HUF75344G3 [ONSEMI]

55 V、75 A、8 mΩ、N 沟道 UltraFET 功率 MOSFET;
HUF75344G3
型号: HUF75344G3
厂家: ONSEMI    ONSEMI
描述:

55 V、75 A、8 mΩ、N 沟道 UltraFET 功率 MOSFET

局域网 开关 晶体管
文件: 总11页 (文件大小:484K)
中文:  中文翻译
下载:  下载PDF数据表文档文件
ON Semiconductor  
Is Now  
To learn more about onsemi™, please visit our website at  
www.onsemi.com  
onsemi andꢀꢀꢀꢀꢀꢀꢀand other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba “onsemi” or its affiliates and/or  
subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi  
product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without  
notice. The information herein is provided “as-is” and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality,  
or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all  
liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws,  
regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. “Typical” parameters which may be provided in onsemi data sheets and/  
or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer application  
by customer’s technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized  
for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for  
implantation in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and holdonsemi and its officers, employees,  
subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death  
associated with such unintended or unauthorized use, even if such claim alleges that onsemi was negligent regarding the design or manufacture of the part. onsemi is an Equal Opportunity/Affirmative  
Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. Other names and brands may be claimed as the property of others.  
HUF75344G3, HUF75344P3  
Data Sheet  
October 2013  
N-Channel UltraFET Power MOSFET  
Features  
55 V, 75 A, 8 mΩ  
• 75A, 55V  
These N-Channel power MOSFETs are manufactured  
using the innovative UltraFET process. This advanced  
process technology achieves the lowest possible on-  
resistance per silicon area, resulting in outstanding  
performance. This device is capable of withstanding high  
energy in the avalanche mode and the diode exhibits very  
low reverse recovery time and stored charge. It was  
designed for use in applications where power efficiency is  
important, such as switching regulators, switching  
converters, motor drivers, relay drivers, low-voltage bus  
switches, and power management in portable and battery-  
operated products.  
• Simulation Models  
- Temperature Compensated PSPICE® and SABER™  
Models  
- Thermal Impedance PSPICE and SABER Models  
Available on the web at: www.fairchildsemi.com  
• Peak Current vs Pulse Width Curve  
• UIS Rating Curve  
• Related Literature  
- TB334, “Guidelines for Soldering Surface Mount  
Components to PC Boards”  
Symbol  
Formerly developmental type TA75344.  
D
Ordering Information  
PART NUMBER  
PACKAGE  
TO-247  
TO-220AB  
BRAND  
75344G  
75344P  
G
HUF75344G3  
HUF75344P3  
S
Packaging  
JEDEC STYLE TO-247  
SOURCE  
DRAIN  
GATE  
JEDEC TO-220AB  
SOURCE  
DRAIN  
GATE  
DRAIN  
(FLANGE)  
DRAIN  
(TAB)  
All ON Semiconductor products are manufactured, assembled and tested under ISO9000 and QS9000 quality systems certification.  
Publication Order Number:  
©2004 Semiconductor Components Industries, LLC.  
HUF75344G3/DD  
September-2017, Rev 3  
HUF75344G3, HUF75344P3  
o
Absolute Maximum Ratings  
T = 25 C, Unless Otherwise Specified  
C
UNITS  
Drain to Source Voltage (Note 1). . . . . . . . . . . . . . . . . . . . . . . V  
55  
55  
V
V
V
DSS  
DGR  
Drain to Gate Voltage (R  
= 20k) (Note 1) . . . . . . . . . . . . . V  
GS  
Gate to Source Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . V  
±20  
GS  
Drain Current  
Continuous (Figure 2). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . I  
75  
Figure 4  
Figure 6  
285  
A
D
Pulsed Drain Current . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .I  
DM  
Pulsed Avalanche Rating. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . E  
AS  
Power Dissipation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . P  
W
D
o
o
Derate Above 25 C . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
1.90  
W/ C  
o
Operating and Storage Temperature . . . . . . . . . . . . . . . . . .T , T  
-55 to 175  
C
J
STG  
Maximum Temperature for Soldering  
Leads at 0.063in (1.6mm) from Case for 10s. . . . . . . . . . . . . . . T  
Package Body for 10s, See Techbrief 334 . . . . . . . . . . . . . . . T  
o
300  
260  
C
C
L
o
pkg  
CAUTION: Stresses above those listed in “Absolute Maximum Ratings” may cause permanent damage to the device. This is a stress only rating and operation of the  
device at these or any other conditions above those indicated in the operational sections of this specification is not implied.  
NOTE:  
o
o
1. T = 25 C to 150 C.  
J
o
Electrical Specifications  
T = 25 C, Unless Otherwise Specified  
C
PARAMETER  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
UNITS  
OFF STATE SPECIFICATIONS  
Drain to Source Breakdown Voltage  
Zero Gate Voltage Drain Current  
BV  
I
= 250µA, V  
= 0V (Figure 11)  
55  
-
-
-
-
-
-
V
DSS  
D
GS  
GS  
GS  
I
V
V
V
= 50V, V  
= 45V, V  
= ±20V  
= 0V  
= 0V, T = 150 C  
1
µA  
µA  
nA  
DSS  
DS  
DS  
GS  
o
-
250  
±100  
C
Gate to Source Leakage Current  
ON STATE SPECIFICATIONS  
Gate to Source Threshold Voltage  
Drain to Source On Resistance  
THERMAL SPECIFICATIONS  
I
-
GSS  
V
V
= V , I = 250µA (Figure 10)  
2
-
-
4
V
GS(TH)  
GS  
DS  
D
r
I
= 75A, V  
= 10V (Figure 9)  
6.5  
8.0  
mΩ  
DS(ON)  
D
GS  
o
Thermal Resistance Junction to Case  
Thermal Resistance Junction to Ambient  
R
R
(Figure 3)  
TO-247  
TO-220  
-
-
-
-
-
-
0.52  
30  
C/W  
θJC  
o
C/W  
θJA  
o
62  
C/W  
SWITCHING SPECIFICATIONS (V  
Turn-On Time  
= 10V)  
GS  
t
V
R
R
= 30V, I  
75A,  
= 10V,  
-
-
-
-
-
-
-
13  
125  
46  
57  
-
187  
ns  
ns  
ns  
ns  
ns  
ns  
ON  
DD  
D
= 0.4, V  
L
GS  
Turn-On Delay Time  
Rise Time  
t
-
d(ON)  
= 3.0Ω  
GS  
t
-
r
Turn-Off Delay Time  
Fall Time  
t
-
-
d(OFF)  
t
f
Turn-Off Time  
t
147  
OFF  
GATE CHARGE SPECIFICATIONS  
Total Gate Charge  
Q
V
V
V
= 0V to 20V  
= 0V to 10V  
= 0V to 2V  
V
DD  
= 30V,  
75A,  
-
-
-
-
-
175  
90  
210  
108  
7.0  
-
nC  
nC  
nC  
nC  
nC  
g(TOT)  
GS  
GS  
GS  
I
D
Gate Charge at 10V  
Q
g(10)  
g(TH)  
R
= 0.4Ω  
L
Threshold Gate Charge  
Q
5.9  
14  
I
= 1.0mA  
g(REF)  
(Figure 13)  
Gate to Source Gate Charge  
Reverse Transfer Capacitance  
CAPACITANCE SPECIFICATIONS  
Input Capacitance  
Q
gs  
gd  
Q
39  
-
C
V
= 25V, V  
GS  
= 0V,  
-
-
-
3200  
1170  
310  
-
-
-
pF  
pF  
pF  
ISS  
DS  
f = 1MHz  
(Figure 12)  
Output Capacitance  
C
OSS  
RSS  
Reverse Transfer Capacitance  
C
www.onsemi.com  
2
HUF75344G3, HUF75344P3  
Source to Drain Diode Specifications  
PARAMETER  
Source to Drain Diode Voltage  
Reverse Recovery Time  
SYMBOL  
TEST CONDITIONS  
MIN  
TYP  
MAX  
1.25  
105  
UNITS  
V
V
I
I
I
= 75A  
-
-
-
-
-
-
SD  
SD  
SD  
SD  
t
= 75A, dI /dt = 100A/µs  
SD  
ns  
rr  
Reverse Recovered Charge  
Q
= 75A, dI /dt = 100A/µs  
210  
nC  
RR  
SD  
Typical Performance Curves  
1.2  
80  
60  
40  
20  
0
1.0  
0.8  
0.6  
0.4  
0.2  
0
25  
50  
75  
100  
125  
150  
175  
0
25  
50  
75  
100  
125  
o
150  
175  
o
T
, CASE TEMPERATURE ( C)  
T , CASE TEMPERATURE ( C)  
C
C
FIGURE 1. NORMALIZED POWER DISSIPATION vs CASE  
TEMPERATURE  
FIGURE 2. MAXIMUM CONTINUOUS DRAIN CURRENT vs  
CASE TEMPERATURE  
2
DUTY CYCLE - DESCENDING ORDER  
0.5  
0.2  
1
0.1  
0.05  
0.02  
0.01  
P
DM  
0.1  
t
1
t
2
NOTES:  
DUTY FACTOR: D = t /t  
1
2
PEAK T = P  
x Z  
x R  
+ T  
θJC C  
J
DM  
θJC  
SINGLE PULSE  
0.01  
-5  
10  
-4  
-3  
10  
-2  
-1  
10  
0
1
10  
10  
t, RECTANGULAR PULSE DURATION (s)  
10  
10  
FIGURE 3. NORMALIZED MAXIMUM TRANSIENT THERMAL IMPEDANCE  
www.onsemi.com  
3
HUF75344G3, HUF75344P3  
Typical Performance Curves (Continued)  
2000  
1000  
o
T
C
= 25 C  
FOR TEMPERATURES  
ABOVE 25 C DERATE PEAK  
o
CURRENT AS FOLLOWS:  
175 - T  
150  
C
I = I  
25  
V
= 20V  
GS  
V
= 10V  
GS  
TRANSCONDUCTANCE  
MAY LIMIT CURRENT  
IN THIS REGION  
100  
50  
-5  
-4  
10  
-3  
10  
-2  
10  
-1  
0
1
10  
10  
10  
10  
t, PULSE WIDTH (s)  
FIGURE 4. PEAK CURRENT CAPABILITY  
1000  
1000  
100  
10  
If R = 0  
T
= MAX RATED  
J
t
= (L)(I )/(1.3*RATED BV  
- V  
)
AV  
If R 0  
= (L/R)ln[(I *R)/(1.3*RATED BV  
AS  
DSS  
DD  
o
T
= 25 C  
C
t
AV  
- V ) +1]  
DD  
AS  
DSS  
100µs  
100  
o
STARTING T = 25 C  
J
1ms  
o
STARTING T = 150 C  
J
OPERATION IN THIS  
AREA MAY BE  
10ms  
LIMITED BY r  
DS(ON)  
V
= 55V  
DSS(MAX)  
10  
0.01  
1
0.1  
1
10  
1
10  
100  
200  
t
, TIME IN AVALANCHE (ms)  
AV  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
NOTE: Refer to ON Semiconductor Application Notes AN9321 and  
AN9322.  
FIGURE 5. FORWARD BIAS SAFE OPERATING AREA  
FIGURE 6. UNCLAMPED INDUCTIVE SWITCHING CAPABILITY  
150  
120  
90  
60  
30  
0
150  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= 20V  
GS  
V
= 10V  
GS  
V
= 15V  
DD  
120  
90  
60  
30  
0
V
= 7V  
GS  
V
= 6V  
GS  
V
= 5V  
GS  
o
25 C  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
o
-55 C  
o
T
= 25 C  
3
C
0
1
2
4
0
1.5  
3
4.5  
6
7.5  
V
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
V
, GATE TO SOURCE VOLTAGE (V)  
GS  
FIGURE 7. SATURATION CHARACTERISTICS  
FIGURE 8. TRANSFER CHARACTERISTICS  
www.onsemi.com  
4
HUF75344G3, HUF75344P3  
Typical Performance Curves (Continued)  
2.5  
2.0  
1.5  
1.0  
0.5  
1.2  
PULSE DURATION = 80µs  
DUTY CYCLE = 0.5% MAX  
V
= V , I = 250µA  
DS  
GS  
D
V
= 10V, I = 75A  
GS  
D
1.0  
0.8  
0.6  
0.4  
-80  
-80  
-40  
0
40  
80  
120  
160  
200  
200  
-40  
0
40  
80  
120  
160  
o
o
T , JUNCTION TEMPERATURE ( C)  
T , JUNCTION TEMPERATURE ( C)  
J
J
FIGURE 9. NORMALIZED DRAIN TO SOURCE ON  
RESISTANCE vs JUNCTION TEMPERATURE  
FIGURE 10. NORMALIZED GATE THRESHOLD VOLTAGE vs  
JUNCTION TEMPERATURE  
1.2  
4500  
V
= 0V, f = 1MHz  
GS  
I
= 250µA  
D
C
C
C
= C  
+ C  
ISS  
GS  
= C  
GD  
RSS  
OSS  
GD  
C
ISS  
C
+ C  
GD  
DS  
1.1  
1.0  
0.9  
3000  
C
OSS  
1500  
C
RSS  
0
-80  
-40  
0
40  
80  
120  
160  
200  
0
10  
20  
, DRAIN TO SOURCE VOLTAGE (V)  
DS  
30  
40  
50  
60  
o
T , JUNCTION TEMPERATURE ( C)  
V
J
FIGURE 11. NORMALIZED DRAIN TO SOURCE BREAKDOWN  
VOLTAGE vs JUNCTION TEMPERATURE  
FIGURE 12. CAPACITANCE vs DRAIN TO SOURCE VOLTAGE  
10  
V
= 30V  
DD  
8
6
4
2
0
WAVEFORMS IN  
DESCENDING ORDER:  
I
I
I
I
= 75A  
= 55A  
= 35A  
= 20A  
D
D
D
D
0
25  
50  
Q , GATE CHARGE (nC)  
75  
100  
g
NOTE: Refer to ON Semiconductor Application Notes AN7254 and AN7260.  
FIGURE 13. GATE CHARGE WAVEFORMS FOR CONSTANT GATE CURRENT  
www.onsemi.com  
5
HUF75344G3, HUF75344P3  
Test Circuits and Waveforms  
V
DS  
BV  
DSS  
L
t
P
V
DS  
I
VARY t TO OBTAIN  
P
AS  
+
V
DD  
R
REQUIRED PEAK I  
AS  
G
V
DD  
-
V
GS  
DUT  
t
P
I
AS  
0V  
0
0.01Ω  
t
AV  
FIGURE 14. UNCLAMPED ENERGY TEST CIRCUIT  
FIGURE 15. UNCLAMPED ENERGY WAVEFORMS  
V
DS  
V
Q
DD  
R
g(TOT)  
L
V
DS  
V
= 20V  
GS  
V
Q
GS  
g(10)  
+
-
V
DD  
V
= 10V  
V
GS  
GS  
DUT  
V
= 2V  
GS  
I
0
G(REF)  
Q
g(TH)  
Q
Q
gd  
gs  
I
g(REF)  
0
FIGURE 16. GATE CHARGE TEST CIRCUIT  
FIGURE 17. GATE CHARGE WAVEFORM  
V
t
t
DS  
ON  
OFF  
t
d(OFF)  
t
d(ON)  
t
t
f
R
L
r
V
DS  
90%  
90%  
+
V
GS  
V
DD  
10%  
10%  
0
-
DUT  
90%  
50%  
R
GS  
V
GS  
50%  
PULSE WIDTH  
10%  
V
GS  
0
FIGURE 18. SWITCHING TIME TEST CIRCUIT  
FIGURE 19. RESISTIVE SWITCHING WAVEFORMS  
www.onsemi.com  
6
HUF75344G3, HUF75344P3  
PSPICE Electrical Model  
.SUBCKT HUF75337 2 1 3 ;  
rev 3 Feb 1999  
CA 12 8 4.9e-9  
CB 15 14 4.75e-9  
CIN 6 8 2.85e-9  
LDRAIN  
DPLCAP  
5
DRAIN  
2
10  
RLDRAIN  
DBODY 7 5 DBODYMOD  
DBREAK 5 11 DBREAKMOD  
DPLCAP 10 5 DPLCAPMOD  
RSLC1  
51  
DBREAK  
+
RSLC2  
5
ESLC  
11  
51  
-
50  
EBREAK 11 7 17 18 59.7  
EDS 14 8 5 8 1  
EGS 13 8 6 8 1  
ESG 6 10 6 8 1  
EVTHRES 6 21 19 8 1  
+
-
17  
DBODY  
RDRAIN  
6
8
EBREAK 18  
ESG  
-
EVTHRES  
+
16  
21  
+
-
EVTEMP 20 6 18 22 1  
19  
8
MWEAK  
LGATE  
EVTEMP  
+
RGATE  
GATE  
1
6
-
18  
22  
MMED  
IT 8 17 1  
9
20  
MSTRO  
8
RLGATE  
LDRAIN 2 5 1e-9  
LGATE 1 9 2.6e-9  
LSOURCE 3 7 1.1e-9  
LSOURCE  
CIN  
SOURCE  
3
7
KGATE LSOURCE LGATE 0.0085  
RSOURCE  
RLSOURCE  
MMED 16 6 8 8 MMEDMOD  
MSTRO 16 6 8 8 MSTROMOD  
MWEAK 16 21 8 8 MWEAKMOD  
S1A  
S2A  
S2B  
RBREAK  
12  
15  
13  
14  
13  
17  
18  
8
RBREAK 17 18 RBREAKMOD 1  
RDRAIN 50 16 RDRAINMOD 1.94e-3  
RGATE 9 20 0.36  
RLDRAIN 2 5 10  
RLGATE 1 9 26  
RLSOURCE 3 7 11  
RSLC1 5 51 RSLCMOD 1e-6  
RSLC2 5 50 1e3  
RVTEMP  
19  
-
S1B  
13  
CB  
CA  
IT  
14  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
RVTHRES  
RSOURCE 8 7 RSOURCEMOD 3.5e-3  
RVTHRES 22 8 RVTHRESMOD 1  
RVTEMP 18 19 RVTEMPMOD 1  
S1A 6 12 13 8 S1AMOD  
S1B 13 12 13 8 S1BMOD  
S2A 6 15 14 13 S2AMOD  
S2B 13 15 14 13 S2BMOD  
VBAT 22 19 DC 1  
ESLC 51 50 VALUE={(V(5,51)/ABS(V(5,51)))*(PWR(V(5,51)/(1e-6*400),3))}  
.MODEL DBODYMOD D (IS = 2.95e-12 RS = 2.6e-3 TRS1 = 1.05e-3 TRS2 = 5.0e-7 CJO = 5.19e-9 TT = 5.9e-8 M = 0.55)  
.MODEL DBREAKMOD D (RS = 1.65e-1 IKF = 30 TRS1 = 1.15e-4 TRS2 = 2.27e-6)  
.MODEL DPLCAPMOD D (CJO = 5.40e-9 IS = 1e-30 N=1 M = 0.88 )  
.MODEL MMEDMOD NMOS (VTO = 3.29 KP = 5.5 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 0.36)  
.MODEL MSTROMOD NMOS (VTO = 3.83 KP = 123 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u)  
.MODEL MWEAKMOD NMOS (VTO = 2.90 KP =0.04 IS = 1e-30 N = 10 TOX = 1 L = 1u W = 1u RG = 3.6)  
.MODEL RBREAKMOD RES (TC1 = 1.15e-3 TC2 = 2.0e-7)  
.MODEL RDRAINMOD RES (TC1 = 1.37e-2 TC2 = 3.85e-5)  
.MODEL RSLCMOD RES (TC1 = 1.45e-4 TC2 = 2.11e-6)  
.MODEL RSOURCEMOD RES (TC1 = 0 TC2 = 0)  
.MODEL RVTHRESMOD RES (TC1 = -3.7e-3 TC2 = -1.6e-5)  
.MODEL RVTEMPMOD RES (TC1 = -2.4e-3 TC2 = 7e-7)  
.MODEL S1AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -6.9 VOFF= -3.9)  
.MODEL S1BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -3.9 VOFF= -6.9)  
.MODEL S2AMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = -2.99 VOFF= 2.39)  
.MODEL S2BMOD VSWITCH (RON = 1e-5 ROFF = 0.1 VON = 2.39 VOFF= -2.99)  
.ENDS  
NOTE: For further discussion of the PSPICE model, consult A New PSPICE Sub-Circuit for the Power MOSFET Featuring Global  
Temperature Options; IEEE Power Electronics Specialist Conference Records, 1991, written by William J. Hepp and C. Frank Wheatley.  
www.onsemi.com  
7
HUF75344G3, HUF75344P3  
SABER Electrical Model  
REV 3 February 1999  
template huf75344 n2, n1, n3  
electrical n2, n1, n3  
{
var i iscl  
d..model dbodymod = (is = 2.95e-12, cjo = 5.19e-9, tt = 5.90e-8, m = 0.55)  
d..model dbreakmod = ()  
LDRAIN  
RLDRAIN  
RDBODY  
DPLCAP  
5
DRAIN  
2
d..model dplcapmod = (cjo = 5.40e-9, is = 1e-30, n = 1, m = 0.88)  
m..model mmedmod = (type=_n, vto = 3.29, kp = 5.5, is = 1e-30, tox = 1)  
m..model mstrongmod = (type=_n, vto = 3.83, kp = 123, is = 1e-30, tox = 1)  
m..model mweakmod = (type=_n, vto = 2.90, kp = 0.04, is = 1e-30, tox = 1)  
sw_vcsp..model s1amod = (ron = 1e-5, roff = 0.1, von = -6.9, voff = -3.9)  
sw_vcsp..model s1bmod = (ron = 1e-5, roff = 0.1, von = -3.9, voff = -6.9)  
sw_vcsp..model s2amod = (ron = 1e-5, roff = 0.1, von = -2.99, voff = 2.39)  
sw_vcsp..model s2bmod = (ron = 1e-5, roff = 0.1, von = 2.39, voff = -2.99)  
10  
RSLC1  
51  
RDBREAK  
72  
DBREAK  
11  
RSLC2  
ISCL  
50  
-
c.ca n12 n8 = 4.9e-9  
c.cb n15 n14 = 4.75e-9  
71  
RDRAIN  
6
8
ESG  
c.cin n6 n8 = 2.85e-9  
EVTHRES  
+
+
16  
21  
-
19  
8
MWEAK  
LGATE  
EVTEMP  
+
d.dbody n7 n71 = model=dbodymod  
d.dbreak n72 n11 = model=dbreakmod  
d.dplcap n10 n5 = model=dplcapmod  
DBODY  
RGATE  
GATE  
1
6
-
18  
22  
EBREAK  
+
MMED  
9
20  
MSTRO  
8
17  
18  
-
RLGATE  
i.it n8 n17 = 1  
LSOURCE  
CIN  
SOURCE  
3
7
l.ldrain n2 n5 = 1e-9  
l.lgate n1 n9 = 2.6e-9  
l.lsource n3 n7 = 1.1e-9  
RSOURCE  
RLSOURCE  
k.kl i(l.lgate) i(l.lsource) = l(l.lgate), l(l.lsource), 0.0085  
S1A  
S2A  
14  
13  
RBREAK  
12  
15  
13  
17  
18  
m.mmed n16 n6 n8 n8 = model=mmedmod, l = 1u, w = 1u  
8
m.mstrong n16 n6 n8 n8 = model=mstrongmod, l = 1u, w = 1u  
m.mweak n16 n21 n8 n8 = model=mweakmod, l = 1u, w = 1u  
RVTEMP  
19  
S1B  
S2B  
13  
CB  
CA  
IT  
14  
-
res.rbreak n17 n18 = 1, tc1 = 1.15e-3, tc2 = 2e-7  
res.rdbody n71 n5 = 2.6e-3, tc1 = 1.05e-3, tc2 = 5e-7  
res.rdbreak n72 n5 = 1.65e-1, tc1 = 1.15e-4, tc2 = 2.27e-6  
res.rdrain n50 n16 = 1.94e-3, tc1 = 1.37e-2, tc2 = 3.85e-5  
res.rgate n9 n20 = 0.36  
+
+
VBAT  
6
8
5
8
EGS  
EDS  
+
-
-
8
22  
res.rldrain n2 n5 = 10  
RVTHRES  
res.rlgate n1 n9 = 26  
res.rlsource n3 n7 = 11  
res.rslc1 n5 n51 = 1e-6, tc1 = 1.45e-4, tc2 = 2.11e-6  
res.rslc2 n5 n50 = 1e3  
res.rsource n8 n7 = 3.5e-3, tc1 = 0, tc2 = 0  
res.rvtemp n18 n19 = 1, tc1 = -2.4e-3, tc2 = 7e-7  
res.rvthres n22 n8 = 1, tc1 = -3.7e-3, tc2 = -1.6e-5  
spe.ebreak n11 n7 n17 n18 = 59.7  
spe.eds n14 n8 n5 n8 = 1  
spe.egs n13 n8 n6 n8 = 1  
spe.esg n6 n10 n6 n8 = 1  
spe.evtemp n20 n6 n18 n22 = 1  
spe.evthres n6 n21 n19 n8 = 1  
sw_vcsp.s1a n6 n12 n13 n8 = model=s1amod  
sw_vcsp.s1b n13 n12 n13 n8 = model=s1bmod  
sw_vcsp.s2a n6 n15 n14 n13 = model=s2amod  
sw_vcsp.s2b n13 n15 n14 n13 = model=s2bmod  
v.vbat n22 n19 = dc = 1  
equations {  
i (n51->n50) + = iscl  
iscl: v(n51,n50) = ((v(n5,n51)/(1e-9+abs(v(n5,n51))))*((abs(v(n5,n51)*1e6/400))** 3))  
}
}
www.onsemi.com  
8
HUF75344G3, HUF75344P3  
SPICE Thermal Model  
JUNCTION  
th  
REV 5 February 1999  
HUF75344  
RTHERM1  
RTHERM2  
RTHERM3  
RTHERM4  
RTHERM5  
RTHERM6  
CTHERM1  
CTHERM1 th 6 5.0e-3  
CTHERM2 6 5 1.0e-2  
CTHERM3 5 4 1.3e-2  
CTHERM4 4 3 1.5e-2  
CTHERM5 3 2 2.2e-2  
CTHERM6 2 tl 8.5e-2  
6
CTHERM2  
CTHERM3  
CTHERM4  
CTHERM5  
CTHERM6  
RTHERM1 th 6 6.0e-4  
RTHERM2 6 5 3.5e-3  
RTHERM3 5 4 2.5e-2  
RTHERM4 4 3 4.8e-2  
RTHERM5 3 2 1.6e-1  
RTHERM6 2 tl 1.8e-1  
5
SABER Thermal Model  
SABER thermal model HUF75344  
4
3
2
template thermal_model th tl  
thermal_c th, tl  
{
ctherm.ctherm1 th 6 = 5.0e-3  
ctherm.ctherm2 6 5 = 1.0e-2  
ctherm.ctherm3 5 4 = 1.3e-2  
ctherm.ctherm4 4 3 = 1.5e-2  
ctherm.ctherm5 3 2 = 2.2e-2  
ctherm.ctherm6 2 tl = 5.5e-2  
rtherm.rtherm1 th 6 = 6.0e-4  
rtherm.rtherm2 6 5 = 3.5e-3  
rtherm.rtherm3 5 4 = 2.5e-2  
rtherm.rtherm4 4 3 = 4.8e-2  
rtherm.rtherm5 3 2 = 1.6e-1  
rtherm.rtherm6 2 tl = 1.8e-1  
}
tl  
CASE  
www.onsemi.com  
9
ON Semiconductor and  
are trademarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries.  
ON Semiconductor owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of ON Semiconductor’s product/patent  
coverage may be accessed at www.onsemi.com/site/pdf/PatentMarking.pdf. ON Semiconductor reserves the right to make changes without further notice to any products herein.  
ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability  
arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages.  
Buyer is responsible for its products and applications using ON Semiconductor products, including compliance with all laws, regulations and safety requirements or standards,  
regardless of any support or applications information provided by ON Semiconductor. “Typical” parameters which may be provided in ON Semiconductor data sheets and/or  
specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including “Typicals” must be validated for each customer  
application by customer’s technical experts. ON Semiconductor does not convey any license under its patent rights nor the rights of others. ON Semiconductor products are not  
designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification  
in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use ON Semiconductor products for any such unintended or unauthorized  
application, Buyer shall indemnify and hold ON Semiconductor and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and  
expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such  
claim alleges that ON Semiconductor was negligent regarding the design or manufacture of the part. ON Semiconductor is an Equal Opportunity/Affirmative Action Employer. This  
literature is subject to all applicable copyright laws and is not for resale in any manner.  
PUBLICATION ORDERING INFORMATION  
LITERATURE FULFILLMENT:  
N. American Technical Support: 8002829855 Toll Free  
USA/Canada  
Europe, Middle East and Africa Technical Support:  
Phone: 421 33 790 2910  
Japan Customer Focus Center  
Phone: 81358171050  
ON Semiconductor Website: www.onsemi.com  
Order Literature: http://www.onsemi.com/orderlit  
Literature Distribution Center for ON Semiconductor  
19521 E. 32nd Pkwy, Aurora, Colorado 80011 USA  
Phone: 3036752175 or 8003443860 Toll Free USA/Canada  
Fax: 3036752176 or 8003443867 Toll Free USA/Canada  
Email: orderlit@onsemi.com  
For additional information, please contact your local  
Sales Representative  
© Semiconductor Components Industries, LLC  
www.onsemi.com  

相关型号:

HUF75344G3_04

75A, 55V, 0.008 Ohm, N-Channel UltraFET Power MOSFETs
FAIRCHILD

HUF75344G3_NL

Power Field-Effect Transistor, 75A I(D), 55V, 0.008ohm, 1-Element, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-247, TO-247, 3 PIN
FAIRCHILD

HUF75344G3_NL

75A, 55V, 0.008ohm, N-CHANNEL, Si, POWER, MOSFET, TO-247, TO-247, 3 PIN
ROCHESTER

HUF75344P3

75A, 55V, 0.008 Ohm, N-Channel UltraFET Power MOSFETs
FAIRCHILD

HUF75344P3

75A, 55V, 0.008 Ohm, N-Channel UltraFET Power MOSFETs
INTERSIL

HUF75344P3

55V、75A、8mΩ、N沟道UltraFET® Power MOSFET
ONSEMI

HUF75344P3_NL

75A, 55V, 0.008ohm, N-CHANNEL, Si, POWER, MOSFET, TO-220AB, TO-220AB, 3 PIN
ROCHESTER

HUF75344S3

Power Field-Effect Transistor, N-Channel, Silicon, Metal-oxide Semiconductor FET, TO-262AA
FAIRCHILD

HUF75344S3S

75A, 55V, 0.008 Ohm, N-Channel UltraFET Power MOSFETs
FAIRCHILD

HUF75344S3S

75A, 55V, 0.008 Ohm, N-Channel UltraFET Power MOSFETs
INTERSIL

HUF75344S3ST

75A, 55V, 0.008ohm, N-CHANNEL, Si, POWER, MOSFET, TO-263AB, TO-263AB, 3 PIN
ROCHESTER

HUF75345G3

75A, 55V, 0.007 Ohm, N-Channel UltraFET Power MOSFETs
FAIRCHILD