRF1060  
L202  
5mH  
C106  
220nF  
4
3
N.C.  
VCC  
5V, 2A  
2
FB  
4
5
7
6
4
D102  
UF 4007  
GND  
C204  
1000mF  
10V  
C203  
2200mF  
10V  
C105  
22nF  
100V  
C102  
150nF  
275VAC  
1
ZD101  
1N4750A  
LF101  
30mH  
R201  
620W  
R101  
1.5MW  
1W  
R204  
8kW  
R202  
1.2kW  
C205  
47nF  
R203  
18kW  
IC301  
FOD817B  
IC201  
KA431LZ  
RT1  
NTC  
5D9  
F1  
C101  
220nF  
275VAC  
FUSE  
250V  
2A  
R205  
8kW  
Figure 25. Schematic of Demonstration Board  
www.onsemi.com  
12  
FSGM300N  
Transformer  
Barrier tape  
EER3016  
1
10  
9
N15V  
1
6
Np/2  
N14V  
N5V  
2
2
Np/2  
8
10  
3
8
7
6
Np/2  
8
4
7
3
N5V  
N5V  
Na  
5
6
2
4
5
Na  
N5V  
Np/2  
TOP  
BOT  
Figure 26. Schematic of Transformer  
Winding Specification  
Table 3. WINDING SPECIFICATION  
Barrier Tape  
BOT  
TOP  
Ts  
Pin (S F)  
3 2  
Wire  
0.25 φ x 1  
Turns  
Winding Method  
N /2  
p
21  
Solenoid Winding  
2.0 mm  
1
Insulation: Polyester Tape t = 0.025 mm, 2 Layers  
7 6  
0.4 φ x 2 (TIW)  
Insulation: Polyester Tape t = 0.025 mm, 2 Layers  
4 5  
0.2 φ x 1  
Insulation: Polyester Tape t = 0.025 mm, 2 Layers  
8 6  
0.4 φ x 2 (TIW)  
Insulation: Polyester Tape t = 0.025 mm, 2 Layers  
10 8  
0.4 φ x 2 (TIW)  
Insulation: Polyester Tape t = 0.025 mm, 2 Layers  
N /2 2 1  
0.25 φ x 1  
N
3
7
Solenoid Winding  
Solenoid Winding  
Solenoid Winding  
Solenoid Winding  
Solenoid Winding  
3.0 mm  
3.0 mm  
3.0 mm  
2.0 mm  
2.0 mm  
1
1
1
1
1
5V  
N
4.0 mm  
a
N
3
5V  
N
5
14V  
21  
p
Insulation: Polyester Tape t = 0.025 mm, 2 Layers  
Electrical Characteristics  
Table 4. ELECTRICAL CHARACTERISTICS  
Pin  
Specification  
Remark  
67 kHz, 1 V  
Short All Other Pins  
Inductance  
Leakage  
1 3  
1 3  
900 μH 7%  
15 mH Maximum  
Core & Bobbin  
2
Core: EER3016 (Ae = 109.7 mm )  
Bobbin: EER3016  
www.onsemi.com  
13  
FSGM300N  
Bill of Materials  
Table 5. Bill of Materials  
Part #  
Value  
Fuse  
250 V 2 A  
NTC  
5D9  
Resistor  
1.5 MW, J  
Note  
Part #  
Value  
Capacitor  
Note  
F101  
C101  
C102  
C103  
220 nF / 275 V  
150 nF / 275 V  
100 mF / 400 V  
Box (Pilkor)  
Box (Pilkor)  
NTC101  
DSC  
Electrolytic (SamYoung)  
C104  
C105  
C106  
3.3 nF / 630 V  
27 nF / 100 V  
220 nF  
Film (Sehwa)  
Film (Sehwa)  
SMD (2012)  
R101  
R102  
R103  
R201  
R202  
1 W  
1/2 W  
68 kW, J  
43 kW, J  
620 W, F  
1.2 kW, F  
1 W  
47 mF / 50 V  
1000 mF / 25 V  
1000 mF / 25 V  
2200 mF / 10 V  
C107  
C201  
C202  
C203  
Electrolytic (SamYoung)  
Electrolytic (SamYoung)  
Electrolytic (SamYoung)  
Electrolytic (SamYoung)  
1/4 W, 1%  
1/4 W, 1%  
R203  
R204  
R205  
18 kW, F  
8 kW, F  
1/4 W, 1%  
1/4 W, 1%  
1/4 W, 1%  
1000 mF / 16 V  
47 nF / 100 V  
4.7 nF / Y2  
Inductor  
30 mH  
8 kW, F  
C204  
C205  
C301  
Electrolytic (SamYoung)  
Film (Sehwa)  
IC  
FSGM300N  
IC201  
FSGM300N  
KA431LZ  
FOD817B  
Diode  
ON Semiconductor  
ON Semiconductor  
ON Semiconductor  
Ycap (Samhwa)  
IC301  
LF101  
L201  
L202  
Line filter 0.5Ø  
5 A Rating  
5 mH  
D101  
D102  
1N4007  
Vishay  
Vishay  
5 mH  
5 A Rating  
UF4007  
Transformer  
900 mH  
ZD101  
D201  
1N4750  
Vishay  
T101  
MBRF10H100  
MBRF1060  
2KBP06  
ON Semiconductor  
ON Semiconductor  
Vishay  
D202  
BD101  
SENSEFET is registered trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries.  
www.onsemi.com  
14  
MECHANICAL CASE OUTLINE  
PACKAGE DIMENSIONS  
PDIP8  
CASE 62605  
ISSUE P  
DATE 22 APR 2015  
SCALE 1:1  
NOTES:  
D
A
1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994.  
2. CONTROLLING DIMENSION: INCHES.  
E
3. DIMENSIONS A, A1 AND L ARE MEASURED WITH THE PACK-  
AGE SEATED IN JEDEC SEATING PLANE GAUGE GS3.  
4. DIMENSIONS D, D1 AND E1 DO NOT INCLUDE MOLD FLASH  
OR PROTRUSIONS. MOLD FLASH OR PROTRUSIONS ARE  
NOT TO EXCEED 0.10 INCH.  
5. DIMENSION E IS MEASURED AT A POINT 0.015 BELOW DATUM  
PLANE H WITH THE LEADS CONSTRAINED PERPENDICULAR  
TO DATUM C.  
H
8
5
4
E1  
1
6. DIMENSION eB IS MEASURED AT THE LEAD TIPS WITH THE  
LEADS UNCONSTRAINED.  
7. DATUM PLANE H IS COINCIDENT WITH THE BOTTOM OF THE  
LEADS, WHERE THE LEADS EXIT THE BODY.  
8. PACKAGE CONTOUR IS OPTIONAL (ROUNDED OR SQUARE  
CORNERS).  
NOTE 8  
c
b2  
B
END VIEW  
WITH LEADS CONSTRAINED  
TOP VIEW  
NOTE 5  
INCHES  
DIM MIN MAX  
−−−−  
A1 0.015  
MILLIMETERS  
A2  
A
MIN  
−−−  
0.38  
2.92  
0.35  
MAX  
5.33  
−−−  
4.95  
0.56  
e/2  
A
0.210  
−−−−  
NOTE 3  
A2 0.115 0.195  
L
b
b2  
C
0.014 0.022  
0.060 TYP  
0.008 0.014  
0.355 0.400  
1.52 TYP  
0.20  
9.02  
0.13  
7.62  
6.10  
0.36  
10.16  
−−−  
8.26  
7.11  
D
SEATING  
PLANE  
D1 0.005  
0.300 0.325  
E1 0.240 0.280  
−−−−  
A1  
D1  
E
C
M
e
eB  
L
0.100 BSC  
−−−− 0.430  
0.115 0.150  
−−−− 10°  
2.54 BSC  
−−−  
2.92  
−−−  
10.92  
3.81  
10°  
e
eB  
8X  
b
END VIEW  
M
NOTE 6  
M
M
M
0.010  
C A  
B
SIDE VIEW  
GENERIC  
MARKING DIAGRAM*  
STYLE 1:  
PIN 1. AC IN  
2. DC + IN  
3. DC IN  
4. AC IN  
XXXXXXXXX  
AWL  
YYWWG  
5. GROUND  
6. OUTPUT  
7. AUXILIARY  
8. V  
CC  
XXXX = Specific Device Code  
A
= Assembly Location  
= Wafer Lot  
= Year  
= Work Week  
= PbFree Package  
WL  
YY  
WW  
G
*This information is generic. Please refer to  
device data sheet for actual part marking.  
PbFree indicator, “G” or microdot “ G”,  
may or may not be present.  
Electronic versions are uncontrolled except when accessed directly from the Document Repository.  
Printed versions are uncontrolled except when stamped “CONTROLLED COPY” in red.  
DOCUMENT NUMBER:  
DESCRIPTION:  
98ASB42420B  
PDIP8  
PAGE 1 OF 1  
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding  
the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically  
disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights nor the  
rights of others.  
© Semiconductor Components Industries, LLC, 2019  
www.onsemi.com  
onsemi,  
, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates  
and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property.  
A listing of onsemi’s product/patent coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. onsemi reserves the right to make changes at any time to any  
products or information herein, without notice. The information herein is provided “asis” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the  
information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use  
of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products  
and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information  
provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may  
vary over time. All operating parameters, including “Typicals” must be validated for each customer application by customer’s technical experts. onsemi does not convey any license  
under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems  
or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should  
Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates,  
and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal  
Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner.  
ADDITIONAL INFORMATION  
TECHNICAL PUBLICATIONS:  
Technical Library: www.onsemi.com/design/resources/technicaldocumentation  
onsemi Website: www.onsemi.com  
ONLINE SUPPORT: www.onsemi.com/support  
For additional information, please contact your local Sales Representative at  
www.onsemi.com/support/sales  

相关型号:

FSGS033D1

TRANSISTOR | MOSFET | N-CHANNEL | 30V V(BR)DSS | 16A I(D) | TO-257AA
ETC

FSGS033R3

TRANSISTOR | MOSFET | N-CHANNEL | 30V V(BR)DSS | 16A I(D) | TO-257AA
ETC

FSGS033R4

TRANSISTOR | MOSFET | N-CHANNEL | 30V V(BR)DSS | 16A I(D) | TO-257AA
ETC

FSGS035D1

TRANSISTOR | MOSFET | N-CHANNEL | 60V V(BR)DSS | 16A I(D) | TO-257
ETC

FSGS035R3

TRANSISTOR | MOSFET | N-CHANNEL | 60V V(BR)DSS | 16A I(D) | TO-257
ETC

FSGS035R4

TRANSISTOR | MOSFET | N-CHANNEL | 60V V(BR)DSS | 16A I(D) | TO-257
ETC

FSGS130D1

Power Field-Effect Transistor, 16A I(D), 100V, 0.054ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-257AA
INFINEON

FSGS130R3

Power Field-Effect Transistor, 16A I(D), 100V, 0.054ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-257AA
INFINEON

FSGS130R4

暂无描述
INFINEON

FSGS134D1

TRANSISTOR | MOSFET | N-CHANNEL | 150V V(BR)DSS | 16A I(D) | TO-257AA
ETC

FSGS134R3

Power Field-Effect Transistor, 16A I(D), 150V, 0.099ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-257AA,
FAIRCHILD

FSGS134R4

Power Field-Effect Transistor, 16A I(D), 150V, 0.099ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-257AA,
FAIRCHILD